

Anatomically modern human dispersals into Europe during MIS 3: Climate stability, paleogeography and habitat suitability

Simon Paquin, Benjamin Albouy, Masa Kageyama, Mathieu Vrac, Ariane

Burke

▶ To cite this version:

Simon Paquin, Benjamin Albouy, Masa Kageyama, Mathieu Vrac, Ariane Burke. Anatomically modern human dispersals into Europe during MIS 3: Climate stability, paleogeography and habitat suitability. Quaternary Science Reviews, 2024, 330, pp.108596. 10.1016/j.quascirev.2024.108596 . hal-04510787

HAL Id: hal-04510787 https://hal.science/hal-04510787v1

Submitted on 21 Oct 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Anatomically Modern Human dispersals into Europe during MIS 3: climate stability, paleogeography and habitat suitability.

Simon Paquin¹, Benjamin Albouy¹, Masa Kageyama², Mathieu Vrac² & Ariane Burke¹

¹Département d'anthropologie, Université de Montréal Pavillon Lionel-Groulx, 3150 Jean-Brillant, Montréal, QC, H3T 1N8, Canada (<u>simon.paquin@umontreal.ca</u>)* Corresponding author (<u>benjamin.albouy@umontreal.ca</u>) (<u>a.burke@umontreal.ca</u>)

²Laboratoire des Sciences du Climat et de l'Environnement (LSCE-IPSL), Centre d'Études de Saclay, Orme des Merisiers, Bat. 714, 91191 Gif-sur-Yvette, France (<u>masa.kageyama@lsce.ipsl.fr</u>) (<u>Mathieu.vrac@lsce.ipsl.fr</u>) Keywords: Aurignacian technocomplex, MIS3, Habitat Suitability, Climate Change,
 Paleogeography, Human dispersal, Europe

3 Abstract: The initial large-scale dispersal of Anatomically Modern Humans (AMHs) into 4 Europe, associated with the Aurignacian technocomplex, occurred during Marine Isotope 5 Stage 3 (MIS 3), a critically unstable climatic period. The impact of climate change 6 (millennial-scale Dansgaard-Oeschger events) and climate variability (annual and seasonal 7 variation) on the mobility and initial dispersal of AMHs on the continent is not fully 8 demonstrated. Here we show that both climate change and variability affected the spatial 9 behavior of Aurignacian groups and structured their arrival on the continent. Using 10 Random Forest, a machine learning algorithm, we produced habitat suitability (HS) models 11 for AMHs under stadial (GS) and interstadial (GI) climate conditions. These models 12 demonstrate that climate variability was a key factor governing the spatial behavior of 13 human groups across MIS 3. They also illustrate that the structure and distribution of 14 suitable habitat in Europe were affected by climatic conditions, with implications in terms 15 of our species' adaptability and behavioral plasticity. Finally, our results support the 16 suggestion that initial dispersals followed a Mediterranean coastal route, likely under 17 interstadial conditions.

18 1 Introduction

Dispersal events are a defining feature of human history and adaptation. As our species, *Homo sapiens*, spread into new landscapes during the Late Pleistocene it faced a variety of new and challenging situations, including coexistence with other human groups such as the Neanderthals and Denisovans, and novel and at times rapidly changing 23 environmental contexts. Dispersals may also act as triggers for the biological evolution of 24 the genus Homo (Timmermann et al., 2022). Of particular interest here is the dispersal of 25 Aurignacian populations into Europe during Marine Isotopic Stage 3 (MIS 3) possibly 26 following initial AMHs entry circa. 55,000 years go (55 ka) (Slimak et al., 2022). Despite 27 the documented climate instability of MIS 3 AMHs successfully settled the European 28 continent while Neanderthal populations declined (Banks et al., 2013a, 2013b, 2008; 29 d'Errico and Sánchez Goñi, 2003; Gamble et al., 2004; Higham et al., 2014; Hublin, 2015; 30 Klein et al. 2023; Mellars, 2006, 2011; Müller et al., 2011; Paquin et al., 2023; 31 Timmermann, 2020; Tzedakis et al., 2007; Zilhão and d'Errico, 1999). This is obviously a 32 condensed outline of a far more complex process for which scientific investigation is 33 incomplete. Environmental change, landscape transformation and human dispersal 34 interconnect and play out over long-time scales, determining the course of human 35 evolution. The relationship between these variables is central to understanding the 36 Paleolithic period, and especially crucial when comparing the fate of different human 37 groups. The main goal of this research is to better understand the impact of millennial-scale 38 climate variation and climate instability on the pattern of dispersal of AMHs into Europe 39 during MIS3.

Computational archaeology has come a long way since the 20th century and
modelling techniques are now widely used for studying human/environment interactions
(e.g., Banks et al., 2008, 2013a; Burke et al., 2014, 2017; Klein et al., 2021, 2023; Ludwig
et al., 2018; Maier et al., 2016; Schmidt et al., 2012; Shao et al., 2021; Tallavaara et al.,
2015; Timmermann, 2020; Tsakanikou & McNabb, 2023; Weniger et al., 2019). We use
HS modelling to define and map the distribution of suitable habitat for Aurignacian groups

entering Europe during MIS 3 stadial (GS) and interstadial (GI) events. Comparing the HS
models allows us to measure the impact of these contrasting climate events on the
distribution of AMH populations. As part of the modelling process, we also identify key
environmental variables to which AMHs responded during MIS 3.

50 1.1 Climate change and Dispersal

51 Mobility is a central component of the human adaptative system. Multiple dispersal 52 events have occurred since the evolution of our species in Africa. Uncovering the 53 environmental parameters that facilitated or hindered these phenomena is instrumental to 54 understanding them. The initial AMH dispersal into the Levant from Africa ca. 200-120 55 Kyr BP is hypothetically linked to a geographical extension of their habitat, composed of 56 riverine woodlands or grasslands, during interstadial cycles (Hershkovitz et al., 2018; Vaks 57 et al., 2007). Later dispersal events out of the African continent ca. 60-50 ka BP are also 58 hypothetically linked to the development of humid climates in the eastern Mediterranean 59 during GI-14 and GI-13, acting as a *pull* factor (Müller et al., 2011). Potentially triggered 60 by the Heinrich 5 event ca. 48 ka BP, the shift from desert-steppe environments to open 61 woodlands in Europe and the contraction of Neanderthal populations in Europe could have 62 paved the way for the entry of AMHs into the continent (Müller et al., 2011). The impact 63 of Heinrich events in Africa may also have acted as a *push* factor (Carto et al. 2009). Thus, 64 climate change may be one of the main drivers of human dispersal.

Depending on the timeframe and the region into which they dispersed AMHs developed different climatic and environmental preferences, within the wider climatic tolerances that characterize the species. To clarify these concepts, climatic tolerance acts as a limit to human adaptation while climatic preference designates optimal conditions for 69 the species (Davies and Gollop, 2003). Habitat suitability models reflect the probability of 70 encountering a species and can be used to explore environmental tolerances and define 71 preferences. Dispersals may reflect the expansion or contraction of suitable habitat (by 72 "niche tracking") or conversely, they may reflect plasticity and broader climate 73 preferences.

The ecological niche of AMHs, in Europe and across the globe, has been recently described as "generalist specialist" highlighting the plasticity of our species which has adapted to radically different environmental settings, becoming locally specialized in the process (Roberts and Stewart, 2018). This highlights the necessity of adopting a regional approach when studying the environmental context of AMH groups in order to disentangle local and regional scales of adaptation.

80 1.2 Climate variability and risk

81 A mark of the behavioral plasticity of human hunter-gatherers is their ability to 82 develop new strategies to counter resource scarcity and unpredictability (Kelly, 2013). This 83 may involve changing settlement patterns, changes in diet, technological innovations, 84 maintaining reliable and spatially extended social networks, and changes in mobility. 85 Resource abundance varies seasonally and annually, which is to be expected, and hunter-86 gatherers can anticipate these variations and alter their spatial behavior accordingly, thus 87 ensuring their long-term survival. On the other hand, whether resource availability can be 88 predicted or not constitutes a true ecological risk for foragers, especially in the case of key 89 resources (Burke et al., 2017; Winterhalder et al., 1999). There is also a risk associated 90 with mobility itself, as information about conditions at long distance locales might be 91 deficient (Winterhalder et al., 1999). This is especially the case for dispersing populations 92 such as the Aurignacians who could not have extensive generational knowledge of the93 landscapes they encountered during dispersal.

While existing predictive models for the Aurignacian (Klein et al., 2023; Shao et
al., 2021) do not discuss the impact of ecological risk, studies focused on the Last Glacial
Maximum (LGM) highlight its importance in explaining site distribution, mobility, the
regionalization of lithic industries and patterns of gene exchange (Burke et al., 2017;
Ludwig et al., 2018; Schmidt et al., 2012; Weniger et al., 2019; Wren and Burke, 2019).

99 Apart from annual and seasonal climate variability and its inherent risks, the initial 100 large-scale dispersal of AMH populations in Europe occurs during a period of important 101 climate instability. During this timeframe several Dansgaard-Oeschger (D-O) events 102 succeeded one another. D-O events are millennial-scale changes in atmospheric and 103 oceanic conditions that oscillate between cold and dry conditions, correlated with 104 Greenland Stadials (GSs), and warmer, wetter periods associated with Greenland 105 Interstadials (GIs) (Dansgaard et al., 1982). D-O events vary in duration from a century to 106 millennia and may be accompanied by rapid climate fluctuations that affect oceanic and 107 atmospheric dynamics (Rasmussen et al., 2014). These fluctuations were accompanied by 108 large-scale variations in resource production, affecting the nature and distribution of 109 suitable human habitats (Van Andel et al., 2003). In this research we consider the impact 110 of climate change (as structured by the millennial-scale D-O events) and climate variability 111 (seasonal and annual) as variables of interest and discuss both scales of analysis.

112 1.3 The Aurignacian as proxy for AMH dispersals

113 In the search for the initial AMH populations to successfully disperse into Europe, 114 we are faced with the limits of the archaeological record. The presence of hominin fossils 115 within a layer bearing an archaeological industry is generally considered to establish the 116 identity of its makers but technological and stylistic elements in the Chatelperronian 117 industry and the Uluzzian industry testify to a less clear-cut association between specific 118 biological groups and material culture (d'Errico et al., 1998; Villa et al., 2018). The multi-119 millennial European coexistence of AMHs and Neanderthals clearly paved the way for 120 contacts and exchanges, and groups composed of individuals from both species as well as 121 hybrids could also have existed and still be archaeologically invisible (Sterling, 2015). The 122 limited quantity of human fossils available is a problem, nevertheless the Aurignacian is 123 generally accepted to signal the appearance of H. sapiens (Benazzi et al., 2015; Formicola, 124 1989; Hublin, 2015).

125 This clear association allows us to use the distribution of the Aurignacian 126 technocomplex as a proxy for modern human dispersal and mobility in Europe. In contrast, 127 transitional industries that predate it, like the Uluzzian, the Neronian, and the Bachokirian, 128 lack a clear association with AMHs, are mostly short-lived and lack the body of data 129 available to discuss millennial changes on the European scale. Genetic studies show that 130 the populations associated with the Aurignacian persisted in western European, becoming 131 Gravettian, Solutrean and Magdalenian populations (Posth et al., 2023). We thus have data 132 supporting the long-term success of the Aurignacian dispersal.

Some prior predictive modelling work on the Aurignacian technocomplex (Banks
et al., 2013a, 2013b) was designed with the following *a priori*: the Early Aurignacian and

135 Proto-Aurignacian are chronologically distinct, the former emerging from the latter. This 136 view is strongly critiqued nowadays, and the chronological and geographical coexistence 137 of the two facies is now accepted (Barshay-Szmidt et al., 2018; Riel-Salvatore and Negrino, 138 2018). Based on this overlapping chronology and new technological insights highlighting 139 a less monolithic nature to both industries (Bataille et al., 2018; Falcucci et al., 2017; Riel-140 Salvatore and Negrino, 2018), we made the argument elsewhere (Paquin et al., 2023) to 141 consider both facies as part of a unified archaeological manifestation when investigating 142 AMHs populations millennial-scale dynamics and changes in Europe.

143 From the archaeological evidence presented elsewhere (Paquin et al., 2023), it 144 appears that a major AMH dispersal including the Protoaurignacian and the Early 145 Aurignacian began around GI-12 and GS-12. The expansion phase continued through GS-146 10, and then slowed down with a more widespread established population all through GS-147 7. These observations are also coherent with the two-phase dispersal model suggested by 148 Davies (2001, 2007) for the Aurignacian technocomplex arrival: a pioneer colonization 149 phase characterized by low site density, low demography, and a focus on coastal locales 150 followed by a developed phase marked by a denser site distribution, a more important 151 demography, and settlements in a wider variety of landscapes.

In this exploration of the initial large-scale dispersal of AMHs into Europe, we ask the following research questions: a) What was the suitable habitat of AMHs during MIS 3 cold and warm phases?; b) Did climate change (D-O events) control the timing and pattern of AMH population dispersal and their expansion into Europe?; And c) Were AMHs sensitive to ecological risk, which we define as unpredictability, and does it help inform us about patterns of dispersal? We answer these questions using HS modelling, i.e., the analysis of species distribution as a function of explanatory variables including climate
conditions (temperature, precipitation), indices of climate variability and geography, and
by comparing and contrasting HS models for AMHs during stadial and interstadial events.

161 Europe is an obvious choice for this study due to its well-documented 162 archaeological record and a vast body of research that seeks to explain the successful dispersal of AMHs at the end of the Last Glacial. Furthermore, the scale and richness of 163 164 available environmental data allow for a more rigorous characterization of AMHs 165 adaptative plasticity. In this research the Aurignacian technocomplex is a proxy for the 166 large-scale dispersal of AMHs into Europe. Our analysis is based on a chronologically 167 secure archaeological database of Upper Paleolithic sites (Paquin et al., 2023). We rely on 168 this database to isolate well dated species-occurrence data for *Homo sapiens* for use in our 169 predictive modelling. This research also makes use of high-resolution paleoclimate data 170 obtained through a collaboration with the Laboratoire des Sciences du Climat et de 171 l'Environement (UMR 8212), at the Institut Simon Laplace (IPSL).

172 2 Materials and Methods

We produced a series of habitat suitability models for the Aurignacian technocomplex in Europe using *Random Forest* (Breiman, 2001) a machine learning algorithm. The methodology applied in the present paper is based on the protocol described more fully in Burke et al. (2017). All analyses were performed using R Statistical Software (v4.2.3; R Core Team 2023).

178 2.1 Archaeological data

179 The location data constituting the presences used in the RF models are discrete 180 European archaeological sites containing dated, uncontested Aurignacian assemblages 181 compiled in a previously published archaeological database (Paquin et al., 2023). 182 Paleoenvironmental and chronological data compiled in this database are used to classify 183 Aurignacian layers into stadial/interstadial periods. Since the environmental impact of 184 climate conditions would not have been homogeneous across Europe, chronological data 185 are given priority in the classification process (see Paquin et al. 2023 for more technical 186 details). We excluded sites with chronological data that were either contested, not 187 circumscribed enough to make a Bayesian assessment (Amodel index under 60, see Paquin 188 et al., 2023), or missing. To obtain a comparable number of presences for the warm models, 189 we included sites with imprecise chronological data (Amodel index under 60) but in situ 190 paleoenvironmental data signaling warm conditions.

The result is a selection of sites divided into two groups (Table 1):1) stadial occupations (N = 37) and 2) interstadial occupations (N = 27). Some sites with multiple Aurignacian occupation layers are part of both groups, e.g., Hohle Fels, Mitoc-Malu-

Warm Classification				
Sites	Levels	Country	Longitude	Latitude
Abri Pataud	7	France	1.01	44.94
Esquicho-Grapaou	SLC1b	France	4.32	43.93
La Ferrassie	G1	France	0.94	44.95
La Souquette	11	France	1.10	45.00
Le Flageolet I	XI	France	1.09	44.85
Le Piage	GI-F	France	1.37	44.80
Les Cottés	2	France	0.84	46.69
Šandalja II	F	Croatia	13.89	44.88
Hohle Fels	lle, Illa, Va & Vb	Germany	9.75	48.38
Sirgenstein	VI	Germany	9.76	48.39
Klissoura Cave 1	Ille-g	Greece	22.81	37.69
Pes-kő	lowest layer	Hungary	20.41	48.05
Castelcivita	gic & rsa_upper	Italy	15.21	40.50

194 Galben and Les Cottés.

Manue ale asticution

Paina	9	Italy	11.55	45.43
Riparo Bombrini	A1	Italy	7.54	43.78
Riparo Mochi	G	Italy	7.53	43.78
Lapa do Picareiro	DD	Portugal	-8.65	39.53
Mitoc-Malu-Galben	Aurignacian I inf (12b), Aurignacian I inf (11inf),	Romania	27.02	48.10
	Aurignacian I (11sup) & Aurignacian I (10b inf)			
Mokriška jama	7	Slovenia	14.57	46.31
Potočka zijavka	7 & 5	Slovenia	14.67	46.45
El Castillo	18B1 & 18B2	Spain	-3.97	43.29
Labeko Koba	VII	Spain	-2.49	43.06
L'Arbreda	G & H	Spain	2.75	42.16
Les Mallaetes	XIVA	Spain	-0.30	39.02
Karain B	P.II	Turkey	30.57	37.08
Stranska skala IIIc	upper paleosoil	Czech Republic	16.68	49.19
Stranska skala IIIa	3	Czech Republic	16.68	49.19
Stranska skala IIa	4	Czech Republic	16.68	49.19
Stranska skala IIIb	4	Czech Republic	16.68	49.19
Bacho Kiro	6b (D)	Bulgaria	25.43	42.95
Lisen VIII	N/A	Czech Republic	16.72	49.19
Temnata Dupka	4a	Bulgaria	23.38	43.09

Cold classification

-		-		
Cold classification				
Sites	Levels	Country	Longitude	Latitude
Abri Blanchard	Bedrock_level	France	1.10	45.00
Abri Pataud	6, 11, 12, 13 & 14	France	1.01	44.94
Brignol	Limon_sablo-argileux(base)	France	0.75	44.41
Caminade-Est	G/F	France	1.25	44.87
Esquicho-Grapaou	SLC1a & BR1	France	4.32	43.93
Gatzarria	Cbf	France	-0.92	43.14
Grotte des Hyènes	2A-2C	France	-0.72	43.63
Grotte du Renne	VIII	France	3.77	47.59
Isturitz	C4d1, C4c4, C4b2 & C4b1	France	-1.21	43.35
La Crouzade	C5	France	3.09	43.13
Le Flageolet I	VIII & IX	France	1.09	44.85
Les Cottés	04lower & 04upper	France	0.84	46.69
Mladeč	D hall	Czech Republic	17.02	49.71
Trou Walou	CI-1	Belgium	5.69	50.59
Willendorf II	4	Austria	15.40	48.32
Roc de Combe	7b	France	1.35	44.77
Brillenhöhle	XIV	Germany	9.78	48.41
Friedrichsdorf-Seulberg	Loess deposit	Germany	8.65	50.24
Geißenklösterle	IIb, IId, IIIa & IIIb	Germany	9.77	48.40
Hohle Fels	lld, lllb & IV	Germany	9.75	48.38
Höhlenstein-Stadel	Au	Germany	10.17	48.55
Vogelherd	IV	Germany	10.19	48.56
Klissoura Cave 1	IV	Greece	22.81	37.69
Fumane	D3b	Italy	10.91	45.59
Grotta del Fossellone	Layer 21	Italy	13.08	41.22
Serino	12	Italy	14.87	40.87
Lapa do Picareiro	II & GG	Portugal	-8.65	39.53
Mitoc-Malu-Galben	Aurignacian III (9b sup) & Aurignacian III sup (8b)	Romania	27.02	48.10
Divje babe I	2	Slovenia	13.91	46.11
Aitzbitarte III	Vb central	Spain	-1.89	43.26
Covalejos	B/2 & C/3	Spain	-3.93	43.39
Ekain	IXb	Spain	-2.28	43.24
El Castillo	18C	Spain	-3.97	43.29
El Cuco	III	Spain	-3.23	43.39
La Güelga	5	Spain	-5.10	43.34
La Viña	XI & XII	Spain	-5.83	43.31
Labeko Koba	IV & V	Spain	-2.49	43.06
Les Mallaetes	XII	Spain	-0.30	39.02

Table 1. Sites, occupation layers and their locational data used as presences in RF models.
Coordinates are rounded to two decimals (roughly 1.1 km). The selection of sites and their
coordinates were extracted from Paquin et al. (2023).

198 2.2 Climate simulations and downscaling

199 We used the Atmosphere-Ocean General Circulation Model (AOGCM) IPSL-200 CM5A-LR (Dufresne et al., 2013) at a ~1.9° latitude and 3.75° longitude spatial resolution 201 to run two global climate simulations, one representing a typical MIS 3 stadial and the 202 other a typical MIS 3 interstadial. The boundary conditions (i.e. the distribution of land, 203 ocean and ice sheets, topography and bathymetry) are the same for both simulations and 204 are described in Woillez et al. (2014), Le Mézo et al. (2017) and Lézine et al. (2023). These 205 include smaller ice sheets than for the LGM (ICE 6G-C 16 kyr BP ice sheet 206 reconstructions from Peltier et al. (2015) available at the time of running, which 207 corresponded to the same global sea level as MIS 3). Atmospheric greenhouse 208 concentrations are set to 205 ppm for CO₂, 500 ppb for CH₄ and 260 ppb for N₂O, as 209 documented by ice cores, i.e. between the levels known for the pre-industrial period and 210 for the LGM. Astronomical forcing (precession, obliquity, eccentricity) is set with values 211 for 46 kyr BP. The MIS 3 interstadial simulation is characterized by an active Atlantic 212 Meridional Overturning Circulation, with values ranging from 20 to 26 Sv, while the MIS 3 213 stadial simulation has been forced to slow down by imposing a 0.2 Sv fresh water flux at 214 the surface of the North Atlantic Ocean, and is characterized by an AMOC ranging from 215 8.5 to 11 Sv.

The stadial simulation starts from the interstadial one and is run for 250 years, which is enough for the AMOC to strongly decrease. This simple set up was chosen to obtain distinct climate states for Europe, representative of a stadial and an interstadial state, with the AMOC state being the sole driver of the differences between these states. The latest protocol for Dansgaard-Oeschger modelling studies (Malmierca-Vallet, 2023) recommends a more recent ice sheet reconstruction, but does not modify ice sheet topography or contour, or the configuration of the coastlines as they are hard to delineate due to the lack of strong chronological constraints.

From these simulations, we extracted data in the form of 50-year time series for monthly averages of sea level pressure, air temperature at 2 m above surface, relative humidity, surface wind and cloud cover. Using this data, we carried out a statistical downscaling model (GAM) (Vrac et al., 2007) to obtain precipitation and temperature at a 15 x 15 km spatial scale for MIS 3 warm and cold conditions. This statistical downscaling was only applied to a defined European study domain: longitudes between 11.57 °W and 24.74 °E and latitudes between 32.72 °N and 59.86 °N.

231 A GAM (Generalized Additive Model) is a statistical model used for modelling 232 relationships between a response variable and some predictor variables, allowing for non-233 linear and complex associations. GAMs extend the concept of linear models by allowing 234 each predictor to have a non-linear relationship with the response. Here, the predictors are 235 the large-scale climate information described above and the response variable (also called 236 "predictand") is either the temperature or the precipitation at high spatial resolution (see 237 previous paragraph). GAM assumes that the relationship between the response variable and 238 predictors is additive. Instead of a single linear equation, it then uses separate functions for 239 each predictor. These functions are typically smooth and, here, we use spline functions to 240 capture non-linear patterns. The parameters for each predictor's spline are estimated to 241 minimize the difference between predicted and observed values. All theoretical and
242 technical details can be found in Vrac et al. (2007) or Latombe et al. (2018).

Using this statistical downscaling approach produces fields at the high spatial resolution needed for our analysis at a reasonable computing cost. By construction, it also corrects for the biases of the large-scale model. On the other hand, the method does not yield successive daily states of the atmosphere and land surface, as a Dynamical Regional Model would. In the present case, using the statistical method provided suitable climatic data at the adequate resolution. A comparison to similar information obtained via a Dynamical Regional Model is beyond the scope of the present study.

250 2.3 Candidate predictors

Variables used as candidate predictors (Table 2) of Aurignacian sites location are composed of three categories: climate variables, climate variability indices and topographical variables. All non-topographic variables were calculated separately for MIS 3 cold and warm conditions. For the climate variables, we used the outputs of the downscaled climatology to compute monthly, seasonal, and yearly averages, minima and maxima for precipitation and temperature.

For the climate variability indices, we used the downscaled outputs of the 50-year time series to calculate the standard deviation (SD) of monthly temperature averages and the coefficient of variation (CV; ratio of the standard deviation to the mean) for monthly precipitation averages at seasonal and yearly scales. Precipitation trends do not follow Gaussian distributions so the CV is a more robust choice of variability index. Other climate variability indices include the Standardized Precipitation Index (SPI) (Guttman, 1999; Hayes, 2000; McKee et al., 1993) and the Standardized Temperature Index (STI). Those two indices display the number of months for which monthly average precipitation or
temperature follow the normal trend. We calculated the SPI using the "SPEI" R package
(Vicente-Serrano et al., 2010), with values standardized using a 12-month interval. We
calculated the STI using the "STI" R package (Fasel, 2014).
Finally, elevation and slope, the two topographic variables included as predictors,
were derived from the SRTM 90 m digital elevation model which we sampled at a 1 x 1 km

scale using ArcGIS (10.8.1). The final set of candidate predictors (N = 40) is listed in

²⁷¹ Table 2.

Predictor	Туре	Derivation	Description
elev	Topographic	DEM	elevation (m <i>asl</i>)
slope	Topographic	DEM	slope (reclassified) (degree)
p_avg_aut	Climatology	Climate simulation	Seasonal precipitation average, autumn (mm)
p_avg_spr	Climatology	Climate simulation	Seasonal precipitation average, spring (mm)
p_avg_sum	Climatology	Climate simulation	Seasonal precipitation average, summer (mm)
p_avg_win	Climatology	Climate simulation	Seasonal precipitation average, winter (mm)
p_avg_y	Climatology	Climate simulation	Annual precipitation average (mm)
p_max_aut	Climatology	Climate simulation	Seasonal precipitation maximum, autumn (mm)
p_max_spr	Climatology	Climate simulation	Seasonal precipitation maximum, spring (mm)
p_max_sum	Climatology	Climate simulation	Seasonal precipitation maximum, summer (mm)
p_max_win	Climatology	Climate simulation	Seasonal precipitation maximum, winter (mm)
p_min_aut	Climatology	Climate simulation	Seasonal precipitation minimum, autumn (mm)
p_min_spr	Climatology	Climate simulation	Seasonal precipitation minimum, spring (mm)
p_min_sum	Climatology	Climate simulation	Seasonal precipitation minimum, summer (mm)
p_min_win	Climatology	Climate simulation	Seasonal precipitation minimum, winter (mm)
p_var_aut	Climate variability	Climate simulation	Seasonal precipitation, coeff. var., autumn
p_var_spr	Climate variability	Climate simulation	Seasonal precipitation, coeff. var., spring
p_var_sum	Climate variability	Climate simulation	Seasonal precipitation, coeff. var., summer
p_var_win	Climate variability	Climate simulation	Seasonal precipitation, coeff. var., winter
p_var_y	Climate variability	Climate simulation	Seasonal precipitation, coeff. var., yearly
spi_norm	Climate variability	Climate simulation	N months within normal (predicted) precipitation range
sti_norm	Climate variability	Climate simulation	N months within normal (predicted) temperature range
t_avg_aut	Climatology	Climate simulation	Seasonal temperature average, autumn (°C/10)
t_avg_spr	Climatology	Climate simulation	Seasonal temperature average, spring (°C/10)
t_avg_sum	Climatology	Climate simulation	Seasonal temperature average, summer (°C/10)
t_avg_win	Climatology	Climate simulation	Seasonal temperature average, winter (°C/10)
t_avg_y	Climatology	Climate simulation	Yearly temperature average (°C/10)
t_max_aut	Climatology	Climate simulation	Seasonal temperature maximum, autumn (°C/10)
t_max_spr	Climatology	Climate simulation	Seasonal temperature maximum, spring (°C/10)
t_max_sum	Climatology	Climate simulation	Seasonal temperature maximum, summer (°C/10)
t_max_win	Climatology	Climate simulation	Seasonal temperature maximum, winter (°C/10)
t_min_aut	Climatology	Climate simulation	Seasonal temperature minimum, winter (°C/10)
t_min_spr	Climatology	Climate simulation	Seasonal temperature minimum, spring (°C/10)
t_min_sum	Climatology	Climate simulation	Seasonal temperature minimum, summer (°C/10)
t_min_win	Climatology	Climate simulation	Seasonal temperature minimum, winter (°C/10)
t_sd_aut	Climate variability	Climate simulation	Standard deviation, seasonal temperature, autumn
t_sd_spr	Climate variability	Climate simulation	Standard deviation, seasonal temperature, spring
t_sd_sum	climate variability	Climate simulation	Standard deviation, seasonal temperature, summer
t_sd_win	Climate variability	Climate simulation	Standard deviation, seasonal temperature, winter
t_sd_y	Climate variability	Climate simulation	Standard deviation, temperature, yearly

272 **Table 2.** List of predictors included in the modelling process.

273 2.4 Data preparation

274 In addition to the selection of archaeological sites to act as presences (see above) 275 the modelling process requires a library of pseudo-absences from which to draw upon. To 276 this end, the climate data issued from the statistical downscaling were interpolated using 277 the "natural neighbor interpolation" tool and resampled to create 1 km resolution rasters 278 for each of the 40 variables from both the warm and cold paleoclimatic conditions. Next, 279 we produced two point feature classes with 1 x 1 km spacing, one for stadial conditions 280 and one for interstadial conditions, and extracted predictor values from the rasters to the 281 points. The point feature classes were then clipped using masks of the current coastline 282 configuration and the extent of the LGM ice sheets (Ehlers et al., 2011). Additionally, 283 10 km radius buffers were created around archaeological sites included in the study. This 284 serves to exclude the more immediate foraging territory of Aurignacian occupations from 285 the *pseudo-absence* datasets.

Presences were generated by loading the georeferenced archaeological sites into point feature classes and extracting the predictor values from the rasters, as described above. To minimize the chances of overfitting, we created 1 km radius buffers around each site and checked for overlaps. Sites with overlapping buffers were deemed too close to one another and were counted as a single *presence*.

Finally, for both the warm and cold datasets, the *presence* and the *pseudo-absence* point feature classes were merged into two discrete feature classes and the attribute tables exported into csv files for use in the next step.

294 2.5 Random Forest parameterization and model fitting

Random forest (RF) is a nonparametric algorithm for regression and variable selection that uses decision trees (Breiman, 2001). We used RF to build habitat suitability models for the Aurignacian under stadial and interstadial conditions. We chose this algorithm for its ability to handle non-linear relationships, large numbers of predictors and small datasets of *presence* observations (Genuer et al., 2010; Grömping, 2009).

First, we identified highly correlated predictor variables within the datasets using the *findCorrelation* function in the "caret" R package with a cut-off value of 0.8. Once correlated pairs were identified, the variable with the higher mean correlation with all other variables was removed. We supervised the process, prioritizing seasonal variables over yearly averages, such as spring temperatures (Kim et al., 2014) which has a demonstrated impact on vegetation productivity. This process resulted in the retention of 25 uncorrelated variables for the warm dataset and 23 for the cold dataset (see SI.3).

307 The filtered lists of variables were then used as candidate predictors in an iterative 308 variable selection process using RF (Fig. 1). The most robust performances for RF are 309 obtained by averaging multiple runs of a model combined with a relatively low number of 310 pseudo-absences (Barbet-Massin et al., 2012). Using the RF function from the "caret" R 311 package, we ran each model for 100 runs with 10-fold cross-validation and equal numbers 312 of randomly selected *pseudo-absences* and *presences* (N = 37 for the cold models and N =313 27 for the warm models) (Barbet-Massin et al., 2012). We used default values for the *n*-314 *tree* (N = 500; the number of trees to grow for each model) and an *m*-try value of \sqrt{p} (p = 315 number of predictors; *m-try* designates the number of randomly selected predictors 316 interrogated at each split or node) (Díaz-Uriarte and Alvarez de Andrés, 2006). Model accuracy was calculated using the area under the Receiver Operating Curve (ROC).
Accuracy, the Out-of-the-Bag (OOB) error rate and the Variable Importance indices (VI)
were calculated for each run and averaged to assess model performance for each iteration
(the script is included in supplementary information).

322 Figure 1. Random Forest iterative variable selection process.

The iterative variable selection process used the VI metric to identify the least important predictors (the bottom 20%) which were removed before the next iteration of 100 runs, and so on. OOB and model accuracy were then used conjointly to identify which run produced the model with the most robust results while being the most parsimonious. The HS scores from the selected RF models were then mapped.

The list of predictors from the best models were then tested using a Generalized Linear Model (GLM) to identify which predictors have linear relationships with the dependent variable (see SI.2 for results). This test was done using the *GLM* function in the "caret" R package with 10 times as many *pseudo-absences* as *presences* as suggested by Wisz & Guisan (2009). Once again, we ran the model 100 times before averaging the results.

334 3 Results

For the warm and cold datasets, the final models are illustrated in Fig. 2 & Fig. 3 and the RF predictions produced at each step of the variable selection process are illustrated in the supplementary information (SI.4). The variable importance index (VI), which measures the relative importance of the predictors, is presented in Table 3 and Table 4 for each iteration. Model performance (OOB and accuracy) is presented in Table 5 and 6 and illustrated in Fig. 4.

341 For the warm dataset, associated with GI conditions, the best model performance 342 was obtained with the model *6var*, containing 6 predictors. For the cold dataset, associated 343 with GS conditions, the best model performance was obtained with the model *6var*, also 344 containing 6 predictors. Both these models are also the most parsimonious choices since 345 they had the lowest OOB of their groups and no simpler model produced an OOB situated 346 within 1 standard error of their respective scores (Fig. 4). As for the accuracy, both are 347 within 1 standard error of the highest accuracy of their respective series. Because of this, 348 they were chosen as the final habitat suitability models. Results for the additional GLM 349 tests of these 2 winning models are included in the supplementary information (see SI.2).

For the warm HS model, the predictors included (Table 3; Fig. 5 & 7), in order of importance (VI), are: *slope*, p_var_spr (coefficient of variability for spring precipitation), t_avg_aut (averaged monthly temperatures for Autumn), p_max_spr (maximum monthly average precipitations for spring), p_var_win (coefficient of variability for winter precipitation) and *elevation*. For the cold HS model, the predictors included (Table 4; Fig. 6 & 8), in order of importance (VI), are: p_min_aut (minimum monthly average precipitations for autumn), *slope*, t_sd_aut (standard deviation in average monthly temperatures in autumn), p_min_sum (minimum monthly average precipitations for summer), t_sd_sum (standard deviation in average monthly temperatures in summer) and *elevation*.

Figure 2. Final warm model 6var. The sites used as presences are displayed over the Habitat Suitability (HS) index. The LGM ice sheets are downloaded from Ehlers et al., 2011 and simplified to remove holes in the Alps. The submerged landscapes areas were produced by Albouy et al., 2023.

365

Figure 3. Final cold model 6var. The sites used as presences are displayed over the Habitat
Suitability (HS) index. The LGM ice sheets are downloaded from Ehlers et al. 2011. The

368 paleoshorelines were produced by Albouy et al., 2023.

25var	VI	20var	VI	16var	VI	13var	VI	10var	VI	8var	VI	6var	VI	5var	VI	4var	VI	3var	VI
slope	78.68	slope	82.67	Slope	85.92	slope	83.65	slope	81.71	slope	78.42	slope	79.83	slope	82.85	slope	76.32	slope	69.14
p_var_spr	42.08	p_var_spr	48.05	p_var_spr	36.88	p_var_spr	38.87	p_var_spr	41.46	p_var_spr	46.78	p_var_spr	58.55	p_var_spr	45,06	p_var_spr	48,48	p_var_spr	49,81
t_sd_aut	31,06	t_avg_aut	37,21	t_avg_aut	33,35	t_avg_aut	35,29	t_avg_aut	31,24	t_avg_aut	41,23	t_avg_aut	39,39	t_avg_aut	32,95	t_avg_aut	25,90	t_avg_aut	27,48
p_var_sum	30,40	t_sd_aut	34,27	p_max_spr	32,10	p_var_win	27,49	p_max_spr	30,37	p_var_win	28,89	p_max_spr	25,74	p_var_win	29,64	p_var_win	21,44		
p_max_spr	30,36	p_max_spr	33,11	p_var_win	31,36	elev	27,41	p_var_sum	30,13	elev	27,67	p_var_win	22,45	p_max_spr	22,57				
t_avg_aut	29,33	p_var_sum	30,79	Elev	27,48	t_sd_aut	26,93	elev	28,25	p_max_spr	26,75	elev	20,98						
elev	29,11	p_var_win	28,12	p_var_sum	26,63	p_var_sum	26,18	p_var_win	26,37	p_var_sum	23,93								
p_max_aut	27,49	p_var_y	27,79	p_var_y	26,53	p_max_spr	24,87	p_var_y	26,20	p_var_y	23,25								
p_var_win	27,47	p_max_sum	26,93	t_sd_aut	26,15	p_max_sum	24,10	t_sd_aut	25,75										
p_var_y	24,31	p_min_aut	26,64	p_max_sum	23,63	p_var_y	23,61	p_max_sum	24,05										
p_min_aut	23,80	p_max_aut	25,47	p_min_aut	23,51	p_max_aut	22,98												
p_max_sum	22,41	elev	25,14	p_max_aut	22,53	p_min_aut	21,45												
p_min_sum	19,83	t_sd_win	22,24	t_sd_sum	18,55	t_sd_sum	16,61												
p_max_win	19,42	t_sd_sum	21,24	p_max_win	16,30														
sti_norm	18,63	p_max_win	18,42	t_sd_win	14,14														
t_sd_win	18,28	p_var_aut	17,61	p_var_aut	12,53														
t_sd_sum	18,06	sti_norm	17,32																
spi_norm	14,90	p_min_sum	17,14																
p_min_win	14,34	p_min_win	17,13																
p_var_aut	13,73	spi_norm	11.91																
p_avg_y	13.31																		
t_min_sum	12.42																		
t_max_spr	11.76																		
p_min_spr	10.97																		
p_avg_sum	10.11																		

Table 3. Variable Importance (VI) of the variables tested for each of the warm conditions models.

				-								-							
23var	VI	19var	VI	16var	VI	13var	VI	10var	VI	8var	VI	6var	VI	5var	VI	4var	VI	3var	VI
p_min_aut	72,35	p_min_aut	73,59	p_min_aut	70,70	p_min_aut	70,45	p_min_aut	75,65	p_min_aut	76,37	p_min_aut	73.19	p_min_aut	74.38	p_min_aut	74.63	p_min_aut	78.70
slope	53.79	p_min_sum	54.85	Slope	54.61	p_min_sum	49.02	p_min_sum	50.64	Slope	53.90	slope	51.45	slope	48.46	slope	39.38	slope	39.74
p_min_sum	53.24	slope	45.03	p_min_sum	50.00	slope	47.45	slope	50.11	p_min_sum	48.26	t_sd_aut	44.04	t_sd_sum	33.29	t_sd_sum	38.07	t_sd_sum	26.69
t_sd_aut	49.74	t_sd_aut	40.59	t_sd_aut	42,22	elev	36,45	t_sd_aut	36,21	t_sd_aut	36,08	p_min_sum	40,83	p_min_sum	30,70	p_min_sum	31,77		
t_sd_sum	40,15	elev	38,39	Elev	37,81	t_sd_aut	35,60	elev	35,23	Elev	34,89	t_sd_sum	31,75	t_sd_aut	27,04				
elev	38,01	t_sd_sum	33,33	sti_norm	33,12	sti_norm	29,32	t_sd_sum	31,30	t_sd_sum	25,44	elev	25,18						
sti_norm	37,58	sti_norm	33,12	t_sd_sum	29,24	t_sd_sum	27,44	p_min_spr	28,56	p_min_spr	21,68								
p_min_spr	34,13	p_var_sum	30,49	p_min_spr	28,33	p_var_sum	26,64	sti_norm	26,45	sti_norm	20,82								
p_max_win	32,00	p_min_spr	29,95	p_var_sum	26,27	p_max_win	23,60	p_var_sum	24,21										
p_var_sum	29,59	p_max_win	29,58	p_max_win	23,46	p_min_spr	23,16	p_max_win	23,56										
p_var_spr	28,28	p_var_aut	27,88	p_var_aut	22,32	p_var_aut	22,56												
p_var_aut	28,22	p_var_spr	24,99	spi_norm	21,86	p_var_spr	21,72												
p_var_win	26,69	spi_norm	19,92	p_var_spr	21,60	spi_norm	17,36												
spi_norm	26,13	p_max_spr	19,10	p_var_win	21,39														
p_max_spr	22,08	t_avg_aut	18,58	p_max_spr	21,07														
t_avg_aut	20,71	p_var_win	17,18	t_avg_aut	18,45														
p_avg_y	20,06	p_avg_y	16,08																
t_min_sum	17,14	p_max_aut	13.01																
p_max_aut	15.21	t_min_sum	10.98																
p_max_sum	14.63																		
t_sd_win	12.40																		
p_min_win	11.34																		
t_max_spr	4.38																		

Table 4. Variable Importance (VI) of the variables tested for each of the cold conditions models.

Figure 4. OOB and accuracy graphs for warm and cold models at each step. The grayed

375 areas represent 1 standard error (SE) over and under the lowest OOB score or the highest

accuracy score for each series.

Models	OOB	accuracy	N predictors
25var	0,367	0,621	25
20var	0,349	0,646	20
16var	0,346	0,677	16
13var	0,352	0,663	13
10var	0,334	0,678	10
8var	0,332	0,693	8
6var	0,314	0,696	6
5var	0,342	0,699	5
4var	0,329	0,669	4
3var	0,353	0,658	3
2var	0,374	0,647	2

Table 5. Performances of the warm models at each step.

Models	OOB	accuracy	N predictors
23var	0,274	0,731	23
19var	0,259	0,727	19
16var	0,256	0,741	16
13var	0,250	0,740	13
10var	0,245	0,741	10
8var	0,239	0,762	8
6var	0,234	0,775	6
5var	0,277	0,730	5
4var	0,260	0,748	4
3var	0,273	0,727	3
2var	0.293	0.722	2

Table 6. Performances of the cold models at each step.

379

Figure 5. Predictors included in the warm model 6var mapped according to GI conditions.

381 The unit for p_var_spr & p_var_win is the coefficient of variation.

382

Figure 6. Predictors included in the cold model 6var mapped according to GS conditions.

384 The unit for t_sd_aut & t_sd_sum is the standard deviation.

385

Figure 7. Density plots (presences and pseudo-absences) for the predictors included in
the warm habitat suitability model 6var. Variables are presented in order of importance
(VI) from left to right starting with the first row.

Figure 8. Density plots (presences and pseudo-absences) for the predictors included in the
cold habitat suitability model 6var. Variables are presented in order of importance (VI)
from left to right starting with the first row.

393 4 Discussion

394 4.1 Habitat Suitability predictive models

HS is a proxy for the carrying capacity of the landscape, and the HS index indicates the probability of encountering humans on the landscape. In other words, it is to be expected that the number of archaeological sites will be reduced or absent from areas with low HS values. The final predictive models for GIs and GSs display distinct spatial structures of suitable habitat (Fig. 2 & 3). The warm model produces a geographically larger area of suitable habitat in Europe while the cold model indicates a considerably more restricted one. Figure 9 illustrates this expansion of suitable habitat during GIs; the 402 percentage of the European domain associated with higher HS scores for the warm model 403 is greater than the cold model. The cold model shows that higher values of HS are 404 concentrated in South-West France and the Northern Iberian peninsula, but also in the 405 Danube watershed West of the Carpathian Basin (Fig. 3). High values of HS during GIs 406 expand from these landscapes towards other regions, such as Brittany, the Iberian 407 Peninsula, Italy and the Balkans (Fig. 2).

409 Figure 9. Percentage bar plot comparing the habitat suitability outputs produced by the410 warm and the cold models and their spatial extent.

Despite a relatively smaller area of suitable habitat, there are more sites during GSs. This doesn't necessarily mean that site densities are greater, however, because the stadial events represent a longer interval of time than the interstadials. In a prior study, we took the third dimension (time) into account and calculated a chronological density index for Aurignacian occupations during stadials and interstadials (Paquin et al., 2023). This index controls for the duration of these climatic phases. We highlighted that GSs generally have a higher chronological density of Aurignacian occupations than GIs. We argued that an intensified pattern of residential mobility during GSs could explain this phenomenon,
rather than an increase in population density. The contraction of suitable habitat during
GSs, observed above, supports this idea if we consider that populations contracted their
ranges.

422 For the warm model, the lowest HS scores associated with Aurignacian sites within 423 our dataset all occur in Eastern Europe: Mitoc-Malu-Galben (0.63), Pes-kő (0.63) and 424 Bacho Kiro (0.65) and klissoura (0.67) (Fig. 2). The picture is more geographically diverse 425 for the cold model, highlighting relatively worse climatic conditions across the continent 426 during stadials. The archaeological sample could be playing a causal role here: the 427 Aurignacian technocomplex is documented in numerous sites in Eastern Europe, 428 particularly in the Carpathian Basin (Floss et al., 2016; Hauck et al., 2018) but very few of 429 these sites, other than Pes-kő and Mitoc-Malu-Galben, offer chronological and/or 430 paleoenvironmental data precise or robust enough to classify occupations as pertaining to 431 cold or warm conditions. Most of the eastern European sites are thus not included in our 432 database. These scores could also reflect relatively poorer conditions in Eastern Europe 433 during warm phases. While HS is visibly worse in Eastern Europe than it is in the West 434 during stadials (Fig. 3), the warm model maps show generally good HS values in the east, 435 but still lower than Western Europe (Fig. 2).

The Aurignacian technocomplex is relatively well represented in the archaeological record of northwestern France, e.g. multiple sites exist in Brittany, such as *Beg-ar-C'hastel* and *Îlot des Agneaux* (Hinguant and Monnier, 2013). Even further north, on the British Isles, the Aurignacian is documented at sites such as *Kent's Cavern*, although occupation of the territory is believed to have been punctual and sporadic (Dinnis, 2012). The model 441 indicates that Britanny was a highly suitable landscape for Aurignacian people during GIs. 442 This is interesting because, due to the lack of robust chronological data, we did not use 443 Aurignacian sites from this region to train the model. Most of the Breton sites are coastal 444 and fall within relatively good HS indices according to the warm model. Lacking 445 archaeological knowledge pertaining to submerged landscapes under the Channel 446 considerably limits our understanding of Aurignacian mobility in this region. It is plausible 447 that conditions were suitable during GIs on both sides of the Channel.

448 The warm model indicates that the HS index is quite high in most of the Iberian 449 Peninsula even though few sites in our database, apart from those in the Northern coastal 450 region, attest to an Aurignacian presence. The two sites in our dataset that are further south 451 of the Peninsula are Lapa do Picareiro and Les Mallaetes, the former of which could have 452 been occupied as early as GI-11 with a terminus post quem of 41.9 – 41.1 cal ka BP (Haws 453 et al., 2020). Les Mallaetes is occupied much later by Aurignacian groups around GI-8 and 454 GS-7 (Paquin et al., 2023; Villaverde et al., 2021). Our models indicate that Iberian 455 landscapes were generally suitable for AMH settlement during the warm phases of MIS 3. 456 These results could be consistent with the Ebro River hypothesis, which predicts that the 457 presence of Neanderthal populations South of the Ebro slowed the dispersal of AMHs into 458 central and southern Iberia (Zilhão, 2000). Evidence for an Early Aurignacian presence at 459 Lapa do Picareiro recently cast doubt on the Ebro river hypothesis (Haws et al., 2020), 460 however, but the debate is ongoing (Zilhão, 2021).

461 4.2 Predictors

462 RF classification allows for the identification of strong predictors among a large 463 series of variables for explaining site location. Nevertheless, as it considers interactions 464 between variables, a drawback of the method is the difficulty interpreting the impact of 465 individual predictors. We applied a mixed approach to address this issue, using the 466 variables included in the best RF models to produce GLM models (see SI.2). This made it 467 possible to identify predictors that have a linear relationship with the dependent variable: 468 site location. Topographic variables for elevation and slope display a linear relationship 469 with site location in both models. Otherwise, the only other variable with a linear 470 relationship is the minimum precipitation rate for Summer in the cold model. All other 471 predictors included present non-linear relationships with the dependent variable and are 472 only interpretable in conjunction with other variables.

Therefore, we use density graphs produced during the RF runs to interpret the relationship of the predictors with HS values. Some trends are visible in the density graphs (Fig. 7 & 8). Slope values for both GI and GS suggest a preference for slightly sloping, rather than flat ground, which would potentially be floodplains. Even if slope explains site location in a linear fashion (see SI.2), there is an apparent upper threshold at 10 degrees. Sites tend to be located under 700 m elevation, although there is a peak around 1500 m during GIs that could indicate movement to highland regions during warm phases.

480 Cells with lower variability in precipitation rates during spring and winter are 481 disproportionately represented during GIs, although this effect is less pronounced in winter 482 (Fig. 7). This implies that predictable patterns of precipitation influenced human spatial 483 decisions, particularly in spring. Additionally for the GIs, higher than average temperatures 484 in autumn are over-represented, as are slightly lower maximum spring precipitation rates.

485 There's a notable trend towards a selection for lower variance in autumn 486 temperatures during stadials (Fig.8). This makes sense in terms of the human perception of 487 ecological risk and risk management; locales with predictable autumn temperatures could 488 ensure access to and availability of needed resources before the winter months. Variance 489 in temperature gravitates towards higher values during summer. It could be that variance 490 in summer temperature is linked to other variables included in the model. This predictor 491 also has a relatively high correlation coefficient with autumn temperature variance: 492 t sd aut and t sd sum are inversely correlated by a coefficient of -0.74, just under the 0.8 493 cut-off used in the modelling process. Minimum precipitation rates trend towards higher 494 values for both autumn and summer, extending the growing season, but especially in 495 autumn when, as noted above, lower temperature variance is selected for.

496 4.3 Addressing climate risk and dispersal routes

One of the main advantages of the paleoclimatic reconstructions on which the models are built is the ability to calculate inter- and intra-annual variability in temperature and precipitation. This information allows us to test human sensitivity to climate variability at different scales and opens the door to a discussion on ecological risk. Both final HS models include predictors pertaining to climate variability which we consider an element of ecological risk (and see Burke et al., 2017) indicating that the predictable distribution of resources was clearly a factor in habitat suitability.

The lowest HS scores associated with Aurignacian sites included in the models highlight differences between GIs and GSs. The lowest site for the GIs is associated with an HS index of 0.63 while the 4 lowest scores associated with GS sites are all lower than this: *Mitoc-Malu-Galben* (0.52), *Serino* (0.56), *Les Cottés* (0.59) and *Friedrichsdorf-Seulberg* (0.6). The threshold at which cells with low HS values are really occupied is thus considerably lower during GSs. Two of these sites include multiple Aurignacian levels; 510 Mitoc-Malu-Galben is occupied during different interstadials and stadials from GI-8 to GS511 5.2 while Les Cottés comprises three Aurignacian layers associated with GI-9 and GS-9.
512 The lower HS threshold during stadials could mean that humans would have continued to
513 occupy known sites even if conditions were not ideal.

514 The lower HS threshold during GSs, added to the observation that the proportion 515 of habitable landmass shrank (Fig. 9), could indicate that human populations had to adjust 516 to sub-optimal conditions, highlighting the ecological stresses to which they had to adapt. 517 The cold model can thus illustrate the climate tolerance of early European AMHs. With a 518 wider choice of regions in which humans could settle, as underlined by the higher 519 proportion of the habitable landmass (Fig. 9) and a higher HS threshold, the warm model 520 indicates the climate preference of Aurignacian groups. If populations were trying to 521 maintain themselves during stadials without densely populating highly suitable zones, they 522 would have inevitably ended up in less suitable areas, hence the lower GS threshold.

523 It is also relevant to note that conditions were not homogeneous across Europe 524 during specific climatic phases. Some sites with occupations classified as stadial due to 525 chronological data, like Covalejos in Northern Spain or the Grotte du Renne, in France, 526 display paleoenvironmental data indicating somewhat warm conditions (see Paquin et al., 527 2023 for additional examples). For instance, Covalejos level C/3 faunal assemblage 528 exhibits a mosaic of deer, horse and bos (Yravedra et al., 2016; Jones et al., 2019) while 529 palynology indicates both steppe and temperate species (Ruiz-Zapata & Gil, 2005). Both 530 cold and warm conditions are signaled by this kind of pattern, which could indicate some 531 resource or niche tracking by Aurignacian populations during GS periods as a form of risk 532 reduction strategy.

533 As mentioned above, our results show that AMHs were affected by climate 534 variability and climate change during the MIS 3 and adapted by altering their range. Fitness 535 related innovations also explain AMH adaptive capacity to climate change. Specialized 536 cold climate clothing, for example, was potentially made and worn by Aurignacian groups 537 (Collard et al., 2016). A broadening of the AMH diet by the intensification of small prey 538 exploitation during the Aurignacian (Llovera et al., 2016) is also a good example of such 539 adaptations. Technical and behavioral adaptations, such as those mentioned here, probably 540 participated in making AMHs the sole hominin species to survive the unstable climate of 541 MIS 3 and the onset of the LGM in the long run. The question of Neanderthal's 542 disappearance is not the focus of the present study and depends on many factors, including 543 the possibility of competitive exclusion (Timmermann, 2020). Decreasing available 544 biomass (Vidal-Cordasco et al., 2022) or a repeated fragmentation and reduction of the 545 habitable landmass before the arrival of AMH populations (Melchionna et al., 2018; Klein 546 et al., 2023) are also aspects to take into consideration.

547 In our previous paper we presented data suggesting an initial dispersal phase 548 (approximately between GI-12 and GI-10) marked by the quick expansion of Aurignacian 549 groups, indicated by a steadily increasing chronological density of archaeological 550 occupations, followed by an established population phase starting around GS-10 with a 551 more widespread occupation of Europe (Paquin et al., 2023). During the initial dispersal 552 phase, Aurignacian sites are mainly located in coastal environments, principally the 553 Mediterranean coast, with some occupations in the Danube valley, in Germany and Austria. 554 The question remains as to whether there was a single entry point, or multiple entry points for initial Aurignacian dispersal into Europe and the two main migration routes proposedare along the Mediterranean coastline and the Danube valley (Mellars 2011).

557 The models produced in this study show contrasting patterns of habitat suitability 558 on the Mediterranean coast between cold and warm cycles (Fig. 2 & 3). During GSs, 559 suitable habitats along the Mediterranean coast exist as discontinuous patches. Otherwise, 560 coastal regions are mainly composed of medium and low HS values. During GIs, the HS 561 values along the coast are higher and form a continuous corridor of suitable habitat. For 562 the Danube valley route, both models show favorable habitat in the western portion of the 563 route but from the Carpathian Basin eastward, HS values are low (especially for GS) and 564 only a few chronologically controlled Aurignacian sites are known (Fig. 2 & 3). As 565 mentioned earlier, however, our database is incomplete in Eastern Europe and the HS 566 models suggest that both routes would have been plausible entry points during GIs, with 567 the Mediterranean coast being relatively more favorable. Submerged landscapes which are invisible in our data could very well have extended this putative dispersal route (Fig. 2). 568

569 Still, the Danube valley, mainly for the region north of the Alps, could have been a 570 corridor of mobility in continental Europe during GSs, considering the relatively high HS 571 values and the persistent presence of Upper Paleolithic occupations in the region. Our 572 models could support certain aspects of the Kulturpumpe hypothesis, therefore (Conard 573 and Bolus, 2003). We are not suggesting that the Early Aurignacian emerges from this 574 region, but that, once settled, it could have acted as a cultural core area during most of 575 MIS 3. The Rhone Valley, another important biogeographic corridor linking the 576 Mediterranean coastline to Central Europe, is equally suitable during warm or cold 577 conditions (Fig. 2 & 3).

578 4.4 Comparison with other published models

Other studies have integrated archaeological site location data and paleoclimate reconstructions to evaluate the Aurignacian habitat in Europe (e.g., Banks et al., 2013a, b; Shao et al., 2021; Timmermann, 2020; Klein et al., 2023). Our results agree with these (and other) studies which conclude that climate change had an impact on human populations and spatial behavior during MIS 3, since our results clearly indicate that suitable habitat contracted considerably during GSs.

585 Continental-scale models (Shao et al., 2021), as well as modelling focused on the 586 Iberian Peninsula (Klein et al., 2023) also incorporate climate variability predictors in 587 computing the human existence potential (HEP) for the Aurignacian, an index which is 588 conceptually equivalent to the habitat suitability score we use here. Nevertheless, they only 589 include as predictors the annual means for temperature and precipitation variability, which 590 limits the scope at which they can discuss the concept of ecological risk. The inclusion of 591 seasonal variability predictors in our study allows interpretable results regarding this 592 research theme. Klein et al.'s (2023) model highlights the importance of the Franco-593 Cantabrian region across GI/GS cycles, which is consistent with our results. But Shao et 594 al.'s (2021) models show a GS contraction of the HEP area towards the Mediterranean 595 region, leaving two of the core areas of Aurignacian occupations, Franco-Cantabria and 596 the Danube valley North of the Alps, with low HEP values. Our cold conditions model 597 shows contrasting results, with a contraction of the habitat centered around these 598 archaeologically important regions during stadials.

599 Another recent study models Neanderthals and AMHs dispersals using climate 600 forcing to evaluate the impact of interbreeding, competitive exclusion and D-O oscillations 601 on the disappearance of the former species (Timmermann, 2020). This research concludes 602 that Neanderthal extinction cannot be understood simply by climate change, and that a 603 more realistic scenario should include arriving AMH populations with higher degrees of 604 plasticity, mobility and fecundity. Our study supports this idea by demonstrating that 605 AMHs adapted to the rapid climate changes of the MIS 3 and could manage ecological 606 risk, which would have played a major role in outcompeting Neanderthal populations.

607 We believe research design including site selection, choice of climate model, choice 608 of model type (RF, logistic regression, etc.), the use of machine learning, and different 609 research goals explain the differences between our modelling results and previously 610 published material. As explained above, sites used in our models, while less numerous than 611 for other published models, contain Aurignacian layers that can confidently be ascribed to 612 interstadial or stadial periods (Paquin et al., 2023). The datasets produced are thus 613 specifically curated to model the suitable habitat during both GI and GS conditions. 614 Furthermore, the Random Forest algorithm is useful in making use of variables that have 615 non-linear relationship with the dependent variable compared to general linear models 616 (Genuer et al., 2010; Grömping, 2009) and a recent benchmark study confirms that it has 617 good average prediction performance compared with other approaches (Couronné et al. 2018). 618

619 5 Conclusion

620 The predictive models produced in this research highlight variables that constituted 621 suitable habitat for AMHs during cold and warm phases of MIS 3 and underline the impact 622 of climate change and the importance of considering intra-annual climate variability. 623 Climate variables included in the models indicate that seasonal, rather than annual, 624 temperature and precipitation rates are important. Higher average temperatures in autumn 625 and less variability in spring precipitation rates would have been critical during GIs, while 626 less temperature variance in autumn and higher minimum monthly precipitation rates 627 during summer and autumn were critical during GSs.

628 Our results show that millennial-scale climate change and contrasting patterns of 629 climate variability affects the size of suitable habitat during stadial/interstadial events. The 630 timing and shape of the initial Aurignacian dispersal into Europe would have been 631 structured by millennial-scale climate change as a result. GSs display an irregular and 632 discontinuous suitable habitat across the two putative main routes of dispersal, the 633 Mediterranean coast and the Danube corridor, while GIs show a considerably more 634 extended and continuous suitable habitat along the coastal path. Our models agree with the 635 hypothesis that initial population dispersal into Europe was likely triggered by warm cycles 636 and their impacts on the environment (e.g., Badino et al., 2020; Müller et al., 2011), 637 probably around GI-12. The models also agree that the Danube valley West of the 638 Carpathians was a potential corridor of mobility throughout MIS 3, which agrees with 639 certain aspects of the *Kulturpumpe* hypothesis (Conard and Bolus, 2003).

The presence of climate variability predictors in the final models show that interannual or seasonal variability also influenced human mobility during GIs and GSs, and that ecological risk was therefore a significant factor governing dispersals. In this sense, the low HS threshold observed during GSs can be interpreted as a mark of behavioral plasticity on the part of early European populations which were able to deviate from their environmental preferences and adapt to suboptimal climatic contexts in order to maintain

- 646 a larger vital space, which is coherent with the "generalist specialist" niche suggested by
- 647 Roberts & Stewart (2018). It could also be taken to support the variability hypothesis of
- human evolution (Potts, 2013; Potts and Faith, 2015).
- 649 Supplementary Information
- 650 SI.1 Modelling script (RF & GLM)
- 651 SI.2 Modelling results (RF & GLM)
- 652 SI.3 Variable correlation test and selection
- 653 SI.4 Maps of each model

654 Data Availability

- The archaeological data used in this study comes from a published database (Paquin et
- al., 2023) which can be downloaded at the following URL:
- 657 http://www.hominindispersals.net/datasets

658 Acknowledgements

- This work was supported by the Fonds de Recherche du Québec Société et
- 660 Culture [2019-SE3-254686] and the Joseph-Armand Bombardier Canada Graduate
- 661 Scholarships from the Social Sciences and Humanities Research Council of Canada [767-
- 662 2017-1126]. Thanks are also due to Samuel Seuru and Catharina Igrejas Lopes Martins
- 663 Costa for their precious help in the data compilation.

664 References

665	Albouy, B., Paquin, S., Hinz, M., Wren, C.D., Burke, A., 2023. The Last of Them:
666	Investigating the Palaeogeography of the Last Neanderthals in Europe (Marine
667	Isotopic Stage 3), in: Seuru, S., Albouy, B. (Eds.), Modelling Human-
668	Environment Interactions in and beyond Prehistoric Europe, Themes in
669	Contemporary Archaeology. Springer International Publishing, Cham, pp. 27-45.
670	https://doi.org/10.1007/978-3-031-34336-0_2
671	Badino, F., Pini, R., Ravazzi, C., Margaritora, D., Arrighi, S., Bortolini, E., Figus, C.,
672	Giaccio, B., Lugli, F., Marciani, G., Monegato, G., Moroni, A., Negrino, F.,
673	Oxilia, G., Peresani, M., Romandini, M., Ronchitelli, A., Spinapolice, E.E.,
674	Zerboni, A., Benazzi, S., 2020. An overview of Alpine and Mediterranean
675	palaeogeography, terrestrial ecosystems and climate history during MIS 3 with
676	focus on the Middle to Upper Palaeolithic transition. Quat. Int., Peopling
677	dynamics in the Mediterranean area between 45 and 39 ky ago: state of art and
678	new data 551, 7-28. https://doi.org/10.1016/j.quaint.2019.09.024
679	Banks, W.E., d'Errico, F., Peterson, A.T., Kageyama, M., Sima, A., Sánchez-Goñi, M
680	F., 2008. Neanderthal Extinction by Competitive Exclusion. PLoS ONE 3, e3972.
681	https://doi.org/10.1371/journal.pone.0003972
682	Banks, W.E., d'Errico, F., Zilhão, J., 2013a. Human-climate interaction during the Early
683	Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-
684	Aurignacian and the Early Aurignacian. J. Hum. Evol. 64, 39–55.
685	https://doi.org/10.1016/j.jhevol.2012.10.001

686	Banks, W.E., d'Errico, F., Zilhão, J., 2013b. Revisiting the chronology of the Proto-
687	Aurignacian and the Early Aurignacian in Europe: A reply to Higham et al.'s
688	comments on Banks et al. (2013). J. Hum. Evol. 65, 810-817.
689	https://doi.org/10.1016/j.jhevol.2013.08.004
690	Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W., 2012. Selecting pseudo-
691	absences for species distribution models: how, where and how many? Methods
692	Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
693	Barshay-Szmidt, C., Normand, C., Flas, D., Soulier, MC., 2018. Radiocarbon dating the
694	Aurignacian sequence at Isturitz (France): Implications for the timing and
695	development of the Protoaurignacian and Early Aurignacian in western Europe. J.
696	Archaeol. Sci. Rep. 17, 809-838. https://doi.org/10.1016/j.jasrep.2017.09.003
697	Bataille, G., Tafelmaier, Y., Weniger, GC., 2018. Living on the edge – A comparative
698	approach for studying the beginning of the Aurignacian. Quat. Int.,
699	Chronostratigraphic data about the Middle to Upper Palaeolithic cultural change
700	in Iberian Peninsula 474, 3–29. https://doi.org/10.1016/j.quaint.2018.03.024
701	Benazzi, S., Slon, V., Talamo, S., Negrino, F., Peresani, M., Bailey, S.E., Sawyer, S.,
702	Panetta, D., Vicino, G., Starnini, E., Mannino, M.A., Salvadori, P.A., Meyer, M.,
703	Pääbo, S., Hublin, JJ., 2015. The makers of the Protoaurignacian and
704	implications for Neandertal extinction. Science 348, 793–796.
705	https://doi.org/10.1126/science.aaa2773
706	Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32.
707	https://doi.org/10.1023/A:1010933404324

708	Burke, A., Kageyama, M., Latombe, G., Fasel, M., Vrac, M., Ramstein, G., James,
709	P.M.A., 2017. Risky business: The impact of climate and climate variability on
710	human population dynamics in Western Europe during the Last Glacial
711	Maximum. Quat. Sci. Rev. 164, 217–229.
712	https://doi.org/10.1016/j.quascirev.2017.04.001
713	Burke, A., Levavasseur, G., James, P.M.A., Guiducci, D., Izquierdo, M.A., Bourgeon, L.,
714	Kageyama, M., Ramstein, G., Vrac, M., 2014. Exploring the impact of climate
715	variability during the Last Glacial Maximum on the pattern of human occupation
716	of Iberia. J. Hum. Evol. 73, 35–46. https://doi.org/10.1016/j.jhevol.2014.06.003
717	Carto, S.L., Weaver, A.J., Hetherington, R., Lam, Y., Wiebe, E.C., 2009. Out of Africa
718	and into an ice age: on the role of global climate change in the late Pleistocene
719	migration of early modern humans out of Africa. J. Hum. Evol. 56, 139–151.
720	https://doi.org/10.1016/j.jhevol.2008.09.004
721	Conard, N.J., Bolus, M., 2003. Radiocarbon dating the appearance of modern humans
722	and timing of cultural innovations in Europe: new results and new challenges. J.
723	Hum. Evol. 44, 331-371. https://doi.org/10.1016/S0047-2484(02)00202-6
724	Couronné, R., Probst, P., Boulesteix, AL., 2018. Random forest versus logistic
725	regression: a large-scale benchmark experiment. BMC Bioinformatics 19, 270.
726	https://doi.org/10.1186/s12859-018-2264-5
727	d'Errico, F., Sánchez Goñi, M.F., 2003. Neandertal extinction and the millennial scale
728	climatic variability of OIS 3. Quat. Sci. Rev. 22, 769–788.
729	https://doi.org/10.1016/S0277-3791(03)00009-X

730	d'Errico, F., Zilhão, J., Julien, M., Baffier, D., Pelegrin, J., 1998. Neanderthal
731	Acculturation in Western Europe? A Critical Review of the Evidence and Its
732	Interpretation. Curr. Anthropol. 39, S1-S44. https://doi.org/10.1086/204689
733	Dansgaard, W., Clausen, H.B., Gundestrup, N., Hammer, C.U., Johnsen, S.F.,
734	Kristinsdottir, P.M., Reeh, N., 1982. A New Greenland Deep Ice Core. Science
735	218, 1273-1277. https://doi.org/10.1126/science.218.4579.1273
736	Davies, W., 2007. Re-evaluating the Aurignacian as an Expression of Modern Human
737	Mobility and Dispersal, in: Rethinking the Human Revolution. pp. 263–274.
738	Davies, W., 2001. A Very Model of a Modern Human Industry: New Perspectives on the
739	Origins and Spread of the Aurignacian in Europe. Proc. Prehist. Soc. 67, 195–217.
740	https://doi.org/10.1017/S0079497X00001663
741	Davies, W., Gollop, P., 2003. The Human Presence in Europe during the Last Glacial
742	Period II: Climate Tolerance and Climate Preferences of Mid-and Late Glacial
743	Hominids, in: Van Andel, T.H., Davies, W., Aiello, L. (Eds.), Neanderthals and
744	Modern Humans in the European Landscape during the Last Glaciation :
745	Archaeological Results of the Stage 3 Project. McDonald Institute for
746	Archaeological Research, pp. 131–146.
747	Díaz-Uriarte, R., Alvarez de Andrés, S., 2006. Gene selection and classification of
748	microarray data using random forest. BMC Bioinformatics 7, 3.
749	https://doi.org/10.1186/1471-2105-7-3
750	Dinnis, R., 2012. The archaeology of Britain&s first modern humans. Antiquity 86, 627-

752	Dufresne, JL., Foujols, MA., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski,
753	Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P.,
754	Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de
755	Noblet, N., Duvel, JP., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S.,
756	Friedlingstein, P., Grandpeix, JY., Guez, L., Guilyardi, E., Hauglustaine, D.,
757	Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G.,
758	Labetoulle, S., Lahellec, A., Lefebvre, MP., Lefevre, F., Levy, C., Li, Z.X.,
759	Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S.,
760	Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M.,
761	Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., Vuichard, N.,
762	2013. Climate change projections using the IPSL-CM5 Earth System Model: from
763	CMIP3 to CMIP5. Clim. Dyn. 40, 2123-2165. https://doi.org/10.1007/s00382-
764	012-1636-1
765	Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), 2011. Quaternary glaciations - extent and
766	chronology: a closer look, Developments in Quaternary science. Elsevier,
767	Amsterdam; Boston.
768	Falcucci, A., Conard, N.J., Peresani, M., 2017. A critical assessment of the
769	Protoaurignacian lithic technology at Fumane Cave and its implications for the
770	definition of the earliest Aurignacian. PLOS ONE 12, e0189241.
771	https://doi.org/10.1371/journal.pone.0189241
772	Fasel, M., 2014. STI: Calculation offthe Standardized Temperature Index. R Package
773	version 01.
774	Floss, H., Fröhle, S., Wettengl, S., 2016. The Aurignacian along the Danube. Its Two-

775	Fold Role as a Transalpine and Cisalpine Passageway of Early Homo Sapiens into
776	Europe, in: Krauss, R., Floss, H. (Eds.), Southeast Europe Before Neolithisation -
777	Proceedings of the International Workshop within the Collaborative Research
778	Centres Sfb 1070 "RessourcenKulturen", Schloss Hohentübingen, 9th of May
779	2014. Universität Tübingen.
780	Formicola, V., 1989. Early Aurignatian Deciduous Incisor from Riparo Bombrini at Balzi
781	Rossi (Grimaldi, Italy). Riv. Antropol. 67, 287-292.
782	Gamble, C., Davies, W., Pettitt, P., Richards, M., 2004. Climate change and evolving
783	human diversity in Europe during the last glacial. Philos. Trans. R. Soc. B Biol.
784	Sci. 359, 243–254. https://doi.org/10.1098/rstb.2003.1396
785	Genuer, R., Poggi, JM., Tuleau-Malot, C., 2010. Variable selection using random
786	forests. Pattern Recognit. Lett. 31, 2225–2236.
787	https://doi.org/10.1016/j.patrec.2010.03.014
788	Grömping, U., 2009. Variable Importance Assessment in Regression: Linear Regression
789	versus Random Forest. Am. Stat. 63, 308–319.
790	https://doi.org/10.1198/tast.2009.08199
791	Guttman, N.B., 1999. Accepting the Standardized Precipitation Index: A Calculation
792	Algorithm1. JAWRA J. Am. Water Resour. Assoc. 35, 311–322.
793	https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
794	Hauck, T.C., Lehmkuhl, F., Zeeden, C., Bösken, J., Thiemann, A., Richter, J., 2018. The
795	Aurignacian way of life: Contextualizing early modern human adaptation in the
796	Carpathian Basin. Quat. Int. 485, 150–166.

797	https://doi.org/	10.1016/j.c	juaint.2017.10.020

798	Haws, J.A., Benedetti, M.M., Talamo, S., Bicho, N., Cascalheira, J., Ellis, M.G.,
799	Carvalho, M.M., Friedl, L., Pereira, T., Zinsious, B.K., 2020. The early
800	Aurignacian dispersal of modern humans into westernmost Eurasia. Proc. Natl.
801	Acad. Sci. 117, 25414–25422. https://doi.org/10.1073/pnas.2016062117
802	Hayes, M.J., 2000. Revisiting the SPI: Clarifying the Process. Drought Netw. News
803	1994-2001 18.
804	Hershkovitz, I., Weber, G.W., Quam, R., Duval, M., Grün, R., Kinsley, L., Ayalon, A.,
805	Bar-Matthews, M., Valladas, H., Mercier, N., Arsuaga, J.L., Martinón-Torres, M.,
806	Bermúdez de Castro, J.M., Fornai, C., Martín-Francés, L., Sarig, R., May, H.,
807	Krenn, V.A., Slon, V., Rodríguez, L., García, R., Lorenzo, C., Carretero, J.M.,
808	Frumkin, A., Shahack-Gross, R., Bar-Yosef Mayer, D.E., Cui, Y., Wu, X., Peled,
809	N., Groman-Yaroslavski, I., Weissbrod, L., Yeshurun, R., Tsatskin, A., Zaidner,
810	Y., Weinstein-Evron, M., 2018. The earliest modern humans outside Africa.
811	Science 359, 456–459. https://doi.org/10.1126/science.aap8369
812	Higham, T., Douka, K., Wood, R., Ramsey, C.B., Brock, F., Basell, L., Camps, M.,
813	Arrizabalaga, A., Baena, J., Barroso-Ruíz, C., Bergman, C., Boitard, C., Boscato,
814	P., Caparrós, M., Conard, N.J., Draily, C., Froment, A., Galván, B., Gambassini,
815	P., Garcia-Moreno, A., Grimaldi, S., Haesaerts, P., Holt, B., Iriarte-Chiapusso,
816	MJ., Jelinek, A., Jordá Pardo, J.F., Maíllo-Fernández, JM., Marom, A., Maroto,
817	J., Menéndez, M., Metz, L., Morin, E., Moroni, A., Negrino, F., Panagopoulou,
818	E., Peresani, M., Pirson, S., de la Rasilla, M., Riel-Salvatore, J., Ronchitelli, A.,
819	Santamaria, D., Semal, P., Slimak, L., Soler, J., Soler, N., Villaluenga, A.,

820	Pinhasi, R., Jacobi, R., 2014. The timing and spatiotemporal patterning of
821	Neanderthal disappearance. Nature 512, 306–309.
822	https://doi.org/10.1038/nature13621
823	Hinguant, S., Monnier, JL., 2013. Le Paléolithique supérieur ancien dans le Massif
824	armoricain : un état de la question, in: Bodu, P., Chehmana, L., Klaric, L., Mevel,
825	L., Soriano, S., Teyssandier, N. (Eds.), Le Paléolithique Supérieur Ancien de
826	l'Europe Du Nord-Ouest : Réflexions et Synthèses à Partir d'un Projet Collectif
827	de Recherche Sur Le Centre et Le Sud Du Bassin Parisien - Actes Du Colloque de
828	Sens (15-18 Avril 2009), Mémoires de La Société Préhistorique Française. pp.
829	229–238.
830	Hublin, JJ., 2015. The modern human colonization of western Eurasia: when and
831	where? Quat. Sci. Rev., Synchronising Environmental and Archaeological
832	Records using Volcanic Ash Isochrons 118, 194–210.
833	https://doi.org/10.1016/j.quascirev.2014.08.011
834	Jones, J.R., Richards, M.P., Reade, H., Bernaldo de Quirós, F., Marín-Arroyo, A.B.,
835	2019. Multi-Isotope investigations of ungulate bones and teeth from El Castillo
836	and Covalejos caves (Cantabria, Spain): Implications for paleoenvironment
837	reconstructions across the Middle-Upper Palaeolithic transition. J. Archaeol. Sci.
838	Rep. 23, 1029–1042. https://doi.org/10.1016/j.jasrep.2018.04.014
839	Kelly, R.L., 2013. The Lifeways of Hunter-Gatherers: The Foraging Spectrum.
840	Cambridge University Press. Archaeol Anthropol Sci 8, 779-803.
841	https://doi.org/10.1007/s12520-015-0253-4

842	Kim, Y., Kimball, J.S., Didan, K., Henebry, G.M., 2014. Response of vegetation growth
843	and productivity to spring climate indicators in the conterminous United States
844	derived from satellite remote sensing data fusion. Agric. For. Meteorol. 194, 132-
845	143. https://doi.org/10.1016/j.agrformet.2014.04.001
846	Klein, K., Wegener, C., Schmidt, I., Rostami, M., Ludwig, P., Ulbrich, S., Richter, J.,
847	Weniger, GC., Shao, Y., 2021. Human existence potential in Europe during the
848	Last Glacial Maximum. Quat. Int. 581–582, 7–27.
849	https://doi.org/10.1016/j.quaint.2020.07.046
850	Klein, K., Weniger, GC., Ludwig, P., Stepanek, C., Zhang, X., Wegener, C., Shao, Y.,
851	2023. Assessing climatic impact on transition from Neanderthal to anatomically
852	modern human population on Iberian Peninsula: a macroscopic perspective. Sci.
853	Bull. 68, 1176–1186. https://doi.org/10.1016/j.scib.2023.04.025
854	Latombe, G., Burke, A., Vrac, M., Levavasseur, G., Dumas, C., Kageyama, M.,
855	Ramstein, G., 2018. Comparison of spatial downscaling methods of general
856	circulation model results to study climate variability during the Last Glacial
857	Maximum. Geosci. Model Dev. 11, 2563–2579. https://doi.org/10.5194/gmd-11-
858	2563-2018
859	Le Mézo, P., Beaufort, L., Bopp, L., Braconnot, P., Kageyama, M., 2017. From monsoon
860	to marine productivity in the Arabian Sea: insights from glacial and interglacial
861	climates. Clim. Past 13, 759-778. https://doi.org/10.5194/cp-13-759-2017
862	Lézine, AM., Kageyama, M., Bassinot, F., 2023. Data and models reveal humid
863	environmental conditions during MIS 3 in two of the world's largest deserts.

864	Comptes Rendus Geosci. 355, 229–246. https://doi.org/10.5802/crgeos.240
865	Ludwig, P., Shao, Y., Kehl, M., Weniger, GC., 2018. The Last Glacial Maximum and
866	Heinrich event I on the Iberian Peninsula: A regional climate modelling study for
867	understanding human settlement patterns. Glob. Planet. Change 170, 34-47.
868	https://doi.org/10.1016/j.gloplacha.2018.08.006
869	Maier, A., Lehmkuhl, F., Ludwig, P., Melles, M., Schmidt, I., Shao, Y., Zeeden, C.,
870	Zimmermann, A., 2016. Demographic estimates of hunter-gatherers during the
871	Last Glacial Maximum in Europe against the background of palaeoenvironmental
872	data. Quat. Int. 425, 49-61. https://doi.org/10.1016/j.quaint.2016.04.009
873	Malmierca-Vallet, I., Sime, L.C., the D-O community members, 2023. Dansgaard-
874	Oeschger events in climate models: review and baseline Marine Isotope Stage 3
875	(MIS3) protocol. Clim. Past 19, 915-942. https://doi.org/10.5194/cp-19-915-2023
876	McKee, T.D., Doesken, N.J., Kleist, J., 1993. The relationship of drought frequency and
877	duration to time scales., in: Proceedings of the 8th Conference of Applied
878	Climatology. American Meterological Society, Anaheim, California, pp. 179-
879	184.
880	Mellars, P., 2006. A new radiocarbon revolution and the dispersal of modern humans in
881	Eurasia. Nature 439, 931–935. https://doi.org/10.1038/nature04521
882	Mellars, P., 2011. The earliest modern humans in Europe. Nature 479, 483–485.
883	https://doi.org/10.1038/479483a
884	Müller, U.C., Pross, J., Tzedakis, P.C., Gamble, C., Kotthoff, U., Schmiedl, G., Wulf, S.
005	Christonia K_{-} 2011 The role of alimete in the arread of modern hypersectors
000	Unristantis, K., 2011. The role of climate in the spread of modern numans into

886	Europe. Quat. Sci. Rev. 30, 273–279.
887	https://doi.org/10.1016/j.quascirev.2010.11.016
888	Paquin, S., Albouy, B., Hinz, M., Burke, A., 2023. Going New Places: Dispersal and
889	Establishment of the Aurignacian Technocomplex in Europe During the Marine
890	Isotopic Stage 3 (MIS 3), in: Seuru, S., Albouy, B. (Eds.), Modelling Human-
891	Environment Interactions in and beyond Prehistoric Europe, Themes in
892	Contemporary Archaeology. Springer International Publishing, Cham, pp. 47–59.
893	https://doi.org/10.1007/978-3-031-34336-0_3
894	Peltier, W.R., Argus, D.F., Drummond, R., 2015. Space geodesy constrains ice age
895	terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res.
896	Solid Earth 120, 450-487. https://doi.org/10.1002/2014JB011176
897	Posth, C., Yu, H., Ghalichi, A., Rougier, H., Crevecoeur, I., Huang, Y., Ringbauer, H.,
898	Rohrlach, A.B., Nägele, K., Villalba-Mouco, V., Radzeviciute, R., Ferraz, T.,
899	Stoessel, A., Tukhbatova, R., Drucker, D.G., Lari, M., Modi, A., Vai, S., Saupe,
900	T., Scheib, C.L., Catalano, G., Pagani, L., Talamo, S., Fewlass, H., Klaric, L.,
901	Morala, A., Rué, M., Madelaine, S., Crépin, L., Caverne, JB., Bocaege, E.,
902	Ricci, S., Boschin, F., Bayle, P., Maureille, B., Le Brun-Ricalens, F., Bordes, J
903	G., Oxilia, G., Bortolini, E., Bignon-Lau, O., Debout, G., Orliac, M., Zazzo, A.,
904	Sparacello, V., Starnini, E., Sineo, L., van der Plicht, J., Pecqueur, L., Merceron,
905	G., Garcia, G., Leuvrey, JM., Garcia, C.B., Gómez-Olivencia, A., Połtowicz-
906	Bobak, M., Bobak, D., Le Luyer, M., Storm, P., Hoffmann, C., Kabaciński, J.,
907	Filimonova, T., Shnaider, S., Berezina, N., González-Rabanal, B., González
908	Morales, M.R., Marín-Arroyo, A.B., López, B., Alonso-Llamazares, C.,

909	Ronchitelli, A., Polet, C., Jadin, I., Cauwe, N., Soler, J., Coromina, N., Rufi, I.,
910	Cottiaux, R., Clark, G., Straus, L.G., Julien, MA., Renhart, S., Talaa, D.,
911	Benazzi, S., Romandini, M., Amkreutz, L., Bocherens, H., Wißing, C., Villotte,
912	S., de Pablo, J.FL., Gómez-Puche, M., Esquembre-Bebia, M.A., Bodu, P., Smits,
913	L., Souffi, B., Jankauskas, R., Kozakaitė, J., Cupillard, C., Benthien, H.,
914	Wehrberger, K., Schmitz, R.W., Feine, S.C., Schüler, T., Thevenet, C.,
915	Grigorescu, D., Lüth, F., Kotula, A., Piezonka, H., Schopper, F., Svoboda, J.,
916	Sázelová, S., Chizhevsky, A., Khokhlov, A., Conard, N.J., Valentin, F., Harvati,
917	K., Semal, P., Jungklaus, B., Suvorov, A., Schulting, R., Moiseyev, V.,
918	Mannermaa, K., Buzhilova, A., Terberger, T., Caramelli, D., Altena, E., Haak,
919	W., Krause, J., 2023. Palaeogenomics of Upper Palaeolithic to Neolithic
920	European hunter-gatherers. Nature 615, 117–126. https://doi.org/10.1038/s41586-
921	023-05726-0
922	Potts, R., 2013. Hominin evolution in settings of strong environmental variability. Quat.
923	Sci. Rev. 73, 1-13. https://doi.org/10.1016/j.quascirev.2013.04.003
924	Potts, R., Faith, J.T., 2015. Alternating high and low climate variability: The context of
925	natural selection and speciation in Plio-Pleistocene hominin evolution. J. Hum.
926	Evol. 87, 5–20. https://doi.org/10.1016/j.jhevol.2015.06.014
927	R Core Team, 2023. R: A Language and Environment for Statistical Computing.
928	Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B.,
929	Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic,
930	M., Hoek, W.Z., Lowe, J.J., Pedro, J.B., Popp, T., Seierstad, I.K., Steffensen, J.P.,
931	Svensson, A.M., Vallelonga, P., Vinther, B.M., Walker, M.J.C., Wheatley, J.J.,

932	Winstrup, M., 2014. A stratigraphic framework for abrupt climatic changes during
933	the Last Glacial period based on three synchronized Greenland ice-core records:
934	refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev.,
935	Dating, Synthesis, and Interpretation of Palaeoclimatic Records and Model-data
936	Integration: Advances of the INTIMATE project(INTegration of Ice core, Marine
937	and TErrestrial records, COST Action ES0907) 106, 14-28.
938	https://doi.org/10.1016/j.quascirev.2014.09.007
939	Riel-Salvatore, J., Negrino, F., 2018. Proto-Aurignacian Lithic Technology, Mobility,
940	and Human Niche Construction: A Case Study from Riparo Bombrini, Italy, in:
941	Robinson, E., Sellet, F. (Eds.), Lithic Technological Organization and
942	Paleoenvironmental Change: Global and Diachronic Perspectives, Studies in
943	Human Ecology and Adaptation. Springer International Publishing, Cham, pp.
944	163–187. https://doi.org/10.1007/978-3-319-64407-3_8
945	Roberts, P., Stewart, B.A., 2018. Defining the 'generalist specialist' niche for Pleistocene
946	Homo sapiens. Nat. Hum. Behav. 2, 542-550. https://doi.org/10.1038/s41562-
947	018-0394-4
948	Schmidt, I., Bradtmöller, M., Kehl, M., Pastoors, A., Tafelmaier, Y., Weninger, B.,
949	Weniger, GC., 2012. Rapid climate change and variability of settlement patterns
950	in Iberia during the Late Pleistocene. Quat. Int., Temporal and spatial corridors of
951	Homo sapiens sapiens population dynamics during the Late Pleistocene and Early
952	Holocene 274, 179–204. https://doi.org/10.1016/j.quaint.2012.01.018
953	Shao, Y., Limberg, H., Klein, K., Wegener, C., Schmidt, I., Weniger, GC., Hense, A.,
954	Rostami, M., 2021. Human-existence probability of the Aurignacian techno-

955	complex under extreme climate conditions. Quat. Sci. Rev. 263, 106995.
956	https://doi.org/10.1016/j.quascirev.2021.106995
957	Slimak, L., Zanolli, C., Higham, T., Frouin, M., Schwenninger, JL., Arnold, L.J.,
958	Demuro, M., Douka, K., Mercier, N., Guérin, G., Valladas, H., Yvorra, P.,
959	Giraud, Y., Seguin-Orlando, A., Orlando, L., Lewis, J.E., Muth, X., Camus, H.,
960	Vandevelde, S., Buckley, M., Mallol, C., Stringer, C., Metz, L., 2022. Modern
961	human incursion into Neanderthal territories 54,000 years ago at Mandrin, France.
962	Sci. Adv. 8, eabj9496. https://doi.org/10.1126/sciadv.abj9496
963	Sterling, K., 2015. Black Feminist Theory in Prehistory. Archaeologies 11, 93–120.
964	https://doi.org/10.1007/s11759-015-9265-z
965	Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., Seppä, H., 2015. Human
966	population dynamics in Europe over the Last Glacial Maximum. Proc. Natl. Acad.
967	Sci. 112, 8232-8237. https://doi.org/10.1073/pnas.1503784112
968	Timmermann, A., 2020. Quantifying the potential causes of Neanderthal extinction:
969	Abrupt climate change versus competition and interbreeding. Quat. Sci. Rev. 238,
970	106331. https://doi.org/10.1016/j.quascirev.2020.106331
971	Timmermann, A., Yun, KS., Raia, P., Ruan, J., Mondanaro, A., Zeller, E., Zollikofer,
972	C., Ponce de León, M., Lemmon, D., Willeit, M., Ganopolski, A., 2022. Climate
973	effects on archaic human habitats and species successions. Nature 604, 495–501.
974	https://doi.org/10.1038/s41586-022-04600-9
975	Tsakanikou, P., McNabb, J., 2023. Refloating the Aegean Lost Dryland: An Affordance-
976	Based GIS Approach to Explore the Interaction Between Hominins and the

977	Palaeolandscape, in: Seuru, S., Albouy, B. (Eds.), Modelling Human-
978	Environment Interactions in and beyond Prehistoric Europe, Themes in
979	Contemporary Archaeology. Springer International Publishing, Cham, pp. 3–26.
980	https://doi.org/10.1007/978-3-031-34336-0_1
981	Tzedakis, P.C., Hughen, K.A., Cacho, I., Harvati, K., 2007. Placing late Neanderthals in a
982	climatic context. Nature 449, 206–208. https://doi.org/10.1038/nature06117
983	Vaks, A., Bar-Matthews, M., Ayalon, A., Matthews, A., Halicz, L., Frumkin, A., 2007.
984	Desert speleothems reveal climatic window for African exodus of early modern
985	humans. Geology 35, 831-834. https://doi.org/10.1130/G23794A.1
986	Van Andel, T.H., Davies, W., weniger, B., 2003. The Human Presence in Europe during
987	the Last Glacial Period I: Human Migrations and the Changing Climate, in: Van
988	Andel, T.H., Davies, W., Aiello, L. (Eds.), Neanderthals and Modern Humans in
989	the European Landscape during the Last Glaciation : Archaeological Results of
990	the Stage 3 Project. McDonald Institute for Archaeological Research, pp. 31-56.
991	Vicente-Serrano, S.M., Beguería, S., López-Moreno, J.I., 2010. A Multiscalar Drought
992	Index Sensitive to Global Warming: The Standardized Precipitation
993	Evapotranspiration Index. J. Clim. 23, 1696–1718.
994	https://doi.org/10.1175/2009JCLI2909.1
995	Vidal-Cordasco, M., Ocio, D., Hickler, T., Marín-Arroyo, A.B., 2022. Ecosystem
996	productivity affected the spatiotemporal disappearance of Neanderthals in Iberia.
997	Nat Ecol Evol 6, 1644–1657. https://doi.org/10.1038/s41559-022-01861-5
998	Villa, P., Pollarolo, L., Conforti, J., Marra, F., Biagioni, C., Degano, I., Lucejko, J.J.,

999	Tozzi, C., Pennacchioni, M., Zanchetta, G., Nicosia, C., Martini, M., Sibilia, E.,
1000	Panzeri, L., 2018. From Neandertals to modern humans: New data on the
1001	Uluzzian. PLOS ONE 13, e0196786.
1002	https://doi.org/10.1371/journal.pone.0196786
1003	Villaverde, V., Sanchis, A., Badal, E., Bel, M.Á., Bergadà, M.M., Eixea, A., Guillem,
1004	P.M., Martínez-Alfaro, Á., Martínez-Valle, R., Martínez-Varea, C.M., Real, C.,
1005	Steier, P., Wild, E.M., 2021. Cova de les Malladetes (Valencia, Spain): New
1006	Insights About the Early Upper Palaeolithic in the Mediterranean Basin of the
1007	Iberian Peninsula. J. Paleolit. Archaeol. 4, 5. https://doi.org/10.1007/s41982-021-
1008	00081-w
1009	Vrac, M., Marbaix, P., Paillard, D., Naveau, P., 2007. Non-linear statistical downscaling
1010	of present and LGM precipitation and temperatures over Europe. Clim. Past 3,
1011	669-682. https://doi.org/10.5194/cp-3-669-2007
1012	Weniger, GC., de Andrés-Herrero, M., Bolin, V., Kehl, M., Otto, T., Potì, A.,
1013	Tafelmaier, Y., 2019. Late Glacial rapid climate change and human response in
1014	the Westernmost Mediterranean (Iberia and Morocco). PLOS ONE 14, e0225049.
1015	https://doi.org/10.1371/journal.pone.0225049
1016	Winterhalder, B., Lu, F., Tucker, B., 1999. Risk-senstive adaptive tactics: Models and
1017	evidence from subsistence studies in biology and anthropology. J. Archaeol. Res.
1018	7, 301–348. https://doi.org/10.1007/BF02446047
1019	Wisz, M.S., Guisan, A., 2009. Do pseudo-absence selection strategies influence species
1020	distribution models and their predictions? An information-theoretic approach

1021	based on simulated data. BMC Ecol. 9, 8. https://doi.org/10.1186/1472-6785-9-8
1022	Woillez, MN., Levavasseur, G., Daniau, AL., Kageyama, M., Urrego, D.H., Sánchez-
1023	Goñi, MF., Hanquiez, V., 2014. Impact of precession on the climate, vegetation
1024	and fire activity in southern Africa during MIS4. Clim. Past 10, 1165–1182.
1025	https://doi.org/10.5194/cp-10-1165-2014
1026	Wren, C.D., Burke, A., 2019. Habitat suitability and the genetic structure of human
1027	populations during the Last Glacial Maximum (LGM) in Western Europe. PLOS
1028	ONE 14, e0217996. https://doi.org/10.1371/journal.pone.0217996
1029	Yravedra-Sainz de los Terreros, J., Gómez-Castanedo, A., Aramendi-Picado, J., Montes-
1030	Barquín, R., Sanguino-González, J. 2016. Neanderthal and Homo sapiens
1031	subsistence strategies in the Cantabrian region of northern Spain. Archaeol
1032	Anthropol Sci 8, 779-803. https://doi.org/10.1007/s12520-015-0253-4
1033	Zapata, M.B.R., García, M.J.G., 2005. Los neandertales cantábricos: su paisaje vegetal,
1034	in: Neandertales Cantábricos, Estado de La Cuestión: Actas de La Reunión
1035	Científica: Celebrada En El Museo de Altamira Los Días 20-22 de Octubre de
1036	2004. Subdirección General de Publicaciones, Información y Documentación, pp.
1037	275–284.
1038	Zilhão, J., 2021. The late persistence of the Middle Palaeolithic and Neandertals in Iberia:
1039	A review of the evidence for and against the "Ebro Frontier" model. Quat. Sci.
1040	Rev. 270, 107098. https://doi.org/10.1016/j.quascirev.2021.107098
1041	Zilhão, J., 2000. The Ebro frontier: a model for the late extinction of Iberian
1042	Neanderthals, in: Finlayson, C. (Ed.), Neanderthals on the Edge: 150th

1043	Anniversary	Conference of the	Forbes' Quarry	Discovery.	Gibraltar, pp.	111-121.
------	-------------	-------------------	----------------	------------	----------------	----------

- 1044 Zilhão, J., d'Errico, F., 1999. The Chronology and Taphonomy of the Earliest
- 1045 Aurignacian and Its Implications for the Understanding of Neandertal Extinction.
- 1046 J. World Prehistory 13, 1–68.

1047