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Abstract— Medical IoT networks face significant cyber threats
that compromise system accessibility, patient confidentiality, and
data communication security. Our study introduces a novel de-
tection method using spectral graph analysis. This mathematical
technique, based on the Laplacian matrix’s spectral properties,
provides insights into network topology changes by analyzing
networks as dynamic graphs over time. This method enables us
to track spectral variations over time, enabling the early detection
of cybersecurity threats. The spectral analysis shows the detection
of the attacks over the Bot-IoT and Ton-IoT datasets, that consist
of both benign and simulated malicious network traffic.

Index Terms—Cybersecurity, Spectrum, Spectral graph anal-
ysis, Laplacian Matrix, XGBoost.

I. INTRODUCTION

This paper proposes a spectral time windowing approach
called SpectraTW for attack detection and evaluates it in the
context of medical IoT network traffic. By modeling network
interactions through a graph model, it enables the identification
of unusual behaviours. The preliminary results of this research
assess the effectiveness of graph spectral analysis by showing
its impact on the performance of machine learning (ML)
algorithms such as XGBoost. This evaluation offers initial
insights into its applicability in real-world scenarios.

II. STATE-OF-THE-ART

This section discusses the advancement in cybersecurity
anomaly detection, transitioning from traditional methods to
advanced machine learning and deep learning. In real-time
detection, systems like ReTiNA [1] stand out in statistical
methods, whereas the CAMLPAD [2] framework is designed
for real-time cybersecurity data collection and uses machine
learning to detect anomalies and perform scoring. Network
security faces challenges with limited labeled data for training,
leading to the adoption of graph-based ML. Techniques like
walk-based sampling [3] transform unstructured graph data
into structured forms. Time series graph learning [4] are uti-
lized for identifying complex network patterns. Additionally,
deep learning significantly influences graph data analysis, like
GCNs [5] becoming increasingly important. Spectral graph
analysis accurately identifies complex threats by dynamically

monitoring networks and using spectral metrics for network
behavior analysis.

III. SPECTRAL METRICS

This section explains the metrics we introduced for de-
tecting attacks over the network. These metrics are de-
rived from the eigenvalues (Λt ) of the Laplacian ma-
trix. We denote by Λt [i] the ith eigenvalue, i ∈ [1,n],
sorted in increasing order, and by Z (t) the multiplicity
of zero in Λt . Connectedness, equal to exp(1/Z (t)−1),
measures interconnectivity in the network. Let N be the
number of network devices (e.g. switches and servers).
Flooding, equal to ( 1

N ∑
Z (t)+N
i=Z (t)+1 Λt [i]) − 1 and Wiriness,

equal to 1
N ∑

n
i=n−N +1 Λt [i], analyze edge weights and con-

nections, focusing on the central and highest eigenvalues
respectively. Asymmetry, equal to Card{i ≥ 2; Λt [i]−Λt [i−
1]> 10−12}, tracks spectrum evolution.

IV. EXPERIMENTS AND OBSERVATIONS

Table I
FEATURE SELECTION FOR EACH APPROACH

COD CTS CTW SpectraTW
Packet Features x x x x
Rate Features x x x x
Byte Features x x x x
Other Features x x
Connectedness x
Flooding x
Wiriness x
Asymmetry x

Our study utilizes the Botnet [6] and TonIoT [7] datasets.
We have opted for XGBoost as the classification tool [8].
We investigate various anomaly detection strategies with the
features shown in Table I, beginning with Classification on
Original Data-logs (COD), which involves the examination of
raw data. Followed by Classification on Time-series (CTS),
which concentrates on transforming data into time-series for-
mat. Additionally, we explore Classification on Time-window



Table II
METRICS EVALUATION OVER TON-IOT DATASET

Ton-IoT Dataset COD CTS CTW SpectraTW

DDoS
F1 Score 0.9764 0.6175 0.9943 1
Balanced Acc 0.9833 0.7628 0.9971 1
MCC 0.9752 0.6256 0.9943 1

DoS
F1 Score 0.9837 0.9054 0.9957 1
Balanced Acc 0.9902 0.9403 0.9964 1
MCC 1 0.8816 1 1

Scanning
F1 Score 0.9890 0.3363 0.9938 1
Balanced Acc 0.9959 0.6102 0.9995 1
MCC 0.9884 0.3631 0.9933 1

Ransomware
F1 Score 0.8290 0.2978 0.9243 0.9949
Balanced Acc 0.9131 0.5973 0.9526 0.9949
MCC 0.8193 0.3450 0.9240 0.9948

SQL Injection
F1 Score 0.9735 0.8445 0.8428 0.9972
Balanced Acc 0.9808 0.9040 0.8732 0.9999
MCC 0.9721 0.8433 0.8480 0.9972

Password
F1 Score 0.9808 0.7304 0.9148 0.9939
Balanced Acc 0.9882 0.9522 0.9748 0.9966
MCC 0.9798 0.7363 0.9125 0.9937

XSS
F1 Score 0.8710 0.6731 1 1
Balanced Acc 0.9509 0.8043 1 1
MCC 0.8645 0.6753 1 1

Backdoor
F1 Score 0.9985 0.8589 0.9928 0.9995
Balanced Acc 0.9989 0.8928 0.9967 0.9995
MCC 0.9984 0.8563 0.9923 0.9995

MitM
F1 Score 0.7239 0.4542 0.7640 1
Balanced Acc 0.8733 0.6747 0.8148 1
MCC 0.7235 0.4742 0.7818 1

(CTW), utilizing a sliding window approach for more intri-
cate data scrutiny. Finally, Classification on Spectral-Time-
Window (SpectraTW) is employed for a comprehensive spec-
tral analysis of the network’s structure. All strategies entails
the dataset features, whereas SpectraTW possesses our spectral
metrics features in addition. The analysis of the datasets
shown in Table II and III, with the XGBoost classifier reveals
significant insights. The SpectraTW approach consistently
outperforms other methods, particularly in categories like OS-
Fingerprint and Keylogging. It achieves high performance,
indicating its ability in feature selection and combination.

Table III
METRICS EVALUATION OVER BOTNET-IOT DATASET

Botnet-IoT Dataset COD CTS CTW SpectraTW

DDoS
F1 Score 1 0.8750 1 1
Balanced Acc 1 0.8888 1 1
MCC 1 0.8816 1 1

ScanService
F1 Score 0.8937 0.9966 0.9990 0.9994
Balanced Acc 0.9760 0.9133 0.9834 0.9942
MCC 0.8835 0.8965 0.9797 0.9885

OS
Fingerprint

F1 Score 0.2617 0.8235 0.9953 0.9953
Balanced Acc 0.5804 0.8798 0.9953 0.9953
MCC 0.3198 0.8240 0.9952 0.9952

Keylogging
F1 Score 0.5333 0.6666 1 1
Balanced Acc 0.7856 0.7998 1 1
MCC 0.5344 0.6703 1 1

It results in more accurate anomaly detection and correlation
between predictions and actual classifications. In contrast,
other approaches show varied effectiveness, with SpectraTW
emerging as the most efficient method for enhancing classifier
performance in complex cyber threat scenarios.

V. ATTACKS BEHAVIORS

In the datasets results shown in Tables II and III, attack
distributions fall into categories of exploitation, disruption,

scanning, theft, and reconnaissance. This section provides a
description of port scanning, OS fingerprinting, and keylog-
ging attacks and explains the role of spectral analysis in
identifying these attacks. Port scanning is used to identify
open network ports, while OS fingerprinting seeks to gather
data on the operating system and its communication protocols.
These types of attacks are marked by persistent port scanning
activities, noticeable by increased connection attempts and a
surge in the quantity and frequency of data packets sent to
the target. SpectraTW uses spectral metrics features, relying
on communication data that affects its spectral characteristics
and on packets count, rate, and bytes per session, over single
or multiple predetermined time frames. SpectraTW effectively
handles several time windows, corresponding to various states
and ports within the same time-frame. They analyze multiple
graphs, created based on data like packets, rates, and bytes,
which is essential for detecting theft attacks.

VI. ATTACK MODELS

Attackers could evade spectral detection by adopting strate-
gies that disrupt the typical patterns. These strategies might
include varying the rate and distribution of scanning activities
to avoid creating consistent patterns in the graph topology. The
attacker could also vary the attack intensity over time, making
the eigenvalue patterns less pronounced and more challenging
to detect.

VII. CONCLUSION AND FUTURE WORK

Our proposed approach highlights spectral analysis as an
effective tool for detecting cyber threats in medical IoT, and
points out XGBoost’s successful use in anomaly detection,
with SpectraTW proving efficient in most attack scenarios.
It achieves 100% detection rates for certain threats, such as
MitM attacks, indicating significant improvement. For more
complex attacks like Ransomware, it attains over 99% effec-
tiveness. Future work will focus on advanced, sequential attack
strategies, which are challenging to detect using conventional
methods.
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