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ABSTRACT
Polyhedral affinoid algebras have been introduced by Einsiedler,

Kapranov and Lind in [5] to connect rigid analytic geometry (an-

alytic geometry over non-archimedean fields) and tropical geome-

try. In this article, we present a theory of Gröbner bases for poly-

topal affinoid algebras that extends both Caruso et al.’s theory of

Gröbner bases on Tate algebras of [1] and Pauer et al.’s theory of

Gröbner bases on Laurent polynomials of [9].

We provide effective algorithms to compute Gröbner bases for

both ideals of Laurent polynomials and ideals in polytopal affinoid

algebras. Experiments with a Sagemath implementation are pro-

vided.
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1 INTRODUCTION
Rigid geometry was born in Tate’s article [13]. He defined affinoid

algebras as ideal quotients of the Tate algebras, the algebras of

converging power series on the unit ball of some complete non-

archimedean valued field. They are the building blocks of Tate’s

rigid geometry in the sameway ideal quotients in polynomial rings

are the building blocks of algebraic geometry. In the past 50 years,

they have found various applications, among them one can cite

Raynaud’s contribution to solving Abhyankar’s conjecture [11].

Polyhedral and polytopal affinoid algebras have been defined by

Einsiedler et al. in [5] using Tate algebras with convergence con-

ditions given by a polyhedron or a polytope (respectively). They

are one of the main ingredients of the development of tropical an-

alytic geometry as in e.g. [8, 10, 6]. It has found applications with
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Gubler in [7] to prove the Bogomolov conjecture for totally degen-

erate abelian varieties. One motivation of this article is to make

progress toward an effective counterpart to tropical analytic geom-

etry.

To do so, the most natural tool to implement is Gröbner bases

(GB). The case of GB over Tate algebras has been studied in [1].

Modern algorithms like F5 and FGLM have been generalized to this

context in [4, 2]. Overconvergence has been studied in [3, 14] cul-

minating in the definition and computation of Universal Analytic

Gröbner Bases. They allow a first step toward tropical analytic ge-

ometry in the context of polynomial ideals.

To extend these results to polytopal affinoid algebras, it is natu-

ral to work with Laurent polynomials and series. To define GB in

this context, one could of course, instead ofworkingwithG±1, ~±1, . . . ,

choose to use nonnegative monomials G1, G2, ~1, ~2, . . . along with

relations G1G2 − 1 = 0, ~1~2 − 1 = 0, . . . As we believe a direct ap-

proach would be more suitable for tropical applications, we have

chosen to implement an instance of Laurent polynomials and se-

ries which does not hide its monomials with negative exponents,

and which has been introduced by Pauer and Unterkircher in [9].

Motivated by the study of systems of linear partial difference equa-

tions, they have developed a theory of generalized monomial or-

derings and Gröbner bases for Laurent polynomials. We provide

a short introduction to the generalized monomial ordering part of

this theory in Section 3. In addition, in Section 6, we fill in a gap

that prevented their theory to be completely effective: we provide

an algorithm to compute all the necessary leading monomials in

this context.

Equipped with a new notion of term ordering built on those of

[1, 14] and [9], we study the multivariate division in polytopal affi-

noid algebras in Section 4. These results enable us to provide in

Section 5 a theory of Gröbner bases for ideals in polytopal affinoid

domains. We make a decisive step toward effectivity in Subsection

5.3 with an adapted Buchberger algorithm. Finally, Section 6 pro-

vide the last remaining tools needed for GB computations over

polytopal affinoid algebras. In addition, a short software demon-

stration in Sagemath [12] can be read in Annex.

2 SETTING
Let  be a field with a discrete valuation val making it complete,

and let  ◦ be the subring of  consisting of elements of nonneg-

ative valuation. Let c be a uniformizer of  , i.e. a generator of

the maximal ideal {G ∈  ◦, val(G) > 0} of  ◦ . Typical examples

of such a setting are ?-adic fields like  = Q? with  ◦ = Z? and

c = ? , or Laurent series fields like  = Q((* )) with  ◦ = QÈ*É
and c = * .

We fix a positive integer =. Let -1, . . . , -= be = variables. We use

the short notations X for (-1, . . . , -=) and X
±1 for (-±11 , . . . , -±1= ).



If i = (81, . . . , 8=) ∈ Z= , we shall write X
i for - 811 · · ·-

8=
= . We de-

fine )≥0 and ) to be the multiplicative monoids {Xi, i ∈ N=} and
{Xi, i ∈ Z=} respectively.Wewill frequently represent amonomial

in either the set )≥0 or ) by utilizing the =-tuple of its exponents

in N= or Z= .

Let P ⊂ R= be a polytope with vertices in Q= . Let % = P ∩ Q= .

For 0,1 ∈ R= , 0 · 1 denote the usual scalar product in R= . Follow-

ing [10], we define the polytopal affinoid algebra  {X;%} as the
following algebra:
{

∑

D∈Z=
0DX

D : 0D ∈  , ∀A ∈ %, val(0D) − A · D −−−−−−−→
|D |→+∞

+∞

}

.

For 5 =
∑

D∈Z= 0DX
D ∈  {X;%}, we define supp( 5 ) := {XD , D ∈

Z=, 0D ≠ 0}. For each A ∈ % we define a valuation valr on  {X; %}
by

valr

(

∑

D∈Z=
0DX

D

)

= min
D∈Z=

val(0D) − A · D,

and for 5 in  {X; %}, we define val% ( 5 ) = infA ∈% valr ( 5 ). By [10],

val% is a valuation on  {X; %} and

val% ( 5 ) = inf
A ∈%

valr ( 5 ) = min
A ∈%

valr ( 5 ) = min
A ∈vert(% )

valr ( 5 )

Moreover, 5 is in  {X;%} if and only if val(0D) − A · D → +∞ for

all A ∈ vert(%) (the vertices of % ). In other words:

 {X; %} =
⋂

A ∈vert(% )

 {X; {A }}

Elements of  {X; %} are exactly the Laurent power series which

converge on the set val−1 (%) ⊂ ( ×)= and val% ( 5 ) is the mini-

mum valuation reached by 5 on val−1 (%).
A case of particular interest is when % =

∏=
8=1[A8 , B8 ] for some

A8 < B8 ∈ Q. The set val
−1 (%) is then the polyannulus {(n1, . . . , n=) ∈

( ×)= : A8 ≤ val(n8 ) ≤ B8 } and in rigid geometry, such a  {X; %}
is called a Laurent domain.

3 GENERALIZED MONOMIAL ORDER
In the realm of Gröbner basis theory for ideals within the poly-

nomial ring  [X], a fundamental component involves monomial

orders defined on the monoid )≥0. Recall that a monomial order

on )≥0 is a total order that satisfies, for all A, B, C ∈ )≥0:

(1) 1 ≤ C (2) A < B =⇒ AC < BC

When attempting to extend this theory to Gröbner bases for ideals

in the Laurent polynomial ring  [X±1], a natural inclination is to

consider "monomial orders on ) ." These should be total orders on

) that adhere to conditions (1) and (2). However, such orders can

not exist.

To illustrate this, take any non-trivial element C ∈ ) . According
to (1), we have 1 < C , which implies C−1 < 1 by (2). This leads to

a contradiction. The problem is that, unlike )≥0, ) contains non-

trivial invertible elements.

In the article [9], the authors introduced generalized monomial

orders (or g.m.o) as a workaround to the previous problem. Their

approach involves representing ) as a finite union ∪8)8 of sub-
monoids)8 , ensuring that each)8 does not contain any non-trivial

invertible elements, thereby allowing the definition of a monomial

order on each of them. The crucial requirement is that the order

)0
)1

)2

(a) Example 3.2

)0)1

)3)2

(b) Example 3.3

Figure 1: Conic decompositions for = = 2

on) must restrict to a monomial order on each )8 in a compatible

manner (refer to condition 2 in Definition 3.4). This final condition

ensures that the leading term of a product,which typically isn’t the

product of the leading terms for a g.m.o, predominantly depends

on the submonoids )8 .

In this section, we expose this notion, simplifying a little the

exposition in [9] to fit our use case.

Sometimes, we will need to consider orders defined on various

sets. As a general guideline, the symbols ≤ and <will be employed

irrespective of the set onwhich the order is established. The clarity

of the set should always be apparent from the context. In instances

where ambiguity might arise, we employ subscripts (such as <� ,

<l , . . . ) to distinguish between different orders.

Definition 3.1 ([9, Definition 2.1]). A conic decomposition of

) is a finite family ()8)8∈� of finitely generated submonoids of) such

that

(1) for each 8 , the only invertible element in the monoid)8 is 1 and

the group generated by )8 is) .

(2) the union of all the)8 ’s equal)

Examples 3.2 and 3.3 illustrate Definition 3.1. We will use the

conic decomposition of Example 3.2 in our implementation in §6.2

and in the Annex.

Example 3.2. Let )0 := {-: , : ∈ N=} and for 1 ≤ 9 ≤ = let )9
be the monoid generated by {- −11 . . . - −1= } ∪ {-1, . . . , -̂ 9 , . . . , -=}
where the hat symbol indicates that the corresponding element is

ommited. In other words, )9 contains all monomials for which the

exponent of - 9 is non-positive and smaller than any other exponent.

Then ()9 )0≤ 9≤= is a conic decomposition of) containing = + 1 cones.

Example 3.3. Let �= be the set of all maps from {1, . . . , =} to

{−1, 1}. For3 in�= , let)3 be themonoid generated by the set {-
3 (1)
1 , . . . , -

3 (=)
= }.

Then ()3 )3∈�=
is a conic decomposition of ) containing 2= cones.

Definition 3.4 ([9, Definition 2.2]). Let ()8)8∈� be a conic de-
composition of ) . A generalized monomial order (or g.m.o) on ) for

the decomposition ()8)8∈� is a total order < on ) such that

(1) ∀C ∈ ), 1 ≤ C
(2) ∀A ∈ ),∀8 ∈ � , (B, C ∈ )8 and A < B) =⇒ AC < BC

Remark 3.5. For each 8 ∈ � , the restriction of < to)8 is amonomial

order (take A in )8 in 2. of Definition 3.4).

Given a conic decomposition, Lemma 3.6 provides a method for

constructing a g.m.o by employing an auxiliary function, q : ) →
Q≥0, which exhibits favorable behavior in relation to the decom-

position.



Lemma 3.6 ([9, Lemma 2.1]). Let ()8)8∈� be a conic decomposition

of) and � be either {1} or one of the)8 . Let <� be a total group order

on ) (e.g the lexicographical order). Let q : ) → Q≥0 be a function

fulfilling the following conditions:

(1) ∀C ∈ ) \ �, q (C) > 0

(2) ∀B, C ∈ ) , q (BC) ≤ q (B) + q (C)
(3) ∀8 ∈ � , q |)8 is a monoid homomorphism.

Then the order < defined by

A < B ⇐⇒ q (A ) < q (B) or (q (A ) = q (B) and A <� B)

is a g.m.o on ) for the decomposition ()8)8∈� .

The notions of leading monomial, leading coefficient and lead-

ing term are defined for a Laurent polynomial as in the polynomial

case.

Definition 3.7. Fix a g.m.o on ) and let 5 ∈  [X±1]. The lead-
ing monomial lm( 5 ) of 5 is defined as max(X9 , 9 ∈ supp(f)). The
leading coefficient lc( 5 ) of 5 is the coefficient of lm( 5 ) in 5 . The lead-
ing term lt( 5 ) of 5 is the product lc( 5 )lm( 5 ).

Examples 3.8 to 3.10 illustrate Lemma 3.6 and Definition 3.7. In

each case, we take for group order on ) the lexicographical order,

and show in the case = = 2 how the monomials of 5 = 2G~−2 +
G−2~−2 + 3G−1~−2 + ~2 ∈  [G±1, ~±1] are ordered.

Example 3.8. Take the standard decomposition ()0,)1, . . . ,)=) of
Example 3.2. Put � = {1} and defineq : ) → Q≥0 byq (81, . . . , 8=) =
81 + · · · + 8= − (= + 1)min(0, 81, . . . , 8=). We have G~−2 > G−1~−2 >

~2 > G−2~−2, lm( 5 ) = G~−2, lc( 5 ) = 2 and lt( 5 ) = 2G~−2.

Example 3.9. Take the standard decomposition ()0,)1, . . . ,)=) of
Example 3.2. Put � = )0 and define q : ) → Q≥0 by q (81, . . . , 8=) =
−min(0, 81, . . . , 8=). We have G~−2 > G−1~−2 > G−2~−2 > ~2,

lm( 5 ) = G~−2, lc( 5 ) = 2 and lt( 5 ) = 2G~−2.

Example 3.10. Take the conic decomposition ()3 )3∈�=
of Exam-

ple 3.3. Put � = {1} and define q : ) → Q≥0 by q (81, . . . , 8=) =
|81 | + · · · + |8= |. We have G−2~−2 > G~−2 > G−1~−2 > ~2, lm( 5 ) =
G−2~−2, lc( 5 ) = 3 and lt( 5 ) = 3G−2~−2.

In Example 3.11, we illustrate the fact that for C ∈ ) and 5 ∈
 [X±1], the leading monomial of C 5 is generally not equal to the

product of C by lm( 5 ).

Example 3.11. Take the g.m.o of Example 3.2 in the case= = 2 and

5 = G~ + ~−1 ∈  [G±1, ~±1]. We have lm(~5 ) = G~2 but ~lm( 5 ) =
1 ≠ G~2.

However, thanks to the compatibility condition (2) of Definition

3.4, the monomial C of 5 such that lm(C 5 ) = C lm( 5 ) relies solely on
the cone )8 in which lm(C 5 ) lies, and not on the specific value of

C itself. This is demonstrated in Lemma 3.13 and leads naturally

to the definition of "one leading monomial per cone" in Definition

3.14.

For the rest of this section, we fix a g.m.o for a conic decompo-

sition ()8)8∈� of ) .

Definition 3.12. For 8 ∈ � and 5 ∈  [X±1], define)8 ( 5 ) := {C ∈
), lm(C 5 ) ∈ )8 }.

Lemma 3.13 ([9, Lemma 2.3]). Let 8 ∈ � , 5 ∈  [X±1],D, E ∈ )8 ( 5 ).
Write lm(D5 ) = DCD ∈ )8 and lm(E 5 ) = ECE ∈ )8 for somemonomials

CD , CE of 5 . Then CD = CE .

Definition 3.14. Let 8 ∈ � , 5 ∈  [X±1] and C ∈ )8 ( 5 ). We define

lm8 ( 5 ) := lm(C 5 )C−1 . This is well defined by Lemma 3.13 (i.e it does

not depend on a particular C ∈ )8 ( 5 )). We also define lc8 ( 5 ) as the
coefficient of lm8 ( 5 ) in 5 , and lt8 ( 5 ) = lc8 ( 5 )lm8 ( 5 ).

Remark 3.15. Before giving some examples, we explain how to

compute lm8 ( 5 ). By Lemma 3.13, we have lm8 ( 5 ) = lm( 5 )C−1 when-
ever C ∈ )8 ( 5 ). So we just need to find a C ∈ )8 ( 5 ), which can be

done as follows. Recall that )8 is finitely generated and generates )

as a group. This implies that for each monomial B of 5 , we can find

DB, EB ∈ )8 such that B = DBE
−1
B . Define C as the product of the mono-

mials EB for B amonomial of 5 . Then supp(C 5 ) ⊂ )8 , and lm(C 5 ) ∈ )8 .
The later means that C ∈ )8 ( 5 ) and we are done.

Example 3.16 (Example 3.8 continued.). We have lm0 ( 5 ) =

lm1 ( 5 ) = ~
2, lm2 ( 5 ) = lm( 5 ) = G~−2, )0 ( 5 ) = ~

2)0, )1 ( 5 ) = ~
2)1

and )2 ( 5 ) = ~)2.

Example 3.17 (Example 3.9 continued.). We have lm0 ( 5 ) =

lm2 ( 5 ) = lm( 5 ) = G~−2, lm1 ( 5 ) = G−2~−2, )0 ( 5 ) = G2~2)0,

)1 ( 5 ) = G~
2)1 and )2 ( 5 ) = G

2~2)2.

Example 3.18 (Example 3.10 continued.). We index the 4 cones

as in b) of Figure 1. We have lm0 ( 5 ) = lm1 ( 5 ) = ~2, lm2 ( 5 ) =

lm( 5 ) = G−2~−2 and lm3 ( 5 ) = G~
−2.

Remark 3.19. Wehave lm( 5 ) = lm8 ( 5 ) for at least one index 8 ∈ � .
For a fixed 5 , the lm8 ( 5 )’s are not necessarily distincts, and lm8 ( 5 )
is generally not an element of )8 .

The following lemma states that a g.m.o shares with monomial

orders the crucial property of being a well-order.

Lemma 3.20 ([9, Lemma 2.2]). Let < be a g.m.o on ) (for a conic

decomposition ()8)8∈� of) ). Then every strictly descending sequence
in ) is finite. In particular, any subset of ) contains a smallest ele-

ment.

4 MULTIVARIATE DIVISION IN  {X;%}

In this section, we demonstrate the adaptability of the division

algorithm, originally presented in the Tate algebras setting in [1,

Proposition 3.1], to the polytopal setting.

The novelty lies in the method employed to eliminate the lead-

ing term of an element 5 ∈  {X;%} by 6 ∈  {X;%}. We can not

solely rely on the leading terms of 5 and 6 (see Example 4.7), but

have to consider also the terms lt8 (6) and the sets )8 (6) for 8 ∈ � .

4.1 The monoid of terms ) {X;%}
Definition 4.1. Let ≤l be a g.m.o on) . We define the monoid of

terms) {X; % ; ≤l } (or simply) {X;%}) as the multiplicative monoid

{0XD : 0 ∈  ×, D ∈ Z=}. We define a preorder ≤ on ) {X; %} by

0XD ≤ 1XE ⇐⇒ (val% (0X
D) > val% (1X

E)) or

(val% (0X
D) = val% (1X

E) and X
D ≤l X

E)

Remark 4.2. The preorder ≤ is not antisymmetric (and so not an

order). For terms C1, C2, the fact that C1 ≤ C2 and C2 ≤ C1 is equivalent
to the existence of 0 ∈ ( ◦)× such that C1 = 0C2.



Remark 4.3. The preorder ≤ is compatible with multiplication by

elements of  × but is not compatible with multiplication by mono-

mials (because ≤l itself isn’t). It is also not a well-order (there exists

infinite strictly decreasing sequences).

However, Lemma 4.4 shows that the preorder ≤ is a topological

well-order as in [1, Lemma 2.14].

Lemma 4.4. Let (C 9 ) 9∈N be a strictly decreasing sequence in) {X;%}.
Then lim9→∞ val% (C 9 ) = +∞, or equivalently

∑

9∈N C 9 ∈  {X; %} .

Proof. By definition of the preorder≤, the sequence (val% (C 9 )) 9∈N
is nondecreasing and takes its values in a discret subset 1

� Z of R

for some integer � (taking into account the image group of val and

the product of the denominators of the vertices of % ). Since ≤l is

a well-order, there can be for a fixed E ∈ 1
� Z only a finite number

of indices 9 for which val% (C 9 ) = E . Combining these two facts,

val% (C 9 ) must tend to +∞. �

Remark 4.5. If 8 ≠ 9 ∈ Z= , the terms 08X
8 and 1 9X

9 are never

"equal" (that is 08X
8 ≤ 1 9X

9 and 1 9X
9 ≤ 08X

8 ) for ≤. Therefore, any
nonzero 5 ∈  {X;%} has a unique leading term for ≤.

Definition 4.6. Let 5 =
∑

U ∈Z= 2UX
U ∈  {X;%}. We define

in% ( 5 ) :=
∑

U ∈Z= s.t. val% (2UXU )=val% (5 ) 2UX
U ∈  [X±1]. Using the

map in% :  {X; %} →  [X±1], we extend to 5 ∈  {X;%} the
definitions of lm( 5 ), lc( 5 ), lt( 5 ), lm8 ( 5 ), lc8 ( 5 ), lt8 ( 5 ) and )8 ( 5 ).

The leading term for the term order on ) {X; %} (as in Remark

4.5) equals lt( 5 ) = lt(in% ( 5 )), and same for lt8 ( 5 ), )8 ( 5 ) and so on.

4.2 Multivariate division algorithm
In Example 4.7, we illustrate how the classical procedure to cancel

the leading term of a polynomial can fail in the Laurent polynomial

setting equipped with a g.m.o.

Example 4.7. Take the g.m.o of Example 3.8 in the case = = 2

and 5 = G + ~, 6 = G−1~ + ~−1 ∈  [G±1, ~±1]. We have lt( 5 ) = G

and lt(6) = G−1~. To cancel out lt( 5 ) in 5 the classical way, we

substract
lt(5 )
lt(6) 6 from 5 and obtain ~ − G2~−2. But then we have

lm(~ − G2~−2) = G2~−2 > G = lm( 5 ), that is the leading monomial

after cancellation is strictly superior to the leading monomial of 5 !

The issue in Example 4.7 arises from assuming that lt(C6) =

C lt(6). For a g.m.o, this equality does not necessarily hold (e.g Ex-

ample 3.11), and it becomes possible for the leading term of C6 to

exceed the leading term of 5 . While the leading term of 5 is suc-

cessfully canceled out, a larger term originating from C6 emerges

after the cancellation. To properly eliminate the leading term of 5

by a multiple of 6, we need instead to identify a term C such that

lt(C6) = lt( 5 ). According to Lemma 3.13, depending on the specific

cone)8 in which lm( 5 ) is contained, this equality can be expressed
again as lt( 5 ) = lt(C6) = C lt8 (6). This shows that the potential can-

didates for C are the terms
lt(5 )
lt8 (6)

for varying indices 8 for which

lm( 5 ) ∈ )8 . Summarizing the process:

(1) Find an index 8 such that lm( 5 ) ∈ )8 (there exists at least

one).

(2) Check if lm
(

lm(5 )
lm8 (6)

6
)

= lm( 5 ). If this condition is satisfied,

the leading term of 5 can be effectively canceled out by sub-

tracting
lt(5 )
lt8 (6)

6 from 5 , and
lm(5 )
lm8 (6)

∈ )8 (6); otherwise, it

cannot.

Remark 4.8. The monomial lm( 5 ) can be contained in more than

one cone, but it suffices to test the condition for cancellation within

any one of those cones.

The preceding discussion is applied in Proposition 4.9 and Al-

gorithm 1 to formulate a multivariate division algorithm in the

ring  {X;%}. Same as [1, Algo 1], Algorithm 1 needs a countable

amount of steps to terminate, but only a finite amount of steps to

reach a given finite precision in val% .

Proposition 4.9. Let 5 ∈  {X;%} and � be a finite subset of

 {X;%}. Algorithm 1 produces a family (@6)6∈� and A in  {X;%}
such that:

(1) 5 =
∑

6∈� @66 + A
(2) for all monomial C in A , C ∉

⋃

8∈�,6∈� )8 (6)lm8 (6)
(3) for all 6 ∈ � and all monomial C in @6, lt(C6) ≤ lt( 5 ).

Proof. We construct by induction sequences ( 59 ) 9≥0, (@6,9 ) 9≥0
for 6 ∈ � and (A 9 ) 9≥0 such that for all 9 ≥ 0:

5 = 59 +
∑

6∈�

@6,96 + A 9 ,

and lt( 59 ) 9≥0 is strictly decreasing. We first set 50 = 5 , A0 = 0 and

@6,0 = 0 for all 6 ∈ � . If there exists 8 ∈ � and 6 ∈ � such that

lm

(

lm( 59 )

lm8 (6)
6

)

= lm( 59 ) ∈ )8 ,

we set 59+1 = 59 − C6 and @6,9+1 = @6,9 + C6 where C =
lt(59 )
lt8 (6)

,

and leave unchanged A 9 and the other @6,9 ’s. Otherwise, we set

59+1 = 59 − ;C ( 59 ) and A 9+1 = A 9 + ;C ( 59 ) and leave unchanged

the @6,9 ’s. By construction, the sequence (lt( 59 )) 9≥0 is strictly de-

creasing. By lemma 4.4, we deduce that val% (A 9+1 − A 9 ) and the

val% (@6,9+1 − @6,9 )’s tend to +∞. Thus A 9 and the @6,9 ’s converge

in  {X;%}. Their limits satisfy the requirements of the proposi-

tion. �

Definition 4.10. The output A obtained from Algo 1 with entries

5 and� = (61, . . . , 6< ) is denoted rem( 5 ,�).

5 GRÖBNER BASES FOR POLYTOPAL
AFFINOID ALGEBRAS

Let ≤ be a g.m.o for a conic decomposition ()8)8∈� . For an ideal �

in  {X;%}, define lm( � ) := {lm( 5 ), 5 ∈ � , 5 ≠ 0}. Notice that

lm( � ) =
⋃

5 ∈ � ,8∈�

)8 ( 5 )lm8 ( 5 ). (1)

A finite subset� of � is then a Gröbner basis when equation (1)

still holds while considering in the set union only elements from

� instead of all members of � .



Algorithm 1: Multivariate division algorithm in  {X;%}

input : 5 , 61, . . . , 6< ∈  {X;%}
output :@1, . . . , @<, A satisfying Prop 4.9

1 @1, . . . , @<, A ← 0;

2 while 5 ≠ 0 do
3 while ∃(8, 9) ∈ � × È1,<É such that

lm
(

lm(5 )
lm8 (6 9 )

6 9

)

= lm( 5 ) do

4 C ←
lt(5 )
lt8 (6 9 )

;

5 @ 9 ← @ 9 + C ;

6 5 ← 5 − C6 9 ;

7 A ← A + lt( 5 )

8 5 ← 5 − lt( 5 );

9 return @1, . . . , @<, A

5.1 Gröbner bases
Definition 5.1. Let � be an ideal in  {X;%} and � be a finite

subset of � \ {0}. We say that� is a Gröbner basis of � (with respect

to the g.m.o ≤ and the conic decomposition ()8)8∈� ) when:

lm( � ) =
⋃

6∈�,8∈�

)8 (6)lm8 (6).

In Proposition 5.3, we prove that every ideal � within  {X; %}
contains a Gröbner basis. The demonstration relies on the fact that

the set )8 ( 5 ) is a finitely generated )8-module, as proved in the

following lemma:

Lemma 5.2. For all 8 ∈ � , there is a finite subset �8 ⊂ lm( � ) ∩)8
such that lm( � ) ∩)8 = )8 · �8 . In case � = ( 5 ) is principal, we have

lm(( 5 )) ∩)8 = )8 ( 5 )lm8 ( 5 ) = )8 ·�8 , and so)8 ( 5 ) = )8 ·
{

C
lm8 (5 )

, C ∈

�8

}

is finitely generateed over )8 .

Proof. By Dickson’s lemma, there exists a finite subset �8 of

lm( � ) ∩)8 which generates the ideal < lm( � ) ∩)8 > [)8 ] of  [)8 ].
Then lm( � )∩)8 = )8 ·�8 . If ( � ) = ( 5 ) is principal, then lm(( 5 ))∩)8 =
)8 ( 5 )lm8 ( 5 ) and we can conclude with Def. 3.14. �

Proposition 5.3. Let � be an ideal of  {X;%}. Then � contains
a Gröbner basis.

Proof. By Lemma 5.2, there are finite subsets �8 ⊂ )8 such that

lm( � ) =
⋃

8∈� )8 · �8 . For all C ∈
⋃

8∈� �8 choose an element 5C ∈ �
such that lm( 5C ) = C . Thanks to Def 3.14, lm8 ( 5C ) = lm( 5C ) = C .

We prove that the finite set � = {5C | C ∈
⋃

8∈� �8 } is a Gröbner

basis of � . Let D ∈ lm( � ). Let 8 be such that D ∈ )8 . Then there is

some (E, C) ∈ )8 × �8 such that D = EC . Let 2C = lc( 5C ) and 2UX
U be

a term of 5C . Then 2UX
U

< 2CC . We remark that on the one hand

val% (2UX
U ) > val% (2CC) if and only if val% (2UEX

U ) > val% (2CEC),
and on the other hand, if val% (2UX

U ) = val% (2CC) , then by item

(2) of Def 3.4 and the fact that E and C are in )8 , we can remark

that XU <l C implies X
UE <l CE . In any case, 2UX

UE < 2CEC .

Thus, lm(E 5C ) = EC = D ∈ )8 . Consequently, E ∈ )8 ( 5C ) and D ∈
)8 ( 5C )lm8 ( 5C ).We can then conclude that� is a GB of � . �

Proposition 5.4. Let� be a Gröbner basis for an ideal � of {X;%}.
We have

(1) ∀5 ∈  {X; %}, 5 ∈ � ⇐⇒ rem( 5 ,�) = 0

(2) � generates the ideal �

Proof. For the first part, if rem( 5 ,�) = 0, then the multivariate

division algorithm gives 5 ∈ � . Reciprocally, if 5 ∈ � and � is

a Gröbner basis of � , then by (2) of Prop 4.9 the remainder of the

division of 5 by � is necessarily 0. For the second part, if 5 ∈ � ,then,
thanks to the above first part, rem( 5 ,�) = 0, and so 5 ∈ � . �

5.2 S-pairs and Buchberger criterion
In the polynomial case, the S-pair of two polynomials 5 and 6 is

formed to eliminate the minimal multiple of their leading terms,

relying on the concept of least common multiple in # .

However, in the Laurent setting, where ) is a group and the

notions of lcm and gcd of two monomials in ) are useless, the re-

placement for the lcm of 5 and 6 is the finite set introduced in

Proposition 5.5. Notice that this set now depends on the cone in

which the cancellation occurs.

By the same argument as in Lemma 5.2, we have:

Proposition 5.5. For 8 ∈ � and 5 ,6 ∈  {X;%}, lm8 ( 5 ))8 ( 5 ) ∩
lm8 (6))8 (6) ⊂ )8 is a finitely generated)8-module.

Definition 5.6 (S-pair). Let 5 ,6 ∈  {X; %} and 8 ∈ � . For E ∈
lm8 ( 5 ))8 ( 5 ) ∩ lm8 (6))8 (6), we define:

( (8, 5 , 6, E) := lc8 (6)
E

lm8 ( 5 )
5 − lc8 ( 5 )

E

lm8 (6)
6.

Lemma 5.7. With the same notations as in Definition 5.6, we have

lt(( (8, 5 , 6, E)) < lc8 ( 5 )lc8 (6)E .

Proof. Since E ∈ )8 ( 5 )lm8 ( 5 ) ∩)8 (6)lm8 (6), there exists< 5 ∈
)8 ( 5 ) and <6 ∈ )8 (6) such that E = lm(< 5 5 ) = lm(<66) =

< 5 lm8 ( 5 ) = <6lm8 (6). Then the leading terms of lc8 (6)
E

lm8 (5 )
5

and lc8 ( 5 )
E

lm8 (6)
6 both equal lc8 ( 5 )lc8 (6)E . They cancel out leav-

ing lt(( (8, 5 , 6, E)) < lc8 ( 5 )lc8 (6)E . �

Since it involves all objects introduced so far, we give a detailed

proof of the adaptation of the following classical cancellation lemma

(see also e.g. [3, Lemma 5.1]).

Lemma 5.8. Let ℎ1, . . . , ℎ< ∈  {X; %} and 8 ∈ � . For 1 ≤ 9 ≤ < −
1, let * (8, ℎ 9 , ℎ 9+1) be a finite system of generators as in Proposition

5.5. Suppose that there are C1, . . . , C< ∈ ) {X; %}, D ∈ )8 and 2 ∈
val( ×) such that

• for all 9 ∈ {1, . . . ,<}, lt(C 9ℎ 9 ) = 2 9D with val(2 9 ) = 2
• lt(

∑<
8=1 C 9ℎ 9 ) < 21D .

Then there are elements 3 9 ∈  , E 9 ∈ * (8, ℎ 9 , ℎ 9+1) for 1 ≤ 9 ≤
< − 1 and C ′< ∈  {X;%} such that:

(1)
∑<
9=1 C 9ℎ 9 =

∑<−1
9=1 3 9

D
E9
( (8, ℎ 9 , ℎ 9+1, E 9 ) + C

′
<ℎ< .

(2) val% (C
′
<ℎ<) > val% (D21).

(3) D
E9
∈ )8 for all 9 <<.

(4) For all 9 <<, val
(

3 9 lc8 (ℎ 9 )lc8 (ℎ 9+1)
)

≥ 2.

Proof. Write ? 9 =
C 9ℎ 9

2 9
, 4 9 =

∑ 9

:=1
2: and C 9 = W 9 C̃ 9 for some

W 9 ∈  and some monomial C̃ 9 . By hypothesis D is in )8 and D =

C̃ 9 lm8 (ℎ 9 ) ∈ )8 (ℎ 9 )lm8 (ℎ 9 ) for all 9 . This implies that for all 9 <<

we have:

D ∈ )8 (ℎ 9 )lm8 (ℎ 9 ) ∩)8 (ℎ 9+1)lm8 (ℎ 9+1) = )8 ·* (8, ℎ 9 , ℎ 9+1)



Wededuce that for all 9 <<, there exist: 9 ∈ )8 and E 9 ∈ * (8, ℎ 9 , ℎ 9+1)
such that D = : 9E 9 . Now write

<
∑

9=1

C 9ℎ 9 = 41 (?1 − ?2) + · · · + 4<−1 (?<−1 − ?<) + 4<?< (2)

For all 9 < <, we have lt(C 9ℎ 9 ) = 2 9D = W 9 lc8 (ℎ 9 )C̃ 9 lm8 (ℎ 9 ), hence
C 9

2 9 C̃ 9
=

1
lc8 (ℎ 9 )

. For any 9 < <, put % 9 = ? 9 − ? 9+1. We can then

write:

% 9 =
D

E 9

( E 9

D
? 9 −

E 9

D
? 9+1

)

=
D

E 9

(

C 9E 9ℎ 9

2 9 C̃ 9 lm8 (ℎ 9 )
−

C 9+1E 9ℎ 9+1

2 9+1C̃ 9+1lm8 (ℎ 9+1)

)

=
D

E 9

(

1

lc8 (ℎ 9 )

E 9

lm8 (ℎ 9 )
ℎ 9 −

1

lc8 (ℎ 9+1)

E 9

lm8 (ℎ 9+1)
ℎ 9+1

)

=
1

lc8 (ℎ 9 )lc8 (ℎ 9+1)

D

E 9

(

lc8 (ℎ 9+1)
E 9

lm8 (ℎ 9 )
ℎ 9 − lc8 (ℎ 9 )

E 9

lm8 (ℎ 9+1)
ℎ 9+1

)

=
1

lc8 (ℎ 9 )lc8 (ℎ 9+1)

D

E 9
( (8,ℎ 9 , ℎ 9+1).

Plugging in the last expression back into equation (2) gives the

desired equality with 3 9 =
4 9

lc8 (ℎ 9 ) lc8 (ℎ 9+1 )
and C ′< =

4<
2<
C< . It satis-

fies (1). The hypothesis forces val(4<) > val(2<). Then we have

val% (C
′
<ℎ<) = val(4<) + val% (D) > val(2<) + val% (D) = val% (21D),

which proves (2). In addition, DE9 = : 9 ∈ )8 , which proves (3). Fi-

nally, using that val(4 9 ) ≥ 2 and 3 9 =
4 9

lc8 (ℎ 9 ) lc8 (ℎ 9+1 )
, one gets

(4). �

To prove the final Buchberger criterion in Proposition 5.10, we

need the following lemma:

Lemma 5.9. If 5 ∈  {X;%} and 8 ∈ È1,<É are such that lt( 5 ) < D
for some D ∈ )8 , then for any E ∈ )8 , lt(E 5 ) < ED.

Proof. Take C a term of 5 . Then C < D and D, E ∈ )8 so 2. of

Definition 3.4 implies EC < ED. Taking the maximum on the EC ’s,

we conclude. �

Proposition 5.10 (Buchberger criterion). Let� = (ℎ1, . . . , ℎ<)
be a family in  {X;%} and � the ideal generated by� . For each 8 ∈ �
and ℎ 9 ≠ ℎ: ∈ � , let * (8, ℎ 9 , ℎ: ) be a finite system of generators

of the )8-module lm8 (ℎ 9 ))8 (ℎ 9 ) ∩ lm8 (ℎ:))8 (ℎ: ). The following are

equivalent:

(1) � is a Gröbner basis of �

(2) For all 8 ∈ � ,ℎ 9 ≠ ℎ: , E ∈ * (8, ℎ 9 , ℎ: ), rem(( (8,ℎ 9 , ℎ: , E), � ) =
0.

Proof. The fact that (1) implies (2) is immediate from Prop 4.9.

We now prove that (2) implies (1). By contradiction, assume that

(2) is true and that � is not a Gröbner basis of � . Then there ex-

ists 5 ∈ � such that lm( 5 ) ∉
⋃

8∈8,1≤ 9≤<)8 (ℎ 9 )lm8 (ℎ 9 ). Since,
5 ∈ � = (ℎ1, . . . , ℎ<), we can write 5 =

∑<
9=1 @ 9ℎ 9 for some

@ 9 in  {X;%}. Write Δ( 9) to be the set of terms of @ 9 . We can

rewrite 5 as
∑<
9=1

∑

U ∈Δ ( 9 ) C 9,Uℎ 9 . For such a writing of 5 , define

D = max{lt(C 9,Uℎ 9 ), 1 ≤ 9 ≤ <,U ∈ Δ( 9)} and write the term D as

D = 2D̃ for some 2 ∈  and some monomial D̃. We have lt( 5 ) < D

because lm( 5 ) ∉ ∪8, 9)8 (ℎ 9 )lm8 (ℎ 9 ) and a cancellation has to ap-

pear.

Thus, val% (D) is upper-bounded. Since val is discrete, there is a
maximal val% (D) among all possible expressions of 5 =

∑<
9=1 @ 9ℎ 9 .

Among the expressions reaching this valuation, Lemma 3.20 en-

sure there is one such that D is minimal. Let 8 be such that D ∈ )8 .
Define / = {( 9, U) ∈ È1,<É × Δ( 9), s.t. lt(C 9,Uℎ 9 ) = WD, W ∈
 , val(W) = 0} and/ ′ = {( 9, U) ∈ È1,<É×Δ( 9), s.t. lt(C 9,Uℎ 9 ) < D}.
We can then write:

5 =

∑

( 9,U ) ∈/

C 9,Uℎ 9 +
∑

( 9,U ) ∈/ ′

C 9,Uℎ 9 (3)

Let6 :=
∑

( 9,U ) ∈/ C 9,Uℎ 9 .We have lt(6) = lt( 5 )−lt(
∑

( 9,U ) ∈/ ′ C 9,Uℎ 9 ) <
D and lt(C 9,Uℎ 9 ) = 2 9,U D̃ for all ( 9, U) ∈ / , where the 2 9,U all have

the same valuation. So 6 satisfies the conditions of Lemma 5.8 and

we can write

6 =

<−1
∑

9=1

3 9
D̃

E 9
( (8, ℎ 9 , ℎ 9+1, E 9 ) + C

′
<ℎ< (4)

for some 3 9 ∈  , E 9 ∈ * (8, ℎ 9 , ℎ 9+1), val
(

3 9 lc8 (ℎ 9 )lc8 (ℎ 9+1)
)

≥
val(2) and D̃/E 9 ∈ )8 for 9 < <, and with lt(C ′<ℎ<) < D . Now we

use the hypothesis that all the S-pairs of elements of � reduce to

zero. For each 9 << we can write

( (8,ℎ 9 , ℎ 9+1, E 9 ) =
<
∑

;=1

@
( 9 )
;
ℎ; , (5)

for some @
( 9 )
;

’s in  {X;%} satisfying

lt(@
( 9 )
;
ℎ; ) ≤ lt

(

( (8, ℎ 9 , ℎ 9+1, E 9 )
)

,

< lc8 (ℎ 9 )lc8 (ℎ 9+1)E 9 ,

where the last inequality comes from Lemma 5.7. Since E 9 ∈ )8 and
D̃/E 9 ∈ )8 , we can apply Lemma 5.9:

lt

(

D̃

E 9
@
( 9 )
;
ℎ;

)

< lc8 (ℎ 9 )lc8 (ℎ 9+1)E 9
D̃

E 9
,

= lc8 (ℎ 9 )lc8 (ℎ 9+1)D̃ .

Finally, using that val
(

3 9 lc8 (ℎ 9 )lc8 (ℎ 9+1)
)

≥ val(2), we deduce

that for all ; ∈ È1,<É and 9 ∈ È1,< − 1É;

lt

(

3 9
D̃

E 9
@
( 9 )
;
ℎ;

)

< D.

Inserting the expressions of3 9
D̃
E9
( (8,ℎ 9 , ℎ 9+1, E 9 ) as

∑<
;=1

3 9
D̃
E9
@
( 9 )
;
ℎ;

in Equations (4) and then (3), we get an expression of 5 in terms of

the ℎ 9 ’s with strictly smaller D , contradicting its minimality. �

5.3 Buchberger’s algorithm
Proposition 5.11. Algorithm 2 on page 7 is correct and termi-

nates, in the sense that it calls the multivariate division a finite num-

ber of times.

Proof. Correctness of the output is clear thanks to the Buch-

berger criterion of Proposition 5.10. For the termination, we prove

that the addition of a new A to � (on Line 10) can only happen a

finite amount of times. Indeed, let us assume that there is some in-

put � such that there is an infinite amount of non-zero A happening

on Line 8. Let 8 ∈ � be an index such that there is infinite amount

of lt(A ) in )8 and let � 9 be an indexation of all the states of the

set � throughout Algo. 2. Using the second property of multivari-

ate division in Prop. 4.9, we can extract from the non-decreasing



sequence (< lm8 (6))8 (6), 6 ∈ � 9 > [)8 ] ) 9∈N of  [)8 ]-ideals a
strictly increasing one. This is not possible since  [)8 ] is noether-
ian. �

We refer to the Annex for a SageMath demo and explicit exam-

ples, mostly over  [X±1].

Algorithm 2: Buchberger algorithm in  {X;%}

input : � = (ℎ1, . . . , ℎ<) an ideal of  {X;%}
output :a Gröbner basis of �

1 � ← {ℎ1, . . . , ℎ<}; � ← {(ℎ8, ℎ 9 ), 1 ≤ 8 < 9 ≤<}

2 while � ≠ ∅ do
3 ( 5 , 6) ← element of �; � ← � \ {( 5 ,6)};

4 for 8 ∈ � do
5 * (8, 5 , 6) ← finite set of generators of

lm8 ( 5 ))8 ( 5 ) ∩ lm8 (6))8 (6);

6 for E ∈ * (8, 5 , 6) do
7 _, A ← division(( (8, 5 , 6, E), � ) ; // Algo 1

8 if A ≠ 0 then
9 � ← � ∪ {(ℎ,A ), ℎ ∈ � };

10 � ← � ∪ {A }

11 return �

6 IMPLEMENTATION

6.1 Computation of the )8 ( 5 )’s
Tomake our Buchberger algorithm fully explicit, we need amethod

to compute the finite set of generators * (8, 5 , 6) in line 5 of Algo-

rithm 2. This problemwas not addressed when g.m.o.’s for Laurent

polynomials were introduced in [9]. Our idea is to compute the

)8 ( 5 )’s, for which we provide a general formula in Theorem 6.2.

The following definitions are motivated by the fact that for par-

ticular g.m.o’s (such as those of Examples 3.8 to 3.10), the sets

�8 ( 5 )’s, Δ8, 9 ’s and *8 ( 5 )’s can be obtained by classical computa-

tions in polyhedral geometry.

Definition 6.1. We define:

(1) �8 ( 5 ) := {C ∈ ), C lm8 ( 5 ) ∈ )8 }.
(2) Δ8, 9 ( 5 ) := {C ∈ ), C ∈ �8 ( 5 ) ∩� 9 ( 5 ), C lm8 ( 5 ) > C lm9 ( 5 )}.
(3) *8 ( 5 ) := �8 ( 5 ) ∩

⋂

9∈�, lm8 (5 )≠lm9 (5 )
(

� 9 ( 5 )
2 ∪ Δ8, 9 ( 5 )

)

.

Theorem 6.2. For any 8 ∈ � ,

)8 ( 5 ) = *8 ( 5 ) (6)

Proof. We first prove that )8 ( 5 ) ⊂ *8 ( 5 ). Let C ∈ )8 ( 5 ). Then
lm(C 5 ) ∈ )8 so C lm8 ( 5 ) = lm(C 5 ) ∈ )8 , hence C ∈ �8 ( 5 ). Let 9 ∈ � be
such that lm8 ( 5 ) ≠ lm9 ( 5 ). We can write that C lm8 ( 5 ) = lm(C 5 ) ≥
C lm9 ( 5 ) and since lm8 ( 5 ) ≠ lm9 ( 5 ), this inequality becomes strict:

C lm8 ( 5 ) > C lm9 ( 5 ). Depending on whether C lm9 ( 5 ) ∈ )9 or not, C
is then in �29 or Δ8, 9 . In conclusion, C ∈ *8 ( 5 ) and )8 ( 5 ) ⊂ *8 ( 5 ).

We prove the converse inclusion. Let

C ∈ *8 ( 5 ) = �8 ∩
⋂

9∈�, lm8 (5 )≠lm9 (5 )

(

�29 ∪ Δ8, 9

)

.

From C ∈ �8 , we get that C lm8 ( 5 ) ∈ )8 . Let 9 ∈ � be such that

lm(C 5 ) ∈ )9 . Then lm(C 5 ) = C lm9 ( 5 ) ∈ )9 and C ∈ � 9 ( 5 ). If
9 is such that lm8 ( 5 ) = lm9 ( 5 ) then C lm8 ( 5 ) = C lm9 ( 5 ), hence
lm(C 5 ) = C lm8 ( 5 ) and lm(C 5 ) ∈ )8 . Otherwise, our assumptions

provide that C ∈ *8 but not in � 9 ( 5 ), hence C ∈ Δ8, 9 ( 5 ). Conse-
quently, C lm8 ( 5 ) > C lm 9 ( 5 ) = lm(C 5 ) which is in contradiction

with the definition of lm(C 5 ). In conclusion, lm(C 5 ) = C lm8 ( 5 ) ∈ )8 ,
hence C ∈ )8 ( 5 ) and )8 ( 5 ) = *8 ( 5 ). �

If the )8 ’s are defined as �8 ∩ Z= for �8 a rational polyhedral

cone, we can compute the �8 ’s and �
2
8 ’s by solving systems of lin-

ear inequalities. Moreover, if the g.m.o is defined by a function

q : ) → Q≥0 as in Lemma 3.6, the Δ8, 9 ( 5 )’s can be computed

by computing first the C ’s such that q (C lm8 ( 5 )) > q (C lm 9 ( 5 )). It
obviously depends on q but if the restriction of q to each )8 is lin-

ear, the desired set is again obtained by solving systems of linear

inequalities. For the case q (C lm8 ( 5 )) = q (C lm 9 ( 5 )), since our tie-

break order <� is a group order, then C lm8 ( 5 ) > C lm9 ( 5 ) if and
only if lm8 ( 5 ) > lm9 ( 5 ) which does not depend on C . In total, one

can compute generators of all the )8 ( 5 )’s relying only on solving

systems of linear inequalities from the following:

(1) Computing the lm8 ’s,

(2) Computing the �8 ( 5 )’s and �8 ( 5 )
2 ’s,

(3) Computing the Δ8, 9 ( 5 )’s (for 8, 9 such that lm8 ( 5 ) ≠ lm9 ( 5 )),
(4) Use formula (6) to obtain the )8 ( 5 )’s

In the next part, we will make the computation of the )8 ( 5 )’s
completely explicit for g.m.o’s whose underlying conic decompo-

sition is the decomposition of Example 3.2.

6.2 A particular conic decomposition
Taking a closer look at Algorithm 2, we can identify two areas for

minimizing the number of S-pairs to be reduced:

(1) Within the for loop at line 4, by minimizing the value of |� |
(the number of cones).

(2) Within the for loop at line 6, by specifying that the set of

generators * (8, 5 , 6) should contain only one element.

The first point is addressed comprehensively in the following propo-

sition, while Theorem 6.5 offers a partial solution to the second

point.

Proposition 6.3. A conic decomposition of ) � Z= contains at

least = + 1 cones.

Proof. Assume, for the sake of contradiction, the existence of

a conic decomposition containing strictly less than = + 1 cones.

Without loss of generality, we may assume that it contains exactly

= cones )1, . . . ,)= .

By (1) of Definition 3.1, each )8 is contained in a cone �8 :=

08,1R≥0 ⊕ · · · ⊕ 08,=R≥0 for (08,1, . . . , 08,=) ∈ Z
= a basis of R= , and

by (2) of Definition 3.1, ∪)8 = Z= . Thus ∪)8 = Z= is contained

in the closed subset � := ∪�8 of R
= . We show that Z= \ � ≠ ∅,

resulting in a contradiction.

We first show that R= \ � ≠ ∅. For each 8 there exists E8 ∈
R=\{0} such that�8 \{0} is contained in the linear open half-space
!(E8 ) := {D ∈ R= | (D, E8 ) < 0}, and there exists an open neighbor-

hood �8 of E8 such that the inclusion �8 ⊂ !(F8 ) is still true for



F8 ∈ �8 . Thus we can choose the E8 ’s such that (E1, . . . , E=) is a ba-
sis of R= . By Gram-Schmidt process, there exists an orthonormal

basis 11, . . . , 1= such that the matrice of (E1, . . . , E=) in that basis is

upper triangular with strictly positif coefficients on the diagonal.

By construction, the vector 1= satisfies (1=, E8 ) ≥ 0 for each 8 . Thus

1= ∈ R
= \ ∪8!(E8 ) ⊂ R= \ ∪8�8 = R= \� , and so R= \� ≠ ∅.

SinceR=\� is a non-empty open set, it contains a basis (21, . . . , 2=)
of R= , and thus contains the cone 21R≥0⊕ · · · ⊕2=R≥0 which itself
contains an infinity of elements of Z= . �

Lemma 6.4. Let ≤ be a g.m.o such that the underlying conic de-

composition ()8)8∈� satisfies:

∀8, 9 ∈ � , gr〈)8 ∩)9 〉 ∩)8 = )8 ∩)9 .

For all 8, 9 ∈ � , 5 ∈  [X±1], we have:

(B ∈ )8 ∩)9 , C ∈ )8 ( 5 ), BC ∈ )8 ( 5 ) ∩)9 ( 5 )) =⇒ C ∈ )9 ( 5 ).

Proof. Writing ; := lm8 ( 5 ) = lm9 ( 5 ), we have lm(C 5 ) = C; ∈ )8
and lm(BC 5 ) = BC; ∈ )8∩)9 because C ∈ )8 ( 5 ) and BC ∈ )8 ( 5 )∩)9 ( 5 ).

We have to show that C; ∈ )9 . Now C; = B−1BC; ∈ gr〈)8 ∩)9 〉 ∩)8 =
)8 ∩)9 by the hypothesis. �

The conic decompositions of Examples 3.2 and 3.3 satisfy the

hypothesis of Lemma 6.4

Theorem 6.5. Let ≤ be a g.m.o such that the underlying conic

decomposition is ()0,)1, . . . ,)=) as defined in Example 3.2. For all

5 ∈  [X±1] and 0 ≤ 8 ≤ =, )8 ( 5 ) is a monogenous )8 -module.

Proof. Assume, for the sake of contradiction, that there exists

an index 8 and 5 ∈  [X±1] such that the set of minimal generators

of )8 ( 5 ) contains at least two elements 0 ≠ 1 ∈ Z= . We will focus

on the case where 8 = 0; the proof for 8 ≠ 0 is essentially the same.

We have 0 + )0 =
⋂

9 {G ∈ Z= | G 9 ≥ 0 9 } and 1 + )0 =
⋂

9 {G ∈
Z= | G 9 ≥ 1 9 }. Let ? ∈ Z

= be the vector such that ? 9 = min(0 9 , 1 9 )
for 1 ≤ 9 ≤ =, which is necessarily different from 0 and 1. By

definition of ? , we have 0 + )0 ∪ 1 + )0 ⊂ ? + )0. Therefore, ? ∉

)0 ( 5 ); otherwise, {0,1} wouldn’t be contained in a minimal set of

generators of )0 ( 5 ). Since the )8 ( 5 )’s cover Z
= , there exists : ≠ 0

such that ? ∈ ): ( 5 ). We have)0∩): = {G: = 0}∩
(

⋂

9≠: {G 9 ≥ 0}
)

.

Consequently, the set ? +)0 ∩): contains either 0 or 1, depending

on whether min(0: , 1: ) = 0: or 1: . Without loss of generality,

assume it contains 0. From 0 ∈ ? +)0 ∩): , we deduce that 0 − ? ∈
)0 ∩ ): . Also, from 0 ∈ ? + )0 ∩ ): ⊂ ? + ): and ? ∈ ): ( 5 ), we
get that 0 ∈ ): ( 5 ) and thus 0 ∈ ): ( 5 ) ∩)0 ( 5 ). Consequently we

can write (0 − ?) + ? = 0 with (0 − ?) ∈ ): ∩ )0, ? ∈ ): ( 5 ) and
0 ∈ ): ( 5 ) ∩)0 ( 5 ). According to Lemma 6.4, this implies ? ∈ )0 ( 5 ),
contradicting ? ∉ )0 ( 5 ). �

Altogether, Proposition 6.3 and Theorem 6.5 assert that, for a

g.m.o defined over the decomposition of Example 3.2, the number

of S-pairs to be reduced in Algorithm 2 is minimized to the greatest

extent possible. For g.m.o’s of this nature, we can determine the

generator 68 of )8 ( 5 ) using a straightforward descent algorithm.

Recall that)8 is themonoid generated by�8 = {41, . . . , 4̂8 , . . . , 4=}∪
{−(41 + · · · + 4=)}, where (41, . . . , 4=) denote the canonical basis of
R= . We first find a C ∈ )8 ( 5 ) so that )8 ( 5 ) = 68 + )8 ⊂ C + )8 .
Then, for each generator ℎ ∈ �8 of )8 , we compute C = C − ℎ until

C + )8 ⊄ )8 ( 5 ), for then we set C = C + ℎ. At the end, C = 68 . The

procedure is detailed in Algorithm 3.

Remark 6.6. For a g.m.o as in Theorem 6.5, it can easily be shown

that if 6 9 , 6: are the generators of )9 ( 5 ),): ( 5 ) respectively, then
‖6 9 − 6: ‖∞ ≤ 1 (with ‖ · ‖∞ the maximum norm on R=). To speed

up the computation of the )8 ( 5 )’s, we can first determine 60 using

Algorithm 3. Then the generators of the )8 ( 5 )’s for 8 ∈ È1, =É are
contained within the (small) set {~ ∈ Z=, ‖~ − 60‖∞ ≤ 1}.

Remark 6.7. If in addition the g.m.o is defined by a function as

outlined in Lemma 3.6, and this function restricts to an integral linear

function on each cone (as illustrated in Examples 3.8 and 3.9), then

the generator of)8 ( 5 ) can be expressed directly as the intersection of
= affine hyperplanes defined by integral equalities.

We emphasize that the time spent computing the generators of

the )8 ( 5 )’s is negligible compared to the time spent reducing S-

pairs in Algorithm 2.

Algorithm 3: Generator of)8 ( 5 )

input :0 ≤ 8 ≤ =, 5 ∈  {X; %}, �8 = {ℎ1, . . . , ℎ=}
generators of )8 , and the g.m.o. of Example 3.2

output :6 ∈ ) such that )8 ( 5 ) = 6 +)8
1 C ← a monomial such that all monomials of C × 8=% ( 5 ) are

in )8 ; // Use Remark 3.15

2 for ℎ ∈ �8 do
3 while C ∈ )8 ( 5 ) do
4 C ← C − ℎ;

5 C ← C + ℎ;

6 return t

7 FUTURE WORKS

7.1 Precision and integral bases
We leave to future works the study of the computation of GB in

 {X;%}◦, the valuation ring of  {X;%}, as in [1, §2.3, §2.4]. We

believe that if one makes the cancellation of the coefficients in

E in Def. 5.6 happens with lcm (lc8 ( 5 ), lc8 (6)) ∈  ◦ instead of

lc8 ( 5 ) × lc8 (6), the good precision behavior of [1, Thm 3.8] will

be preserved. We will investigate the reduction to the residue ring

 ◦/c ◦ [X±1] of  {X;%}◦ and its compatibility with GB as in [1,

Prop 2.28].

7.2 Applications of Gröbner cases
We intend to investigate natural applications of Gröbner bases, e.g.

ideal operations and dimension.

7.3 UAGB and tropical analytic geometry
Universal analytic Gröbner bases (UAGB) for polynomial ideals

have been defined in [3] as a finite set of polynomial elements

of the ideal such that it is a Gröbner basis in any completion of

the ideal in Tate algebras. In [14], effective algorithms have been

presented to compute them, along with an application to effective

tropical (analytic) geometry. This article has also raised questions



and conjectures on their existence and computation in a context of

polyhedral affinoid algebras. We intent to build on the presented

theory of Gröbner bases over polytopal affinoid algebras to com-

plete the resolution of these questions and conjectures. Further-

more, in [10, Remark 8.8], the author has asked the question of

the existence of tropical bases for ideals in polyhedral affinoid al-

gebras, as it would be a cornerstone for tropical analytic geometry.

Building on our results and the computation of UAGB, we intent

to investigate the existence of finite tropical bases in this context,

and elaborate on this to advance toward effective computation of

tropical analytic varieties.
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ANNEX: SAGEMATH IMPLEMENTATION
We have implemented in SageMath all the algorithms presented

in this paper for the Laurent polynomial case: Algorithms 1 and 2

can be applied over [X±1] as in [9], the main difference being the

way leading terms are defined. As far as we know, this is the first

ever implementation of the ideas of [9]. It has been made possible

thanks to Section 6. The integration of our implementation into the

SageMath sources is currently underway. Discussions, comments

and progress can be tracked on the official GitHub repository at:

https://github.com/sagemath/sage/pull/37241

The case of polytopal affinoid algebras, which is predominantly

built upon the polynomial case, is currently a work in progress that

can be tracked at

https://github.com/vilanele/sage/tree/polytopal_algebras

We plan to integrate it as well into the SageMath sources as soon

as it is ready.

Short demo. A new class constructor named GeneralizedOrder

is introduced. The supported g.m.o’s are those for which the under-

lying conic decomposition is the decompositionof Example 3.2 and

forwhich the order is defined by a group order and a score function

as in Lemma 3.6. The group order and score function can be speci-

fied using the keywords group_order and score_function in the

constructor. Defaults are the lexicographical order on Z= and the

min function of Example 3.9.

In: from sage.rings.polynomial.generalized_order import

GeneralizedOrder

In: GeneralizedOrder(3)

Out: Generalized order in 3 variables using (lex, min)

Another example, using this time the score function degmin of

Example 3.8:

In: G = GeneralizedOrder(2, score_function='degmin'); G

Out: Generalized order in 2 variables using (lex, degmin)

Now we can compare tuples:

In: G.greatest_tuple((-2,3), (1,2))

Out: (−2, 3)
In: G.greatest_tuple_for_cone(2, (1,3), (-1,2), (-4,-3))

Out: (−4, −3)

The LaurentPolynomialRing constructor has been updated to

accept instances of the new GeneralizedOrder class for the key-

word order. Elements have new methods:

In: L.<x,y> = LaurentPolynomialRing(QQ, order=G)

In: f = 2*x^2*y^-1 + x^-3*y - 3*y^-5

In: f.leading_monomial() // lm(5 )
Out: ~−5

In: f.leadin_monomial_for_cone(1) // lm1 (5 )
Out: G−3~

In: f.generator_for_cone(2) // )2 (5 )

Out: G~2

https://hal.science/hal-01995881
https://doi.org/10.1515/CRELLE.2006.097
https://arxiv.org/abs/2209.15116


We can reduce an element using multivariate division (Algo-

rithm 1):

In: L = [x^-2*y^-1 + x*y, x^-2*y + x^2*y^-1]

In: f.generalized_reduction(L)

Out: (−~3 + 2G2~−1 − 3G−1~−1, [G−1~2 + 3G−2~−2, −3G−2~−4 ] )

Lastly, within the LaurentPolynomialIdeal class, the method

groebner_basis has been modified so that it uses Algorithm 2

when a generalized order is specified:

In: G = GeneralizedOrder(3, score_function='degmin')

In: L.<x,y,z> = LaurentPolynomialRing(QQ, order=G)

In: I = L.ideal([x^-3*y^-4 + x*y*z, x^3*y^-2 + y^-1*z])

In: I.groebner_basis()

Out: (G3~−4 + G~I,
G3~−2 + ~−1I,
−~−4 + G−1~−2I−1 )

Another example of Gröbner basis computation for an ideal in

the ring Q[G±1, ~±1, I±1]:

In: G = GeneralizedOrder(3, score_function='min')

In: L.<x,y,z> = LaurentPolynomialRing(QQ, order=G)

In: g1 = 1/2*x^-1*y + 3*y^-4*z^2 + y

In: g2 = 2*x^2*y^3*z^-1 - 1/3*x^-1*y^3*z^-6

In: I = L.ideal([g1, g2])

In: I.groebner_basis()

Out: (~ + 1
2G
−1~ + 3~−4I2,

2G2~3I−1 − 1
3G
−1~3I−6,

1
4 ~

5I5 − 3G2I7 + 3
2GI

7 + 1
3 ~

5 + I2,
1
4 ~

10I5 − 3
4 ~

5I7 + 1
3 ~

10 − 9
2GI

9 + 2~5I2 + 3I4,
1
4 ~

15I5 + 1
3 ~

15 + 3~10I2 + 9~5I4 + 9I6,
6G2~4I4 + 3G~4I4 + 3G−1~−1I)

Same ideal as above, but using the score function degmin:

In: G = GeneralizedOrder(3, score_function='degmin')

In: L.<x,y,z> = LaurentPolynomialRing(QQ, order=G)

In: g1 = 1/2*x^-1*y + 3*y^-4*z^2 + y

In: g2 = 2*x^2*y^3*z^-1 - 1/3*x^-1*y^3*z^-6

In: I = L.ideal([g1, g2])

In: I.groebner_basis()

Out: (~ + 1
2G
−1~ + 3~−4I2,

2G2~3I−1 − 1
3G
−1~3I−6,

~5I3 + 1
3G
−2~5 ∗ I−2 + G−2,

−1
16 ~

5I6 − 1
12 ~

5I − 1
4I

3 + 1
8G
−1I3 − 1

16G
−2I3,

− 1
6G~

3I−1 + 1
24G
−1~3I−1 − 1

12G
−2~−2I−4 + 1

24G
−3~−2I−4,

− 1
36~

3I−1 − 1
72G
−1~3I−1 − 1

72G
−3~−2I−4 )

An example in the ring F9 [G
±1, ~±1]:

In: G = GeneralizedOrder(2, score_function='degmin')

In: F = GF(9)

In: L.<x,y> = LaurentPolynomialRing(F, order=G)

In: g1 = x^2*y + y^-6

In: g2 = x^3*y^-2 + x^-6*y

In: g3 = x^-2*y + x^-1*y^-2

In: I = L.ideal([g1, g2, g3])

In: I.groebner_basis()

Out: (G2~ + ~−6,
G3~−2 + G−6~,
G−2~ + G−1~−2,
−G~ + G−2~−3,
G2~ + G−2,
~−1 + G−1,
−~2 + G−1,
G−1~−1 + G−2~−2 )
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