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Abstract

Modelling mixed-type data is still complex because of the heterogeneity of the data encountered. With
clustering as the objective, many methods are already doing well, but the inference of models and a posteriori
exploitation is made difficult if not impossible. In this article we propose methodological developments of
mixture models designed for mixed-type data. Component distributions of the continuous attributes can be
either Gaussian, Student or Shifted Asymmetric Laplace. Categorical or discrete attributes, assumed indepen-
dent conditionally on the class membership, can be distributed according to Bernoulli, Multinomial or Poisson
distributions. The joint estimation of the number of classes and the parameters is carried out by EM-like
algorithms that we have adapted to perform correctly. We show that our different dynamic algorithms allow
us to reach the real number of classes and to correctly estimate the parameters of the discrete and continuous
laws. We also highlight the benefits of introducing regularization to improve performance in situations where
the sample size is insufficient for the complexity of the model. Our various models are then tested on real
datasets from the literature, assessing that the objective of jointly estimating the number of components and
the model parameters has been achieved.

1 Introduction and related works
A mixed-type dataset is given by a collection of individual data containing both quantitative and qualitative
variables. Mathematically, this corresponds to the representation of each subject by a combination of continuous
and discrete variables. Mixed datasets are ubiquitous in many disciplines and, with the era of so-called ’big data’,
the availability of datasets composed of heterogeneous data sources and types will continue to increase. Statistical
analysis of mixed-type data is therefore still a hot topic, whether for clustering, inference or dimension reduction.
Although there are many clustering methods, grouped under different data exploitation strategies, as we will see
below, few involve statistical models, enabling inference and a posteriori reuse. In addition, few assumptions on
continuous variables have been proposed. Then, difficulty remains for correctly inferring mixed-type data with an
interpretable and easily computable model, and is the subject of this article.

1.1 Challenges on mixed-type data
Mixed-type data contain both numerical and categorical (nominal and/or ordinal) variables. As detailed in recent
review papers (Foss et al., 2019; Ahmad and Khan, 2019), especially for a clustering goal, several types of strategies
exist on mixed-type data.

Firstly, there are methods designed for a single type of data, which require data transformation approaches, such
as discretization of continuous variables in order to use categorical data methods (Goodman, 1974; Huang, 1997b),
or numerical coding of discrete variables (McCane and Albert, 2008) to be suitable for continuous methods. In this
case, the possibilities go from replacing a level by a median to dummy coding, and to more complex methods like
copulas (Smith and Khaled, 2012; Murray et al., 2013), and later mixture of copulas (Kosmidis and Karlis, 2016;
Marbac et al., 2017; Sahin and Czado, 2022).

Secondly, a whole range of literature involves hybrid distances that can take into account both continuous and
categorical variables. A popular hybrid distance is Gower’s distance, combining relative absolute difference for
continuous variables and indicators for categorical variables, used for example in combination with the partitioning
around medoids (PAM) method (Kaufman and Rousseeuw, 1990). Another clustering strategy using the hybrid
distance technique is the k-prototypes algorithm (Huang, 1997a, 1998). A frequent limitation of these hybrid
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distances is the need to use and properly choose weights dictating the relative contribution of each of the variables.
Another method, named KAMILA, relaxed the parametric hypothesis of mixture models by combining them with
k-means algorithms, and categorical variables were assumed independent within a subpopulation ((Foss et al., 2016;
Foss and Markatou, 2018)). In the same scope, spectral clustering was adapted for mixed-type data (Mbuga and
Tortora, 2021). The main limitation of spectral clustering is the decomposition of sample size matrices, and as
previous methods, it may require tuning continuous/nominal weight and kernel parameters.

Transforming variables or using hybrid distances really limit cluster analysis, especially with methods loosing
original space of variables. In addition, outside of a clustering goal, and sometimes dimensionality reduction, they
provide limited insights and usable results. On the other hand, model-based methods can be used for different goals,
not only clustering one, like dimension reduction, exploration or interpretability of the estimated distributions. They
do not rely on parameter tuning for the importance of discrete variables. But require adequate distributions, and
assumptions on within-cluster variable interactions.

Among the direct approaches in a mixed-type data context, mixture models are efficient because they can produce
generative models, take into account many types of data, manage dependencies between and within variables, and
capture a wide range of scenarios. The mixture models allow for obtaining latent classes, which can be used for
a clustering goal, but also for some perspectives like dimension reduction, exploration or interpretability of the
estimated distributions. The use of mixture models in this context raises the question of how to jointly model these
different types of data, which must all appear in the mixture model. A first approach is to consider that continuous
variables are dependent on discrete variables. This leads to considering that we evaluate the continuous variables for
each possible realization of all discrete variables. A limitation is the number of combinations increasing exponentially
with the number of levels and variables. This may lead to small sample sizes within each categorical class. Moreover,
these models can lack identifiability, as proved for the mixture of location models (Willse and Boik, 1999). Another
family includes the normal-multinomial mixture model (Hunt and Jorgensen, 1996; Fraley and Raftery, 2002), where
given cluster membership, data follow a joint distribution with a normal distribution for the continuous variables,
and a multinomial distribution per categorical variable, assuming conditional independence between the continuous
and categorical variables but also within the categorical variables. This is called local independence and is an
important property often required for model identifiability. Numerical coding of categorical variables with a flexible
covariance structure allow for explicit dependencies between continuous and categorical variables. This includes
mixtures of factor analyzers (Ghahramani and Hinton, 1996; McLachlan and Peel, 2000; McLachlan et al., 2003),
originally combining clustering and dimensional reduction, adapted for mixed-type data through a combination of
item response theory models and factor models but also expensive computation (McParland et al., 2014, 2017).
In the same decade, Browne and McNicholas (2012) and McParland and Gormley (2016) proposed latent variable
mixture models where latent variables follow Gaussian distributions. Linear mixed models can also be integrated
within mixture models when homogeneous regression relationship across subjects is violated (Celeux et al., 2005;
Bai et al., 2016; Lee and Chen, 2019).

1.2 Mixture models for continuous data
In finite mixture models of parametric distributions, a class is defined as a subset of points arising from the same
mixture component. When the data are multivariate real-valued observations, the usual probability density function
for each component is the multivariate Gaussian distribution. But in the presence of extreme, scattered, heavy-
tailed data, the assumption of data normality may no longer be relevant, and we refer here to some works which
have proposed mixtures of laws other than Gaussian and may subsequently be used in our proposed models.

Mixture of t-distributions provide longer-tailed alternative to the normal distribution, and are more robust to
atypical observations (McLachlan and Peel, 1998; Peel and Mclachlan, 2000). Literature on t-distributions and
associated mixtures especially concentrate on the problem of noisy data, by considering for example a ”ghost” class
which should capture the outlier points in a clustering context (Lange et al., 1989; McLachlan and Peel, 1998).

Franczak et al. (2014) introduced another non-Gaussian mixture approach that allows for skewness, based on
Asymmetric Laplace (AL) distribution (Kotz et al., 2001). The Shifted (or not) Asymmetric Laplace distribution
is part of the family of generalized hyperbolic distributions, such as the normal inverse Gaussian distribution.
Moreover, they described an estimation method for their model, based on the Expectation-Maximization (EM)
algorithm. Later, Franczak et al. (2015) proposed the Multiple Scaled Shifted Asymmetric Laplace distribution,
which guarantees convex level sets. Besides the Shifted Asymmetric Laplace distribution, there exist skewed versions
of the Normal (Azzalini, 1985; Azzalini and Valle, 1996; Arellano-Valle and Azzalini, 2006) and Student (Jones and
Faddy, 2003; Azzalini and Capitanio, 2003) distributions to deal with asymmetric behaviors. Later works introduced
mixture models with skew Normal (Lin et al., 2007; Lin, 2009) or skew Student (Lin, 2010; Lee and McLachlan,
2012) distributions.
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1.3 Estimation and selection of mixture models
The Expectation-Maximization (EM) algorithm Dempster et al. (1977) was proposed to estimate models on incom-
plete data, such as mixture models. It was applied to Gaussian mixture models, and later on, was extended to
other continuous distributions (Peel and Mclachlan, 2000; Franczak et al., 2014; Lin et al., 2007; Lin, 2010; Vrbik
and McNicholas, 2012; Lee and McLachlan, 2012), still coming with well-known limits, which include sensitivity to
the initialization, selection of the number of component, and convergence towards the space boundaries.

To solve the sensitivity drawback, several strategies rely on repeted runs with random initializations or ini-
tialization with K-means algorithm (Baudry and Celeux, 2015). Recently, Lartigue et al. (2022) introduced an
annealing E-step to better stride the support and become almost independent of the initialization in a Gaussian
context. Franczak et al. (2014) also considered deterministic annealing for SAL mixture models, only during their
initialization part.

Another challenge posed by EM-type algorithms is the selection of the number of components, and intrinsically
selection of the best model. Beyond the classical model selection criteria (Akaike, 1973; Schwarz, 1978; Birgé
and Massart, 2007), dynamic algorithms appeared in the last years, to simultaneously overcome the need for a
collection of models, find the optimal number of components, and avoid bad local maxima. Proposed methods
go from penalization of the objective function (Figueiredo and Jain, 2002; Law et al., 2004; Yang et al., 2012) to
dynamic slope heuristic criterion (Birgé and Massart, 2007) inside EM algorithm (Derman and Pennec, 2017), and
split-and-merge EM algorithm (Wang et al., 2004; Zhang et al., 2004). From this collection of methods, few reduce
the estimation process from a collection of models to a single one. This is the case of the works of Yang et al. (2012);
Pruilh et al. (2022), who associate a single-run EM-like algorithm with an estimation of the number of components.
In addition, their proposed algorithms make estimates more robust to initialization.

Additionnally, mixture model estimation may be jeopardized with degeneracies. This obstructs statistical in-
ference and incorrect estimates are obtained. These degeneracies are more likely to occur with overparametrized
initial models, or with small dataset sizes.

In this work we seek to deal with the same problems of the EM algorithm: find the optimal number of compo-
nents, avoid sensitivity at initialization, and convergence towards the space boundaries. These objectives, combined
with the estimation of mixture models on mixed-type data lead us to consider dynamic estimation algorithms for
various continuous laws as described above and discrete variables also as appearing in mixed-type data literature.
In addition, to guarantee the performances of certain models on small-scale data, we introduce regularizations by
using conjugate priors on some parameters.

1.4 Contributions
In this paper, we propose three main algorithms, to estimate mixture models with respectively Gaussian, Student
and Shifted Asymmetric Laplace (SAL) multivariate distributions, associated with any set of discrete variables
simulated from the following distributions: Bernoulli, Multinomial or Poisson. Our general framework, adapted
from (Pruilh et al., 2022), combines the estimation of parameters of the defined mixture models with the estimation
of the number of components in this mixture, which is an important objective in many statistical applications.
For each continuous law considered, we transform the general framework, taking inspiration from various proposals
in the literature, to correctly estimate the parameters of the mixtures using a dynamic algorithm. We perform
simulations on synthetic data, as well as comparisons on model selection and parameter estimation, and show that
our algorithms outperform these methods both on estimating the right number of components and the numerous
model parameters. Performances of our methods named DEM-MD algorithms are then demonstrated on two real
datasets with mixed-type data (Byar and Green, 1980; Telford and Cunningham, 1991).

2 Materials and methods
Formally, a sample x ∈ Rg from a parametric finite mixture distribution with K components has the following
probability density function (pdf)

p(x; Θ) =
K∑

k=1
πkpg(x; θk) ,

where Θ = (ξ,π) with π = (π1, . . . , πK) vector of class proportions, which sum to one and ξ contains elements of
θk (distribution parameters of each class k) for all k ∈ {1, . . . ,K}.

This model is highly flexible and one can imagine many pdf pg for continuous data. Below we provide the three
main ones we will consider as they carry different properties.
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Firstly, we will consider multivariate Gaussian distributions (Eq. (29)). Being symmetric, it is often the very first
approximation made on continuous data, and corresponding estimation methods are the most proven. However,
the estimates of component mean and covariance parameters are not robust to outliers, atypical observations. As
a solution to deal with these type of data, Student distributions (Eq. (30)), which have longer tails than normal
distributions, are a suitable alternative to obtain estimates robust to outliers. Hence, Student distributions are
considered as an hypothesis for continuous variables in our considered mixture models. Finally, we consider a third
continuous multivariate distribution to cover different assumptions on continuous variables in mixture models. This
third distribution is the Shifted Asymmetric Laplace distribution (Eq. (32)), which is useful in situations when
data are heterogeneous and present large errors. Shifted Asymmetric Laplace distributions present asymmetric
and heavy tails, in contrary to Gaussian distributions. With these three continuous distributions, we can handle
different types of continuous data, that we will model with mixture models. We now recall how these distributions
are incorporated into continuous mixture models, and the associated estimating equations.

2.1 Mixture models and parameter estimation
2.1.1 Complete models

For any finite mixture model on continuous data, the complete-data comprise n independent observed x =
(x1, . . . ,xn) with xi ∈ Rg, and missing component membership variables (zi)i=1,...,n. Each zi is following a
categorical distribution of parameter π. This information is then encoded as a K-dimensional binary variable zi

where zk
i = 1 corresponds to observation xi belonging to class k. For the sake of brevity, we will write in the future

for all models that zi follows a categorical distribution of parameter π and is directly 1-of-K encoded.
With these data in hand, the complete Gaussian mixture model is given by{

zi ∼ Categorical(π) ,
xi|zk

i = 1 ∼ Ng(µk,ΣK) . (1)

Student mixture models (McLachlan and Peel, 1998; Peel and Mclachlan, 2000) require additional latent variables
to be able to estimate easily with EM-like algorithms. Regarding the representation of X given in Eq.(31), we
introduce u1, . . . , un, latent variables, such as given zk

i = 1, Xi|ui, z
k
i = 1 follows a Gaussian distribution. Given

z1, . . . ,zn, the u1, . . . , un are independently distributed. The complete-data vector for a mixture model of Student
distributions is then given by y = (x1, . . . ,xn, z1, . . . ,zn, u1, . . . , un). The complete model is

zi ∼ Categorical(π) ,
ui|zk

i = 1 ∼ Γ( 1
2νk,

1
2νk) ,

xi|ui, z
k
i = 1 ∼ Ng(µk,Σk/ui) .

(2)

SAL mixture models (Franczak et al., 2014) also require additional latent variables in order to estimate a complete
model with an EM-like algorithm. From the representation in Eq.(33), X can be generated from a Gaussian
distribution, knowing an exponential variable W . Thus, given z1, . . . ,zn in a mixture model, latent variables
w1, . . . , wn enable this generation of X. Given z1, . . . ,zn, w1, . . . , wn are independently distributed according to an
exponential distribution of rate 1. The complete-data vector is given by y = (x1, . . . ,xn, z1, . . . ,zn, w1, . . . , wn) .
The complete SAL mixture model is given by

zi ∼ Categorical(π) ,
wi|zk

i = 1 ∼ E(1) ,
xi|wi, z

k
i = 1 ∼ Ng(µk + wiαk, wiΣk) .

(3)

2.1.2 Parameter estimation

Using an EM-like algorithm for finding maximum likelihood require a complete-data model as the ones detailed
above. At E-step, computation of the current conditional expectation of zk

i for each component k and individual
i leads to the equations (34), (35) or (37) in Table 13. Update equations of current conditional expectations for
other latent variables are given respectively by Eq.(36) for Student models and Eq.(38) and (39) for SAL models.

At M-step of EM-type algorithms, expectation of the complete-data log-likelihood is maximized, leading to
newly estimated parameters. For Gaussian. Student or SAL distributions, update equations of parameters and
mixture proportions are given in Table 1. Additional details are provided on estimation of some parameters for
Student or SAL mixture models.

4



One advantage of t-distribution is that the degree of robustness, controlled by ν, can be inferred from the data.
As shown in Lange et al. (1989), the degrees of freedom are solutions of fixed point equations. Each ν̂t

k is solution
of the equation {

−ψ
(

1
2ν
)

+ log
(

1
2ν
)

+ 1 + 1
nt

k

n∑
i=1

τ t
ik

(
logEt

u,ik − Et
u,ik

)
+ψ

(
ν̂t−1

k + g

2

)
− log

(
ν̂t−1

k + g

2

)}
= 0 ,

(4)

where nt
k =

∑n
i=1 τ

t
ik. The solutions of these equations can be found using a one-dimensional point search, such as

Newton’s or Brent’s methods.
For Shifted Asymmetric Laplace distributions, computation of the conditional expectations and then estimation

of parameters imply Mahalanobis distance between data points and centers. When there is even one center that is
too close to a point, it can lead to the infinite likelihood problem, described by Franczak et al. (2014), and then
skewness parameters α are not computable. To overcome this problem, Franczak et al. (2014) proceed by taking
the value of µ̂k at the last iteration before it becomes too close to any data point. This estimated center, noted
µt⋆

k , becomes the actual estimate of the center. Then the skewness parameter αk is estimated by

α̂t
k =

∑n
i τik(xi − µ̂t⋆

k )⊤∑n
i τikE1ik

. (5)

This process is summarized in Algorithm 1.

Algorithm 1: Check superimposed centers and data points for α estimation
for k = 1, . . . ,K do

if µt
k = xi then

Find last iteration t⋆ such as µt
k ̸= xi, and assess µt

k = µt⋆

k

Compute α̂t
k with (5)

end
else

Compute α̂t
k with (15)

end
end
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3 Mixture models for mixed-type datasets
3.1 Motivation and assumptions on the model
In this paper, we seek to infer populations with mixed variables, enabling the integration of such models in many
areas where the data are heterogeneous and require flexibility and interpretability. Using mixture models allows this
flexibility, particularly in the choice of laws, parameterization and use of the models obtained. Drawing on a large
body of literature, we have developed a mixture model which, although simple, allows rapid and robust estimation
of various combinations of laws. Rather than relying solely on Gaussian-Multinomial mixture models, we propose
here the use of Student or SAL distributions in place of the Gaussian distribution, and Bernoulli, Multinomial and
Poisson distributions for discrete variables. These different continuous or discrete considerations allow to model
data with a panel of assumptions and then be able to cluster, generate or interpret correctly.

A major consideration in the specification of a multivariate mixture model is to define whether the variables are
independent within a cluster, a property called local independence. This is simply expressed in the Gaussian case
by the form of the covariance matrix. In the case of mixed-type data, the considered models are more complex. In
all the models that we will define we make the assumption that continuous variables are independent of discrete
ones knowing the latent membership variables. In addition, we also make the assumption that all discrete variables
are independent knowing the latent variables z. These assumptions may fail to capture some dependencies patterns
in the dataset. But they allow an accurate, quick and interpretable estimate of mixture models, as already shown
in the literature on mixed data presented in Section 1.

3.2 Model description
3.2.1 Generic description

Consider an observation i of mixed variables, given by xi = (x1
i , . . . ,x

g
i , x

g+1
i , . . . , xg+D

i ) ∈ Rg × X . The g first
variables are continuous variables defined on Rg. The vector of these continuous variables is denoted xc

i . The vector
of the D discrete (integer, nominal, binary, . . . ) is defined on X and denoted xD

i with xd being the dth discreetly
distributed variable. If xd is a nominal variable with md modalities, then it uses a numeric coding {1, . . . ,md}.

An observation i of g continuous variables and D categorical/discrete variables is supposed to be a realization
of a random variable Xi distributed according to a mixture model of K classes, whose pdf is written as

p(xi; Θ) =
K∑

k=1
πkpg(xc

i ; θc
k)

D∏
d=1

pXd
i
(xd

i ; θd
k) , (17)

with Θ = (π, ξ1, . . . , ξK) the whole parameters set, and ξk contains
(
θc

k, θ
1
k, . . . , θ

D
k

)
, parameters of continuous and

discrete distributions of each component k ∈ {1, . . . ,K}. The vector π groups the proportions of all classes, with∑K
k=1 πk = 1. Each discrete component of observation xi is accessed by its index d = 1, . . . , D. If there is no

discrete component in the variables, this reduces to a continuous mixture model as presented in previous sections
and chapters. Here continuous data coordinates are drawn from continuous distributions with probability density
function (pdf) pg(·; θc) of dimension g and parameters θc. Each discrete variable d ∈ D is drawn from a discrete
distribution, for which the associate probability mass function (pmf) is given by p·(·; θd) with θd the associated
value or vector of parameters.

Thereafter, we consider that we have a set of mixed-type observations, of size n, given by x = (x1, . . . ,xn).
As described previously for continuous mixture models, latent variables z are used to complete the data, and at

the same time ensure local independence. Let (zi)i=1,...,n, latent variables such that each zi follows a categorical
distribution of parameter π. This information is then 1-of-K encoded under variable zi with zk

i = 1 if data xi

belongs to cluster k, 0 otherwise. Knowing zk
i = 1, each discrete attribute d for individual i, given by xd

i , follows a
discrete law of parameter θd

k.
Our complete model is then described by

zi ∼ Categorical(π) ,
xc

i |zk
i = 1 ∼ F c

g (θc
k) ,

xd
i |zk

i = 1 ∼ F d(θd
k) ∀ d = 1, . . . , D ,

(18)

with Fg any continuous probability distribution of dimensions g with parameters θc
k, and F d corresponds to the

discrete probability distribution for attribute d, of parameter θd
k.
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3.2.2 Application to different distributions

In this work, we consider three possible continuous distributions, described in Section 2: the Gaussian distribution,
the Student distribution or the Shifted Asymmetric Laplace (SAL) distribution. As we saw earlier, Student and
SAL distributions require additional latent variables, which can be added by combining Model (18) with any of the
continuous Models (1), (2) or (3). For the numerical discrete or categorical variables, we consider three different
distributions, starting with the Bernoulli distribution, which is very simple, but also the Multinomial distribution,
a distant generalization of the Bernoulli distribution. The last distribution considered is the Poisson distribution.
Bernoulli and Poisson distributions only require one numerical parameter, so that means K parameters to estimate
each. A Multinomial distribution has M modalities, bounded by the following constraint:

∑M
m=1 p

d
m = 1, therefore

there are (M − 1)K parameters to estimate. We will give the corresponding equations to estimate any parameter
of one of these distributions in Subsection 4.3.

Graphical representation of our generic Model (18) is on Figure 1 with the numerous parameters and latent
variables corresponding to the considered laws in this paper.

Figure 1: Graphical representation of our Model (18), with colors for additions/variants from Gaussian distribution.
One color per continuous law for additional latent variables and parameters, and one color per type of discrete law:
Student distribution (orange), SAL distribution (purple), Poisson (green), Bernoulli (blue) and Multinomial (red).

3.3 Identifiability
As mentioned previously, a key consideration in specifying a mixture model is local independence. Previous works on
categorical and non-parametric distributions have proved its importance to reach identifiability (Allman et al., 2009).
Our model assumes within-cluster dependence between continuous variables and conditional independence between
continuous and nominal variables. Relaxing the local independence strategy could risk a failure of identifiability, as
in location models (Willse and Boik, 1999).

The study of the identifiability of finite mixtures was initiated by Teicher (1963) and further developed by
Yakowitz and Spragins (1968), in particular for the finite mixtures of multivariate normal distributions with variable
mean vectors and covariance matrices. Identifiability of the finite mixtures of t-distributions with variable degrees
of freedom was proven by Holzmann et al. (2006), and for generalized hyperbolic distributions by Browne and
McNicholas (2015).

In the next section, we will detail our algorithmic considerations to estimate such models with different continuous
distributions and any discrete distribution. Resulting algorithms are named Dynamic EM for Mixed-type Data,
and allow estimating properly mixture models for mixed-type data.
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4 Dynamic EM algorithms for Mixed-type Data
We now turn to the objective of estimating model parameters for a given mixed dataset (xi)n

i=1. First, we will
describe our generic algorithm, which we name Dynamic EM for Mixed-type Data (DEM-MD), proposed to estimate
parameters of mixture models for mixed-type data. Then we will detail individual considerations relative to each
continuous distribution, which lead to particular adaptations of DEM-MD to perform correctly. Finally, we will
present the updating equations to estimate parameters of discrete random variables during the M-step of DEM-MD.

4.1 A dynamic EM algorithm for Mixed-type Data
We propose here a dynamic EM algorithm for the estimation of mixture models on mixed-type data, which implies
categorical/ordinal/nominal variables. As a first step to constructing our algorithms, we propose an adaptation of
the Modified REM (MREM) (Pruilh et al., 2022), to estimate Model (18). With the Modified REM, the number
of classes was dynamically selected jointly with the parameter estimation of a continuous Gaussian mixture model.
This algorithm was an amelioration of the original Robust EM work by Yang et al. (2012) which had two weaknesses:
an inadequate early stopping of the algorithm, and the lack of superimposed clusters detection, leading to surely
wrong local maxima.

The Modified Robust EM (as the Robust EM) relies on the addition of an entropy term on the proportions in
the objective function of the Expectation-Maximization algorithm and the construction of a weight enhancing the
classes’ competition. This additional penalization, combined with a competition weight and a pruning condition on
the classes, makes it possible to reduce the number of classes when running the EM algorithm, initialized at K̂ = n.

4.1.1 A Generic Algorithm

From the generic Model (18), the estimated function on complete-data is the following one, still including a penal-
ization term on the mixture proportions:

Q̃(Θ; Θ(t)) =
n∑

i=1

K∑
k=1

pΘ(t)(zk
i = 1; xc

i , x
D
i ) log

[
πkpg(xc

i ; θc
k)

D∏
d=1

pXd
i
(xd

i ; θd
k)
]

+ β

n∑
i=1

K∑
k=1

πk log πk,with β ≥ 0 .

(19)

Hyperparameter β comes as a penalty weight in Eq.(19). It helps to control the competition between clusters.
Acting on the evolution of proportions with β enables one to check at each iteration that all the proportions of the
components are above a given threshold, and therefore to delete components of proportion πk <

1
n .

We compute the conditional expectation of the complete log-likelihood Ep(z|x,Θ(t))[ℓ(θ,y)] with y the complete
data vector, including necessary latent variables for the considered continuous distribution. This results in condi-
tional expectations for all the considered latent variables thanks to the exponential form of the complete likelihood.
Computation of conditional expectation of latent variables z leads to the following expression to update latent
probabilities:

pΘ(t)(zk
i = 1|xc

i , x
D
i ) =

πkpg(xi|θc
k)
∏D

d=1 pXd
i
(xd

i ; θd
k)∑K

j=1 πjpg(xi|θc
j)
∏D

d=1 pXd
i
(xd

i ; θd
j )

= τ t
ik .

(20)

For the Student and Shifted Asymmetric Laplace mixture models, additional latent variables are needed, as
described in Models (2) and (3) respectively. As discrete and continuous variables are independent knowing class
memberships z, the conditional expectation of these variables is not changed by the existence or not of discrete
variables.

With the objective function in Eq.(19) to maximize, the update equation of components proportions π inside
DEM-MD algorithm is:

π̂t
k = π̂k,EM + βπ̂t−1

k

(
ln π̂t−1

k −
K∑

s=1
π̂t−1

s ln π̂t−1
s

)
, (21)

with π̂k,EM computed by Eq.(6), and π̂t−1
k being the component weight estimate at previous iteration. The equations

to estimate other continuous parameters remain unchanged whatever the continuous distribution.
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The M-step is extended here with the estimation of parameters corresponding to discrete distributions of random
variables Xd ∀ d = 1, . . . , D. The parameters of each discrete variable are estimated after or before the continuous
parameters, the order does not affect any of the estimated parameters. Corresponding equations for Bernoulli,
Poisson or Multinomial laws will be given in Subsection 4.3.

4.1.2 Aitken’s acceleration criterion

Frequent stopping criteria in EM-like algorithms lean on absolute differences between centers at actual and previous
iteration, or on the absolute differences of log-likelihoods, which correspond more to a ”lack of progress” as said by
Böhning et al. (1994) than to actual convergence. In our DEM-MD algorithm as presented above, this is meaningless
to compare means of continuous distributions, as they may not be relative from one iteration to another. Moreover,
in the case of mixed laws models now, the number of different parameters is increasing, which raises the question of
the legitimacy of taking centers into account. In addition, as the number of components decreases during estimation,
the objective function is no longer strictly increasing at each iteration.

The Aitken’s acceleration (Böhning et al., 1994) can be used to assess convergence, through asymptotic estimates
of log-likelihood:

lt+1
∞ = lt + lt+1 − lt

1− at
,

where at = lt+1−lt

lt−lt−1 . With this estimate Böhning et al. (1994) proposed the following stopping criterion for the EM
algorithm at iteration t+ 1:

|lt+1
∞ − lt∞| < ε . (22)

There exist other expressions of Aitken’s acceleration in (Lindsay, 1995; McNicholas et al., 2010).
As we argued previously the evolution of log-likelihood in a DEM-MD algorithm is complex, and the Aitken’s

acceleration is relevant to assess the stability of the convergence. However, the following assumptions are necessary to
use Aitken’s acceleration: linear convergence of the algorithm and a slow convergence rate of the objective function.
These conditions to use Aitken’s acceleration are easily validated by Expectation-Maximization algorithms (as
detailed in (McLachlan and Krishnan, 2008, Chapter 3, Section 9, p.99)), but not by the dynamic versions which
also estimate the number of components. These last methods have a conditional expected log-likelihood which is
not constantly increasing.

We assume that, for a number of classes K which is constant, the objective function maximized by a dynamic
EM algorithm is equivalent to that of an EM algorithm. In fact, as K is constant, the objective function is piecewise-
increasing, joining the convergence theory of the EM algorithm. Thus, if the number of classes is constant for at
least four consecutive iterations (required to compute the Aitken’s acceleration), the Aitken’s acceleration criterion
can be computed and applied to assess the convergence of our Dynamic EM algorithm for Mixed-type Data.

4.1.3 The generic DEM-MD algorithm

In Algorithm 2 we present a generic version of DEM-MD algorithm, which will be adapted to the different com-
binations of continuous and discrete laws. We also include the EM-MD pseudocode within Algorithm 3, which
correspond to a classical EM version with an a priori fixed number of classes K.

4.2 Adaptations to different continuous distributions
4.2.1 A Gaussian continuous assumption

With a Gaussian assumption on the continuous variables, our Dynamic EM for Mixed-type Data is similar to the
Modified REM (MREM) (Pruilh et al., 2022).

4.2.2 A Student continuous assumption

The Student distribution does not present particular constraints on the initialization of its parameters. The only
question is how to initialize the degrees of freedom ν. Other estimated parameters follow the existing rules.
Moreover, expectations of latent variables ui are computed as τ0

ik with initial parameters. Initialization of degrees
of freedom does not have an impact on the next steps and we fix initial values to a unique constant, here νk = 10
for each cluster k. Initialize the degrees of freedom with constant values is a common strategy (Andrews et al.,
2011; Lin, 2010).
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Algorithm 2: Pseudocode of generic Dynamic EM for Mixed-type Data algorithm
Input : ε > 0, γ, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization : K0 ← n, β0 ← 1
π0

k ← 1/n, µ0 ← Xc

Σ0
k ← d2

k(⌈
√

K0⌉)Id

Initialize other continuous parameters
Initialize pd,0

k ∀ d ∈ J1, . . . , DK with (24)
t← 1
Compute τ t

ik with (20)
1 while |lt∞ − lt−1

∞ | > ε do /* Aitken’s convergence */
M-Step
Compute πt

k with (21)
Compute µt

k

βt ← Algo. 4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

otherwise do
Kt ← Kt−1

end
Compute Σt

k

Compute other continuous parameters
Compute discrete probabilities pd,t

k with (25) , (26) , (27)
E-Step
Compute τ t+1

ik with (20)
Compute other latent variables
t← t+ 1

end
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According to Eq.(4), the degrees of freedom are, at each iteration of an EM-like algorithm, the solution of a fixed
point equation. This equation can be solved by a one-dimensional line search method. In some articles mentioned
previously, the considered algorithm to solve this equation is Newton’s (or Halley’s) method, which requires first
(and second) derivatives of the function whose zero we are finding. But as the considered function is monotonically
decreasing for x ≥ 2, it allows considering simpler algorithms such as Brent’s method (Brent, 2013), which solves
the fixed point equation on a bounded domain of x. Moreover, as we constrain the degrees of freedom to be greater
or equal to 2, if the sign of f(xmin) = f(2) is the same as the sign of f(xmax), then we fix νnew = 2 or νnew = xmax,
depending on the sign of the function values. Previous works relied on this numerical method and even restricted
the ν̂ estimates (Andrews et al., 2011).

From generic Algorithm 2, the adaptation for estimation of models with Student continuous distributions is
given by Algorithm 6.

4.2.3 A Shifted Asymmetric Laplace continuous assumption

Estimation of the skewness parameters involves the Mahalanobis distance in the denominator of (15). Initialization
of the DEM-MD algorithm originally involves starting with each data point as its own cluster, so basically µ0 = Xc.
This initialization, associated with the computation of skewness parameters can quickly lead to computation errors
at the beginning of the algorithm, leading to its early stop. A simple solution we consider is to add a very small
noise to the initial centers µ0 = Xc + ϵ with ϵ ∼ N (0, σ2).

We consider here the Expectation/Conditional-Maximization (ECM) algorithm, well-known for estimation of
Student distributions (Meng and Rubin, 1993). The ECM algorithm consists in replacing the original M-step with
a sequence of conditional maximization steps (CM-steps). In the case of two CM-steps in a Student mixture model,
they are defined as follows at iteration t:

• CM-Step 1. Fix Θ̂t−1
2 and calculate Θ1

t by maximizing Q(Θ; Θ(t−1))

• CM-Step 2. Fix Θ̂t
2 and calculate Θt

2 by maximizing Q(Θ; Θ̃(t)).

It was also proposed to introduce an intermediate E-step between the CM-steps, and this becomes a multicycle
ECM algorithm (Meng and Rubin, 1993; Liu and Rubin, 1995). Following this idea, we introduce an intermediate
E-step just before the estimation of scales parameters in the SAL DEM-MD algorithm. As the original Robust EM
for Gaussian mixtures was already built on the dynamic changes of the number of components inside the algorithm,
the estimated parameters may lose their ”meaning” during the estimation process, such as the latent probabilities.
This is even more true when the set of parameters is wide and complex, such as with SAL distributions. By adding
an intermediate E-step, we recompute latent probabilities τik and expectations of W after the estimation of the
centers, proportions and skewness parameters, i.e., before the estimation of the scale matrices. This intermediate
E-step avoids estimation errors, particularly during scale computations which can lead to singular matrix problems.

We consider here using deterministic annealing in SAL DEM-MD algorithms. As a matter of fact, SAL DEM-
MD without annealing struggles to converge. Deterministic annealing for EM algorithms (Ueda and Nakano, 1994,
1998) relies on the introduction of annealing (or also named temperature) into the membership probabilities derived
in the E-step. According to this principle, the corresponding annealed version of Eq.(20) is

τ t
ik =

[
πkpg(xi|θc

k)
∏D

d=1 pXd
i
(xd

i ; θd
k)
]1/T

∑K
j=1

[
πjpg(xi|θc

j)
∏D

d=1 pXd
i
(xd

i ; θd
j )
]1/T

. (23)

Deterministic annealing usually helps the algorithm to explore the solution space, and in this case, it also helps
to avoid estimation errors which lead to non-convergence of the algorithm.

We consider temperature schemes inspired by works of Allassonnière and Chevallier (2021) and Lartigue et al.
(2022). The idea is to consider an oscillating temperating pattern with decreasing amplitude towards 1, leading to
the classical expectation computation after a certain number of iterations. We define our sequence of temperatures
implemented in SAL DEM-MD by:

Tt = 1 + a ∗ sin(t/b)
t/b

∀ t ∈ N .

Estimation of scale matrices requires special care, and usually small regularizations are used to estimate them
(Yang et al., 2012; Pruilh et al., 2022). But these regularizations are not present in EM algorithms of Franczak et al.
(2014), to estimate SAL mixture models. As a result, we question the legitimacy of this regularization, originally
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designed to avoid the calculation of singular matrices. Moreover, we have already proposed improvements for the
convergence of the SAL DEM-MD algorithm and to avoid computation errors in the previous paragraphs.

In our generic DEM-MD, scale matrices Σt
k are by default computed as Σt

k = (1 − γ)ΣEM
k + γP for each

k, with ΣEM
k computed according to the considered continuous distribution, and P a diagonal matrix containing

very low coefficients. We led a comparison study on our DEM-MD for SAL continuous laws, with different γ (the
regularization parameter on covariance matrices in DEM-MD algorithms), of values 0.0, 10e−9, 10e−5. We observed
no significative difference in the convergence of simulations, the number of correct K̂ and even the estimation errors
of the different parameters. So we decided to fix γ = 0.0 as the default value, and therefore eliminate noise
regulation, to avoid a future question of changing it according to an arbitrary criterion.

From Algorithm 2, adaptation for estimation of models with Shifted Asymmetric Laplace continuous variables
is given by Algorithm 7.

4.3 Estimation of discrete distribution parameters in DEM-MD algorithms
With our defined Model (18), the estimated parameters of each discrete variable are independently computed at
each M-step, and independently of the continuous parameters described previously.

4.3.1 Initialization

The DEM-MD algorithms are initialized by considering each data point as the center of its own cluster, so K0 = n.
Concerning the initialization of the parameters of discrete distributions in any DEM-MD, it is simply done by
considering, for each discrete variable d, at the beginning of the algorithm, that

p̂d,0 =


xd ∈ {0, 1}n if d is Bernoulli ,
xd ∈ R⋆,n

+ if d is Poisson ,
[1T

xd=1, . . . ,1
T
xd=M ] with 1xd=m ∈ {0, 1}n if d is Multinomial .

(24)

4.3.2 Equations to update discrete distribution parameters

At M-step, parameters for discrete distributions are also estimated, independently of parameters for continuous
distributions. The equations to update parameters of the different discrete distributions are gathered in Table 2.

At the beginning of any DEM-MD algorithm, we transform a Multinomial variable as a one-hot encoding matrix,
so xd ∈ {0, 1}n×M , and xd

im corresponds to sample i and column/modality m.
To avoid computation errors on the estimation of discrete distribution factors in the computation of posterior

probabilities, when one discrete distribution parameter (for a given class k) is equal to one, its associated log-
probabilities are not event computed as it should be zero.

All the DEM-MD and EM-MD algorithms presented in this article were implemented in Python 3.9.

5 Experiments on simulated data
We present here results to validate our Dynamic EM for Mixed-type Data algorithms on estimation of many
mixture models on mixed-type data. After the description of numerous settings with different continuous and
discrete distributions, we look at the convergence success of DEM-MD algorithms and the average iteration number
to reach convergence across all simulation studies. We continue with a comparison of the estimation of K by
DEM-MD algorithms and model selection criteria with EM algorithms. Thereafter, we provide performances on

Discrete distribution Update equation at M-step

Bernoulli p̂d,t
k =

∑n
i=1 τ

t
ikx

d
i∑n

i=1 τ
t
ik

(25)

Multinomial p̂d,t
k,m =

∑n
i=1 τ

t
ikx

d
im∑n

i=1 τ
t
ik

with m a modality of the Multinomial law with M modalities (26)

Poisson p̂d,t
k = λ̂d,t

k =
∑n

i=1 τ
t
ikx

d
i∑n

i=1 τ
t
ik

(27)

Table 2: Equations at M-step to estimate discrete distribution parameters.

13



estimation of discrete distribution parameters, and continuous distribution parameters through comparisons with
literature methods. We finally conclude with a study on the inclusion of covariance matrix regularizations when
the complexity of the model is significant.

5.1 Description of experiments
We consider several settings where we let vary the number of clusters K, the continuous dimensions g, the discrete
dimensions D and the type of associated discrete variables.

For each configuration defined in Table 3, we simulated S = 100 datasets, with a fixed number of points n = 600
each. In practice, EM-MDs are initialized with a short k-means computation, and a fixed maximal number of
iterations is considered. Gaussian and Student DEM-MD have ϵ = 10e−7 and γ = 10e−5, and SAL DEM-MD
has ϵ = 10e−5, γ = 0.0, a = 1 and b = 3. Gaussian, Student and SAL EM-MD have ϵ = 10e−5. In the next
parts, we assess the performance of our various algorithms on the estimation of the number of components and the
parameters.

Convergence in a DEM-MD is assessed by stabilization of K̂ and by stopping the algorithm using the Aitken
criterion. Non-convergent executions, therefore, correspond to executions where the number of clusters is reduced
to one or generates calculation errors if the algorithm still reaches the space boundaries, which happens here for
a high-complexity setting. The DEM-MD algorithms converge for 100% of runs for each setting with Gaussian or
Student continuous distributions. Convergence is lower for SAL DEM-MD, especially on settings with an higher
continuous dimensional space as CM

451 which has a 18% convergence rate and C343 with 74%. The other settings
with SAL distributions have at least 97% convergence rates.

Convergence is usually not a difficulty for not dynamic EM algorithms, with enough iterations, and therefore
all EM-MD runs have 100% rates.

5.2 Estimation of the number of components
5.2.1 In mixed-type data context

We note C the number of correctly estimated number of components for a given configuration. This gives C =
#{K̂ = K⋆} withK⋆ varying following the set of considered parameters. Table 4 gives C values for all configurations,
across the 100 simulated datasets for each configuration. We see that we reach high percentages of C, between 90
and 100% for almost all configurations with Gaussian continuous laws. The only exception is the setting C524 with
D = 4 discrete variables and K = 5 clusters, which obtains a C rate of 67%. On Student continuous configurations,
we reach at least 92% of correct K for all configurations, with several ones at 100%. DEM-MD with SAL continuous
distributions leads to lower performances, with several estimation percentages above 80%, but also obtains 67% for
C343 and even a problematic 18% for CM

451. These poor estimates are expected as complexity increases rapidly with
the number of continuous dimensions. The number of samples is still n = 600 as for all considered settings, and it
is not sufficient for a SAL DEM-MD to estimate correctly all the parameters.

5.2.2 Comparison with model selection criteria

In this part, we compare the estimation of the number of components by our DEM-MD algorithms with model
selection on mixture models, which requires choosing a criterion. We experiment, on all the settings presented
above, on the one hand DEM-MD algorithm, and on the other hand EM-MD algorithm associated with one of these
three criteria: BIC (Schwarz, 1978), ICL (Biernacki et al., 1998) or NEC (Celeux and Soromenho, 1996). In recent
works on mixtures of Shifted Asymmetric Laplace distributions (Franczak et al., 2014; Fang et al., 2023), BIC
and/or ICL criteria were used for a model selection goal. While works on mixtures of Student (Peel and Mclachlan,
2000) or skew-student distributions (Lin et al., 2007; Lin, 2009) considered AIC and BIC criteria. For mixed-type
methods such as KAMILA (Foss et al., 2016) or clustMD (McParland and Gormley, 2016), it is complicated by the
absence of likelihood for the first one or calculation of intractable integrals for the second one.

As for all the experiments, we simulated S = 100 datasets of each setting, with n = 600 each time. On each
dataset, we ran a DEM-MD and several EM-MDs, also from our codes, with a fixed K from a range of values. For
each dataset (associated with a set of estimated models), an a posteriori selection is done by computing BIC, ICL
and NEC on all EM-MD estimated models, which have different K. For each one of these criteria, the best model
is the one with the lowest value. Finally, over S = 100 runs we have the number of correctly estimated K̂ for each
method (Tables 5a,5b,5c).

For Gaussian distributions, DEM-MD and EM-MD-BIC, EM-MD-ICL criteria give very good results. Whereas
the NEC criterion is leading to very bad model selection for some configurations. It gives very extreme results,
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Parameters
K g D Discrete Parameters Setting abbreviation

2 2 0 None C220

2 2 1 Poisson CP
221

2 2 1 Bernoulli CB
221

2 2 1 Multinomial CM
221

4 5 1 Multinomial CM
451

2 2 3
Bernoulli
Poisson C223

Multinomial

2 2 3
Bernoulli
Poisson CP

223
Poisson

4 2 3
Bernoulli
Poisson C423
Poisson

5 2 4

Bernoulli
Poisson
Poisson C524

Multinomial

3 4 3
Bernoulli
Poisson C343

Multinomial

Table 3: Description of simulated configurations.

C220 CB
221 CM

221 CM
451 CP

221 C223 C343 CP
223 C423 C524

EM-MD
Gaussian 100 100 100 100 100 100 100 100 100 100
Student 100 100 100 100 100 100 100 100 100 100

SAL 100 100 100 100 100 100 100 100 100 100

DEM-MD
Gaussian 99 100 100 90 100 98 98 99 100 67
Student 99 100 99 92 100 100 100 100 100 96

SAL 93 88 96 18 96 90 67 96 86 82

Table 4: Percentages of C = #{K̂ = K⋆} for each continuous distribution and each setting over S = 100 runs.
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either it perfectly selects K, or it has 0 correct selection for CM
451, C423 and C524. Only once it gives an intermediate

result, with C = 38 for C343. DEM-MD has a 81% rate on C524, which is the worst performance here, while the
EM-MD-BIC and EM-MD-NEC criteria are hardly better.

Student DEM-MD and model selection have similar performances to the Gaussian case. Here the DEM-MD
gives 100% of correct estimates for C524.

When all model selection criteria for SAL distribution perform well on CP
221, C223, CP

223, SAL DEM-MD also
obtain correct rates, from 88% to 94%. In addition, SAL DEM-MD obtains a 76% rate on C343, while the model
selection criteria obtain very good results (above 90%). The same applies to CM

451 setting where SAL DEM-MD
obtains 26% in contrary to BIC and ICL criteria which are 94%. As for Student and Gaussian distributions, the
NEC criterion has difficulty for this setting as well as for C524 and C423. Conversely, SAL DEM-MD has the best
results on these two last settings. On the less complex settings, C220, CB

221, CM
221 and CP

221, DEM-MD as well as
EM-MD-ICL and EM-MD-NEC have very good performances, while the EM-MD-BIC obtains between 53% and
73% of correct K̂.

NEC is a classification criterion, and as explained by Celeux and Soromenho (1996) themselves, the NEC criterion
was designed to “choose the mixture model providing the greatest evidence for partitioning data”. Difficulties emerge
when clusters are not well separated, and this leads to difficulties in model selection as we can see in our different
settings for the three continuous distributions.

Overall, DEM-MD algorithms are as correct as model selection criteria for each continuous law to find the true
number of classes K⋆. The challenging configurations in high dimensions for our Dynamic EM for Mixed-type Data
are also difficult for the NEC, but not for the BIC and ICL criteria. However, correct model selection does not
guarantee good parameter estimations, and the model selection process is complicated if the optimal (unknown)
K is not in the tested list. Moreover, difficulties for model selection criteria appear with an increasing number of
clusters, as they require an arbitrary number of runs depending on the values of K tested. DEM-MD algorithms,
meanwhile, save calculation time by only making a single run.

5.3 Performances on the estimation of mixture parameters
Firstly, we present relative errors of DEM-MD and EM-MD on the estimation of discrete distribution parameters for
the various settings described above. The results presented in the next parts are calculated on the set of experiments
where K̂ = K⋆. For each setting, the corresponding number of experiments with correct K is available in Table 4
above. Secondly, we compare DEM-MD algorithms with existing methods in the literature, in order to assess
performances of Student and SAL DEM-MD algorithms on estimation of the continuous distribution parameters.
A Gaussian DEM-MD algorithm without any discrete variable only differ of Modified REM (Pruilh et al., 2022) by
the stopping criterion. Performances on estimation of Gaussian mixture parameters have therefore been confirmed
by Pruilh et al. (2022) and are not shown here.

5.3.1 Performances on the estimation of discrete distribution parameters

We consider and implement Bernoulli, Multinomial or Poisson distributions, which correspond to binary, ordi-
nal/nominal or integer variables. Several settings have only one discrete random variable, and the other ones are
different combinations of three or four variables. As described in Model (18), discrete features are independent
conditional on class memberships. Figures 2, 3 and 4 show the relative errors for each setting and each discrete
distribution parameter over the runs with a correct K̂.

In Figure 2 we can observe relative errors of discrete distribution parameters for configurations containing only
one discrete variable. Firstly, relative errors for each discrete distribution parameter are in the same intervals for
both Gaussian, Student and SAL models. In addition, for each setting and model, EM-MD and DEM-MD give
similar results for their averages, medians and whiskers. Comparing models on CM

221 and CM
451 for each continuous

distribution shows that relative errors of the multinomial parameter vector are higher in CM
451 configuration, which

has the highest complexity. As we saw earlier, this has led to more difficult computations, particularly for the SAL
DEM-MD.

On configuration C524, we observe explosion in the average of several parameters for EM-MD simulations
(Fig. 3(a)), and even overall the average values are rather high, whereas the DEM-MD reveals estimates that
are rather stable and less dispersed, unlike the EM-MD algorithm. Medians and means for DEM-MD results are
generally low, as are several medians and means for EM-MD results.

Errors are similar for DEM-MD and EM-MD algorithms on the setting CP
223 (Fig. 3(c)). As for C423 setting,

medians of Poisson errors are low, around 0.75% and 0.5% for the first Poisson parameter and around 2% and 1%
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DEM-MD EM-MD-
BIC

EM-MD-
ICL

EM-MD-
NEC

C220 99 100 100 100
CB

221 98 100 100 100
CM

221 97 100 100 100
CM

451 89 98 98 0
CP

221 100 100 100 100
C223 99 100 100 100
C343 100 99 99 38
CP

223 99 100 100 100
C423 100 86 86 0
C524 81 84 84 0

a Gaussian continuous distributions.

DEM-MD EM-MD-
BIC

EM-MD-
ICL

EM-MD-
NEC

C220 98 100 100 100
CB

221 100 100 100 100
CM

221 99 100 100 100
CM

451 94 99 99 12
CP

221 100 100 100 100
C223 100 100 100 100
C343 100 100 100 74
CP

223 100 100 100 100
C423 99 97 97 0
C524 100 72 72 1

b Student continuous distributions.
DEM-MD EM-MD-

BIC
EM-MD-

ICL
EM-MD-

NEC

C220 91 53 100 100
CB

221 90 68 100 100
CM

221 94 73 100 99
CM

451 26 94 94 2
CP

221 92 73 99 100
C223 88 94 100 100
C343 76 91 91 94
CP

223 94 85 100 100
C423 86 76 77 3
C524 80 29 34 1

c SAL continuous distributions.

Table 5: Percentages of correctly estimated or selected K for DEM-MD algorithms with different continuous
distributions.
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median for the second Poisson parameter. The Bernoulli parameter errors are more dispersed, and medians are
around 6− 7% for the first component and 4% for the second component.

For configurations C223 and C343, which differ by the number of classes and of continuous dimensions, the
trends are as above (Fig. 4). Errors are low for Poisson parameters on both DEM-MD and EM-MD. Relative errors
on multinomial parameters are lower for C223 setting, maybe due to a lower overall model complexity, in terms
of parameters to estimate and class distinctions.Again, as for multinomial parameters, errors are higher for C343
setting. Generally speaking, the results are correct and the DEM-MD algorithm performs well, compared with an
EM-MD that estimates the parameters with the right number of classes from the start.

5.3.2 The trillium dataset

In their recent paper, Fang et al. (2023) proposed a Gibbs sampling framework to estimate SAL mixture models,
and compared themselves to the EM-type algorithm of Franczak et al. (2014). They tested in particular both
methods on a simulated setting named the inversed trillium, composed of three SAL clusters, which we reproduce
here to compare our estimated parameters with theirs. We run our SAL DEM-MD on 100 simulated datasets of
the inverse trillium setting. As we also estimate K in our method, we have C = 92 over the 100 runs, and all the
runs converged. From a model selection perspective, Fang et al. (2023) had between 96 and 100% correct number
of clusters with selection by BIC or ICL criterion.

Table 6 gives the true parameters, as well as the average estimates, with standard deviation, returned by our
DEM-MD algorithm, and the ones obtained in Fang et al. (2023), directly reported from their article (Fang et al.,
2023, see Table 3). These results show that our algorithm retrieves correctly the different parameters, as well as the
other methods. The averages with DEM-MD are similar to the other ones, sometimes closer to true parameters,
sometimes farther but never drastically. However, the standard deviations are in the majority not lower than the
MSALD-Bayes ones from (Fang et al., 2023), but equivalent to the MSALD-EM ones.

5.3.3 The Peel dataset

To assess the performance of DEM-MD algorithm on Student continuous distributions, we consider here a simulated
two-dimensional Student mixture model with three clusters, originally defined in Peel and Mclachlan (2000). We
simulate 100 datasets of size n = 200, as in the literature. On each dataset, we run a Student DEM-MD algorithm,
which we compare to estimation by a classical EM algorithm with R package mixture (Pocuca et al., 2022). Student
mixture models can be estimated in mixture with the function tpcm for which we kept all the default parameter
values, with a completely unconstrained covariance structure. In their package, Pocuca et al. (2022) also consider
Aitken’s convergence as a criterion for stopping their algorithm.

Firstly, Student DEM-MD obtains C = 84 over the 100 runs, which all converged. We retrieve in Table 7 the
true parameters, the average (and standard deviation) estimated parameters from these 84 correct DEM-MD runs
and from the 100 runs by EM-mixture.

These results show that Student DEM-MD retrieves correctly the different parameters, better than the Student
EM algorithm from mixture. On degrees of freedom estimation, both algorithms are far from the true values,
confirming that estimation of this parameter stays a challenge with EM-like algorithms. The average estimates of
means, covariance matrices and degrees of freedom with DEM-MD algorithm are closer to the real values than those
obtained by the EM-mixture algorithm. Moreover, the majority of the DEM-MD estimates have smaller standard
deviations than those returned by EM-mixture algorithm. Only proportions parameters are slightly better in
average and dispersion with EM-mixture algorithm.

Our DEM-MD algorithms for Student and Shifted Asymmetric Laplace distributions perform as well as the
algorithms in the literature on simulated trillium and Peel datasets. In addition, DEM-MD algorithms have to
estimate the number of classes and perform very well, reducing computation time.

5.4 Penalize covariances with Inverse-Wishart priors
We observed limitations of SAL DEM-MD in the presence of an undersized dataset in Subsection 5.2. This was
particularly noticeable on setting CM

451 where G = 5 and the algorithm only obtained 18% of correct K̂. In a SAL
DEM-MD or EM-MD, as in other EM-like algorithms, when the number of points per mixture is not high enough,
estimation becomes harder, and this is particularly true for the scales matrices which can become singular and cause
the algorithm to diverge. Regularization is employed to avoid this problem, frequently artificial one in classical
EM algorithms, and regularization based on prior information in variational methods. Thus, fewer pathological
special cases can be obtained but with subtle bias and worse parameter estimations. In cases where the number of
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Parameter True value DEM-MD MSAL-BAYES MSAL-EM

α1

(
0

−3

) (
0.00 ± 0.20

−2.98 ± 0.61

) (
−0.01 ± 0.13
−3.30 ± 0.50

) (
−0.00 ± 0.13
−2.78 ± 0.44

)
µ1

(
0
10

) (
0.02 ± 0.09
9.85 ± 0.17

) (
0.01 ± 0.08
10.02 ± 0.09

) (
0.00 ± 0.09
9.77 ± 0.24

)
Σ1

(
1 0.5

0.5 1

) (
1.11 ± 0.5 0.51 ± 0.28
0.51 ± 0.28 1.42 ± 0.55

) (
1.21 ± 0.33 0.53 ± 0.26
0.53 ± 0.26 1.00 ± 0.51

) (
1.01 ± 0.20 0.48 ± 0.21
0.48 ± 0.21 1.68 ± 0.87

)
π1 1./3. 0.33 ± 0.02 0.35 ± 0.03 0.33 ± 0.03

α2

(
3
3

) (
2.92 ± 0.36
2.95 ± 0.53

) (
3.02 ± 0.35
3.05 ± 0.34

) (
2.85 ± 0.37
2.84 ± 0.36

)
µ2

(
−10
−10

) (
−9.91 ± 0.14
−9.90 ± 0.11

) (
−10.01 ± 0.08
−10.03 ± 0.07

) (
−9.82 ± 0.19
−9.82 ± 0.20

)
Σ2

(
1 0
0 1

) (
1.23 ± 0.54 0.26 ± 0.39
0.26 ± 0.39 1.34 ± 0.74

) (
1.05 ± 0.47 −0.21 ± 0.22

−0.21 ± 0.22 0.91 ± 0.35

) (
1.54 ± 0.65 0.53 ± 0.65
0.53 ± 0.65 1.53 ± 0.68

)
π2 1./3. 0.33 ± 0.01 0.33 ± 0.03 0.33 ± 0.03

α3

(
−3
3

) (
−2.96 ± 0.36
2.98 ± 0.50

) (
−2.96 ± 0.30
2.94 ± 0.30

) (
−2.83 ± 0.31
2.80 ± 0.32

)
µ3

(
10

−10

) (
9.89 ± 0.12

−9.88 ± 0.11

) (
10.04 ± 0.07

−10.02 ± 0.07

) (
9.84 ± 0.17

−9.82 ± 0.18

)
Σ3

(
1 0.25

0.25 1

) (
1.30 ± 0.49 −0.06 ± 0.4
−0.06 ± 0.4 1.44 ± 0.78

) (
0.94 ± 0.31 0.33 ± 0.16
0.33 ± 0.16 0.88 ± 0.30

) (
1.55 ± 0.66 −0.29 ± 0.60

−0.29 ± 0.60 1.50 ± 0.65

)
π3 1./3. 0.33 ± 0.02 0.33 ± 0.03 0.34 ± 0.03

Table 6: True parameter values and mean estimates with standard deviations returned by our DEM-MD algorithm
and extracted results from (Fang et al., 2023, see Table 3)’s paper.
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True parameters DEM-MD EM-mixture

ν1 5 9.52 ± 13.11 20.36 ± 31.90

µ1

(
0
3

) (
−0.02 ± 0.38
2.96 ± 0.34

) (
0.05 ± 1.01
2.68 ± 0.93

)
Σ1

(
2 0.5

0.5 0.5

) (
2.06 ± 0.55 0.51 ± 0.2
0.51 ± 0.2 0.49 ± 0.34

) (
1.57 ± 0.6 −0.01 ± 0.41

−0.01 ± 0.41 0.34 ± 0.22

)
π1 1./3. 0.33 ± 0.02 0.33 ± 0.01

ν2 30 54.84 ± 53.69 56.07 ± 42.53

µ2

(
3
0

) (
2.96 ± 0.31
0.04 ± 0.34

) (
2.53 ± 1.48
0.15 ± 0.65

)
Σ2

(
1 0
0 0.1

) (
0.98 ± 0.30 0.01 ± 0.08
0.01 ± 0.08 0.1 ± 0.05

) (
1.73 ± 0.7 0.09 ± 0.46
0.09 ± 0.46 0.37 ± 0.22

)
π2 1./3. 0.34 ± 0.01 0.33 ± 0.01

ν3 10 23.51 ± 34.79 31.88 ± 38.33

µ3

(
−3
0

) (
−3.04 ± 0.2
0.0 ± 0.11

) (
−2.66 ± 1.24
0.18 ± 0.72

)
Σ3

(
2 −0.5

−0.5 0.5

) (
1.86 ± 0.47 −0.5 ± 0.19
−0.5 ± 0.19 0.51 ± 0.13

) (
1.7 ± 0.66 −0.05 ± 0.48

−0.05 ± 0.48 0.40 ± 0.22

)
π3 1./3. 0.34 ± 0.02 0.33 ± 0.01

Table 7: True parameter values and average estimates with standard deviations returned by our DEM-MD algorithm
and EM algorithm from R package mixture on Student distributions(function tpcm).

points is sufficient with regard to the number of parameters, EM-type algorithms without regularization or with a
small regularization value generally perform both as well. In this problematic case, a possibility to improve and/or
stabilize the estimation is to regularize the covariance matrices.

We introduce here regularization using a prior on scale matrices (Fraley and Raftery, 2007; Fop et al., 2019;
Baudry and Celeux, 2015) in the objective function Q̃. The considered prior is an Inverse Wishart prior with
Σ ∼ W−1(w,W ) with w = g + 2 degrees of freedom, W = S

K2/d scale matrix of the prior distribution, with S the
overall empirical covariance matrix. This prior was also adopted in the very recent work of Fang et al. (2023) which
estimated parameters with a Gibbs sampling method and therefore needed to define parameter priors.

The scale matrix updates Σ̂t
k in the M-step of any EM-like algorithm are replaced at t iteration (Fraley and

Raftery, 2007; Baudry and Celeux, 2015) by

Σ̂t,reg
k = Σ̂t

k + W

nk + w + g + 1 . (28)

Prior regularization become valuable when dealing with high-dimensional datasets. In DEM-MD with SAL
continuous distributions, which correspond to the highest complexity, this scale matrix prior helps to achieve
greater convergence and better results. With a not-so-large continuous space dimension, DEM-MD frequently
diverges without this type of regularization.

With the introduced prior, the scale matrix estimation step in Algorithm 7 can be replaced by Eq.(28) with
Σ̂t

k = nt
k × Σ̂t

k,EM and Σ̂t
k,EM estimated by Eq.(14). This consideration is particularly important in real cases

where it is frequent to have several variables and a not-so-large dataset, as we will see in Section 6.
The addition of a regularization such as Fraley’s one in the SAL DEM-MD leads to a clear improvement in the

convergence of the algorithm and estimation of the number of classes for setting CM
451 . As said above, changes in

the algorithm and implementation are lights, only requiring a few additional steps to compute W = S
K2/g with S the

overall empirical covariance matrix and then Σ̂t,reg
k with Eq.(28) for each cluster k. Our simulations on S = 100 new

datasets of size n = 600 simulated from CM
451 and modeled with regularized SAL DEM-MD drastically improved
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convergence of the algorithm, going from 18% to 100%. The rate of correct K̂ is now 72% instead of 18%. Figure 5
gives the relative errors of these simulations computed similarly to the previous ones. In addition, relative errors of
SAL DEM-MD without regularization are also featured. We observe that the errors are sometimes more dispersed
but globally similar to the ones without regularization on the configuration CM

451.
These experiments open up possibilities for better estimating this type of model at high complexity and with

a low volume of data. Particularly for real use cases where there may be many variables and where DEM-MD,
without regularization, struggles to estimate mixture models.

6 Experiments on real datasets
6.1 A Prostate Cancer dataset
This dataset was firstly analyzed by Byar and Green (1980), and then by Hunt and Jorgensen (1996). Recently it
was analyzed in papers on mixed-type data models (McParland and Gormley, 2016; Foss and Markatou, 2018). 15
mixed-type variables are available for n = 475 prostate cancer patients who were diagnosed as having either stage
3 or stage 4 prostate cancer. The variables are shortly described in Table 8.

Variable Type Variable Type

Stage Output variable (2 levels) SurvStat (10 levels) Output variable
Serum haemoglobin Continuous Size of primary tumor Continuous

Age Continuous Index of tumor stage and histolic grade Continuous
Weight Continuous Serum prostatic acid phosphatase Continuous

Systolic Blood Pressure Continuous Diastolic Blood Pressure Continuous
Performance rating Ordinal (4 levels) Electrocardiogram code Nominal (7 levels)

Cardiovascular disease history Binary Bone Metastase Binary

Table 8: Variables in the Prostate Cancer dataset.

The outputs variables, which should be spread apart are Stage and SurvStat, as well as Observation which are
patient IDs. Depending on the existing works, some may include Stage in the observed dataset and try to explain
the SurvStat variable (Foss and Markatou, 2018) while others consider it as an output to be explained by the
estimated clustering (McParland and Gormley, 2016).

In brief, we have 8 continuous variables and 4 categorical variables. As we saw in the previous section, the SAL
DEM-MD algorithm quickly encounters difficulties in estimating a model with a high-dimensional dataset. For its
estimation on the prostate cancer dataset, we therefore apply regularization on the scale matrices as presented in
the Subsection 5.4.

Student DEM-MD and SAL DEM-MD found K̂ = 2, while Gaussian DEM-MD estimated K̂ = 3 clusters. In
comparison, clustMD’s selection strategy (McParland and Gormley, 2016) returned three classes as the best model,
while KAMILA’s one (Foss and Markatou, 2018) returner two classes. Both solutions may be acceptable for a
clustering objective as Stage output variable has two modalities and SurvStat three modalities (after aggregation of
modalities (Foss and Markatou, 2018)).

A cross-tabulation of the cluster labels versus the cancer stage diagnosis is given in Table 9. Estimated classes
by Student and SAL DEM-MD algorithms retrieve correctly the Stage of cancer (Stage 3 or 4). As the Gaussian
DEM-MD estimates three classes, they cannot directly correspond to the cancer stage. But we see that the third
cluster is mainly containing Stage 3 patients, while classes 1 and 2 contain more Stage 4 patients. Student and
SAL DEM-MD succeed in characterizing the two groups of stages, even though this is a complex variable, based on
the subjective separation of cancer progression. On the contrary, the Gaussian DEM-MD is insufficient to separate
Stage groups correctly and lacks flexibility.

Comparing center vectors for clusters of each model (Fig. 6(a)), it can be seen that the classes for the three
models are differentiated by the Serum.haemoglobin, Size.of.primary.tumour, Index.tumour.stage.histolic.grade and
Serum.prostatic.acid.phosphatase variables. Whereas Age and Diastolic.blood.pressure only differentiate well for Gaus-
sian and SAL models. On the other hand, Weight separates Gaussian and Student models. As the Gaussian model
has three classes, looking at estimated parameters help to differientiate its classes, which improves interpretability.
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Model Stage 3 Stage 4

Gaussian
Cluster 1 25 100
Cluster 2 2 75
Cluster 3 246 27

Student Cluster 1 17 170
Cluster 2 256 32

SAL Cluster 1 6 143
Cluster 2 267 59

Table 9: For Prostate cancer dataset, cross-tabulation of estimated cluster labels for each model versus the diagnosed
prostate cancer stage.

6.2 The Australian Institute of Sport dataset
We now illustrate DEM-MD algorithms on the Australian Institute of Sport (AIS) dataset (Telford and Cunningham,
1991). This dataset was also analyzed in (Lee and McLachlan, 2012, 2014; Lin, 2010) where the authors only used
a subsample of continuous variables to try to cluster individuals, which are here athletes, by sex. Thirteen variables
are available for n = 202 Australian athletes, male and female in ten different sports. Apart from sex and sport
variables which are respectively binary and nominals, we have eleven continuous variables, corresponding to physical
and blood measurements (Table 10).

Variable Description

sex the sex of the athlete
sport the sport of the athlete, one of BBall, Field, Gym, Netball, Rowing, Swim,

T400m, Tennis, TSprint, WPolo
Ht height in cm
Wt weight in kg

LBM lean body mass in kg
RCC red blood cell count
WCC white cell count
HCT hematocrit in percent
HGB hemoglobin concentration, in grams per decilitre
Ferr plasma ferritins in ng per decilitre
SSF sum of skin folds
Bfat percentage body fat
BMI body mass index, in kg per m2

Table 10: Description of Australian Institute of Sport dataset

Since the literature mainly attempts to separate men and women, we will consider a similar framework, excluding
sex from the set of estimates, but including sport since we have a model capable of handling categorical variables. As
we saw in the section on simulated data, the SAL DEM-MD algorithm quickly encounters difficulties in estimating
a model with a high-dimensional dataset. Therefore, for its estimation on the AIS dataset, we apply a Fraley
regularization on the scale matrices as presented in the Subsection 5.4.

Running DEM-MD algorithms with 12 variables (all except sex variable) on the n = 202 athletes, DEM-MD
on a Gaussian model estimates K̂ = 3 classes while DEM-MD on a Student model estimates K̂ = 4 and a SAL
DEM-MD K̂ = 2. The class assignments of the different models are cross-tabulated with sex and sport variables,
obtaining interesting results (Tables 11 and 12). We can see that all three models tend to separate men and women.
While the SAL DEM-MD well retrieves the sex of the athletes, the Student DEM-MD estimates two classes for
women athletes and an additional mixed class, which requires looking at sport distribution for a good interpretation.
Similarly, the Gaussian DEM-MD returned three classes which require looking also at assigned classes per sport.
All these models give interesting results characterized by different variables and splitting along sex and/or sport
with meaningful results. Differences between classes that do not correspond only to sex and sport separation can
be observed by looking at marginal distributions of variables with respect to the assigned cluster.
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Model Gaussian Student SAL
Cluster 1 2 3 1 2 3 4 1 2

Female 58 5 37 21 44 4 31 80 20
Male 65 37 60 42 3 99

Table 11: Cross-tabulation of estimated cluster labels for
each model versus the athlete sex

Model Gaussian Student SAL
Cluster 1 2 3 1 2 3 4 1 2

Basket Ball 12 10 3 7 3 12 3 13 12
Field 17 2 4 13 2 8 11
Gym 4 4 4

Netball 20 3 6 14 3 21 2
Row 21 14 2 3 19 14 1 22 15
Swim 3 8 11 1 2 7 12 5 17

Track 400m 1 28 29 4 25
Track Sprint 3 12 3 12 15

Tennis 2 1 8 2 9 6 5
Water Polo 16 1 15 2 17

Table 12: Cross-tabulation of estimated cluster labels for
each model versus the practiced sports

7 Conclusion and perspectives
We have proposed Dynamic EM for Mixed-type Data algorithms to estimate mixture models for mixed-type data
with different possible continuous and discrete variables, allowing to jointly estimate the number of classes and
the various parameters. We introduced improvements compared to the EM versions, to ensure algorithm con-
vergences and correct estimations. Especially, our SAL DEM-MD relies on multicycle ECM (Meng and Rubin,
1993) and deterministic annealing (Ueda and Nakano, 1994) concepts. We also considered Aitken’s acceleration
for all DEM-MD, which makes more sense than comparing only mixture centers, especially in a dynamic context.
Comparisons with existing algorithms on Student or SAL continuous distributions shown good parameter recovery
with DEM-MDalgorithms. Additionally, our algorithms obtained good performances on estimation of the number
of components, for both simulated and real datasets. Finally, on the two real datasets, the Dynamic EM for Mixed-
type Data algorithms were able to retrieve meaningful classes, despite small dataset sizes, based if necessary on
regularized covariance matrices as introduced earlier.

A clear limitation of our proposed mixture models is the local independence assumption. We saw in the
introduction that other families of methods can be used to establish links for all variables, but generally involve
either the transformation of certain variables or statistical conditioning, such as factor analyzers or copulas. An
extension could be to associate mixtures of copulas for mixed-type data estimated by EM-like algorithms (Zhao
and Udell, 2020; Rajan and Bhattacharya, 2016) with dynamic estimation of the number of components. As a lot
of copula models are estimated with Bayesian approaches, it could be interesting to estimate mixtures of copula for
mixed-type data with reversible jump Monte-Carlo Markov Chain methods to find the optimal space dimensions.

Secondly, additional continuous and discrete laws can still be modeled and estimated within the framework of
the DEM-MD algorithm.
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A Appendix
A.1 Material on continuous distributions
A.1.1 Gaussian distribution

A g-dimensional random variable X following a multivariate Gaussian distribution has the following density

pg(xi; µ,Σ) = 1
|Σ|1/2(2π)g/2 exp(−1

2(xi − µ)⊤Σ−1(xi − µ)) (29)
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A.1.2 Student distribution

A g-dimensional random variable X following a multivariate t-distribution has the following density

pg(x; µ,Σ, ν) =
Γ( ν+g

2 )|Σ|−1/2

(πν)g/2Γ( ν
2 ){1 + δ(x,µ; Σ)/ν}

(ν+g)
2

, (30)

with center µ, positive definite inner product matrix Σ, degrees of freedom ν ∈ (0;∞] and δ(x,µ; Σ) =
(x− µ)⊤Σ−1(x− µ) is the Mahalanobis distance.

Given a scaling variable U ∈ R, X has a multivariate normal distribution, and U is Γ with

X|U ∼ N (µ,Σ/U) and U ∼ Γ(1
2ν,

1
2ν) . (31)

A.1.3 Shifted Asymmetric Laplace distribution

The probability density function of a g-dimensional random variable X distributed according to a Shifted Asym-
metric Laplace distribution is

pg(x; µ,Σ,α) =
2 exp

{
(x− µ)⊤Σ−1α

}
(2π)g/2|Σ|1/2 ×

(
δ(x,µ|Σ)

2 + α⊤Σ−1α

)ν/2
Kν(u) , (32)

with α ∈ Rg skewness parameter, µ ∈ Rg shift parameter, Σ ∈ Rg×g scale matrix, Kν modified Bessel function
of third kind, with index ν = 2−g

2 , δ is the Mahalanobis distance, and u =
√

(2 + α⊤Σ−1α)δ(x,µ; Σ).
From Kotz et al. (2001) for Asymmetric Laplace distributions and Franczak et al. (2014) for Shifted AL distri-

butions, the random variable X admits the representation

X = µ +Wα +
√
WY, W ∼ E(1), Y ∼ Ng(0,Σ) , (33)

with W a random variable from an exponential distribution with rate 1, and Y ∈ Rg×g a random variable from a
Normal distribution with mean 0g and covariance matrix Σ. And so, X|W = w ∼ Ng(µ + wα, wΣ).
Conditional on the data, W follows a Generalized Inverse Gaussian distribution.

A.2 Estimation of continuous distributions in mixture models
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Law Expectations of latent variables Updating equation

Gaussian τik
πkpGaussian(xi; µk,Σk)∑K

j=1 [πjpGaussian(xi; µj ,Σj)]
(34)

Student

τik
πkpStudent(xi; µk,Σk, νk)∑K

j=1 [πjpStudent(xi; µj ,Σj , νj)]
(35)

Eu,ik
νk + g

νk + δ(xi|µk,Σk) (36)

SAL

τik
πkpSAL(xi; µk,Σk,αk)∑K

j=1 [πjpSAL(xi; µj ,Σj ,αj)]
(37)

E1ik

√
bik

ak
Rν(

√
akbik) (38)

E2ik

√
ak

bik
Rν(

√
akbik)− 2ν

bik
(39)

Table 13: Equations to compute conditional expectations of latent variables at E-step of an EM-type algorithm.

A.3 Pseudocodes
A.3.1 Generic EM-MD and β computation pseudocodes

Algorithm 3: Generic EM algorithm
Input : ε > 0, K, tmax, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization: Compute τ0

ik ← K-Means(K,Xc,maxiter=1)
Compute π0

k with (6)
Compute µ0

k

Compute Σ0
k

Compute other continuous parameters
Compute pd,0

k ∀ d ∈ J1, . . . , DK with (25) , (26) , (27)
t← 1

1 while |lt∞ − lt−1
∞ | > ε and t < tmax do /* Aitken’s convergence */

E-Step
Compute τ t

ik with (20)
Compute other latent variables
M-Step
Compute πt

k with (6)
Compute µt

k

Compute Σt
k

Compute other continuous parameters
Compute discrete probabilities pd,t

k with (25) , (26) , (27)
t← t+ 1

end

A.3.2 DEM-MD pseudocodes
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Algorithm 4: Computation of parameter β
Input : πEM ,π(new),π(old), K, n
πEM

(1) ← max
1≤k≤K

πEM
k , π(old)

(1) ← max
1≤k≤K

π
(old)
k

E ←
∑K

k=1 π
(old)
k log(π(old)

k )

β ← min
{∑K

k=1
exp
(

−ηn
∣∣π(new)

k
−π

(old)
k

∣∣)
K ,

(1−πEM
(1) )(

−π
(old)
(1) E

)}
Output: β

Algorithm 5: DEM-MD for Gaussian Mixtures
Input: ε > 0, γ, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization : K0 ← n, β0 ← 1
π0

k ← 1/n ∀ k, µ0 ← Xc

Σ0
k ← D

k(⌈
√

Kinitial ⌉)Ig with Dk = sort
{
d2

ki = ∥xi − µk∥2
2 : d2

ki > 0, i ̸= k, 1 ≤ i ≤ n
}

Initialize pd,0
k ∀ d ∈ J1, . . . , DK with (24)

t← 1
Compute τ t

ik with (20)
1 while |lt∞ − lt−1

∞ | > ε do /* Aitken’s convergence */
M-Step
Compute πt

k with (21)
Compute µt

k with (7)
βt ← Algorithm 4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

tcomponent ← 1 /* variable to keep in memory the number of iterations with a stable
number of components */

otherwise do
Kt ← Kt−1

end
if t ≥ tmin and tcomponent ≥ 100 then

2 if no superimposed clusters then
βt = 0

3 else if superimposed clusters and tcomponent < 200 then /* give more time to the algorithm
to converge */
tmin ← tmin + 50

4 else merge superimposed clusters
adjust πt, µt, Σt and τ t

end
end
Compute ΣEM

k with (8) and Σt
k = (1− γ)ΣEM

k + γP with
P = d2

minIg, d
2
min = min{d2

ij : d2
ij = ∥xi − xj∥2

2 > 0, 1 ≤ i, j ≤ n}
Compute discrete probabilities pd,t

k with (25) , (26) , (27)
E-Step
Compute τ t+1

ik with (20)
t← t+ 1
tcomponent ← tcomponent + 1

end
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Figure 2: Boxplots of relative discrete distribution parameter errors for settings CB
221, CP

221, CM
221 and CM

451, for
the three continuous distributions on both DEM-MD (green) and EM-MD (blue). Each column corresponds to a
continuous distribution, in this order: Gaussian, Student, SAL. Each row corresponds to a setting, in this order:
CB

221, CM
221, CM

451 and CP
221.
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Figure 3: Boxplots of relative discrete distribution parameter errors for settings C524 (a), C423 (b) and CP
223 (c)

on both DEM-MD (green) and EM-MD (blue). In each subplot, a row corresponds to a continuous distribution
(Gaussian, Student, SAL in this order).
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Figure 3: Boxplots of relative discrete distribution parameter errors for settings C524 (a), C423 (b) and CP
223 (c)

on both DEM-MD (green) and EM-MD (blue). In each subplot, a row corresponds to a continuous distribution
(Gaussian, Student, SAL in this order).
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Figure 3: Boxplots of relative discrete distribution parameter errors for settings C524 (a), C423 (b) and CP
223 (c)

on both DEM-MD (green) and EM-MD (blue). In each subplot, a row corresponds to a continuous distribution
(Gaussian, Student, SAL in this order).
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Figure 4: Boxplots of relative discrete distribution parameter errors for settings C223 (a) and C343 (b), for the
three DEM-MD on both DEM-MD (green) and EM-MD (blue). In each subplot, a row corresponds to a continuous
distribution (Gaussian, Student, SAL in this order).
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Figure 4: Boxplots of relative discrete distribution parameter errors for settings C223 (a) and C343 (b), for the
three DEM-MD on both DEM-MD (green) and EM-MD (blue). In each subplot, a row corresponds to a continuous
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Algorithm 6: DEM-MD for Student Mixtures
Input: ε > 0, γ, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization: K0 ← n, β0 ← 1
π0

k ← 1/n ∀ k, µ0 ← Xc, ν0
k ← 10 ∀ k

Σ0
k ← D

k(⌈
√

Kinitial ⌉)Ig with Dk = sort
{
d2

ki = ∥xi − µk∥2
2 : d2

ki > 0, i ̸= k, 1 ≤ i ≤ n
}

initialize pd,0
k ∀ d ∈ J1, . . . , DK with (24)

t← 1
Compute τ t

ik with (20)
Compute Et

u,ik with (36)

1 while |lt∞ − lt−1
∞ | > ε do /* Aitken’s convergence */

M-Step
Compute πt

k with (21)
Compute µt

k with (10)
βt ← Algorithm 4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

tcomponent ← 1 /* variable to keep in memory the number of iterations with a stable
number of components */

otherwise do
Kt ← Kt−1

end
if t ≥ tmin and tcomponent ≥ 100 then

2 if no superimposed clusters then
βt = 0

3 else if superimposed clusters and tcomponent < 200 then /* give more time to the algorithm
to converge */
tmin ← tmin + 50

4 else merge superimposed clusters
adjust πt, µt, Σt−1, νt−1 and τ t

end
end
Compute ΣEM

k with (11) and Σt
k = (1− γ)ΣEM

k + γP with
γ = 0.0001, P = d2

minIg, d
2
min = min{d2

ij : d2
ij = ∥xi − xj∥2

2 > 0, 1 ≤ i, j ≤ n}
Compute νt

k by solving (4) with Brent’s method on the interval [2, 200]
Compute discrete probabilities pd,t

k with (25) , (26) , (27)
E-Step
Compute τ t+1

ik with (20)
Compute Et+1

u,ik with (36)
t← t+ 1
tcomponent ← tcomponent + 1

end
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Algorithm 7: DEM-MD for SAL Mixtures
Input: ε > 0, dataset X = [Xc,XD] with Xi ∈ Rg ×X , a and b for temperature
Initialization: K0 ← n, β0 ← 1
π0

k ← 1/n ∀ k, α0
k ← [0, . . . , 0]g ∀ k

µ0 ← Xc + ϵ, ϵ ∼ N (0, σ2)

Σ0
k ← D

k(⌈
√

Kinitial ⌉)Ig with Dk = sort
{
d2

ki = ∥xi − µk∥2
2 : d2

ki > 0, i ̸= k, 1 ≤ i ≤ n
}

Initialize pd,0
k ∀ d ∈ J1, . . . , DK with (24)

t← 1
Compute τ t

ik with (23)
Compute Ek,t

1i with (38)
Compute Ek,t

2i with (39)
1 while |lt∞ − lt−1

∞ | > ε do /* Aitken’s convergence */
CM-Step 1
Compute πt

k with (21)
Compute µt

k with (13)
βt ← Algorithm 4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

tcomponent ← 1 /* variable to keep in memory the number of iterations with a stable
number of components */

otherwise do
Kt ← Kt−1

end
if t ≥ tmin and tcomponent ≥ 100 then

2 if no superimposed clusters then
βt = 0

3 else if superimposed clusters and tcomponent < 200 then /* give more time to the algorithm
to converge */
tmin ← tmin + 50

4 else merge superimposed clusters
adjust πt, µt, αt−1, Σt−1 and τ t

end
end
Compute discrete probabilities pd,t

k with (25) , (26) , (27)
Check µt = xc

i and compute αt
k with Algorithm 1

Intermediate E-step
Compute τ̃ t

ik, Ẽk,t
1i and Ẽk,t

2i with respectively (23), (38) and (39)
CM-Step 2
Compute Σt

k with (14)
E-Step
Compute τ t+1

ik with (23)
Compute Ek,t+1

1i with (38)
Compute Ek,t+1

2i with (39)
t← t+ 1
tcomponent ← tcomponent + 1

end
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