
HAL Id: hal-04510582
https://hal.science/hal-04510582v3

Preprint submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fourth-order entropy-stable lattice Boltzmann schemes
for hyperbolic systems

Thomas Bellotti, Philippe Helluy, Laurent Navoret

To cite this version:
Thomas Bellotti, Philippe Helluy, Laurent Navoret. Fourth-order entropy-stable lattice Boltzmann
schemes for hyperbolic systems. 2024. �hal-04510582v3�

https://hal.science/hal-04510582v3
https://hal.archives-ouvertes.fr


Fourth-order entropy-stable lattice Boltzmann schemes for
hyperbolic systems

Thomas Bellotti∗ Philippe Helluy∗ Laurent Navoret∗

September 6, 2024

Abstract

We present a novel framework for the development of fourth-order lattice Boltzmann schemes to
tackle multidimensional nonlinear systems of conservation laws. As for other numerical schemes for
hyperbolic problems, high-order accuracy applies only to smooth solutions. Our numerical schemes
preserve two fundamental characteristics inherent in classical lattice Boltzmann methods: a local
relaxation phase and a transport phase composed of elementary shifts on a Cartesian grid. Achieving
fourth-order accuracy is accomplished through the composition of second-order time-symmetric basic
schemes utilizing rational weights. This enables the representation of the transport phase in terms
of elementary shifts. Introducing local variations in the relaxation parameter during each stage of
relaxation ensures entropy stability of the schemes. This not only enhances stability in the long-time
limit but also maintains fourth-order accuracy. To validate our approach, we conduct comprehensive
testing on scalar equations and systems in both one and two spatial dimensions.
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Introduction
Lattice Boltzmann schemes [30] have gained acclaim for their computational efficiency and ease of use
on modern computer architectures (e.g. GPUs), owing to their distinctive structure, comprising a local
collision/relaxation phase and a linear transport phase. The latter is constructed through shifts of data on
a regular Cartesian grid. Despite their recent application in simulating non-linear systems of conservation
laws [23, 27, 21, 9, 8, 4, 28], these methods exhibit lower accuracy for such problems compared to more
conventional approaches like Finite Volume and Discontinuous Galerkin methods.

While the attainment of second-order accuracy in lattice Boltzmann schemes is well-understood,
achieved by setting relaxation parameters to two [20, 24, 5], obtaining third and fourth-order accuracy
proves to be a more intricate challenge [24]. The ability to increase the order is not guaranteed a priori—
especially for non-linear equations—and depends on the specific lattice Boltzmann scheme in use. When
possible, higher accuracy is attained by delicately tuning equilibria that do not contribute to consistency
at the leading order, a process that can be complex. Moreover, it is challenging to ascertain the stability
of the scheme under such modifications. Consequently, the only fourth-order schemes identified so far
only address linear scalar equations in 1D [15, 7], with minimal practical significance, the linear diffusion
equation in 2D [16], and a specific kind of coupled Burgers’ equations [17]. Finally, a third-order time-
accurate / sixth-order space-accurate scheme [40] exists to tackle 1D linear diffusion equations.

This contribution aims at establishing a comprehensive framework for constructing fourth-order ki-
netic schemes for non-linear systems of multi-dimensional conservation laws. To achieve this objective,
a departure from standard lattice Boltzmann schemes is necessary. Nevertheless, the numerical schemes
to be developed maintain the two keys to success of any standard lattice Boltzmann scheme, namely the
locality of the collision phase and a transport phase made up of simple shifts, thus retain their notorious
efficiency, compared to standard kinetic schemes [36, 1]. The essential idea to increase the order of the
schemes is to allow both forward and backward steps in time.

In the whole paper, we deal mostly with smooth solutions: the development of limiting procedures
in the context of lattice Boltzmann schemes—a recently emerging topic [34]—remains an open and
fundamental question worth thorough discussions that we do not address in the present contribution.
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Matching the discussion concerning limiters for Finite Volume schemes, limiters can be divided into a
priori limiters, such as slope limiters, see [39, Chapter 6] for a general overview, and a posteriori ones,
e.g. [18]. The latter correct the solution after a tentative first guess with pathologies has been computed.
Ignoring limiters, the present contribution aims at being a proof of concept of a new way to construct
high-order lattice Boltzmann schemes for general hyperbolic problems.

The paper is organized as follows. In Section 1, we introduce the system of conservation laws addressed
in this paper, along with its relaxation approximation, facilitating the handling of non-linearity. Section 2
outlines our numerical strategy, beginning with a conventional lattice Boltzmann scheme, followed by
a time-symmetrization step [19], and eventual composition to achieve fourth-order accuracy [41]. We
finish on brief considerations about stability, specifically in terms of the L2 norm in a basic scalar
linear setting. A first batch of numerical experiments, presented in Section 3, empirically confirms the
theoretical predictions. In Section 4, we introduce a method for adjusting the relaxation parameter to
ensure entropy stability for the numerical scheme. The need for this procedure and the fact that it
does not alter the order of the scheme are studied by means of new numerical experiments in Section 5.
Finally, in Section 6, we propose, study, and test several variations on our fourth-order scheme. We
eventually conclude in Section 7.

1 Target system of conservation laws and relaxation approxima-
tion

1.1 Target system of conservation laws
We aim at approximating the solution of the system on u : R× Rd → RM :

∂tu+

d∑

j=1

∂

∂xj
φj(u) = 0, (1)

where φj : RM → RM for j ∈ J1, dK are smooth and possibly non-linear fluxes, see [26]. To give a simple
example, taking d = 1, M = 1, and φ(u) = 1

2u
2 yields the inviscid Burgers’ equation. We assume that

(1) admits a Lax entropy–entropy fluxes pair (S,G1, . . . , Gd), with S : RM → R and Gj : RM → R for
j ∈ J1, dK, such that ∇uφ

j∇uS = ∇uG
j with S convex. Further properties on this construction can be

found in [10, 11].

1.2 Relaxation systems
In order to isolate the non-linearity of the fluxes appearing in (1) into a local relaxation term which is
easily tractable, we consider the following discrete-velocity BGK relaxation systems [10, 2, 11] on the
distribution functions f1, . . . ,fq : R× Rd → RM , under the form

∂tfk +

d∑

j=1

V j
k

∂fk
∂xj

= −1

ϵ
(fk − f eq

k (u)), k ∈ J1, qK. (2)

Here, q ≥ 2 is the number of discrete velocities, which are Vk ∈ Rd, u =
∑k=q

k=1 fk, and we indicate
the relaxation time by ϵ > 0. Moreover, the equilibria f eq

k are non-linear functions of u,and fulfill the
compatibility relations

u =

q∑

k=1

f eq
k (u), φj(u) =

q∑

k=1

V j
k f

eq
k (u), j ∈ J1, dK, (3)

under which, the formal limit ϵ → 0+ gives that fk ≈ f eq
k and that the sum of the distribution functions

under (2) approximates (1), see [2, 36].
For future use, we introduce the microscopic entropy [22], given by the sum of the kinetic entropies:

Σ(f1, . . . ,fk) =
∑k=q

k=1 sk(fk), where the kinetic entropies s1, . . . , sq : RM → R are convex functions of
their argument under the so-called characteristic condition. We also have

S(u) = min
u=

∑k=q
k=1 fk

Σ(f1, . . . ,fk) = Σ(f eq
1 (u), . . . ,f eq

k (u)), (4)
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meaning that the entropy S stems from a constrained optimization of the microscopic entropy Σ, and
that the minimum is reached on the equilibrium. Furthermore, equation (4) tells us that the entropy is an
inf-convolution of the kinetic entropies [28], which translates—thanks to the Legendre-Fenchel transform
[43] that we shall indicate by a ∗—into S∗ =

∑k=q
k=1 s

∗
k. We also additionally request that [22]

Gj,⋆ := φj(u(p)) · p−Gj(u(p)) =

q∑

k=1

V j
k s

∗
k, j ∈ J1, dK, (5)

where p = ∇uS is the conjugate variable. We here warn the readers about the difference between
Legendre-Fenchel–transformed quantities, denoted by the symbol ∗, and the notation employing a ⋆ in
(5).

Let us introduce the choices of discrete velocities and relaxation systems that we address in the paper.

1.2.1 d = 1: One-dimensional problems

We consider a two-velocities model, so we set q = 2, having V1 = V > 0 ( indexed by +, for the associated
distribution function is transported in the positive direction) and V2 = −V < 0 (indexed by −). The
only way of fulfilling (3) is to select the following equilibria:

f eq
± (u) =

1

2
u± 1

2V
φ(u).

Using the change of basis u = f+ + f− and v = V (f+ − f−), (2) can be recast as
{

∂tu+ ∂xv = 0,

∂tv + V 2∂xu = − 1
ϵ (v −φ(u)), (6)

being the well-known Jin-Xin relaxation system [32]. In the lattice Boltzmann nomenclature, this is a
D1QM

2 relaxation system [27].
Let us provide a few examples of problems that can be tackled using this scheme.

Example 1 (Linear transport equation). Let M = 1 and φ(u) = au. We consider the classic quadratic
entropy given by S(u) = 1

2u
2, thus the entropy flux is given by G(u) = a

2u
2. We obtain S∗(p) = 1

2p
2 and

G⋆(p) = a
2p

2 (observe that G∗(p) = 1
2ap

2). The dual kinetic entropies satisfying the imposed constraints
are

s∗±(p) =
1

4

(
1± a

V

)
p2, thus s±(f±) =

V

V ± a
(f±)

2.

The condition providing the convexity of the kinetic entropy is the sub-characteristic condition |a| < V
that is found in many works, see [10, 2].

Example 2 (Burger’ equation). Let M = 1 and φ(u) = 1
2u

2. We take S(u) = 1
2u

2, thus the entropy
flux is given by G(u) = 1

3u
3. Analogously to the linear case, we obtain

s∗±(p) =
1

4
p2 ± 1

12V
p3, s±(f±) =

V 2

6

((
1± 4f±

V

)3/2

∓ 6f±
V

− 1
)
.

Again, convexity comes by |u| < V .

Example 3 (Shallow water system). Let M = 2, u = (u1, u2) = (h, hu), and φ(h, hu) = (hu, hu2 + g
2h

2)
where g > 0 is the gravity acceleration. As in [12, Section 3.2], we take S(h, hu) = 1

2hu
2 + g

2h
2, hence

G(h, hu) = 1
2hu

3 + g
2h

2u. We have the dual variables p1 = − 1
2u

2 + gh and p2 = u and the dual kinetic
entropies given by

s∗±(p) =
(V ± p2)(2p1 + p22)

2

16gV
.

Convexity comes under the condition V > |u|+√
gh, see [28], which guarantees that the kinetic velocity

is larger than the one of the fastest wave in the system. The kinetic entropies can be found analytically,
albeit with complicated formulæ: they are given by s±(f±) = p±(f±) · f± − s∗±(p±(f±)), where p±(f±)
is the solution of f± = ∇ps

∗
±(p±). One can see that the first equation to solve is linear in p1±, thus we

obtain

p1±(p
2
±) =

4V gf1
± − V (p2±)

2 ∓ (p2±)
3

2(V ± p2±)
,
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which corresponds to a third-order equation on p2± only:

±V g(f1
±)

2 + f1
±(p

2
±)

3 − V 2f2
± ± (2V f1

± ∓ f2
±)(p

2
±)

2 + (V 2f1
± ± 2V f2

±)p
2
± = 0.

This equation can be solved with the well-known formula for cubic equations, upon choosing a specific
branch.

1.2.2 d = 2: Two-dimensional problems

We consider a four-velocities model, so we set q = 4, having V1 = (V, 0) (indexed by +, x) with V > 0,
V2 = (0, V ) (indexed by +, y), V3 = (−V, 0) (indexed by −, x), and V4 = (0,−V ) (indexed by −, y).
There are several ways of enforcing (3): the one we select is [25, Chapter 3]

f eq
±,x/y(u) =

1

4
u± 1

2V
φx/y(u).

Using the change of basis u = f+,x + f+,y + f−,x + f−,y, vx = V (f+,x − f−,x), vy = V (f+,y − f−,y),
and w = V 2(f+,x − f+,y + f−,x − f−,y), we get





∂tu+ ∂xvx + ∂yvy = 0,

∂tvx + V 2∂x
(
1
2u+ 1

2V 2w
)
= − 1

ϵ (vx −φx(u)),

∂tvy + V 2∂y
(
1
2u− 1

2V 2w
)
= − 1

ϵ (vy −φy(u)),

∂tw + V 2∂xvx − V 2∂yvy = − 1
ϵw.

(7)

This can be called a D2QM
4 relaxation system [23].

Example 4 (Linear transport equation). Let M = 1 and φ1(u) = (axu), φ2(u) = ayu. We consider
S(u) = 1

2u
2, thus the entropy flux is given by G(u) = (ax

2 u2,
ay

2 u2). We obtain S∗(p) = 1
2p

2 and
G⋆(p) = (ax

2 p2,
ay

2 p2). Possible dual kinetic entropies satisfying the constraints are

s∗±,x/y(p) =
1

4

(1
2
± ax/y

V

)
p2, thus s±,x/y(f±,x/y) =

2V

V ± 2ax/y
(f±,x/y)

2.

The conditions providing the convexity of the kinetic entropies read |ax/y| < V/2, see [28].

Besides the specific choices of discrete velocities that we have presented hitherto, the techniques
developed in the paper work as long as Vk ∈ V Zd for k ∈ J1, qK with a given V ∈ R. For example, one
could employ the well-known D2Q9 scheme [37].

2 Numerical schemes
Now that we have set the preliminaries concerning relaxation systems at a continuous level, we are ready
to propose several numerical schemes to tackle (1) inspired by (2).

The first step is—in Section 2.1—the introduction of transport and relaxation phases, yielding the
standard lattice Boltzmann scheme. This scheme can be easily made second-order accurate; however, it
is hard to push it towards higher accuracy because the scheme lacks time-symmetry. The time-symmetry
property is indeed useful for increasing the order of the scheme through palindromic composition [41].
The second step in the process, presented in Section 2.2, is conducted by symmetrization, without
increasing the actual order of the scheme. The latter is the aim of the third step in the process and is
obtained by composition, as detailed in Section 2.3.

For the space discretization, we employ a uniform Cartesian mesh ∆xZd—also known as lattice—of
step ∆x > 0. The uniform time step is denoted by ∆t > 0 and is specified in what follows.

2.1 Standard lattice Boltzmann schemes
The left-hand side of (2) is made up of linear transport equations with constant velocities Vk, whereas
the right-hand side represents local relaxations. It is therefore natural to split these two terms and let
them undergo different treatments. In this part of the paper, we consider k ∈ J1, qK be the index of any
discrete velocity.

4



2.1.1 Transport

The equations associated with the left-hand side of (2) are solved using any consistent one-step scheme
for the linear transport equation. Recall that the kinetic velocities Vk are integer multiples of V , which
is adjusted so that the kinetic velocity V fulfills V∆t/∆x = κ ∈ N∗. In this way, the transport phase
is indeed given by elementary shifts on the grid, which is the natural issue of any consistent one-step
scheme in this peculiar framework. The fact of shifting data sticking to the discrete grid makes our
approach a lattice Boltzmann approach. This reads

fk(∆t,x) = fk(0,x− Vk∆t) = fk(0,x− κVk

V︸︷︷︸
∈Zd

∆x), x ∈ ∆xZd. (8)

Gathering all the distribution functions together, this transport phase is denoted by T(∆t). This operator
is made up of exact schemes for the transport equations; however, one must be aware that we have
performed an overall splitting between transport and relaxation, thus this does not ensure accuracy with
respect to the original problem (2)—and a fortiori with (1)—above first-order.

2.1.2 Relaxation

The relaxation part, i.e. the right-hand side of (2), is solved using a trapezoidal quadrature, see [20],
which is second-order accurate. Using the fact that the relaxation phase conserves u and thus any
equilibrium fulfills f eq

k (u(∆t)) = f eq
k (u(0)), the algorithm can be fortunately kept explicit and thus

reads
fk(∆t) =

2ϵ−∆t

2ϵ+∆t
fk(0) +

2∆t

2ϵ+∆t
f eq
k (u(0)) −−−→

ϵ→0
−fk(0) + 2f eq

k (u(0)). (9)

The space variable is not listed since the relaxation step is local and performed at each point of the
spatial grid ∆xZd. We consider the limit ϵ → 0 in (9), thus a relaxation independent of ∆t. Therefore,
ϵ no longer appears in the numerical scheme. The relaxation system and its discretization must be seen
as an intermediate step to propose a numerical scheme for another equation where no relaxation time
exists, namely (1). More generally, a relaxation independent of ∆t can be written as

fk(∆t) = (1− ω)fk(0) + ωf eq
k (u(0)). (10)

with a relaxation parameter ω ∈ (0, 2], and we indicate it by Rω. Whenever we write R, we mean Rω=2.
Notice that Rω=2 is an involution: Rω=2Rω=2 = Id, which is false for relaxation parameters ω < 2. This
feature of the relaxation operator is crucial in what follows.

2.1.3 Overall lattice Boltzmann scheme

One can show that the scheme ψ(∆t) = RT(∆t) (or ψ(∆t) = T(∆t)R) is a second-order scheme to
solve (1). This boils down to the standard SRT (Single-Relaxation-Time) lattice Boltzmann scheme
with relaxation parameter equal to two [27], which is second-order accurate, see [24, 5].

However, these schemes are not time-symmetric. Time symmetry is defined by

ψ(∆t)ψ(−∆t) = Id and ψ(0) = Id. (11)

In the present case, ψ(∆t)ψ(−∆t) ̸= Id, where whenever we employ negative time-steps, it is like if we
simply reverse V 7→ −V using a positive time-step, i.e. the distribution functions are transported in the
opposite direction compared to what they would do when V > 0. Time-symmetry is a highly desirable
feature that fosters the increase of the order by using composition procedures, in the spirit of what [41]
presents. We now try to fix this problem.

2.2 Symmetric lattice Boltzmann schemes
The first idea is to use a sort of Strang formula that would read ψ(∆t) = T(∆t

2 )RT(∆t
2 ). Since the

transport phase is made up of elementary shifts on the grid, we have that ψ(∆t)ψ(−∆t) = Id. However,
ψ(0) ̸= Id, thus this operator is not suitable to be employed to increase the overall order of the numerical
scheme. Juxtaposing two half-steps of this operator—following [19]—we can take advantage of the
involution property of the relaxation operator R, and gain

ψ(∆t) = T
(∆t

4

)
RT

(∆t

4

)
T
(∆t

4

)
RT

(∆t

4

)
= T

(∆t

4

)
RT

(∆t

2

)
RT

(∆t

4

)
. (12)
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One can easily check that, thanks to the fact that R is an involution, we have (11) hence ψ defined
through (12) is time-symmetric. So far, nothing special has been done to increase the order, so (12) is
just another second-order accurate solver, as the one provided by the Strang formula T(∆t

2 )RT(∆t
2 ).

2.3 Fourth-order lattice Boltzmann scheme
The symmetry property is crucial to obtain high-order schemes by composition. Let us assume that the
symmetric lattice Boltzmann operator ψ(∆t) defined in (12) leads to a converging lattice Boltzmann
scheme. In other words, this means that ψ(∆t) is an approximation of the flow of a formal differential
equation (f1, . . . ,fq)

′(t, ·) = g((f1, . . . ,fq)(t, ·)). In the Lie groups theory, cf. [41, Introduction] and
[29, Chapter 2 and 3], it is common to denote the flow of the differential equation by the exponential
notation (f1, . . . ,fq)(t, ·) = etg((f1, . . . ,fq)(0, ·)). This is a generalization of the matrix exponential
from the linear case. With this, we have ψ(∆t) ≈ e∆tg. In [21, 28], it is shown that

∑k=q
k=1 gk(f1, . . . ,fq)

depends only on u =
∑k=q

k=1 fk, and
q∑

k=1

gk(u) = −
d∑

j=1

∂

∂xj
φj(u),

so that the scheme eventually solves (1), plus other equations that can be made explicit. It is possible
to be more precise: by time-symmetry, using [41, Theorem 19], there exists a vector field d such that

ψ(∆t) = e∆tg+∆t3d +O(∆t5),

indicating that ψ is second-order accurate. Remark that there is no guarantee on the fact that g and d
commute. Following [41, Equation (4.4)], we look for an overall operator—constructed by composition—
under the form

ϕ(∆t) = ψ(α∆t)nψ(β∆t)ψ(α∆t)n, (13)

where n ∈ N∗. According to [41, Theorem 22], the operator ϕ is such that

ϕ(∆t) = e∆t(2nα+β)g+∆t3(2nα3+β3)d +O(∆t5),

thus it has a local truncation error of order five—thus it is globally accurate at order four—provided
that the conditions

2nα+ β = 1, (14)

2nα3 + β3 = 0, (15)

are satisfied. For we want to deal with a lattice Boltzmann approach, characterized by the fact that
the transport phase (8) is made up of integer shifts on the discrete spatial grid ∆xZd, we would like
α, β ∈ Q.1 In order to fulfill (15), one can easily see that either α or β has to be negative, meaning that
steps with transport according to the sign of the discrete velocities are interspersed with steps in the
opposite direction. Otherwise said, the price to pay to obtain fourth-order consistency is to alternate
steps both forward and backward in time. Inserting (14) into (15) gives 2nα3+(1−2nα)3 = 0. For n = 1
the only real solution is irrational. The same holds for n = 2, 3, and these cases are not of interest in our
setting, because once put back into (14), both α and β are irrational and eventually incommensurable.
For n = 4, we have the rational solution α = 1/6, hence β = −1/3. Therefore, the formula that we
retain is

ϕ(∆t) = ψ
(∆t

6

)4

ψ
(
−∆t

3

)
ψ
(∆t

6

)4

. (16)

Looking at (16) and (12), we see that the shortest transport phase features a time-step equal to ∆t/24.
This means that “particles” roughly travel V∆t/(24∆x) gridpoints at each time the transport operator is
called. To ensure that the scheme remains a lattice Boltzmann scheme, we enforce that V∆t/(24∆x) =
κ ∈ N∗. The time step is given by ∆t = 24κ∆x/V . We consistently take κ = 1. The kinetic velocity is
freely chosen, still ensuring that all the waves in (1) are resolved:

V >∼ max
i∈J1,MK

|λi|, (17)

where the λi are the eigenvalues of the Jacobian matrix of φ, i.e. the velocities of the waves. The kinetic
velocity should not be too large compared to the fastest wave in the system, to ensure accuracy.

1It could still be possible to obtain a lattice Boltzmann scheme whenever α, β ∈ R ∖ Q, provided that α and β are
commensurable.
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Remark 1. We see that according to (16), at each time step, “particles” undergo 1 × 4 × 4 × κ = 16κ
shifts according to the sign of their velocities and eight relaxations, followed by 2× 1× 4× κ = 8κ shifts
(of twice the length) in the opposite direction and two relaxations, followed again by 1× 4× 4× κ = 16κ
shifts according to the sign of their velocities and eight relaxations.

Remark 2. By making the change of variable ∆t 7→ 24∆t, we can interpret things in another manner.
The overall scheme is fourth-order accurate if we observe it every 24 time steps doing

4 times︷ ︸︸ ︷
T(∆t)RT(2∆t)RT(∆t)× · · · × T(∆t)RT(2∆t)RT(∆t)

× T(−2∆t)RT(−4∆t)RT(−2∆t)

× T(∆t)RT(2∆t)RT(∆t)× · · · × T(∆t)RT(2∆t)RT(∆t)︸ ︷︷ ︸
4 times

,

which means having done 32 steps (of length κ) forward and 8 steps backward (of twice the step) with a
specific interleaving.

Remark 3 (Cost of the scheme). Considering (16) and the previous remark, the cost of the whole
algorithm might seem very high. However, the time-marching procedure is totally made up of traditional
transport and relaxation steps of a standard lattice Boltzmann method, and techniques to parallelize and
deploy them of modern architectures ( e.g. GPUs) are available and indeed employed. A crucial advantage
of the splitting strategy is that it does not require additional storage, as it is the case with a Runge-Kutta
approach. Moreover, the numerical solution in the inner sub-steps is consistent—i.e. meaningful—and
simply second-order accurate. We can thus consider the method as an (almost) standard second-order
lattice Boltzmann scheme, where fourth-order accuracy is observed at specific steps of the time-marching
procedure.

2.4 L2 stability
We see in Section 4 that—with a simple procedure acting on the relaxation parameter—our scheme can
possess excellent features concerning entropy stability, ensuring stability in a non-linear framework. This
comes from the fact that entropy provides—reminding us of the work by [33]—the right weighted norm
to take the effect of the relaxation into account. It is more involved to study the stability with respect
to the L2 norm, which furthermore applies only to a linear setting. Even for the standard D2Q4 from
Section 2.1, no explicit L2 stability condition is known, to the best of our knowledge.

Nevertheless, we start by a brief study concerning L2 stability. We consider the case of d = 1 with
one conservation law M = 1, thus we use a D1Q2 scheme. Moreover, we consider a linear problem:
φ(u) = au. A polynomial with complex coefficients is said to be a simple von Neumann polynomial if its
roots are in the closed unit disk and those on the unit circle are simple. Then, the corresponding Finite
Difference scheme computed using the characteristic polynomial of ϕ [5] is L2 stable if the characteristic
polynomial, upon considering its Fourier transform, is a simple von Neumann polynomial for every
frequency. Conversely, the original lattice Boltzmann scheme ϕ is L2 stable if its minimal polynomial
is a simple von Neumann polynomial for every frequency, see [7]. It is well-know [27] that the standard
lattice Boltzmann scheme (RT(∆t) or T(∆t)R) from Section 2.1 is stable for the L2 norm under the
strict condition

|a|∆t

κ∆x
< 1, (18)

which is the CFL condition of a leap-frog scheme, cf. [45]. For the new scheme ϕ(∆t) given by (16), we
cannot conclude that it is stable provided that ψ(∆t

6 ) and ψ(−∆t
3 ) are stable, because these operators

are not simultaneously diagonalizable, for they do not commute. We have to study the eigenvalues
of ϕ(∆t). In particular, we focus on its characteristic polynomial—whose roots include those of the
minimal polynomial—as long as it allows concluding. Otherwise, we switch to the minimal polynomial.
The characteristic polynomial reads

det(zId− ϕ̂(∆t)(ξ∆x)) = z2 − tr(ϕ̂(∆t)(ξ∆x))z + det(ϕ̂(∆t)(ξ∆x)), (19)

for |ξ∆x| ≤ π. Here, hats denote Fourier-transformed quantities. Since det(T̂(∆t)(ξ∆x)) = 1, det(R̂(ξ∆x)) =
−1, and ϕ is made up of an even number of relaxations R, we can use the formula for the determinant
of a product of matrices and thus obtain det(ϕ̂(∆t)(ξ∆x)) = 1. For the trace appearing in (19), less can

7



be said. Its explicit expression—computed using a computer algebra system—is involved and provided
in Appendix A for the interested readers. Yet, we observe that tr(ϕ̂(∆t)(ξ∆x)) ∈ R. Using the results
by [42], the characteristic polynomial is a simple von Neumann polynomial if and only if the sole root
of d

dzdet(zId− ϕ̂(∆t)(ξ∆x)) is in the open unit disk. This reads

|tr(ϕ̂(∆t)(ξ∆x))| < 2. (20)

One can be easily persuaded, cf. Appendix A, that (20) if fulfilled as long as |a|/V < 1 (except at
ξ∆x = 0, π

2κ which need to be analyzed separately) and, when going beyond this value, that the left-
hand side of (20) is critically maximal at ξ∆x = π

4κ . Evaluating (20) at this value gives an inequality
of degree 16 in a/V , which, solved using sage-math, exactly gives (21). This allows to conclude that
under this condition, except for ξ∆x = 0, π

2κ , the characteristic polynomial of ϕ̂(∆t)(ξ∆x) and thus the
minimal polynomial are simple von Neumann. The two exceptional cases are exactly those where there is
a gap between characteristic and minimal polynomials [7]. Indeed det(zId− ϕ̂(∆t)(ξ∆x))|ξ∆x=0,π/(2κ) =

(z − 1)2, whereas ϕ̂(∆t)(ξ∆x)|ξ∆x=0,π/(2κ) = Id indicates that z − 1 is the minimal polynomial in this
case, and it is simple. Finally, we observe that we cannot include the case |a|/V = 1, since det(zId −
ϕ̂(∆t)( π

4κ ))||a|/V=1 = (z − 1)2 but

ϕ̂(∆t)( π
4κ )||a|/V=1 =

(
1 32i
0 1

)
.

This allows concluding on the L2 stability of the lattice Boltzmann scheme, see the following result.

Proposition 1. Let d = 1, M = 1, and φ(u) = au. Consider a D1Q2 scheme. Then ϕ(∆t) is L2-stable
under the condition

|a|
V

=
|a|∆t

24κ∆x
< 1. (21)

Observe that there is no difference between (18) and (21), because in between, we have made the
change of variable ∆t 7→ 1

24∆t. This is indeed the sub-characteristic condition found in Example 1.

3 Numerical experiments: Order of the scheme
We now proceed to several numerical experiments to confirm the theoretical order of the method we have
devised in a non-linear context. We consider both scalar problems and systems in one and two spatial
dimensions. All the tests have been implemented and parallelized on GPUs using OpenCL [4].

3.1 Non-linear scalar problem: Burgers’ equation in 1D

4th-order LBM ϕ(∆t)
0 ∆t

ψ(∆t
6
)

ψ(−∆t
3
)

ψ(∆t
6
)

2nd-order LBM
0 ∆t

RT(∆t
24

)

Figure 1: Way of devising a fair comparison between our new fourth-order lattice Boltzmann scheme
(top) and the original second-order lattice Boltzmann scheme (bottom).

To test the fourth-order convergence of our solver ϕ in a genuinely non-linear setting, we consider the
Burgers’ equation on a bounded domain [0, 1] endowed with periodic boundary conditions. The initial
datum is the point-wise discretization of u(t = 0, x) = sin(2πx) with data taken at equilibrium, which
means that fk(t = 0) = f eq

k (u(t = 0)) for k ∈ J1, qK. In order to fulfill the sub-characteristic condition,
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the kinetic velocity is V = 1.2. The final time of the simulation, at which we measure errors, is T = 1/10,
which is before the solution exhibits a shock wave.

We would also like to compare the accuracy of our approach against the standard second-order lattice
Boltzmann method given by RT(∆t). To ensure a fair comparison between errors at roughly the same
computational cost, we have to proceed as indicated in Figure 1, namely consider the scheme given
by (RT(∆t

24 ))
24. This allows to have roughly the same number of operations between the second-order

scheme (24 steps) and the fourth-order scheme (32 steps) for advancing of ∆t in time. The additional
steps are needed for the fourth-order scheme sometimes goes backward in time.

Table 1: Errors and order of convergence in the L2 norm for the Burgers’ equation using the second-order
lattice Boltzmann scheme and our new fourth-order scheme.

2nd-order LBM 4th-order LBM
∆x L2 error Order L2 error Order

2.000E-03 8.592E-05 3.370E-06
1.250E-03 3.358E-05 2.00 1.552E-06 1.65
7.813E-04 1.404E-05 1.86 1.742E-07 4.65
4.883E-04 5.494E-06 2.00 3.365E-08 3.50
3.053E-04 2.160E-06 1.99 5.184E-09 3.98
1.908E-04 7.799E-07 2.17 8.688E-10 3.80
1.193E-04 3.057E-07 1.99 1.221E-10 4.18
7.454E-05 1.287E-07 1.84 2.109E-11 3.74

The results are given in Table 1 and show second-order convergence for the original lattice Boltzmann
scheme and fourth-order convergence for the new scheme. Comparing the standard second-order lattice
Boltzmann scheme to our new scheme in the framework where they have roughly the same computational
cost, we see that even at a very coarse resolution, the fourth-order scheme outperforms the standard
scheme being at least twenty times more accurate.

3.2 Non-linear system: Shallow water equations in 1D

Table 2: Error estimations and order of convergence in the L2 metric for the shallow water system.

Height h Velocity u
∆x Err-Estimh Order Err-Estimu Order

7.8125E-03 5.8333E-06 2.9538E-05
3.9063E-03 7.9483E-07 2.88 1.6474E-06 4.16
1.9531E-03 1.0703E-07 2.89 4.8759E-08 5.08
9.7656E-04 7.6700E-09 3.80 2.9001E-09 4.07
4.8828E-04 4.9440E-10 3.96 1.8273E-10 3.99
2.4414E-04 3.1134E-11 3.99 1.1456E-11 4.00
1.2207E-04 1.9495E-12 4.00 7.1665E-13 4.00
6.1035E-05 1.2202E-13 4.00 4.5492E-14 3.98

We now test the order of the method for a system of equations. We consider the same setting as
Section 3.1 except for the fact that we deal with the shallow water system with gravity g = 1 and initial
datum (h, u)(t = 0, x) = (1/2 + 1/5 sin(2πx), 0). Simulations are carried until a final time of T = 5/16
with kinetic velocity V = 1.2. For the exact solution of the problem is difficult to find, the fourth-order
accuracy of the method is demonstrated using the following error estimators:

Err-Estimh =

√∑

k∈Z
∆x|h∆x(T, k∆x)− h∆x/2(T, k∆x)|2,

Err-Estimu =

√∑

k∈Z
∆x|u∆x(T, k∆x)− u∆x/2(T, k∆x)|2,

where h∆x and u∆x indicate the discrete solution of our fourth-order scheme computed with space step
∆x. We expect fourth-order convergence, which translates into Err-Estimh,Err-Estimu = O(∆x4) as
∆x → 0. The numerical results in Table 2 give the expected trends for both height h and velocity u.
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Table 3: Error estimations and order of convergence in the L2 metric for the Burgers’ equation in 2D.

∆x Err-Estim Order
6.667E-02 8.784E-02
3.226E-02 2.643E-02 1.65
1.587E-02 9.601E-03 1.43
7.874E-03 1.854E-03 2.35
3.922E-03 3.155E-04 2.54
1.957E-03 3.285E-05 3.25
9.775E-04 1.155E-06 4.82
4.885E-04 2.541E-08 5.50
2.442E-04 1.749E-09 3.86

3.3 Multidimensional non-linear scalar problem: Burgers’ equation in 2D
To test our approach in 2D, we consider the Burgers’ equation ∂tu + ∂x(u

2/2) + ∂y(3u
2/10) = 0 on

the bounded domain [0, 1]2 endowed with periodic boundary conditions. The initial datum is a narrow
Gaussian profile, given by u(t = 0,x) = exp(−100|x− (1/2, 1/2)T |2). Simulations are carried until final
time T = 1/16 where we measure

Err-Estim =

√∑

k∈Z2

∆x2|u∆x(T,k∆x)− u∆x/2(T,k∆x)|2,

given in Table 3. Once again we observe that our numerical method is fourth-order accurate, as expected.

4 Entropy stability
We now address a more useful notion of stability compared to the one studied in Section 2.4, which
is going to be especially suitable for the non-linear framework. The total microscopic entropy in the
domain—at each time—is given by

∑

x∈∆xZd

Σ(f1(x), . . . ,fq(x)).

If the computational domain is infinite or periodic boundary conditions on the distribution functions are
enforced, this quantity is conserved throughout the transport phase T(∆t), since it is made up of shifts
for each discrete velocity, without mixing the distribution functions between them. Mathematically, this
reads

∑

x∈∆xZd

Σ(T(∆t)(f1(x), . . . ,fq(x)))

=
∑

x∈∆xZd

q∑

k=1

sk(fk(x− κVk

V ∆x)) =

q∑

k=1

∑

x∈∆xZd

sk(fk(x− κVk

V ∆x))

=

q∑

k=1

∑

x∈∆xZd

sk(fk(x)) =
∑

x∈∆xZd

Σ(f1(x), . . . ,fq(x)).

This is generally not true for the relaxation Rω=2 that we have employed so far. There is an exception
to this: the relaxation phase Rω=2 preserves the microscopic entropy when the problem is linear. For
example, in the context of the linear transport equation, cf. Example 1, simple computations give that

Σ(Rω=2(f+, f−)) = Σ(f+, f−) =
V

V + a
(f+)

2 +
V

V − a
(f−)

2.

This is generalized by the following result.

Proposition 2. Let (1) be linear, that is of the form

∂tu+

d∑

j=1

Aj ∂u

∂xj
= 0.
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Let P be a symmetrizer, that is, a symmetric definite positive matrix such that PAj is symmetric for
all j ∈ J1, dK. Consider the natural quadratic entropy-entropy flux given by

S(u) =
1

2
Pu · u, Gj(u) =

1

2
PAju · u.

Assume that the kinetic entropies s1, . . . , sq are such that s∗1, . . . , s
∗
q are quadratic and convex in their

argument, and fulfill

q∑

k=1

s∗k(p) = S∗(p) =
1

2
P−1p · p,

q∑

k=1

V j
k s

∗
k(p) = Gj,⋆(p) =

1

2
AjP−1p · p.

Then the relaxation phase Rω=2 conserves the microscopic entropy:

Σ(Rω=2(f1, . . . ,fq)) = Σ(f1, . . . ,fq),

hence the numerical scheme ϕ is entropy preserving.

Proof. The given quadratic entropy-entropy flux are natural in the sense that

P ∂tu+

d∑

j=1

PAj∂xj
u = 0, then

∂t(Pu) · u+

d∑

j=1

∂xj
(PAju) · u = ∂t

(
1
2Pu · u

)
+

d∑

j=1

∂xj

(
1
2PA

ju · u
)
= 0.

The dual entropy and entropy flux can be easily calculated and give the expected constraint on the dual
kinetic entropies. By assumption, the microscopic entropy Σ(f1, . . . ,fq) =

∑k=q
k=1 sk(fk) is a quadratic

function in each argument. Its minimum under the conservation constraint is given by the equilibria,
according to (4). The relaxation Rω=2 given by (9) is nothing but a reflection with respect to the equi-
librium and because Σ and its isolines respect this symmetry, the post-relaxation distribution functions
yield the same value of Σ, concluding the proof.

f+

f−

Contours of Σ
Rω(f+,f−)(f+, f−)

(f+, f−)

(feq
+ , feq

− )

ω

Figure 2: Idea—illustrated in the case of a two-velocities scheme—behind the procedure selecting a
variable relaxation parameter ω = ω(f+, f−), in order to make the pre and the post-relaxation datum
lay on the same level-set of the microscopic entropy. Notice that the equilibrium is a minimizer.

However, we are interested in non-linear problems, where is it no longer true that Rω=2 preserves the
microscopic entropy. Our discussion is inspired by [31, 14, 3], who however employ a Boltzmann logarith-
mic entropy of the form

∑k=q
k=1 fk log (fk/ωk), where ωk are positive weights, instead of the microscopic

entropy Σ. Notice that the Boltzmann logarithmic entropy is well-defined as long as the distribution
functions are positive, which is however almost never the case in practice, for they are merely “numerical”
variables.
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The microscopic entropy imbalance through relaxation, very similar to [3, Equation (4)], reads

∆Σ(f1,...,fq)(ω) = Σ(Rω(f1, . . . ,fq))− Σ(f1, . . . ,fq).

At each time the relaxation operator is used, for every x ∈ ∆xZd and thus for every f1(x), . . . ,fq(x),
we solve the problem

find ω = ω(f1, . . . ,fq) such that ∆Σ(f1,...,fq)(ω) = 0, (22)

and then relax using Rω(f1,...,fq), see Figure 2. We observe that—even this is practically what happens—
there is no guarantee that (22) admits a solution. This highly depends on the structure of the underlying
problem and the chosen entropies. Notice, and this is very important, that the new relaxation operator
is an involution, namely

Rω(Rω(f1,...,fq)(f1,...,fq))Rω(f1,...,fq)(f1, . . . ,fq) = (f1, . . . ,fq),

which can be seen by looking at Figure 2. The meaning of this formula is the following: from given
distribution functions (f1, . . . ,fq), one computes the non-linear ω(f1, . . . ,fq) by (22), and relaxes with
this rate. Then, the result of this relaxation feeds (22) once again, and a second relaxation with this
new rate ω(Rω(f1,...,fq)(f1, . . . ,fq)) is performed. Eventually, the distribution functions go back to their
original value (f1, . . . ,fq). This guarantees that the overall scheme retainsfourth-order accuracy, because
the involution property ensures that the basic brick by (12) is time-symmetric, both in the case ω = 2
and when ω = ω(f1, . . . ,fq) adapted by (22).

Finally, we emphasize the fact that enforcing conservation of the microscopic entropy guarantees that
the entropy S inside the domain decreases with respect to its initial value during the simulation. In
particular, using (4), we have:

∑

x∈∆xZd

S(u(t,x)) =
∑

x∈∆xZd

min
u(t,x)=

∑k=q
k=1 fk

Σ(f1, . . . ,fq)

≤
∑

x∈∆xZd

Σ(f1(t,x), . . . ,fq(t,x))

=
∑

x∈∆xZd

Σ(f1(0,x), . . . ,fq(0,x))

=
∑

x∈∆xZd

Σ(f eq
1 (u(0,x)), . . . ,f eq

q (u(0,x))) =
∑

x∈∆xZd

S(u(0,x)),

where the last but one equality is valid upon selecting the initial datum at equilibrium, which is the most
common choice.

5 Numerical experiments: Entropy conservation
The purpose of the numerical experiments in this section is two-fold. On the one hand, we would like to
highlight the importance of the procedure presented in Section 4 to ensure stability. On the other hand,
we want to check that the numerical scheme retains fourth-order accuracy as claimed.

5.1 Non-linear scalar problem: Burgers’ equation in 1D
We start by considering the Burgers’ equation. We employ the very same setting as Section 3.1, except for
the choice V = 10 as far as the kinetic velocity is concerned. This is done in order to avoid violating the
sub-characteristic condition when the first oscillations occur, which would of course drive the simulation
to instability and would make the entropy correction unavailable due to the lack of convexity of the
kinetic entropies. We consider a computational domain made up of 200 points with periodic boundary
conditions. The result is in Figure 3, where we use a dichotomy to solve (22) at each point of the lattice.
We see that the simulation which always employs Rω=2 leads to instabilities (we stopped plotting the
values when they strongly diverge), whereas the one where ω is adapted using (22) remains stable as
claimed. This is due to the fact that once the shock is formed, the oscillations grow if no entropy
correction is used, until some point where the sub-characteristic condition is violated, and instabilities
savagely develop. Furthermore, one sees that when ω = 2, the total microscopic entropy steadily increases
in time, causing the eventual instability.
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Figure 3: Norm of the solution (top) and difference between the total microscopic entropy at time
zero and eventually in time (bottom), when simulating the Burgers’ equation with and without entropy
conservation during the relaxation. In the bottom plot, we add 10−10 to avoid taking the logarithm of
zero.
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Let us point out a practical yet fundamental point on the computation of a solution to (22). Indeed,
we can have fk ≈ f eq

k , thus making ∆Σ(f1,...,fq)(ω) quite close to zero with almost zero derivative in
ω. This frequently cause issues when iterative methods (Newton’s, dichotomy, etc.) are employed to
solve (22). The idea is to factorize the distance from the equilibrium in the problem: ∆Σ(f+,f−)(ω) =

(f+ − f eq
+ )∆Σ̃(f+,f−)(ω) = 0, so that one eventually solves ∆Σ̃(f+,f−)(ω) = 0.

Table 4: Errors and order of convergence in the L2 norm for the Burgers’ equation using (22).

∆x L2 error Order
2.000E-03 3.725E-06
1.250E-03 1.764E-06 1.59
7.813E-04 1.965E-07 4.67
4.883E-04 3.826E-08 3.48
3.053E-04 5.898E-09 3.98
1.908E-04 9.914E-10 3.79
1.193E-04 1.390E-10 4.18
7.454E-05 2.410E-11 3.73

Finally, we check that the entropy conservation procedure (22) does not change the fourth-order
convergence of the method. We operate in the very same setting as in Section 3.1, also re-establishing
V = 1.2. The results in Table 4 confirm that no order reduction is experienced and the scheme retains
fourth-order accuracy, as claimed.

5.2 Non-linear system: Shallow water system in 1D
For testing the entropy correction on the shallow water system with gravity g = 1, we take the initial
datum

(h, u)(t = 0, x) =

{
(2, 0), x < 1/2,

(3/2, 0), x ≥ 1/2,

and the kinetic velocity V = 6 with a spatial grid made up of 100 points. The results are given
in Figure 4, where problem (22) has been solved using a quasi -Newton’s method. This confirms the
stabilizing power of the entropy conservation procedure and highlights—once again—that the growth of
the total microscopic entropy makes solutions eventually diverge in time.

6 Variations on the numerical scheme and additional numerical
experiments

We now propose variations on the basic fourth-order numerical scheme that we have proposed—whose
interest is justified—and additional numerical experiments.

6.1 Projections on the equilibrium
We consider different schemes—where we introduce projections on the equilibrium at different stages.
This way of proceeding can be used to reduce oscillations and enhance stability when shocks form.
Somehow, these projections can help the numerical scheme to decrease entropy. Before proceeding, notice
that Rω=1 is the projection on the equilibrium. The name “projection” perfectly fits for Rω=1Rω=1 =
Rω=1. We consider
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Scheme (I)

{
ϕ(∆t) by (16),
ψ(∆t) by (12).

Scheme (II)

{
ϕ(∆t) = Rω=1ψ

(
∆t
6

)4
ψ
(
−∆t

3

)
ψ
(
∆t
6

)4
,

ψ(∆t) by (12).

Scheme (III)

{
ϕ(∆t) =

(
Rω=1ψ

(
∆t
6

))4
Rω=1ψ

(
−∆t

3

)(
Rω=1ψ

(
∆t
6

))4
,

ψ(∆t) by (12).

Scheme (IV)

{
ϕ(∆t) by (16),
ψ(∆t) = Rω=1T

(
∆t
4

)
Rω=2T

(
∆t
4

)
Rω=1T

(
∆t
4

)
Rω=2T

(
∆t
4

)
.

Let us briefly comment on these schemes. The first one is the original fourth order scheme we have
proposed. For Scheme (I), (II), and (III), the basic brick ψ is left unchanged. Scheme (II) just performs
a projection on the equilibrium at the end of each fourth-order solver. Scheme (III) does so after each
employ of the basic brick ψ. Finally, Scheme (IV) acts in a radically different fashion, for it combines
a modified basic brick ψ with the same composition. The basic brick ψ is modified as a pairing of two
Strang formulæ followed by projections on the equilibrium.

6.2 Non-linear scalar problem: Burgers’ equation in 1D

Table 5: Errors and order of convergence in the L2 norm for the Burgers’ equation using different
variation on our new fourth-order scheme.

Scheme (I) Scheme (II) Scheme (III) Scheme (IV)
∆x L2 error Order L2 error Order L2 error Order L2 error Order

Initial datum at equilibrium
2.000E-03 3.370E-06 3.374E-06 3.246E-06 1.147E-05
1.250E-03 1.552E-06 1.65 1.551E-06 1.65 1.476E-06 1.68 5.686E-06 1.49
7.813E-04 1.742E-07 4.65 1.742E-07 4.65 1.677E-07 4.63 1.193E-06 3.32
4.883E-04 3.365E-08 3.50 3.365E-08 3.50 3.275E-08 3.47 3.471E-07 2.63
3.053E-04 5.184E-09 3.98 5.184E-09 3.98 5.091E-09 3.96 8.691E-08 2.95
1.908E-04 8.688E-10 3.80 8.688E-10 3.80 8.586E-10 3.79 2.283E-08 2.84
1.193E-04 1.221E-10 4.18 1.221E-10 4.18 1.212E-10 4.17 5.327E-09 3.10
7.454E-05 2.109E-11 3.74 2.109E-11 3.74 2.099E-11 3.73 1.418E-09 2.82

Initial datum off-equilibrium
2.000E-03 6.432E-06 5.355E-06 4.115E-05 1.653E-04
1.250E-03 1.800E-06 2.71 1.639E-06 2.52 1.069E-05 2.87 6.785E-05 1.90
7.813E-04 2.182E-07 4.49 1.825E-07 4.67 2.576E-06 3.03 2.579E-05 2.06
4.883E-04 3.945E-08 3.64 3.425E-08 3.56 6.346E-07 2.98 1.015E-05 1.98
3.053E-04 6.061E-09 3.99 5.234E-09 4.00 1.551E-07 3.00 3.958E-06 2.00
1.908E-04 9.954E-10 3.84 8.730E-10 3.81 3.796E-08 3.00 1.551E-06 1.99
1.193E-04 1.423E-10 4.14 1.225E-10 4.18 9.245E-09 3.01 6.033E-07 2.01
7.454E-05 2.396E-11 3.79 2.112E-11 3.74 2.264E-09 2.99 2.369E-07 1.99

To start testing the four different schemes proposed hitherto, we consider exactly the same setting
as Section 3.1 and we shall test both by initializing the distribution functions at equilibrium and off-
equilibrium. The results are given in Table 5 and show fourth-order convergence—when the initial datum
is taken at equilibrium—for all numerical schemes except the last one, where order is reduced to three
because of the projection on the equilibrium in the basic brick ψ. Therefore, it is not advisable to
employ Scheme (IV). Trying not to initialize at equilibrium, by taking (f+, f−)(t = 0) = ( 14 ,

3
4 )u(t = 0),

we observe fourth-order convergence for the first two schemes, third-order for the third scheme, and
second-order for the last one, this phenomenon is explained in what follows. We deduce that Scheme
(III) needs to be used carefully, in particular, initializing at equilibrium.

In this non-linear case, the order reduction induced by the projections on the equilibrium could be
seen using the modified equations [47, 28] but this would lead to very tedious calculations. Alternatively,
this phenomenon can be easily understood in the case of linear transport, where φ(u) = au, using
Fourier analysis [45]. In this case, we can look at the expansions of the two roots z1 and z2 of det(zId−
ϕ̂(∆t)(ξ∆x)) in the limit |ξ∆x| ≪ 1, to theoretically understand the different convergence rates. This
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provides

Scheme (I)

z1(ξ∆x) = e−iaξ∆t +
ia

622080
(24a4 − 25a2V 2 + V 4)(ξ∆t)5 +O(|ξ∆t|6),

z2(ξ∆x) = eiaξ∆t − ia

622080
(24a4 − 25a2V 2 + V 4)(ξ∆t)5 +O(|ξ∆t|6).

Scheme (II)

z1(ξ∆x) = e−iaξ∆t +
ia

622080
(24a4 − 25a2V 2 + V 4)(ξ∆t)5 +O(|ξ∆t|6),

z2(ξ∆x) = 0.

Scheme (III)

z1(ξ∆x) = e−iaξ∆t +
ia

622080
(24a4 − 25a2V 2 + V 4)(ξ∆t)5 +O(|ξ∆t|6),

z2(ξ∆x) = 0.

Scheme (IV)

z1(ξ∆x) = e−iaξ∆t +
a2

3456
(a2 − V 2)(ξ∆t)4 +O(|ξ∆t|5),

z2(ξ∆x) = 0.

We see that only the first scheme allows two discrete modes in the system, because no relaxation
on the equilibrium is performed. One mode is the one carrying the accurate part of the solution,
whereas z2(ξ∆x) corresponds to a parasitic numerical mode which is globally fourth-order accurate with
respect to a transport equation with opposite velocity −a. Moreover, as all the leading order reminders
vanish whenever a = V and typically increase with V , these expansions suggest that one should take
V >∼ a but as close as possible to the velocity of the fastest wave, cf. (17), in order to minimize the
truncation errors. Notice that in the first three schemes, we could observe fifth-order results provided
that |a| =

√
6/12V < V . Indeed, we have even more: since z1(ξ∆x) = e−iaξ∆t+ ia

622080 (24a
4− 25a2V 2+

V 4)(ξ∆t)5 + a2

622080 (24a
4 − 25a2V 2 + V 4)(ξ∆t)6 + O(|ξ∆t|7) in the case of Schemes (I) and (II), the

method can be sixth-order and this is what we observe through simulations. For Scheme (III), we have
z1(ξ∆x) = e−iaξ∆t+ ia

622080 (24a
4−25a2V 2+V 4)(ξ∆t)5+ a2

1244160 (63a
4−65a2V 2+2V 4)(ξ∆t)6+O(|ξ∆t|7),

hence the scheme remains only fifth-order accurate when |a| =
√
6/12V .

Table 6: Errors and order of convergence in the L2 norm for the transport equation with |a| =
√
6/12V

and initial datum at equilibrium.

Scheme (I) Scheme (II) Scheme (III) Scheme (IV)
∆x L2 error Order L2 error Order L2 error Order L2 error Order

5.000E-02 2.283E-02 2.283E-02 2.307E-02 1.591E-01
3.125E-02 1.890E-03 5.30 1.890E-03 5.30 2.660E-03 4.60 5.120E-02 2.41
1.961E-02 1.239E-04 5.85 1.239E-04 5.85 2.662E-04 4.94 1.321E-02 2.91
1.235E-02 8.066E-06 5.90 8.066E-06 5.90 2.713E-05 4.94 3.394E-03 2.94
7.752E-03 5.040E-07 5.96 5.040E-07 5.96 2.685E-06 4.97 8.506E-04 2.97
4.854E-03 3.081E-08 5.97 3.081E-08 5.97 2.616E-07 4.98 2.111E-04 2.98
3.040E-03 1.855E-09 6.00 1.855E-09 6.00 2.514E-08 5.00 5.171E-05 3.00
1.901E-03 1.111E-10 6.00 1.111E-10 6.00 2.406E-09 5.00 1.265E-05 3.00

These predictions are actually met by the results of Table 6. They are obtained exactly in the same
setting as for the Burgers’s equation, taking a final time T = 10 and quite coarse meshes in order to
avoid very small errors below machine epsilon in double precision, since the numerical methods are now
extremely accurate. Of course, this is of limited interest since valid only in the linear setting and does not
extend to the case of the Burgers’ equation. However, a similar idea could be utilized in the simulation
of low-Mach–flows, where the wave speed is roughly constant in the domain, in order to obtain, if not
sixth-order schemes, very accurate fourth-order ones.

To understand the order reductions experienced when the initial datum is not at equilibrium, cf. the
bottom half of Table 5, again in the linear setting, we follow the procedure by [6], which has allowed to
explain the behavior of the standard second-order lattice Boltzmann scheme as far as initializations are
concerned. Considering that (f+, f−)(t = 0) = (θ, 1− θ)u(t = 0) with θ ∈ R, we study the low-frequency

17



limit of ĝ(ξ∆x) = (eT1 + eT2 )ϕ̂(∆t)(ξ∆x)(θ, 1 − θ)T , the amplification factor giving the approximation
of the conserved variable u after one time step, as function of the initial datum of the Cauchy problem.
We have

Scheme (I) and (II) ĝ(ξ∆x) = e−iaξ∆t +O(|ξ∆t|5),
independently of θ, which explains why fourth-order is indeed kept. For the other schemes

Scheme (III) ĝ(ξ∆x) = e−iaξ∆t − ia2

1728
(a+ V − 2V θ)(ξ∆t)3 +O(|ξ∆t|4),

hence we understand why we observe third-order convergence except when the initial datum is at equi-
librium, that is θ = 1

2 (1 +
a
V ). Finally, we have

Scheme (IV) ĝ(ξ∆x) = e−iaξ∆t +
a

288
(a+ V − 2V θ)(ξ∆t)2 +O(|ξ∆t|3),

yielding the same conclusion at second-order.

6.3 Solution of the Euler equations in 2D with Riemann problems

Figure 5: Densities at final time T = 0.25 with Riemann problems for the Euler equations, using
Configuration 4 from [38] and employing schemes (A), (B), and (C).

We finish the paper on a test concerning the full Euler system in 2D with discontinuous solutions.
Therefore, we have d = 2, M = 4 with u = (u1, u2, u3, u4) = (ρ, ρu, ρv, E) under the fluxes φ1(ρ, u, v, p) =
(ρu, ρu2+p, ρuv, u(E+p)) and φ2(ρ, u, v, p) = (ρv, ρuv, ρv2+p, v(E+p)), where the link between energy
E and pressure p is given by the polytropic equation of state

E =
1

2
ρ(u2 + v2) +

p

γ − 1
,
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with γ the gas constant.
We consider an initial datum made up of a Riemann problem with four constant states, given by the

configuration 4 from [38], with gas constant γ = 1.4. The grids are made up of 1024 and 2048 points per
direction, with a kinetic velocity V = 6.21. We would like to compare the second-order standard lattice
Boltzmann scheme against our new fourth-order scheme. In the considered framework, the standard
lattice Boltzmann method RωT(∆t) can only be used—for stability reasons—with ω = 1.93, hence it is
stuck to first-order accuracy, though with little dissipation. We utilize the scheme with ∆t = ∆x/V and
call it scheme (A). In this case, projecting on the equilibrium at each iteration would result in relaxing
with ω = 1, which gives extremely diffusive schemes. We therefore do not make this choice. To build a
second-order stable scheme, which is however not the standard lattice Boltzmann scheme, we consider
Rω=1T

(
∆t
4

)
Rω=2T

(
∆t
2

)
Rω=2T

(
∆t
4

)
, which boils down to perform one time-step by applying the basic

brick (12) plus a relaxation on the equilibrium. We select ∆t = 4∆x/V and call the scheme (B). With
our fourth-order scheme, we are able to use ω = 2, hence making the scheme fourth-order accurate,
provided that we employ Scheme (III). Indeed, the projection on the equilibrium at each call of the basic
brick ψ has a very positive effect on stability. Notice that one could add shock detection algorithms in
order to set ω = 2 far from shocks and ω slightly smaller than two, ensuring the elimination of spurious
oscillations. However, as claimed at the very beginning of the manuscript, this is beyond the proof-of-
concept status of the paper and shall not be investigated here. The simulations are not stable when
using Scheme (I) and ω = 2.

After T = 0.25, the density field is plotted in Figure 5. The results are in agreement with those of
[38]. We see that, surprisingly, at the fixed grid sizes that we consider, the lower the order of the scheme,
the sharper the shocks appear on the picture, especially at coarse resolution. This is due to the (slightly)
dissipative character of the scheme of the first-order scheme (A), contrarily to the dispersive nature of the
second (B) and fourth-order (C) schemes, which generate visible wiggles around the shocks. However,
this is not very important since, in the case of scalar 1D conservation laws solved with monotone (thus
first-order accurate) finite difference schemes, the rate of convergence for solutions with shocks is O(

√
∆x)

in the L1 norm, see [35, 46, 44]. When the problem is linear, for the same norm, we can expect rates
O(∆x2/3) for second-order schemes and O(∆x4/5) for fourth-order ones, see [13]. Therefore, we cannot
hope that either the standard lattice Boltzmann scheme or the 2nd-order scheme beats our fourth-order
scheme. More interestingly, our fourth-order scheme allows observing hydrodynamic instabilities in the
smooth area of the flow, along the central axis of the almond-shaped structure. This indicates that
the underlying numerical scheme is a high-order one, whereas these structures cannot be observed with
the standard lattice Boltzmann method and the second-order scheme at the given resolutions. In terms
of computational time on GPUs, the standard lattice Boltzmann algorithm—scheme (A)—took 7.213
seconds to run with 1024 points per direction, and 59.697 seconds with 2048. Scheme (B) took 6.072
seconds with 1024 and 53.270 seconds with 2048 points. The fourth-order method—scheme (C)—took
9.470 seconds with 1024 and 64.529 seconds with 2048 points.

7 Conclusions
In this study, we have introduced a general framework for constructing fourth-order lattice Boltzmann
schemes tailored to handle hyperbolic systems of conservation laws as long as their solution remains
smooth. Our procedure relies on time-symmetric operators, combined together to increase the order
of the method. For we employ a kinetic relaxation approximation, we can adjust the kinetic velocities
to ensure that the resulting scheme adheres to the lattice Boltzmann method principles. Numerical
simulations have been conducted to validate our theoretical findings. Furthermore, we have proposed
modifications to the local relaxation phase to maintain entropy stability without compromising the order
of the method.

Future research directions include the development of limitation strategies—both a priori and a
posteriori—for these lattice Boltzmann schemes to effectively address numerical oscillations arising from
shocks. Additionally, techniques to ensure positivity, particularly when dealing with shallow water
equations, will be of interest. Finally, exploring methods to further increase the order of the scheme,
potentially up to six or beyond, holds promise for enhancing accuracy and computational efficiency.
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A Trace of the amplification matrix for the linear D1Q2 scheme
Introducing C = a∆t/(κ∆x) and µ(ξ∆x) = sin(κξ∆x) ∈ [−1, 1], we have

tr(ϕ̂(∆t)(ξ∆x)) = − (C18−576C16)1
101559956668416µ(ξ∆x)36 +

17(C18−576C16)
203119913336832 µ(ξ∆x)34

− (8C18−4491C16−67392C14)1
25389989167104 µ(ξ∆x)32 +

(35C18−18414C16−1005696C14)
50779978334208 µ(ξ∆x)30

− (49C18−22554C16−3223152C14−24634368C12)
50779978334208 µ(ξ∆x)28

+
(91C18−31500C16−11499408C14−315767808C12)

101559956668416 µ(ξ∆x)26

− (14C18−2079C16−3074112C14−213077952C12−1108546560C10)
25389989167104 µ(ξ∆x)24

+
(11C18+2358C16−3889944C14−623464128C12−11824496640C10)

50779978334208 µ(ξ∆x)22

− (5C18+4932C16−2516832C14−1053025920C12−51399608832C10−203166351360C8)
101559956668416 µ(ξ∆x)20

+
(C18+3384C16−204768C14−992466432C12−115473600000C10−1712402104320C8)

203119913336832 µ(ξ∆x)18

− (C16+792C14−494208C12−160807680C10−6429570048C8−20316635136C6)
470184984576 µ(ξ∆x)16

+
(3C14+8C12−871200C10−91228032C8−1128701952C6)

8707129344 µ(ξ∆x)14

− (3C12−1100C10−445392C8−15894144C6−41803776C4)
120932352 µ(ξ∆x)12

+
(11C10−9720C8−997920C6−10450944C4)

20155392 µ(ξ∆x)10 +
(C8+224C6+2496C4+13824C2)

31104 µ(ξ∆x)8

− (7C6−24C4−2304C2)
2592 µ(ξ∆x)6 +

(C4−4C2)
12 µ(ξ∆x)4 − C2µ(ξ∆x)2 + 2.

This is an even polynomial of degree 36 to study on a bounded set [0, 1]. Since only even powers of
C appear, we can just analyze C > 0. From Figure 6, we are confident that the polynomials stay in the
band [−2, 2] as long as C ≤ 24, and they depart from it through a maximum forming at µ(ξ∆x) =

√
2/2,

namely for ξ∆x = π/(4κ).
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Figure 6: Trace of the amplification matrix for the linear D1Q2 scheme for different values of C.
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