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Abstract: The initial large-scale dispersal of Anatomically Modern Humans (AMHs) into 3 

Europe, associated with the Aurignacian technocomplex, occurred during Marine Isotope 4 

Stage 3 (MIS 3), a critically unstable climatic period. The impact of climate change 5 

(millennial-scale Dansgaard-Oeschger events) and climate variability (annual and seasonal 6 

variation) on the mobility and initial dispersal of AMHs on the continent is not fully 7 

demonstrated. Here we show that both climate change and variability affected the spatial 8 

behavior of Aurignacian groups and structured their arrival on the continent. Using 9 

Random Forest, a machine learning algorithm, we produced habitat suitability (HS) models 10 

for AMHs under stadial (GS) and interstadial (GI) climate conditions. These models 11 

demonstrate that climate variability was a key factor governing the spatial behavior of 12 

human groups across MIS 3. They also illustrate that the structure and distribution of 13 

suitable habitat in Europe were affected by climatic conditions, with implications in terms 14 

of our species’ adaptability and behavioral plasticity. Finally, our results support the 15 

suggestion that initial dispersals followed a Mediterranean coastal route, likely under 16 

interstadial conditions.  17 

1 Introduction 18 

Dispersal events are a defining feature of human history and adaptation. As our 19 

species, Homo sapiens, spread into new landscapes during the Late Pleistocene it faced a 20 

variety of new and challenging situations, including coexistence with other human groups 21 

such as the Neanderthals and Denisovans, and novel and at times rapidly changing 22 



environmental contexts. Dispersals may also act as triggers for the biological evolution of 23 

the genus Homo (Timmermann et al., 2022). Of particular interest here is the dispersal of 24 

Aurignacian populations into Europe during Marine Isotopic Stage 3 (MIS 3) possibly 25 

following initial AMHs entry circa. 55,000 years go (55 ka) (Slimak et al., 2022). Despite 26 

the documented climate instability of MIS 3 AMHs successfully settled the European 27 

continent while Neanderthal populations declined (Banks et al., 2013a, 2013b, 2008; 28 

d’Errico and Sánchez Goñi, 2003; Gamble et al., 2004; Higham et al., 2014; Hublin, 2015; 29 

Klein et al. 2023; Mellars, 2006, 2011; Müller et al., 2011; Paquin et al., 2023; 30 

Timmermann, 2020; Tzedakis et al., 2007; Zilhão and d’Errico, 1999). This is obviously a 31 

condensed outline of a far more complex process for which scientific investigation is 32 

incomplete. Environmental change, landscape transformation and human dispersal 33 

interconnect and play out over long-time scales, determining the course of human 34 

evolution. The relationship between these variables is central to understanding the 35 

Paleolithic period, and especially crucial when comparing the fate of different human 36 

groups. The main goal of this research is to better understand the impact of millennial-scale 37 

climate variation and climate instability on the pattern of dispersal of AMHs into Europe 38 

during MIS3.  39 

Computational archaeology has come a long way since the 20th century and 40 

modelling techniques are now widely used for studying human/environment interactions 41 

(e.g., Banks et al., 2008, 2013a; Burke et al., 2014, 2017; Klein et al., 2021, 2023; Ludwig 42 

et al., 2018; Maier et al., 2016; Schmidt et al., 2012; Shao et al., 2021; Tallavaara et al., 43 

2015; Timmermann, 2020; Tsakanikou & McNabb, 2023; Weniger et al., 2019). We use 44 

HS modelling to define and map the distribution of suitable habitat for Aurignacian groups 45 



entering Europe during MIS 3 stadial (GS) and interstadial (GI) events. Comparing the HS 46 

models allows us to measure the impact of these contrasting climate events on the 47 

distribution of AMH populations. As part of the modelling process, we also identify key 48 

environmental variables to which AMHs responded during MIS 3.  49 

1.1 Climate change and Dispersal 50 

Mobility is a central component of the human adaptative system. Multiple dispersal 51 

events have occurred since the evolution of our species in Africa. Uncovering the 52 

environmental parameters that facilitated or hindered these phenomena is instrumental to 53 

understanding them. The initial AMH dispersal into the Levant from Africa ca. 200-120 54 

Kyr BP is hypothetically linked to a geographical extension of their habitat, composed of 55 

riverine woodlands or grasslands, during interstadial cycles (Hershkovitz et al., 2018; Vaks 56 

et al., 2007). Later dispersal events out of the African continent ca. 60-50 ka BP are also 57 

hypothetically linked to the development of humid climates in the eastern Mediterranean 58 

during GI-14 and GI-13, acting as a pull factor (Müller et al., 2011). Potentially triggered 59 

by the Heinrich 5 event ca. 48 ka BP, the shift from desert-steppe environments to open 60 

woodlands in Europe and the contraction of Neanderthal populations in Europe could have 61 

paved the way for the entry of AMHs into the continent (Müller et al., 2011). The impact 62 

of Heinrich events in Africa may also have acted as a push factor (Carto et al. 2009). Thus, 63 

climate change may be one of the main drivers of human dispersal.  64 

Depending on the timeframe and the region into which they dispersed AMHs 65 

developed different climatic and environmental preferences, within the wider climatic 66 

tolerances that characterize the species. To clarify these concepts, climatic tolerance acts 67 

as a limit to human adaptation while climatic preference designates optimal conditions for 68 



the species (Davies and Gollop, 2003). Habitat suitability models reflect the probability of 69 

encountering a species and can be used to explore environmental tolerances and define 70 

preferences. Dispersals may reflect the expansion or contraction of suitable habitat (by 71 

“niche tracking”) or conversely, they may reflect plasticity and broader climate 72 

preferences. 73 

The ecological niche of AMHs, in Europe and across the globe, has been recently 74 

described as “generalist specialist” highlighting the plasticity of our species which has 75 

adapted to radically different environmental settings, becoming locally specialized in the 76 

process (Roberts and Stewart, 2018). This highlights the necessity of adopting a regional 77 

approach when studying the environmental context of AMH groups in order to disentangle 78 

local and regional scales of adaptation.  79 

1.2 Climate variability and risk 80 

A mark of the behavioral plasticity of human hunter-gatherers is their ability to 81 

develop new strategies to counter resource scarcity and unpredictability (Kelly, 2013). This 82 

may involve changing settlement patterns, changes in diet, technological innovations, 83 

maintaining reliable and spatially extended social networks, and changes in mobility. 84 

Resource abundance varies seasonally and annually, which is to be expected, and hunter-85 

gatherers can anticipate these variations and alter their spatial behavior accordingly, thus 86 

ensuring their long-term survival. On the other hand, whether resource availability can be 87 

predicted or not constitutes a true ecological risk for foragers, especially in the case of key 88 

resources (Burke et al., 2017; Winterhalder et al., 1999). There is also a risk associated 89 

with mobility itself, as information about conditions at long distance locales might be 90 

deficient (Winterhalder et al., 1999). This is especially the case for dispersing populations 91 



such as the Aurignacians who could not have extensive generational knowledge of the 92 

landscapes they encountered during dispersal.  93 

While existing predictive models for the Aurignacian (Klein et al., 2023; Shao et 94 

al., 2021) do not discuss the impact of ecological risk, studies focused on the Last Glacial 95 

Maximum (LGM) highlight its importance in explaining site distribution, mobility, the 96 

regionalization of lithic industries and patterns of gene exchange (Burke et al., 2017; 97 

Ludwig et al., 2018; Schmidt et al., 2012; Weniger et al., 2019; Wren and Burke, 2019).  98 

Apart from annual and seasonal climate variability and its inherent risks, the initial 99 

large-scale dispersal of AMH populations in Europe occurs during a period of important 100 

climate instability. During this timeframe several Dansgaard-Oeschger (D-O) events 101 

succeeded one another. D-O events are millennial-scale changes in atmospheric and 102 

oceanic conditions that oscillate between cold and dry conditions, correlated with 103 

Greenland Stadials (GSs), and warmer, wetter periods associated with Greenland 104 

Interstadials (GIs) (Dansgaard et al., 1982). D-O events vary in duration from a century to 105 

millennia and may be accompanied by rapid climate fluctuations that affect oceanic and 106 

atmospheric dynamics (Rasmussen et al., 2014). These fluctuations were accompanied by 107 

large-scale variations in resource production, affecting the nature and distribution of 108 

suitable human habitats (Van Andel et al., 2003). In this research we consider the impact 109 

of climate change (as structured by the millennial-scale D-O events) and climate variability 110 

(seasonal and annual) as variables of interest and discuss both scales of analysis.  111 



1.3 The Aurignacian as proxy for AMH dispersals 112 

In the search for the initial AMH populations to successfully disperse into Europe, 113 

we are faced with the limits of the archaeological record. The presence of hominin fossils 114 

within a layer bearing an archaeological industry is generally considered to establish the 115 

identity of its makers but technological and stylistic elements in the Chatelperronian 116 

industry and the Uluzzian industry testify to a less clear-cut association between specific 117 

biological groups and material culture (d’Errico et al., 1998; Villa et al., 2018). The multi-118 

millennial European coexistence of AMHs and Neanderthals clearly paved the way for 119 

contacts and exchanges, and groups composed of individuals from both species as well as 120 

hybrids could also have existed and still be archaeologically invisible (Sterling, 2015). The 121 

limited quantity of human fossils available is a problem, nevertheless the Aurignacian is 122 

generally accepted to signal the appearance of H. sapiens (Benazzi et al., 2015; Formicola, 123 

1989; Hublin, 2015).   124 

This clear association allows us to use the distribution of the Aurignacian 125 

technocomplex as a proxy for modern human dispersal and mobility in Europe. In contrast, 126 

transitional industries that predate it, like the Uluzzian, the Neronian, and the Bachokirian, 127 

lack a clear association with AMHs, are mostly short-lived and lack the body of data 128 

available to discuss millennial changes on the European scale. Genetic studies show that 129 

the populations associated with the Aurignacian persisted in western European, becoming 130 

Gravettian, Solutrean and Magdalenian populations (Posth et al., 2023). We thus have data 131 

supporting the long-term success of the Aurignacian dispersal. 132 

Some prior predictive modelling work on the Aurignacian technocomplex (Banks 133 

et al., 2013a, 2013b) was designed with the following a priori: the Early Aurignacian and 134 



Proto-Aurignacian are chronologically distinct, the former emerging from the latter. This 135 

view is strongly critiqued nowadays, and the chronological and geographical coexistence 136 

of the two facies is now accepted (Barshay-Szmidt et al., 2018; Riel-Salvatore and Negrino, 137 

2018). Based on this overlapping chronology and new technological insights highlighting 138 

a less monolithic nature to both industries (Bataille et al., 2018; Falcucci et al., 2017; Riel-139 

Salvatore and Negrino, 2018), we made the argument elsewhere (Paquin et al., 2023) to 140 

consider both facies as part of a unified archaeological manifestation when investigating 141 

AMHs populations millennial-scale dynamics and changes in Europe.  142 

From the archaeological evidence presented elsewhere (Paquin et al., 2023), it 143 

appears that a major AMH dispersal including the Protoaurignacian and the Early 144 

Aurignacian began around GI-12 and GS-12. The expansion phase continued through GS-145 

10, and then slowed down with a more widespread established population all through GS-146 

7. These observations are also coherent with the two-phase dispersal model suggested by 147 

Davies (2001, 2007) for the Aurignacian technocomplex arrival: a pioneer colonization 148 

phase characterized by low site density, low demography, and a focus on coastal locales 149 

followed by a developed phase marked by a denser site distribution, a more important 150 

demography, and settlements in a wider variety of landscapes. 151 

In this exploration of the initial large-scale dispersal of AMHs into Europe, we ask 152 

the following research questions: a) What was the suitable habitat of AMHs during MIS 3 153 

cold and warm phases?; b) Did climate change (D-O events) control the timing and pattern 154 

of AMH population dispersal and their expansion into Europe?; And c) Were AMHs 155 

sensitive to ecological risk, which we define as unpredictability, and does it help inform us 156 

about patterns of dispersal? We answer these questions using HS modelling, i.e., the 157 



analysis of species distribution as a function of explanatory variables including climate 158 

conditions (temperature, precipitation), indices of climate variability and geography, and 159 

by comparing and contrasting HS models for AMHs during stadial and interstadial events.  160 

Europe is an obvious choice for this study due to its well-documented 161 

archaeological record and a vast body of research that seeks to explain the successful 162 

dispersal of AMHs at the end of the Last Glacial. Furthermore, the scale and richness of 163 

available environmental data allow for a more rigorous characterization of AMHs 164 

adaptative plasticity. In this research the Aurignacian technocomplex is a proxy for the 165 

large-scale dispersal of AMHs into Europe. Our analysis is based on a chronologically 166 

secure archaeological database of Upper Paleolithic sites (Paquin et al., 2023). We rely on 167 

this database to isolate well dated species-occurrence data for Homo sapiens for use in our 168 

predictive modelling. This research also makes use of high-resolution paleoclimate data 169 

obtained through a collaboration with the Laboratoire des Sciences du Climat et de 170 

l’Environement (UMR 8212), at the Institut Simon Laplace (IPSL).    171 

2 Materials and Methods 172 

We produced a series of habitat suitability models for the Aurignacian 173 

technocomplex in Europe using Random Forest (Breiman, 2001) a machine learning 174 

algorithm. The methodology applied in the present paper is based on the protocol described 175 

more fully in Burke et al. (2017). All analyses were performed using R Statistical Software 176 

(v4.2.3; R Core Team 2023). 177 



2.1 Archaeological data 178 

The location data constituting the presences used in the RF models are discrete 179 

European archaeological sites containing dated, uncontested Aurignacian assemblages 180 

compiled in a previously published archaeological database (Paquin et al., 2023). 181 

Paleoenvironmental and chronological data compiled in this database are used to classify 182 

Aurignacian layers into stadial/interstadial periods. Since the environmental impact of 183 

climate conditions would not have been homogeneous across Europe, chronological data 184 

are given priority in the classification process (see Paquin et al. 2023 for more technical 185 

details). We excluded sites with chronological data that were either contested, not 186 

circumscribed enough to make a Bayesian assessment (Amodel index under 60, see Paquin 187 

et al., 2023), or missing. To obtain a comparable number of presences for the warm models, 188 

we included sites with imprecise chronological data (Amodel index under 60) but in situ 189 

paleoenvironmental data signaling warm conditions. 190 

The result is a selection of sites divided into two groups (Table 1):1) stadial 191 

occupations (N = 37) and 2) interstadial occupations (N = 27). Some sites with multiple 192 

Aurignacian occupation layers are part of both groups, e.g., Hohle Fels, Mitoc-Malu-193 

Galben and Les Cottés.  194 

Warm classification 
    

Sites Levels Country Longitude Latitude 
Abri Pataud 7 France 1.01 44.94 
Esquicho-Grapaou SLC1b France 4.32 43.93 
La Ferrassie G1 France 0.94 44.95 
La Souquette 11 France 1.10 45.00 
Le Flageolet I XI France 1.09 44.85 
Le Piage GI-F France 1.37 44.80 
Les Cottés 2 France 0.84 46.69 
Šandalja II F Croatia 13.89 44.88 
Hohle Fels IIe, IIIa, Va & Vb Germany 9.75 48.38 
Sirgenstein VI Germany 9.76 48.39 
Klissoura Cave 1 IIIe-g Greece 22.81 37.69 
Pes-kő lowest layer Hungary 20.41 48.05 
Castelcivita gic & rsa_upper Italy 15.21 40.50 



Paina 9 Italy 11.55 45.43 
Riparo Bombrini A1 Italy 7.54 43.78 
Riparo Mochi G Italy 7.53 43.78 
Lapa do Picareiro DD Portugal -8.65 39.53 
Mitoc-Malu-Galben Aurignacian I inf (12b), Aurignacian I inf (11inf), 

Aurignacian I (11sup) & Aurignacian I (10b inf) 
Romania 27.02 48.10 

Mokriška jama 7 Slovenia 14.57 46.31 
Potočka zijavka 7 & 5 Slovenia 14.67 46.45 
El Castillo 18B1 & 18B2 Spain -3.97 43.29 
Labeko Koba VII Spain -2.49 43.06 
L'Arbreda G & H Spain 2.75 42.16 
Les Mallaetes XIVA Spain -0.30 39.02 
Karain B P.II Turkey 30.57 37.08 
Stranska skala IIIc upper paleosoil Czech Republic 16.68 49.19 
Stranska skala IIIa 3 Czech Republic 16.68 49.19 
Stranska skala IIa 4 Czech Republic 16.68 49.19 
Stranska skala IIIb 4 Czech Republic 16.68 49.19 
Bacho Kiro 6b (D) Bulgaria 25.43 42.95 
Lisen VIII N/A Czech Republic 16.72 49.19 
Temnata Dupka 4a Bulgaria 23.38 43.09 
 
Cold classification 

    

Sites Levels Country Longitude Latitude 
Abri Blanchard Bedrock_level France 1.10 45.00 
Abri Pataud 6, 11, 12, 13 & 14 France 1.01 44.94 
Brignol Limon_sablo-argileux(base) France 0.75 44.41 
Caminade-Est G/F France 1.25 44.87 
Esquicho-Grapaou SLC1a & BR1 France 4.32 43.93 
Gatzarria Cbf France -0.92 43.14 
Grotte des Hyènes 2A-2C France -0.72 43.63 
Grotte du Renne VIII France 3.77 47.59 
Isturitz C4d1, C4c4, C4b2 & C4b1 France -1.21 43.35 
La Crouzade C5 France 3.09 43.13 
Le Flageolet I VIII & IX France 1.09 44.85 
Les Cottés 04lower & 04upper France 0.84 46.69 
Mladeč D hall Czech Republic 17.02 49.71 
Trou Walou CI-1 Belgium 5.69 50.59 
Willendorf II 4 Austria 15.40 48.32 
Roc de Combe 7b France 1.35 44.77 
Brillenhöhle XIV Germany 9.78 48.41 
Friedrichsdorf-Seulberg Loess deposit Germany 8.65 50.24 
Geißenklösterle IIb, IId, IIIa & IIIb Germany 9.77 48.40 
Hohle Fels IId, IIIb & IV Germany 9.75 48.38 
Höhlenstein-Stadel Au Germany 10.17 48.55 
Vogelherd IV Germany 10.19 48.56 
Klissoura Cave 1 IV Greece 22.81 37.69 
Fumane D3b Italy 10.91 45.59 
Grotta del Fossellone Layer 21 Italy 13.08 41.22 
Serino 12 Italy 14.87 40.87 
Lapa do Picareiro II & GG Portugal -8.65 39.53 
Mitoc-Malu-Galben Aurignacian III (9b sup) & Aurignacian III sup (8b) Romania 27.02 48.10 
Divje babe I 2 Slovenia 13.91 46.11 
Aitzbitarte III Vb central Spain -1.89 43.26 
Covalejos B/2 & C/3 Spain -3.93 43.39 
Ekain IXb Spain -2.28 43.24 
El Castillo 18C Spain -3.97 43.29 
El Cuco III Spain -3.23 43.39 
La Güelga 5 Spain -5.10 43.34 
La Viña XI & XII Spain -5.83 43.31 
Labeko Koba IV & V Spain -2.49 43.06 
Les Mallaetes XII Spain -0.30 39.02 



Table 1. Sites, occupation layers and their locational data used as presences in RF models. 195 

Coordinates are rounded to two decimals (roughly 1.1 km). The selection of sites and their 196 

coordinates were extracted from Paquin et al. (2023). 197 

2.2 Climate simulations and downscaling 198 

We used the Atmosphere-Ocean General Circulation Model (AOGCM) IPSL-199 

CM5A-LR (Dufresne et al., 2013) at a ~1.9° latitude and 3.75° longitude spatial resolution 200 

to run two global climate simulations, one representing a typical MIS 3 stadial and the 201 

other a typical MIS 3 interstadial. The boundary conditions (i.e. the distribution of land, 202 

ocean and ice sheets, topography and bathymetry) are the same for both simulations and 203 

are described in Woillez et al. (2014), Le Mézo et al. (2017) and Lézine et al. (2023). These 204 

include smaller ice sheets than for the LGM (ICE_6G-C 16 kyr BP ice sheet 205 

reconstructions from Peltier et al. (2015) available at the time of running, which 206 

corresponded to the same global sea level as MIS 3). Atmospheric greenhouse 207 

concentrations are set to 205 ppm for CO2, 500 ppb for CH4 and 260 ppb for N2O, as 208 

documented by ice cores, i.e. between the levels known for the pre-industrial period and 209 

for the LGM. Astronomical forcing (precession, obliquity, eccentricity) is set with values 210 

for 46 kyr BP. The MIS 3 interstadial simulation is characterized by an active Atlantic 211 

Meridional Overturning Circulation, with values ranging from 20 to 26 Sv, while the MIS 3 212 

stadial simulation has been forced to slow down by imposing a 0.2 Sv fresh water flux at 213 

the surface of the North Atlantic Ocean, and is characterized by an AMOC ranging from 214 

8.5 to 11 Sv.  215 

The stadial simulation starts from the interstadial one and is run for 250 years, 216 

which is enough for the AMOC to strongly decrease. This simple set up was chosen to 217 



obtain distinct climate states for Europe, representative of a stadial and an interstadial state, 218 

with the AMOC state being the sole driver of the differences between these states. The 219 

latest protocol for Dansgaard-Oeschger modelling studies (Malmierca-Vallet, 2023) 220 

recommends a more recent ice sheet reconstruction, but does not modify ice sheet 221 

topography or contour, or the configuration of the coastlines as they are hard to delineate 222 

due to the lack of strong chronological constraints. 223 

From these simulations, we extracted data in the form of 50-year time series for 224 

monthly averages of sea level pressure, air temperature at 2 m above surface, relative 225 

humidity, surface wind and cloud cover. Using this data, we carried out a statistical 226 

downscaling model (GAM) (Vrac et al., 2007) to obtain precipitation and temperature at a 227 

15 x 15 km spatial scale for MIS 3 warm and cold conditions. This statistical downscaling 228 

was only applied to a defined European study domain: longitudes between 11.57 °W and 229 

24.74 °E and latitudes between 32.72 °N and 59.86 °N.  230 

A GAM (Generalized Additive Model) is a statistical model used for modelling 231 

relationships between a response variable and some predictor variables, allowing for non-232 

linear and complex associations. GAMs extend the concept of linear models by allowing 233 

each predictor to have a non-linear relationship with the response. Here, the predictors are 234 

the large-scale climate information described above and the response variable (also called 235 

“predictand”) is either the temperature or the precipitation at high spatial resolution (see 236 

previous paragraph). GAM assumes that the relationship between the response variable and 237 

predictors is additive. Instead of a single linear equation, it then uses separate functions for 238 

each predictor. These functions are typically smooth and, here, we use spline functions to 239 

capture non-linear patterns. The parameters for each predictor's spline are estimated to 240 



minimize the difference between predicted and observed values. All theoretical and 241 

technical details can be found in Vrac et al. (2007) or Latombe et al. (2018). 242 

Using this statistical downscaling approach produces fields at the high spatial 243 

resolution needed for our analysis at a reasonable computing cost. By construction, it also 244 

corrects for the biases of the large-scale model. On the other hand, the method does not 245 

yield successive daily states of the atmosphere and land surface, as a Dynamical Regional 246 

Model would. In the present case, using the statistical method provided suitable climatic 247 

data at the adequate resolution. A comparison to similar information obtained via a 248 

Dynamical Regional Model is beyond the scope of the present study. 249 

2.3 Candidate predictors 250 

Variables used as candidate predictors (Table 2) of Aurignacian sites location are 251 

composed of three categories: climate variables, climate variability indices and 252 

topographical variables. All non-topographic variables were calculated separately for 253 

MIS 3 cold and warm conditions. For the climate variables, we used the outputs of the 254 

downscaled climatology to compute monthly, seasonal, and yearly averages, minima and 255 

maxima for precipitation and temperature.  256 

For the climate variability indices, we used the downscaled outputs of the 50-year 257 

time series to calculate the standard deviation (SD) of monthly temperature averages and 258 

the coefficient of variation (CV; ratio of the standard deviation to the mean) for monthly 259 

precipitation averages at seasonal and yearly scales. Precipitation trends do not follow 260 

Gaussian distributions so the CV is a more robust choice of variability index. Other climate 261 

variability indices include the Standardized Precipitation Index (SPI) (Guttman, 1999; 262 

Hayes, 2000; McKee et al., 1993) and the Standardized Temperature Index (STI). Those 263 



two indices display the number of months for which monthly average precipitation or 264 

temperature follow the normal trend. We calculated the SPI using the “SPEI” R package 265 

(Vicente-Serrano et al., 2010), with values standardized using a 12-month interval. We 266 

calculated the STI using the “STI” R package (Fasel, 2014). 267 

Finally, elevation and slope, the two topographic variables included as predictors, 268 

were derived from the SRTM 90 m digital elevation model which we sampled at a 1 x 1 km 269 

scale using ArcGIS (10.8.1). The final set of candidate predictors (N = 40) is listed in 270 

Table 2.  271 

Predictor  Type  Derivation  Description  
elev  Topographic  DEM  elevation (m asl)  
slope  Topographic  DEM  slope (reclassified) (degree)  
p_avg_aut  Climatology  Climate simulation  Seasonal precipitation average, autumn (mm)  
p_avg_spr  Climatology  Climate simulation  Seasonal precipitation average, spring (mm)  
p_avg_sum  Climatology  Climate simulation  Seasonal precipitation average, summer (mm)  
p_avg_win  Climatology  Climate simulation  Seasonal precipitation average, winter (mm)  
p_avg_y  Climatology  Climate simulation  Annual precipitation average (mm)  
p_max_aut  Climatology  Climate simulation  Seasonal precipitation maximum, autumn (mm)  
p_max_spr  Climatology  Climate simulation  Seasonal precipitation maximum, spring (mm)  
p_max_sum  Climatology  Climate simulation  Seasonal precipitation maximum, summer (mm)  
p_max_win  Climatology  Climate simulation  Seasonal precipitation maximum, winter (mm)  
p_min_aut  Climatology  Climate simulation  Seasonal precipitation minimum, autumn (mm)  
p_min_spr  Climatology  Climate simulation  Seasonal precipitation minimum, spring (mm)  
p_min_sum  Climatology  Climate simulation  Seasonal precipitation minimum, summer (mm)  
p_min_win  Climatology  Climate simulation  Seasonal precipitation minimum, winter (mm)  
p_var_aut  Climate variability  Climate simulation  Seasonal precipitation, coeff. var., autumn   
p_var_spr  Climate variability  Climate simulation  Seasonal precipitation, coeff. var., spring   
p_var_sum  Climate variability  Climate simulation  Seasonal precipitation, coeff. var., summer   
p_var_win  Climate variability  Climate simulation  Seasonal precipitation, coeff. var., winter   
p_var_y  Climate variability  Climate simulation  Seasonal precipitation, coeff. var., yearly  
spi_norm  Climate variability  Climate simulation  N months within normal (predicted) precipitation range  
sti_norm  Climate variability  Climate simulation  N months within normal (predicted) temperature range  
t_avg_aut  Climatology  Climate simulation  Seasonal temperature average, autumn (°C/10)  
t_avg_spr  Climatology  Climate simulation  Seasonal temperature average, spring (°C/10)   
t_avg_sum  Climatology  Climate simulation  Seasonal temperature average, summer (°C/10)     
t_avg_win  Climatology  Climate simulation  Seasonal temperature average, winter (°C/10)  
t_avg_y  Climatology  Climate simulation  Yearly temperature average (°C/10)  
t_max_aut  Climatology  Climate simulation  Seasonal temperature maximum, autumn (°C/10)  
t_max_spr  Climatology  Climate simulation  Seasonal temperature maximum, spring (°C/10)  
t_max_sum  Climatology  Climate simulation  Seasonal temperature maximum, summer (°C/10)  
t_max_win  Climatology  Climate simulation  Seasonal temperature maximum, winter (°C/10)  
t_min_aut  Climatology  Climate simulation  Seasonal temperature minimum, winter (°C/10)  
t_min_spr  Climatology  Climate simulation  Seasonal temperature minimum, spring (°C/10)  
t_min_sum  Climatology  Climate simulation  Seasonal temperature minimum, summer (°C/10)  
t_min_win  Climatology  Climate simulation  Seasonal temperature minimum, winter (°C/10)  
t_sd_aut  Climate variability  Climate simulation  Standard deviation, seasonal temperature, autumn  
t_sd_spr  Climate variability  Climate simulation  Standard deviation, seasonal temperature, spring  
t_sd_sum  Climate variability  Climate simulation  Standard deviation, seasonal temperature, summer  
t_sd_win  Climate variability  Climate simulation  Standard deviation, seasonal temperature, winter  
t_sd_y  Climate variability  Climate simulation  Standard deviation, temperature, yearly  



Table 2. List of predictors included in the modelling process. 272 

2.4 Data preparation  273 

In addition to the selection of archaeological sites to act as presences (see above) 274 

the modelling process requires a library of pseudo-absences from which to draw upon. To 275 

this end, the climate data issued from the statistical downscaling were interpolated using 276 

the “natural neighbor interpolation” tool and resampled to create 1 km resolution rasters 277 

for each of the 40 variables from both the warm and cold paleoclimatic conditions. Next, 278 

we produced two point feature classes with 1 x 1 km spacing, one for stadial conditions 279 

and one for interstadial conditions, and extracted predictor values from the rasters to the 280 

points. The point feature classes were then clipped using masks of the current coastline 281 

configuration and the extent of the LGM ice sheets (Ehlers et al., 2011). Additionally, 282 

10 km radius buffers were created around archaeological sites included in the study. This 283 

serves to exclude the more immediate foraging territory of Aurignacian occupations from 284 

the pseudo-absence datasets.  285 

Presences were generated by loading the georeferenced archaeological sites into 286 

point feature classes and extracting the predictor values from the rasters, as described 287 

above. To minimize the chances of overfitting, we created 1 km radius buffers around each 288 

site and checked for overlaps. Sites with overlapping buffers were deemed too close to one 289 

another and were counted as a single presence.  290 

Finally, for both the warm and cold datasets, the presence and the pseudo-absence 291 

point feature classes were merged into two discrete feature classes and the attribute tables 292 

exported into csv files for use in the next step.  293 



2.5 Random Forest parameterization and model fitting 294 

Random forest (RF) is a nonparametric algorithm for regression and variable 295 

selection that uses decision trees (Breiman, 2001). We used RF to build habitat suitability 296 

models for the Aurignacian under stadial and interstadial conditions. We chose this 297 

algorithm for its ability to handle non-linear relationships, large numbers of predictors and 298 

small datasets of presence observations (Genuer et al., 2010; Grömping, 2009).  299 

First, we identified highly correlated predictor variables within the datasets using 300 

the findCorrelation function in the “caret” R package with a cut-off value of 0.8. Once 301 

correlated pairs were identified, the variable with the higher mean correlation with all other 302 

variables was removed. We supervised the process, prioritizing seasonal variables over 303 

yearly averages,  such as spring temperatures (Kim et al., 2014) which has a demonstrated 304 

impact on vegetation productivity. This process resulted in the retention of 25 uncorrelated 305 

variables for the warm dataset and 23 for the cold dataset (see SI.3).  306 

The filtered lists of variables were then used as candidate predictors in an iterative 307 

variable selection process using RF (Fig. 1). The most robust performances for RF are 308 

obtained by averaging multiple runs of a model combined with a relatively low number of 309 

pseudo-absences (Barbet-Massin et al., 2012). Using the RF function from the “caret” R 310 

package, we ran each model for 100 runs with 10-fold cross-validation and equal numbers 311 

of randomly selected pseudo-absences and presences (N = 37 for the cold models and N = 312 

27 for the warm models) (Barbet-Massin et al., 2012). We used default values for the n-313 

tree (N = 500; the number of trees to grow for each model) and an m-try value of √p (p = 314 

number of predictors; m-try designates the number of randomly selected predictors 315 

interrogated at each split or node) (Díaz-Uriarte and Alvarez de Andrés, 2006). Model 316 



accuracy was calculated using the area under the Receiver Operating Curve (ROC). 317 

Accuracy, the Out-of-the-Bag (OOB) error rate and the Variable Importance indices (VI) 318 

were calculated for each run and averaged to assess model performance for each iteration 319 

(the script is included in supplementary information).  320 

 321 

Figure 1. Random Forest iterative variable selection process.  322 

The iterative variable selection process used the VI metric to identify the least 323 

important predictors (the bottom 20%) which were removed before the next iteration of 324 

100 runs, and so on. OOB and model accuracy were then used conjointly to identify which 325 

run produced the model with the most robust results while being the most parsimonious. 326 

The HS scores from the selected RF models were then mapped. 327 

The list of predictors from the best models were then tested using a Generalized 328 

Linear Model (GLM) to identify which predictors have linear relationships with the 329 

dependent variable (see SI.2 for results). This test was done using the GLM function in the 330 

“caret” R package with 10 times as many pseudo-absences as presences as suggested by 331 

Wisz & Guisan (2009). Once again, we ran the model 100 times before averaging the 332 

results.  333 



3 Results 334 

For the warm and cold datasets, the final models are illustrated in Fig. 2 & Fig. 3 335 

and the RF predictions produced at each step of the variable selection process are illustrated 336 

in the supplementary information (SI.4). The variable importance index (VI), which 337 

measures the relative importance of the predictors, is presented in Table 3 and Table 4 for 338 

each iteration. Model performance (OOB and accuracy) is presented in Table 5 and 6 and 339 

illustrated in Fig. 4.   340 

For the warm dataset, associated with GI conditions, the best model performance 341 

was obtained with the model 6var, containing 6 predictors. For the cold dataset, associated 342 

with GS conditions, the best model performance was obtained with the model 6var, also 343 

containing 6 predictors. Both these models are also the most parsimonious choices since 344 

they had the lowest OOB of their groups and no simpler model produced an OOB situated 345 

within 1 standard error of their respective scores (Fig. 4). As for the accuracy, both are 346 

within 1 standard error of the highest accuracy of their respective series. Because of this, 347 

they were chosen as the final habitat suitability models. Results for the additional GLM 348 

tests of these 2 winning models are included in the supplementary information (see SI.2). 349 

For the warm HS model, the predictors included (Table 3; Fig. 5 & 7), in order of 350 

importance (VI), are: slope, p_var_spr (coefficient of variability for spring precipitation), 351 

t_avg_aut (averaged monthly temperatures for Autumn), p_max_spr (maximum monthly 352 

average precipitations for spring), p_var_win (coefficient of variability for winter 353 

precipitation) and elevation.  354 



For the cold HS model, the predictors included (Table 4; Fig. 6 & 8), in order of 355 

importance (VI), are: p_min_aut (minimum monthly average precipitations for autumn), 356 

slope, t_sd_aut (standard deviation in average monthly temperatures in autumn), 357 

p_min_sum (minimum monthly average precipitations for summer), t_sd_sum (standard 358 

deviation in average monthly temperatures in summer) and elevation. 359 

 360 

Figure 2. Final warm model 6var. The sites used as presences are displayed over the 361 

Habitat Suitability (HS) index. The LGM ice sheets are downloaded from Ehlers et al., 362 

2011 and simplified to remove holes in the Alps. The submerged landscapes areas were 363 

produced by Albouy et al., 2023.  364 



 365 

Figure 3. Final cold model 6var. The sites used as presences are displayed over the Habitat 366 

Suitability (HS) index. The LGM ice sheets are downloaded from Ehlers et al. 2011. The 367 

paleoshorelines were produced by Albouy et al., 2023.368 



 369 
25var VI 20var VI 16var VI 13var VI 10var VI 8var VI 6var VI 5var VI 4var VI 3var VI 
slope 78.68 slope 82.67 Slope 85.92 slope 83.65 slope 81.71 slope 78.42 slope 79.83 slope 82.85 slope 76.32 slope 69.14 
p_var_spr 42.08 p_var_spr 48.05 p_var_spr 36.88 p_var_spr 38.87 p_var_spr 41.46 p_var_spr 46.78 p_var_spr 58.55 p_var_spr 45,06 p_var_spr 48,48 p_var_spr 49,81 
t_sd_aut 31,06 t_avg_aut 37,21 t_avg_aut 33,35 t_avg_aut 35,29 t_avg_aut 31,24 t_avg_aut 41,23 t_avg_aut 39,39 t_avg_aut 32,95 t_avg_aut 25,90 t_avg_aut 27,48 
p_var_sum 30,40 t_sd_aut 34,27 p_max_spr 32,10 p_var_win 27,49 p_max_spr 30,37 p_var_win 28,89 p_max_spr 25,74 p_var_win 29,64 p_var_win 21,44   
p_max_spr 30,36 p_max_spr 33,11 p_var_win 31,36 elev 27,41 p_var_sum 30,13 elev 27,67 p_var_win 22,45 p_max_spr 22,57     
t_avg_aut 29,33 p_var_sum 30,79 Elev 27,48 t_sd_aut 26,93 elev 28,25 p_max_spr 26,75 elev 20,98       
elev 29,11 p_var_win 28,12 p_var_sum 26,63 p_var_sum 26,18 p_var_win 26,37 p_var_sum 23,93         
p_max_aut 27,49 p_var_y 27,79 p_var_y 26,53 p_max_spr 24,87 p_var_y 26,20 p_var_y 23,25         
p_var_win 27,47 p_max_sum 26,93 t_sd_aut 26,15 p_max_sum 24,10 t_sd_aut 25,75           
p_var_y 24,31 p_min_aut 26,64 p_max_sum 23,63 p_var_y 23,61 p_max_sum 24,05           
p_min_aut 23,80 p_max_aut 25,47 p_min_aut 23,51 p_max_aut 22,98             
p_max_sum 22,41 elev 25,14 p_max_aut 22,53 p_min_aut 21,45             
p_min_sum 19,83 t_sd_win 22,24 t_sd_sum 18,55 t_sd_sum 16,61             
p_max_win 19,42 t_sd_sum 21,24 p_max_win 16,30               
sti_norm 18,63 p_max_win 18,42 t_sd_win 14,14               
t_sd_win 18,28 p_var_aut 17,61 p_var_aut 12,53               
t_sd_sum 18,06 sti_norm 17,32                 
spi_norm 14,90 p_min_sum 17,14                 
p_min_win 14,34 p_min_win 17,13                 
p_var_aut 13,73 spi_norm 11.91                 
p_avg_y 13.31                   
t_min_sum 12.42                   
t_max_spr 11.76                   
p_min_spr 10.97                   
p_avg_sum 10.11                   

Table 3. Variable Importance (VI) of the variables tested for each of the warm conditions models. 370 
 371 

23var VI 19var VI 16var VI 13var VI 10var VI 8var VI 6var VI 5var VI 4var VI 3var VI 
p_min_aut 72,35 p_min_aut 73,59 p_min_aut 70,70 p_min_aut 70,45 p_min_aut 75,65 p_min_aut 76,37 p_min_aut 73.19 p_min_aut 74.38 p_min_aut 74.63 p_min_aut 78.70 
slope 53.79 p_min_sum 54.85 Slope 54.61 p_min_sum 49.02 p_min_sum 50.64 Slope 53.90 slope 51.45 slope 48.46 slope 39.38 slope 39.74 
p_min_sum 53.24 slope 45.03 p_min_sum 50.00 slope 47.45 slope 50.11 p_min_sum 48.26 t_sd_aut 44.04 t_sd_sum 33.29 t_sd_sum 38.07 t_sd_sum 26.69 
t_sd_aut 49.74 t_sd_aut 40.59 t_sd_aut 42,22 elev 36,45 t_sd_aut 36,21 t_sd_aut 36,08 p_min_sum 40,83 p_min_sum 30,70 p_min_sum 31,77   
t_sd_sum 40,15 elev 38,39 Elev 37,81 t_sd_aut 35,60 elev 35,23 Elev 34,89 t_sd_sum 31,75 t_sd_aut 27,04     
elev 38,01 t_sd_sum 33,33 sti_norm 33,12 sti_norm 29,32 t_sd_sum 31,30 t_sd_sum 25,44 elev 25,18       
sti_norm 37,58 sti_norm 33,12 t_sd_sum 29,24 t_sd_sum 27,44 p_min_spr 28,56 p_min_spr 21,68         
p_min_spr 34,13 p_var_sum 30,49 p_min_spr 28,33 p_var_sum 26,64 sti_norm 26,45 sti_norm 20,82         
p_max_win 32,00 p_min_spr 29,95 p_var_sum 26,27 p_max_win 23,60 p_var_sum 24,21           
p_var_sum 29,59 p_max_win 29,58 p_max_win 23,46 p_min_spr 23,16 p_max_win 23,56           
p_var_spr 28,28 p_var_aut 27,88 p_var_aut 22,32 p_var_aut 22,56             
p_var_aut 28,22 p_var_spr 24,99 spi_norm 21,86 p_var_spr 21,72             
p_var_win 26,69 spi_norm 19,92 p_var_spr 21,60 spi_norm 17,36             
spi_norm 26,13 p_max_spr 19,10 p_var_win 21,39               
p_max_spr 22,08 t_avg_aut 18,58 p_max_spr 21,07               
t_avg_aut 20,71 p_var_win 17,18 t_avg_aut 18,45               
p_avg_y 20,06 p_avg_y 16,08                 
t_min_sum 17,14 p_max_aut 13.01                 
p_max_aut 15.21 t_min_sum 10.98                 
p_max_sum 14.63                   
t_sd_win 12.40                   
p_min_win 11.34                   
t_max_spr 4.38                   

Table 4. Variable Importance (VI) of the variables tested for each of the cold conditions models.372 



 373 
Figure 4. OOB and accuracy graphs for warm and cold models at each step. The grayed 374 

areas represent 1 standard error (SE) over and under the lowest OOB score or the highest 375 

accuracy score for each series. 376 

Models OOB accuracy N predictors 
25var 0,367 0,621 25 
20var 0,349 0,646 20 
16var 0,346 0,677 16 
13var 0,352 0,663 13 
10var 0,334 0,678 10 
8var 0,332 0,693 8 
6var 0,314 0,696 6 
5var 0,342 0,699 5 
4var 0,329 0,669 4 
3var 0,353 0,658 3 
2var 0,374 0,647 2 

Table 5. Performances of the warm models at each step. 377 

Models OOB accuracy N predictors 
23var 0,274 0,731 23 
19var 0,259 0,727 19 
16var 0,256 0,741 16 
13var 0,250 0,740 13 
10var 0,245 0,741 10 
8var 0,239 0,762 8 
6var 0,234 0,775 6 
5var 0,277 0,730 5 
4var 0,260 0,748 4 
3var 0,273 0,727 3 
2var 0,293 0,722 2 

Table 6. Performances of the cold models at each step. 378 



 379 

Figure 5. Predictors included in the warm model 6var mapped according to GI conditions. 380 

The unit for p_var_spr & p_var_win is the coefficient of variation.  381 



 382 

Figure 6. Predictors included in the cold model 6var mapped according to GS conditions. 383 

The unit for t_sd_aut & t_sd_sum is the standard deviation. 384 



 385 

Figure 7. Density plots (presences and pseudo-absences) for the predictors included in 386 

the warm habitat suitability model 6var. Variables are presented in order of importance 387 

(VI) from left to right starting with the first row. 388 



 389 

Figure 8. Density plots (presences and pseudo-absences) for the predictors included in the 390 

cold habitat suitability model 6var. Variables are presented in order of importance (VI) 391 

from left to right starting with the first row. 392 

4 Discussion 393 

4.1 Habitat Suitability predictive models 394 

HS is a proxy for the carrying capacity of the landscape, and the HS index indicates 395 

the probability of encountering humans on the landscape. In other words, it is to be 396 

expected that the number of archaeological sites will be reduced or absent from areas with 397 

low HS values. The final predictive models for GIs and GSs display distinct spatial 398 

structures of suitable habitat (Fig. 2 & 3). The warm model produces a geographically 399 

larger area of suitable habitat in Europe while the cold model indicates a considerably more 400 

restricted one. Figure 9 illustrates this expansion of suitable habitat during GIs; the 401 



percentage of the European domain associated with higher HS scores for the warm model 402 

is greater than the cold model. The cold model shows that higher values of HS are 403 

concentrated in South-West France and the Northern Iberian peninsula, but also in the 404 

Danube watershed West of the Carpathian Basin (Fig. 3). High values of HS during GIs 405 

expand from these landscapes towards other regions, such as Brittany, the Iberian 406 

Peninsula, Italy and the Balkans (Fig. 2). 407 

 408 

Figure 9. Percentage bar plot comparing the habitat suitability outputs produced by the 409 

warm and the cold models and their spatial extent. 410 

Despite a relatively smaller area of suitable habitat, there are more sites during GSs. 411 

This doesn’t necessarily mean that site densities are greater, however, because the stadial 412 

events represent a longer interval of time than the interstadials. In a prior study, we took 413 

the third dimension (time) into account and calculated a chronological density index for 414 

Aurignacian occupations during stadials and interstadials (Paquin et al., 2023). This index 415 

controls for the duration of these climatic phases. We highlighted that GSs generally have 416 

a higher chronological density of Aurignacian occupations than GIs. We argued that an 417 



intensified pattern of residential mobility during GSs could explain this phenomenon, 418 

rather than an increase in population density. The contraction of suitable habitat during 419 

GSs, observed above, supports this idea if we consider that populations contracted their 420 

ranges.  421 

For the warm model, the lowest HS scores associated with Aurignacian sites within 422 

our dataset all occur in Eastern Europe: Mitoc-Malu-Galben (0.63), Pes-kő (0.63) and 423 

Bacho Kiro (0.65) and klissoura (0.67) (Fig. 2). The picture is more geographically diverse 424 

for the cold model, highlighting relatively worse climatic conditions across the continent 425 

during stadials. The archaeological sample could be playing a causal role here: the 426 

Aurignacian technocomplex is documented in numerous sites in Eastern Europe, 427 

particularly in the Carpathian Basin (Floss et al., 2016; Hauck et al., 2018) but very few of 428 

these sites, other than Pes-kő and Mitoc-Malu-Galben, offer chronological and/or 429 

paleoenvironmental data precise or robust enough to classify occupations as pertaining to 430 

cold or warm conditions. Most of the eastern European sites are thus not included in our 431 

database. These scores could also reflect relatively poorer conditions in Eastern Europe 432 

during warm phases. While HS is visibly worse in Eastern Europe than it is in the West 433 

during stadials (Fig. 3), the warm model maps show generally good HS values in the east, 434 

but still lower than Western Europe (Fig. 2). 435 

The Aurignacian technocomplex is relatively well represented in the archaeological 436 

record of northwestern France, e.g. multiple sites exist in Brittany, such as Beg-ar-C’hastel 437 

and Îlot des Agneaux (Hinguant and Monnier, 2013). Even further north, on the British 438 

Isles, the Aurignacian is documented at sites such as Kent’s Cavern, although occupation 439 

of the territory is believed to have been punctual and sporadic (Dinnis, 2012). The model 440 



indicates that Britanny was a highly suitable landscape for Aurignacian people during GIs. 441 

This is interesting because, due to the lack of robust chronological data, we did not use 442 

Aurignacian sites from this region to train the model. Most of the Breton sites are coastal 443 

and fall within relatively good HS indices according to the warm model. Lacking 444 

archaeological knowledge pertaining to submerged landscapes under the Channel 445 

considerably limits our understanding of Aurignacian mobility in this region. It is plausible 446 

that conditions were suitable during GIs on both sides of the Channel.  447 

 The warm model indicates that the HS index is quite high in most of the Iberian 448 

Peninsula even though few sites in our database, apart from those in the Northern coastal 449 

region, attest to an Aurignacian presence. The two sites in our dataset that are further south 450 

of the Peninsula are Lapa do Picareiro and Les Mallaetes, the former of which could have 451 

been occupied as early as GI-11 with a terminus post quem of 41.9 – 41.1 cal ka BP (Haws 452 

et al., 2020). Les Mallaetes is occupied much later by Aurignacian groups around GI-8 and 453 

GS-7 (Paquin et al., 2023; Villaverde et al., 2021). Our models indicate that Iberian 454 

landscapes were generally suitable for AMH settlement during the warm phases of MIS 3. 455 

These results could be consistent with the Ebro River hypothesis, which predicts that the 456 

presence of Neanderthal populations South of the Ebro slowed the dispersal of AMHs into 457 

central and southern Iberia (Zilhão, 2000). Evidence for an Early Aurignacian presence at 458 

Lapa do Picareiro recently cast doubt on the Ebro river hypothesis (Haws et al., 2020), 459 

however, but the debate is ongoing (Zilhão, 2021).  460 

4.2 Predictors 461 

RF classification allows for the identification of strong predictors among a large 462 

series of variables for explaining site location. Nevertheless, as it considers interactions 463 



between variables, a drawback of the method is the difficulty interpreting the impact of 464 

individual predictors. We applied a mixed approach to address this issue, using the 465 

variables included in the best RF models to produce GLM models (see SI.2). This made it 466 

possible to identify predictors that have a linear relationship with the dependent variable: 467 

site location. Topographic variables for elevation and slope display a linear relationship 468 

with site location in both models. Otherwise, the only other variable with a linear 469 

relationship is the minimum precipitation rate for Summer in the cold model. All other 470 

predictors included present non-linear relationships with the dependent variable and are 471 

only interpretable in conjunction with other variables. 472 

Therefore, we use density graphs produced during the RF runs to interpret the 473 

relationship of the predictors with HS values. Some trends are visible in the density graphs 474 

(Fig. 7 & 8). Slope values for both GI and GS suggest a preference for slightly sloping, 475 

rather than flat ground, which would potentially be floodplains. Even if slope explains site 476 

location in a linear fashion (see SI.2), there is an apparent upper threshold at 10 degrees. 477 

Sites tend to be located under 700 m elevation, although there is a peak around 1500 m 478 

during GIs that could indicate movement to highland regions during warm phases.  479 

Cells with lower variability in precipitation rates during spring and winter are 480 

disproportionately represented during GIs, although this effect is less pronounced in winter 481 

(Fig. 7). This implies that predictable patterns of precipitation influenced human spatial 482 

decisions, particularly in spring. Additionally for the GIs, higher than average temperatures 483 

in autumn are over-represented, as are slightly lower maximum spring precipitation rates. 484 

There’s a notable trend towards a selection for lower variance in autumn 485 

temperatures during stadials (Fig.8). This makes sense in terms of the human perception of 486 



ecological risk and risk management; locales with predictable autumn temperatures could 487 

ensure access to and availability of needed resources before the winter months. Variance 488 

in temperature gravitates towards higher values during summer. It could be that variance 489 

in summer temperature is linked to other variables included in the model. This predictor 490 

also has a relatively high correlation coefficient with autumn temperature variance: 491 

t_sd_aut and t_sd_sum are inversely correlated by a coefficient of -0.74, just under the 0.8 492 

cut-off used in the modelling process. Minimum precipitation rates trend towards higher 493 

values for both autumn and summer, extending the growing season, but especially in 494 

autumn when, as noted above, lower temperature variance is selected for.  495 

4.3 Addressing climate risk and dispersal routes 496 

 One of the main advantages of the paleoclimatic reconstructions on which the 497 

models are built is the ability to calculate inter- and intra-annual variability in temperature 498 

and precipitation. This information allows us to test human sensitivity to climate variability 499 

at different scales and opens the door to a discussion on ecological risk. Both final HS 500 

models include predictors pertaining to climate variability which we consider an element 501 

of ecological risk (and see Burke et al., 2017) indicating that the predictable distribution of 502 

resources was clearly a factor in habitat suitability.  503 

The lowest HS scores associated with Aurignacian sites included in the models 504 

highlight differences between GIs and GSs. The lowest site for the GIs is associated with 505 

an HS index of 0.63 while the 4 lowest scores associated with GS sites are all lower than 506 

this: Mitoc-Malu-Galben (0.52), Serino (0.56), Les Cottés (0.59) and Friedrichsdorf-507 

Seulberg (0.6). The threshold at which cells with low HS values are really occupied is thus 508 

considerably lower during GSs. Two of these sites include multiple Aurignacian levels; 509 



Mitoc-Malu-Galben is occupied during different interstadials and stadials from GI-8 to GS-510 

5.2 while Les Cottés comprises three Aurignacian layers associated with GI-9 and GS-9. 511 

The lower HS threshold during stadials could mean that humans would have continued to 512 

occupy known sites even if conditions were not ideal.  513 

The lower HS threshold during GSs, added to the observation that the proportion 514 

of habitable landmass shrank (Fig. 9), could indicate that human populations had to adjust 515 

to sub-optimal conditions, highlighting the ecological stresses to which they had to adapt. 516 

The cold model can thus illustrate the climate tolerance of early European AMHs. With a 517 

wider choice of regions in which humans could settle, as underlined by the higher 518 

proportion of the habitable landmass (Fig. 9) and a higher HS threshold, the warm model 519 

indicates the climate preference of Aurignacian groups. If populations were trying to 520 

maintain themselves during stadials without densely populating highly suitable zones, they 521 

would have inevitably ended up in less suitable areas, hence the lower GS threshold. 522 

It is also relevant to note that conditions were not homogeneous across Europe 523 

during specific climatic phases. Some sites with occupations classified as stadial due to 524 

chronological data, like Covalejos in Northern Spain or the Grotte du Renne, in France, 525 

display paleoenvironmental data indicating somewhat warm conditions (see Paquin et al., 526 

2023 for additional examples). For instance, Covalejos level C/3 faunal assemblage 527 

exhibits a mosaic of deer, horse and bos (Yravedra et al., 2016; Jones et al., 2019) while 528 

palynology indicates both steppe and temperate species (Ruiz-Zapata & Gil, 2005). Both 529 

cold and warm conditions are signaled by this kind of pattern, which could indicate some 530 

resource or niche tracking by Aurignacian populations during GS periods as a form of risk 531 

reduction strategy. 532 



As mentioned above, our results show that AMHs were affected by climate 533 

variability and climate change during the MIS 3 and adapted by altering their range. Fitness 534 

related innovations also explain AMH adaptive capacity to climate change. Specialized 535 

cold climate clothing, for example, was potentially made and worn by Aurignacian groups 536 

(Collard et al., 2016). A broadening of the AMH diet by the intensification of small prey 537 

exploitation during the Aurignacian (Llovera et al., 2016) is also a good example of such 538 

adaptations. Technical and behavioral adaptations, such as those mentioned here, probably 539 

participated in making AMHs the sole hominin species to survive the unstable climate of 540 

MIS 3 and the onset of the LGM in the long run. The question of Neanderthal’s 541 

disappearance is not the focus of the present study and depends on many factors, including 542 

the possibility of competitive exclusion (Timmermann, 2020). Decreasing available 543 

biomass (Vidal-Cordasco et al., 2022) or a repeated fragmentation and reduction of the 544 

habitable landmass before the arrival of AMH populations (Melchionna et al.,2018; Klein 545 

et al., 2023) are also aspects to take into consideration.  546 

In our previous paper we presented data suggesting an initial dispersal phase 547 

(approximately between GI-12 and GI-10) marked by the quick expansion of Aurignacian 548 

groups, indicated by a steadily increasing chronological density of archaeological 549 

occupations, followed by an established population phase starting around GS-10 with a 550 

more widespread occupation of Europe (Paquin et al., 2023). During the initial dispersal 551 

phase, Aurignacian sites are mainly located in coastal environments, principally the 552 

Mediterranean coast, with some occupations in the Danube valley, in Germany and Austria. 553 

The question remains as to whether there was a single entry point, or multiple entry points 554 



for initial Aurignacian dispersal into Europe and the two main migration routes proposed 555 

are along the Mediterranean coastline and the Danube valley (Mellars 2011).  556 

The models produced in this study show contrasting patterns of habitat suitability 557 

on the Mediterranean coast between cold and warm cycles (Fig. 2 & 3). During GSs, 558 

suitable habitats along the Mediterranean coast exist as discontinuous patches. Otherwise, 559 

coastal regions are mainly composed of medium and low HS values. During GIs, the HS 560 

values along the coast are higher and form a continuous corridor of suitable habitat. For 561 

the Danube valley route, both models show favorable habitat in the western portion of the 562 

route but from the Carpathian Basin eastward, HS values are low (especially for GS) and 563 

only a few chronologically controlled Aurignacian sites are known (Fig. 2 & 3). As 564 

mentioned earlier, however, our database is incomplete in Eastern Europe and the HS 565 

models suggest that both routes would have been plausible entry points during GIs, with 566 

the Mediterranean coast being relatively more favorable. Submerged landscapes which are 567 

invisible in our data could very well have extended this putative dispersal route (Fig. 2). 568 

Still, the Danube valley, mainly for the region north of the Alps, could have been a 569 

corridor of mobility in continental Europe during GSs, considering the relatively high HS 570 

values and the persistent presence of Upper Paleolithic occupations in the region. Our 571 

models could support certain aspects of the Kulturpumpe hypothesis, therefore (Conard 572 

and Bolus, 2003). We are not suggesting that the Early Aurignacian emerges from this 573 

region, but that, once settled, it could have acted as a cultural core area during most of 574 

MIS 3. The Rhone Valley, another important biogeographic corridor linking the 575 

Mediterranean coastline to Central Europe, is equally suitable during warm or cold 576 

conditions (Fig. 2 & 3).  577 



4.4 Comparison with other published models 578 

 Other studies have integrated archaeological site location data and paleoclimate 579 

reconstructions to evaluate the Aurignacian habitat in Europe (e.g., Banks et al., 2013a, b; 580 

Shao et al., 2021; Timmermann, 2020; Klein et al., 2023). Our results agree with these 581 

(and other) studies which conclude that climate change had an impact on human 582 

populations and spatial behavior during MIS 3, since our results clearly indicate that 583 

suitable habitat contracted considerably during GSs.  584 

Continental-scale models (Shao et al., 2021), as well as modelling focused on the 585 

Iberian Peninsula (Klein et al., 2023) also incorporate climate variability predictors in 586 

computing the human existence potential (HEP) for the Aurignacian, an index which is 587 

conceptually equivalent to the habitat suitability score we use here. Nevertheless, they only 588 

include as predictors the annual means for temperature and precipitation variability, which 589 

limits the scope at which they can discuss the concept of ecological risk. The inclusion of 590 

seasonal variability predictors in our study allows interpretable results regarding this 591 

research theme. Klein et al.’s (2023) model highlights the importance of the Franco-592 

Cantabrian region across GI/GS cycles, which is consistent with our results. But Shao et 593 

al.’s (2021) models show a GS contraction of the HEP area towards the Mediterranean 594 

region, leaving two of the core areas of Aurignacian occupations, Franco-Cantabria and 595 

the Danube valley North of the Alps, with low HEP values. Our cold conditions model 596 

shows contrasting results, with a contraction of the habitat centered around these 597 

archaeologically important regions during stadials. 598 

Another recent study models Neanderthals and AMHs dispersals using climate 599 

forcing to evaluate the impact of interbreeding, competitive exclusion and D-O oscillations 600 



on the disappearance of the former species (Timmermann, 2020). This research concludes 601 

that Neanderthal extinction cannot be understood simply by climate change, and that a 602 

more realistic scenario should include arriving AMH populations with higher degrees of 603 

plasticity, mobility and fecundity. Our study supports this idea by demonstrating that 604 

AMHs adapted to the rapid climate changes of the MIS 3 and could manage ecological 605 

risk, which would have played a major role in outcompeting Neanderthal populations. 606 

We believe research design including site selection, choice of climate model, choice 607 

of model type (RF, logistic regression, etc.), the use of machine learning, and different 608 

research goals explain the differences between our modelling results and previously 609 

published material. As explained above, sites used in our models, while less numerous than 610 

for other published models, contain Aurignacian layers that can confidently be ascribed to 611 

interstadial or stadial periods (Paquin et al., 2023). The datasets produced are thus 612 

specifically curated to model the suitable habitat during both GI and GS conditions. 613 

Furthermore, the Random Forest algorithm is useful in making use of variables that have 614 

non-linear relationship with the dependent variable compared to general linear models 615 

(Genuer et al., 2010; Grömping, 2009) and a recent benchmark study confirms that it has 616 

good average prediction performance compared with other approaches (Couronné et al. 617 

2018).  618 

5 Conclusion 619 

 The predictive models produced in this research highlight variables that constituted 620 

suitable habitat for AMHs during cold and warm phases of MIS 3 and underline the impact 621 

of climate change and the importance of considering intra-annual climate variability. 622 



Climate variables included in the models indicate that seasonal, rather than annual, 623 

temperature and precipitation rates are important. Higher average temperatures in autumn 624 

and less variability in spring precipitation rates would have been critical during GIs, while 625 

less temperature variance in autumn and higher minimum monthly precipitation rates 626 

during summer and autumn were critical during GSs.  627 

Our results show that millennial-scale climate change and contrasting patterns of 628 

climate variability affects the size of suitable habitat during stadial/interstadial events. The 629 

timing and shape of the initial Aurignacian dispersal into Europe would have been 630 

structured by millennial-scale climate change as a result. GSs display an irregular and 631 

discontinuous suitable habitat across the two putative main routes of dispersal, the 632 

Mediterranean coast and the Danube corridor, while GIs show a considerably more 633 

extended and continuous suitable habitat along the coastal path. Our models agree with the 634 

hypothesis that initial population dispersal into Europe was likely triggered by warm cycles 635 

and their impacts on the environment (e.g., Badino et al., 2020; Müller et al., 2011), 636 

probably around GI-12. The models also agree that the Danube valley West of the 637 

Carpathians was a potential corridor of mobility throughout MIS 3, which agrees with 638 

certain aspects of the Kulturpumpe hypothesis (Conard and Bolus, 2003).  639 

The presence of climate variability predictors in the final models show that inter-640 

annual or seasonal variability also influenced human mobility during GIs and GSs, and that 641 

ecological risk was therefore a significant factor governing dispersals. In this sense, the 642 

low HS threshold observed during GSs can be interpreted as a mark of behavioral plasticity 643 

on the part of early European populations which were able to deviate from their 644 

environmental preferences and adapt to suboptimal climatic contexts in order to maintain 645 



a larger vital space, which is coherent with the “generalist specialist” niche suggested by 646 

Roberts & Stewart (2018). It could also be taken to support the variability hypothesis of 647 

human evolution (Potts, 2013; Potts and Faith, 2015).  648 
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