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APPROXIMATION OF THE INVARIANT DISTRIBUTION FOR

A CLASS OF ERGODIC JUMP DIFFUSIONS

A. Gloter, I. Honoré* and D. Loukianova

Abstract. In this article, we approximate the invariant distribution ν of an ergodic Jump Diffusion
driven by the sum of a Brownian motion and a Compound Poisson process with sub-Gaussian jumps.
We first construct an Euler discretization scheme with decreasing time steps. This scheme is similar
to those introduced in Lamberton and Pagès Bernoulli 8 (2002) 367-405. for a Brownian diffusion
and extended in F. Panloup, Ann. Appl. Probab. 18 (2008) 379-426. to a diffusion with Lévy jumps.
We obtain a non-asymptotic quasi Gaussian (asymptotically Gaussian) concentration bound for the
difference between the invariant distribution and the empirical distribution computed with the scheme
of decreasing time step along appropriate test functions f such that f − ν(f) is a coboundary of the
infinitesimal generator.
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1. Introduction

1.1. Setting

Let (Xt)t≥0 be a d-dimensional càdlàg process solution of the stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt)dWt + κ(Xt−)dZt, (E)

where b : Rd → Rd, σ : Rd → Rd ⊗ Rr and κ : Rd → Rd ⊗ Rr are Lipschitz continuous, (Wt)t≥0 is a Wiener

process of dimension r, and (Zt)t≥0 is a Rr -valued compound Poisson process (CPP), Zt =
∑Nt
k=1 Yk, where

(Yk)k∈N are i.i.d. r -dimensional random vectors with common distribution π on B(Rr) and (Nt)t≥0 is a Poisson
process, independent of (Yk)k∈N. The processes (Wt)t≥0 and (Zt)t≥0 are assumed to have the same dimension
for the sake of simplicity. Moreover, (Nt)t≥0, (Yk)k∈N and (Wt)t≥0 are independent and defined on a given
filtered probability space (Ω,G, (Gt)t≥0,P). We assume that b, σ, and κ satisfy a suitable Lyapunov condition
(assumption (LV) in Sect. 1.3) which ensures the existence of an invariant distribution ν of (Xt)t≥0 (see [11]).
For the sake of simplicity we also assume the uniqueness of the invariant distribution. We refer to [8] under
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irreducibility and Lyapunov conditions for the existence and uniqueness of the invariant distribution for a
diffusion driven by Lévy process.

Generally, the invariant distribution ν of (Xt)t≥0 is not explicitly known. Its approximation is then an
important issue. The aim of this paper is to construct an appropriate algorithm νn such that limn→∞ νn(f) =
ν(f) a.s. for all suitable test functions f , and to establish a non-asymptotic concentration bound for the
probability of the deviation νn(f)− ν(f).

The algorithm that we define in this article is based on an Euler-like discretization scheme with decreasing
time step (γn)n≥1 s.t. limn γn = 0. Lamberton and Pagès developed such a scheme in [7] for a Brownian diffusion.
They showed that the empirical measure of their scheme converges to the invariant measure of the diffusion
and that it satisfies the Central Limit Theorem. The decreasing steps allow the empirical measure to directly
converge towards the invariant one. If we choose a constant time step γk = h > 0 in the scheme, the expected
ergodic theorem is νn(f)

a.s.−→
n

νh(f) =
∫
Rd f(x)νh(dx), where νh is the invariant distribution of the scheme which

is supposed to converge toward the invariant measure of the diffusion (E) when h→ 0 (for more details about
this approach we refer to [14], [13] and [9]).

Next, Panloup [11], [10], adapted the algorithm of [7] to diffusions driven by Lévy processes, he established
the convergence and the Central Limit Theorem for the empirical measure in this case.

In the same way as the questions of the convergence of the empirical measure νn or of its limiting distribution,
the natural question is that of the nature of the deviations νn(f) − ν(f) along appropriate test functions f .
In the case of the Brownian diffusion this question was considered in [4] and [5]. Note that in the Brownian
diffusion case the innovations of the Euler scheme are designed in order to “mimic” Brownian increments, hence
it is natural to assume that they satisfy some Gaussian Concentration property (assumption (GC) in Sect. 1.3).
In particular this Gaussian Concentration property is satisfied by Gaussian or symmetric Bernoulli law. Taken
as an assumption on the Brownian innovations of the scheme, it allows to show a non-asymptotic Gaussian
Concentration bound for the probability of the deviations of νn(f) from ν(f). The deviation νn(f) − ν(f) is
evaluated along the functions f such that f − ν(f) is a coboundary of the infinitesimal generator of the diffusion.

When the diffusion contains Lévy jumps, it is not generally expected that these deviations are Gaussian like
which is not in accordance with the CLT from [10]. But such a behavior seems natural if we suppose that the
driving Lévy process is a Compound Poisson process and the jump size vectors (Yk)k∈N satisfy a Gaussian
Concentration property (GC). In this paper, we focus on this situation which is simple but relevant from the
point of view of application.

Some specific stochastic diffusions with Gaussian jumps have already been used in finance, in stochastic
volatility models, see e.g. [15], and in interest rate models, see e.g. [6].

In general, for a Euler scheme corresponding to a Jump Diffusion with Lévy jumps, one has to define
numerically computable jump vectors designed to “mimic” the increments of the driving Lévy process. In most
cases, the increments of a Lévy process are not numerically computable, that is why it is important to propose
different ways to approximate these increments according to the nature of the driving Lévy process. In this
paper we introduce a scheme (S) particularly suitable in the case where a driven Lévy process is a Compound
Poisson. Note that our scheme is close to the scheme (C) of [11]. Like in the previously mentioned articles, we
denote time steps (γk)k≥1, and for any n ≥ 0, we define:

Xn+1 = Xn + γn+1b(Xn) +
√
γn+1σ(Xn)Un+1 + κ(Xn)Zn+1, (S)

where X0 is an Rd valued random variables such that X0 ∈ L2(Ω,F0,P), (Un)n≥1 is an i.i.d. sequence of centered
random variables matching the moments of the standard Gaussian law on Rr up to order three and independent
of X0. Furthermore, for every n ≥ 1 we put

Zn := BnYn, (1.1)



APPROXIMATION OF THE INVARIANT DISTRIBUTION FOR A CLASS OF ERGODIC JUMP DIFFUSIONS 885

where (Bn)n≥1 are one-dimensional independent Bernoulli random variables, independent of X0, (Un)n≥1 and

(Yn)n≥1, s.t. Bn
(law)
= Bern(µγn), where µ is the intensity of the Poisson process driving the CPP (Zt)t≥0. The

choice (1.1) of the innovations Zn, n ∈ N is motivated by the following heuristic reasoning: Zn has to “mimic”

the increment of the CPP Zt =
∑Nt
k=1 Yk on the small-time interval of the length γn.

The probability that the Poisson process (Nt)≥0 jumps on this interval is equal to 1− exp(−γn) = γn + o(γn),
and in this case, it will most probably have only one jump. Hence we approximate the increment ∆Nγn of the
Poisson process by a {0, 1} random variable with the probability of 1 equal to γn, and the increment Zγn of the
CPP by this jump-detecting Bernoulli variable, multiplied by the size of the jump.

We also introduce the empirical (random) measure of the scheme: for any A ∈ B(Rd)

νn(A) := νn(ω,A) :=

∑n
k=1 γkδXk−1(ω)(A)

Γn
, Γn :=

n∑
k=1

γk. (1.2)

Obviously, to study long time behavior, we have to consider steps (γk)k≥1 such that the current time of the
scheme Γn →

n
+∞.

We recall as well that γk ↓
k

0. We suppose that both jump amplitudes (Yn)n≥1 and Brownian innovations

(Un)n≥1 satisfy a Gaussian concentration (see further the assumption (GC)). As we already mentioned, the
aim of the paper is to show that this assumption implies a non-asymptotic (quasi) Gaussian Concentration
inequality for the probability of the deviations of νn(f) from ν(f) (see Thm. 2.1, Sect. 2 below).

The main argument in the proof of Theorem 2.1 is the fact that the (GC) property of jumps’ sizes Yk, k ∈ N,
permits to show a similar Gaussian Concentration property for the jump innovations Zk, k ∈ N. This result is
given in Proposition 1.5. However the Concentration property of jump innovations depends on the dimension
of the jump heights. This dependence survives in the main Theorem 2.1 giving a quasi-Gaussian Concentration
of the deviation of νn from ν.

The paper is organized as follows. In Section 1.2, we introduce some useful notations. The assumptions
required for our main results are outlined in Section 1.3. In this part, we formulate a quasi-Gaussian concen-
tration property of the jump innovation Zn, the proof is given in Section 2.4. We state in Section 1.4 some
already known results connected with the approximation scheme. Our main results are in Section 2, and the
proof is located in Section 2.3. Section 3 is dedicated to the analysis of the exponential integrability of Lyapunov
function. Technical lemmas are stated in Section 2.2, but their proofs are postponed to Section 4. Eventually,
we propose a numerical illustration of our main result in Section 5.

1.2. General notations

For two sequences (un)n∈N, (vn)n∈N the notation un � vn means that ∃n0 ∈ N, ∃C ≥ 1 s.t. ∀n ≥
n0, C

−1vn ≤ un ≤ Cvn.
Henceforth, C will be a non negative constant, and (en)n≥1, (Rn)n≥1 will be deterministic sequences s.t.

en →n 0 and Rn →n 1, that may change from line to line.
We denote by Im, m ∈ {d, r} the identity matrix of dimension m.
Through the article, for any smooth enough function f : Rd → R, for k ∈ N we will denote Dkf the tensor of

the kth derivatives of f . Namely Dkf = (∂i1 . . . ∂ikf)1≤i1,...,ik≤d. Yet, for a multi-index α ∈ Nd0 := (N ∪ {0})d,
we set Dαf = ∂α1

x1
. . . ∂αdxd f .

For a β-Hölder continuous function f : Rd → R, [f ]β stands for the standard Hölder modulus.
We define for (p, d,m) ∈ N3, Cp(Rd,Rm) the space of p-times continuously differentiable functions from Rd

to Rm and for f ∈ Cp(Rd,Rm), p ∈ N,[f (p)]β := sup|α|=p[D
αf ]β , where α ∈ Nd0 such that |α| :=

∑d
i=1 αi = p.

We will also use the notation [[n, p]], (n, p) ∈ (N0)2, n ≤ p, for the set of integers being between n and p.
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For k ∈ N0, β ∈ (0, 1] and m ∈ {1, d, d × r},Ck,β(Rd,Rm) and Ck,βb (Rd,Rm) stand for the standard Hölder
spaces1. For any function ζ : Rd → Rm, m ∈ {1, d, d× r}, we define ‖ζ‖∞ := supx∈Rd ‖ζζ∗(x)‖ with ‖ · ‖ is the
Fröbenius norm

For a given Borel function f : Rd → E, where E can be R, Rd, Rd ⊗ Rr,Rd ⊗ Rd, we set for k ∈ N0:

fk := f(Xk).

Moreover, for k ∈ N0, we denote

Fk := σ
(
X0, (Uj , Zj)j∈[[1,k]]

)
and F̃k := σ

(
X0, (Uj , Zj)j∈[[1,k]], Uk+1

)
. (1.3)

Eventually, we define the infinitesimal generator associated with the diffusion (E) which writes for all ϕ ∈
C2(Rd) and x ∈ Rd:

Aϕ(x) = b(x)∇ϕ(x) +
1

2
Tr
(
σσ∗(x)D2ϕ(x)

)
+ µ

∫
Rd

(ϕ(x+ κ(x)y)− ϕ(x))π(dy)

=: Ãϕ(x) + µ

∫
Rd

(ϕ(x+ κ(x)y)− ϕ(x))π(dy), (1.4)

where π stands for the distribution of Y1, and Ã is the infinitesimal generator of the continuous part of the
diffusion.

1.3. Hypotheses

We assume the following set of hypothesis about the coefficients of the SDE (E) and the parameters of the
scheme (S):

(C0) The functions b : Rd → Rd, σ : Rd → Rd ⊗ Rr and κ : Rd → Rd ⊗ Rr are globally Lipschitz continuous.

(C1) The first value of the scheme X0 is sub-Gaussian: there exists λ0 ∈ R∗+ such that

∀λ < λ0, E [exp(λ|X0|2)] < +∞.

(C2) Defining for any x ∈ Rd, Σ(x) := σσ∗(x), K(x) = κκ∗(x), we suppose that

sup
x∈Rd

Tr(Σ(x)) = sup
x∈Rd

‖σ(x)‖2 =: ‖σ‖2∞ < +∞, sup
x∈Rd

Tr(K(x)) = sup
x∈Rd

‖κ(x)‖2 =: ‖κ‖2∞ < +∞.

(GM) The sequences of random variables (Un)n≥1 and (Yn)n≥1 are respectively i.i.d., such that

E [U1] = E [Y1] = 0; E[(U i1U
j
1 )1≤i,j≤r] =: E[U⊗2

1 ] = Ir,

E[Y ⊗2
1 ] = Ir; E[(U i1U

j
1U

k
1 )1≤i,j;k≤r] =: E[U⊗3

1 ] = 02.

Also, (Un)n≥1, (Yn)n≥1 and X0 are independent.

1 Ck,β(Rd,Rm) := {f ∈ Ck(Rd,Rm) : ∀α ∈ Nd0, |α| ∈ [[1, k]], supx∈Rd |Dαf(x)| < +∞, [f (k)]β < +∞}, Ck,βb (Rd,Rm) :=

Ck,β(Rd,Rm)
⋂
L∞(Rd,Rm), for more details see e.g. [4].

2 Where 0 stands, here, for the tensor (Rd)⊗3 with null entries.
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(GC) We say that a random variable G ∈ L1 satisfies the Gaussian concentration property, if for every Lipschitz
continuous function g : Rr → R and every λ > 0:

E
[

exp(λg(G))
]
≤ exp

(
λE [g(G)] +

λ2[g]21
2

)
, (1.5)

We assume that U1 and Y1 satisfy this Gaussian concentration property.

(LV) We assume that there exists a non-negative function V : Rd −→ [v∗,+∞) with v∗ > 0 s.t.

i) V is a C2 continuous function s.t. ‖D2V ‖∞ < +∞, and lim|x|→∞ V (x) = +∞.

ii) There is C
V
∈ (0,+∞) such that for any x ∈ Rd:

|∇V (x)|2 + |b(x)|2 ≤ C
V
V (x).

iii) There are α
V
> 0, βV ∈ R+ such that for any x ∈ Rd,

AV (x) ≤ −α
V
V (x) + βV .

(U) There is a unique invariant distribution ν to equation (E).
(S) We suppose that the step sequence (γk)k≥1 is taken such that γk � k−θ, θ ∈ (0, 1]. For any ` ≥ 0, we define:

Γ(`)
n :=

∑̀
k=1

γ`k,

in particular, Γ
(1)
n = Γn (see (1.2)). This polynomial choice of time step yields:

Γ(`)
n � n1−`θ if `θ < 1; Γ(`)

n � ln(n) if `θ = 1; and Γ(`)
n � 1 if `θ > 1.

We assume that the sequence (γk)k≥1 is small enough, namely for every k ≥ 1,

γk ≤ min
(

1, µ−1,
αV

[b]1CV +
√
CV
(
4
√
CV [b]1 + 4

√
CV ‖D2V ‖∞ + 2CV

)),
where CV is given by the assumption (LV).

For β ∈ (0, 1], we introduce:
(Tβ) We choose a test function ϕ such that

i) ϕ ∈ C3,β(Rd,R),
ii) x 7→ 〈∇ϕ(x), b(x)〉 is Lipschitz continuous,

we further assume that there exist CV,ϕ > 0 s.t. for any x ∈ Rd:
iii) |ϕ(x)| ≤ CV,ϕ(1 +

√
V (x)).

Remark 1.1. Under the assumption (C0) the equation (E) admits a unique non-explosive solution (cf. [1]
Thm. 6.2.9).

Remark 1.2. The assumption (GC) is central for this paper. Note that the laws N (0, Ir) and ( 1
2 (δ1 + δ−1))⊗r,

i.e. Gaussian or symmetrized Bernoulli increments, which are the most commonly used sequences for the
sub-Gaussian innovations, satisfy (GC). Moreover, inequality (1.5) yields that for any r ≥ 0, P[|U1| ≥ r] ≤
2 exp(− r

2

2 ) (sub-Gaussian concentration of the innovation, see e.g. [2]).
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A Gaussian concentration result is natural when a CLT is available (see [10]). When the innovation does
not satisfy a Gaussian (or quasi Gaussian) concentration hypothesis, we cannot expect any non-asymptotic
Gaussian (or quasi Gaussian) concentration result for the scheme.

Remark 1.3. The assumption (LV) together with (C2) ensure, following [10] (Prop. 1) the existence of at least
one invariant distribution associated with SDE (E). Note that this Lyapunov assumption (LV) is equivalent to
the similar Lyapunov assumption for the continuous part of the equation (E). Indeed, using second order Taylor
expansion, the fact that π(·) =

∫
Rr yπ(dy) = 0 and π(| · |2) =

∫
Rr |y|

2π(dy) = r <∞, we get that

|
∫
Rr

(V (x+ κ(x)y)− V (x))π(dy)| ≤ ‖κ‖
2
∞r‖D2V ‖∞

2
.

Hence the condition iii) of (LV) is equivalent that the generator of the diffusion without jumps satisfies

ÃV (x) ≤ −α̃
V
V (x) + β̃V , (1.6)

with α̃V = αV , β̃V = βV + µ
‖κ‖2∞r‖D

2V ‖∞
2 .

Moreover, it is classic to see that this assumption constrains the drift coefficient b to be under a linear map.
Indeed, this is the consequence of the fact that the Lyapunov function V has to be lower than the square norm,
i.e. there exist constants K, c̄ > 0 such that for any |x| ≥ K,

|V (x)| ≤ c̄|x|2 (1.7)

and hence using ii) of (LV ) |b(x)| ≤
√
CV c̄|x|.

Remark 1.4. In the assumption (Tβ), the condition iii) yields from (1.7) that |ϕ(x)| ≤ CV,ϕ(1 + c̄|x|) which
is consistent with the Lipschitz continuity of ϕ.

Whilst the condition ii) is a direct consequence if ϕ is the solution of the Poisson equation:

Aϕ = f − ν(f), (1.8)

where f ∈ C1,β(Rd,R). If σ, κ ∈ C1,β
b (Rd,Rd×r), b ∈ C1,β(Rd,Rd) and ϕ ∈ C3,β(Rd,R), then the right side of the

following identity:

〈∇ϕ, b〉 = f − ν(f)− 1

2
Tr
(
ΣD2ϕ

)
− µ

∫
Rd

(
ϕ(·+ κ(·)y)− ϕ(·)

)
π(dy),

is Lipschitz continuous, and so the left side too.

From now on, we identify assumptions (C0), (C1), (C2), (GM), (GC), (LV), (U), (S) and (Tβ) for some
β ∈ (0, 1] to (A). Except when explicitly indicated, we assume throughout the paper that assumption (A) is
in force.
Example: The typical illustration of a diffusion process satisfying the above hypotheses is the Ornstein–
Uhlenbeck process with jumps. Precisely, for b(x) = −x, σ = κ = Ir, a corresponding Lyapunov function is a
second order polynomial function V (x) = 1 + |x|2. Then each constant appearing in (LV) is explicitly known:
CV = 5, αV = 2 and βV = 1/2(d+ µr)‖D2V ‖∞.

The corner stone of our analysis is the fact that the Rr-valued jump innovations (Zn)n∈N inherit a quasi-
Gaussian concentration property of (Yn)n∈N:
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Proposition 1.5 (Quasi Gaussian concentration of the jumps innovation). Let g : Rr → R be uniformly
Lipschitz continuous function, ε ∈ (0, 1] and

ρ(r) =
√
r(3 + r) +

1

8
+ 4 exp(

√
r + 1 + r/2). (1.9)

Then for any 0 < λ < ε
6[g]1ρ(r)

the following inequality holds for every n ∈ N

E exp(λg(Zn)) ≤ exp(λEg(Zn) +
1

2
λ2µγn(1 + r + ε)[g]21). (1.10)

Remark 1.6. Let us point out that the concentration inequality is only valid for λ on a compact set hence the
terminology “quasi”. This constraint is due to the difficulty to approximate a compound Poisson process which
has actually a sub-exponential tail (and not a sub-Gaussian one).

The proof of this proposition is given in Section 2.4.

1.4. Existing results

The convergence of the empirical measure νn of an appropriate Euler scheme with decreasing steps was
studied by Lamberton and Pagès [7] and Panloup [11] respectively in the cases of Brownian or Lévy driven
diffusion.

The natural next issue concerns the rate of that convergence. In a Brownian diffusion framework, a Central
Limit Theorem (CLT) was established by Lamberton and Pagès [7] for functions f of the form f − ν(f) = Ãϕ,

namely f − ν(f) is a coboundary for Ã, where Ã denotes the continuous part of the infinitesimal generator (see
(1.4) further). This choice of function class comes from the characterization of the invariant distribution ν by a

solution in the distribution sense of the stationary Fokker–Planck equation: Ã∗ν = 0 (where Ã∗ stands for the

adjoint of Ã). In other words, for any functions ϕ ∈ C2(Rd,R), we have ν(Ãϕ) =
∫
Rd Ãϕ(x)ν(dx) = 0.

In [10], the author also provided the rate of convergence through a Central Limit Theorem (CLT) for the
already mentioned general scheme:

Theorem 1.7 (CLT). Under (C2), (U) and (LV), if (Zt)t≥0 is a Lévy process with π as a Lévy measure

such that E|Zt|2p < +∞ for p > 2, if E[U⊗3
1 ] = 0, E[|U1|2p] < +∞ and limn

Γ(2)
n√
Γn

= 0 then for any function

ϕ ∈ C3,1(Rd,R) we have the following results (with (L) denoting the weak convergence):

√
Γnνn(Aϕ)

(L)−→ N
(
0, σ2

ϕ

)
, (1.11)

with

σ2
ϕ :=

∫
Rd

(
|σ∗∇ϕ|2(x) +

∫
Rd
|ϕ(x+ κ(x)y)− ϕ(x)|2π(dy)

)
ν(dx). (1.12)

In the Brownian diffusion context (κ = 0), under some confluence and non-degeneracy or regularity assump-
tions Honoré, Menozzi and Pagès [4] established suitable derivatives controls for the Poisson problem (e.g.
Schauder estimates). With a compound Poisson process, we think that a similar analysis may work. It will
be a future research. Let us mention [12] for some Schauder estimates for Poisson equation, with a potential,
associated with a SDE purely driven by stable processes but with a constant drift.

In [4], the authors have established a non-asymptotic Gaussian concentration with κ = 0. Namely, they
showed that for any ϕ satisfying the condition (Tβ), β ∈ (0, 1], there are sequences (cn) and (Cn) converging
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to 1, cn ≤ 1 ≤ Cn, such that for all n ∈ N, a > 0 and γk � k−θ, θ ∈ ( 1
2+β , 1],

P[
√

Γnνn(Aϕ) ≥ a] ≤ Cn exp

(
−cn

a2

2‖σ‖2∞‖∇ϕ‖∞

)
. (1.13)

Remark that, in [5], a non-asymptotic Gaussian concentration was established with the asymptotically best
constants for a particular large deviation called “Gaussian deviations” therein. In other words, for a = o(

√
Γn):

P[
√

Γnνn(Aϕ) ≥ a] ≤ Cn exp

(
−cn

a2

2ν(|σ∗∇ϕ|2)

)
. (1.14)

In this present work, we aim to obtain Gaussian deviations bounds like (1.13) for the scheme (S). To do
so, we will perform the so-called martingales increments method which was exploited successfully by Frikha
and Menozzi [3]. It was also the backbone of the analysis in [4] and [5]. Here, we adapt their techniques for
the stochastic differential equation (E) driven by the compound Poisson with jump sizes satisfying Gaussian
concentration.

Our techniques do not provide the sharp constant as in [5], this restriction comes from the deteriorating
constants (depending on the dimension r) in the quasi Gaussian concentration property of the jump innovation
(Zn)n≥1 stated in Proposition 1.5. In other words, we cannot expect from our techniques to restore sharpness
thanks to a suitable annex Poisson equation as in [5].

2. Main results

2.1. Result of non-asymptotic quasi-Gaussian concentration

Our main result is stated below.

Theorem 2.1. Let β ∈ (0, 1], θ ∈ ( 1
2+β , 1]. Assume that (A) is in force. Let νn defined in (1.2). For every

positive sequence (χn)n≥1 with limn→∞ χn = 0, there are two non-negative sequences (cn)n≥1 and (Cn)n≥1, with

limn Cn = limn cn = 1 such that for all n ∈ N, a > 0, satisfying a ≤ χn
√

Γn

Γ
(2)
n

, the following bound holds:

P
[
|
√

Γnνn(Aϕ)| ≥ a
]
≤ 2Cn exp

(
−cn

a2

2σ2
∞

)
, (2.1)

where

σ2
∞ :=

(
µ(1 + r)‖κ‖2∞ + ‖σ‖2∞

)
‖∇ϕ‖2∞. (2.2)

The proof of Theorem 2.1 is given in Section 2.3.

Remark 2.2. Note that for any θ ∈ ( 1
2+β , 1],

√
Γn

Γ
(2)
n

�n


n

3θ−1
2 , if θ ∈ ( 1

2+β ,
1
2 ),

n
1
4 ln−1(n), if θ = 1

2 ,

n
1−θ

2 , if θ ∈ ( 1
2 , 1),

ln1/2(n), if θ = 1

−→
n→∞

+∞. Then we can

choose χn →n 0, s.t. χn
√

Γn

Γ
(2)
n

→
n

+∞, and a = a(n) →n +∞. Hence, when n goes to +∞, the concentration

result is Gaussian.
We have unsurprisingly that σ2

ϕ ≤ σ2
∞, where σ2

ϕ is the asymptotic variance of
√

Γnνn(Aϕ) defined in (1.12).
Moreover, the difficulty to adapt a Gaussian Concentration result to compound Poisson process yields that the
upper-bound variance σ2

∞ depends on the dimension.
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Similarly to [5], we have from the proof of Theorem 2.1 that

Cn = exp

 [D3ϕ]β‖σ‖3+β
∞ E[|U1|3+β ]

(1 + β)(2 + β)(3 + β)

Γ
( 3+β

2 )
n√

Γn
+ pn

Γ
(2)
n√
Γn


for pn ≥ 1 s.t. pn →n +∞ and pn

Γ(2)
n√
Γn
→n 0. We recall that Γ

( 3+β
2 )

n /
√

Γn →n 0 for any θ ∈ (1/(2 + β), 1]. If

β < 1 then supn ln(Cn)
√

Γn/Γ
( 3+β

2 )
n <∞, and if β = 1 then limn ln(Cn)

√
Γn/Γ

( 3+β
2 )

n = +∞ arbitrary slowly.

Corollary 2.3. Under the assumptions of Theorem 2.1, for any f ∈  L1(ν) such that f − ν(f) = A(ϕ), for any
θ ∈ ( 1

2+β ; 1) it holds that νn(f)→n ν(f) a.s.. If θ = 1, then νn(f)→n ν(f) in probability.

The proof of this corollary is standard, we give it however for the completeness.

Proof. Fix ε ∈ Q ∩ (0, 1) and denote

An(ε) :=
{

Γ(2)
n χ−1

n |νn(Aϕ)| ≥ ε
}
.

Using the inequality (2.1), for any θ ∈ ( 1
2+β , 1),

∑
n∈N P(An(ε)) <∞, the Borel-Cantelli lemma implies that

P
(
∃n0(ω, ε) ∈ N s.t. ∀n > n0(ω, ε), Γ(2)

n χn
−1|νn(Aϕ|) < ε

)
= 1.

And finally,

P
( ⋂
ε∈Q∩(0,1)

{
∃n0(ω, ε) s.t. ∀n > n0(ω, ε), Γ(2)

n χn
−1|νn(Aϕ)| < ε

})
= 1,

i.e. Γ
(2)
n χn

−1νn(Aϕ)→n 0 a.s.. Since Γ
(2)
n χn

−1 →n ∞, νn(Aϕ) = νn(f)− ν(f)→n 0 a.s..
If θ = 1, ∀ε > 0, using the bound (2.1) we get that P(An(ε)) →n 0. The convergence in probability of

νn(Aϕ) = νn(f)− ν(f)→n 0 then follows from Γ
(2)
n χn

−1 →∞.

2.2. Strategy

For the analysis of νn(Aϕ), we will first perform an appropriate Taylor expansion (Eq. (2.5)). An expansion of
this kind is standard in this context, and analogous decompositions were already used in [4], [5] in continuous
setting and [11], [10] with a jump component. It can be viewed as a kind of Itô formula for Euler scheme,
because it permits to write the difference ϕ(Xn) − ϕ(X0) as a sum of a martingale, a term involving the
generator and a remainder term. Recall that Fk = σ

(
X0, (Uj , Zj)j∈[[1,k]]

)
, k ∈ N. Let us define the contributions

of the decomposition of νn(Aϕ) in the following lemma.

ψϕk (Xk−1, Uk) :=
√
γkσk−1Uk · ∇ϕ(Xk−1 + γkbk−1)

+γk

∫ 1

0

(1− t)Tr
(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗ Ukσ∗k−1

−D2ϕ(Xk−1 + γkbk−1)Σk−1

)
dt, (2.3)

∆ϕ
k (Xk−1, Uk) := ψϕk (Xk−1, Uk)− E

[
ψϕk (Xk−1, Uk)|Fk−1

]
,

∆̃ϕ
k (Xk−1, Zk) := ϕ(Xk−1 + κk−1Zk)− ϕ(Xk−1)− γkµ

∫
Rr

[
ϕ(Xk−1 + κk−1y)− ϕ(Xk−1)

]
π(dy).
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Moreover, we define the remainder contributions in the decomposition of νn(Aϕ).

Dk,ϕ
2,b (Xk−1) := γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1〉dt, (2.4)

Dk,ϕ
2,Σ(Xk−1) :=

γk
2

Tr
((
D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1)

)
Σk−1

)
,

Dk,ϕ
j (Xk−1, Uk, Zk) := ϕ(Xk)− ϕ(Xk−1 + γkbk−1 +

√
γkσk−1Uk)− (ϕ(Xk−1 + κk−1Zk)− ϕ(Xk−1)) .

Lemma 2.4 (Local decomposition of the empirical measure). For all ϕ ∈ C2(Rd,R), k ∈ N the following
decomposition holds:

ϕ(Xk)− ϕ(Xk−1) = γkAϕ(Xk−1) + ∆ϕ
k (Xk−1, Uk) + ∆̃ϕ

k (Xk−1, Zk) + Rϕ
k (Xk−1, Uk, Zk), (2.5)

where

Rϕ
k (Xk−1, Uk, Zk) := Dk,ϕ

2,b (Xk−1) +Dk,ϕ
2,Σ(Xk−1) +Dk,ϕ

j (Xk−1, Uk, Zk) + E
[
ψϕk (Xk−1, Uk)|Fk−1

]
. (2.6)

Furthermore, we have the following properties:

i) The functions u 7→ ∆ϕ
k (Xk−1, u) and z 7→ ∆̃ϕ

k (Xk−1, z) are Lipschitz continuous s.t.

[∆ϕ
k (Xk−1, ·)]1 ≤

√
γk‖σk−1‖‖∇ϕ‖∞ ≤

√
γk‖σ‖∞‖∇ϕ‖∞,

[∆̃ϕ
k (Xk−1, ·)]1 ≤ ‖κk−1‖‖∇ϕ‖∞ ≤ ‖κ‖∞‖∇ϕ‖∞.

ii) ∆ϕ
k (Xk−1, Uk) and ∆̃ϕ

k (Xk−1, Zk) are martingale increments with respect to Fk, namely:

E
[
∆ϕ
k (Xk−1, Uk)

∣∣Fk−1

]
= 0, E

[
∆̃ϕ
k (Xk−1, Zk)

∣∣Fk−1

]
= 0.

The proof of Lemma 2.4 is given in Section 4. Now we introduce the martingales associated to these martingale
increments:

Mϕ
n :=

n∑
k=1

∆ϕ
k (Xk−1, Uk), M̃ϕ

n :=

n∑
k=1

∆̃ϕ
k (Xk−1, Zk). (2.7)

Summing (2.5) over k we obtain the following global decomposition of the empirical measure:

νn(Aϕ) = − 1

Γn
(Mϕ

n + M̃ϕ
n + Rϕ

n), (2.8)

where we denoted

Rϕ
n :=

n∑
k=1

Rϕ
k (Xk−1, Uk, Zk)− (ϕ(Xn)− ϕ(X0)). (2.9)
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Using the definition (2.4) we can write Rϕ
n = −Lϕn +Dϕ

2,b,n +Dϕ
2,Σ,n +Dϕ

j,n + Ḡϕn, with

Lϕn := ϕ(Xn)− ϕ(X0), Dϕ
2,b,n :=

n∑
k=1

Dk,ϕ
2,b (Xk−1), Dϕ

2,Σ,n :=

n∑
k=1

Dk,ϕ
2,Σ(Xk−1),

Dϕ
j,n :=

n∑
k=1

Dk,ϕ
j (Xk−1, Uk, Zk), Ḡϕn :=

n∑
k=1

E [ψϕk (Xk−1, Uk)|Fk−1]. (2.10)

In the proof of Theorem 2.1, we need some key results stated below. The proofs of all these statements are
postponed to Sections 3 and 4.

The main contribution in the decomposition (2.8) is given by the martingales Mϕ
n and M̃ϕ

n . Their analysis is
given with the help of the Gaussian Concentration inequality (1.5 and (1.10)), trough the following lemma:

Lemma 2.5 (Concentration of the martingale increments). Let ∆ϕ
n and ∆̃ϕ

n given by (2.3).

i) For any Λ > 0 we have

E
[
exp

(
− Λ

Γn
∆ϕ
n(Xn−1, Un)

) ∣∣∣Fn−1

]
≤ exp

(
γn‖σ‖2∞‖∇ϕ‖2∞

Λ2

2Γ2
n

)
.

ii) For all 0 < ε < 1, n ∈ N and Λ > 0 s.t. Λ
Γn

< ε
6‖κ‖∞‖∇ϕ‖∞ρ(r) , where ρ(r) is defined in (1.9), we have

E
[
exp

(
− Λ

Γn
∆̃ϕ
n(Xn−1, Zn)

) ∣∣∣Fn−1

]
≤ exp

(
γnµ‖κ‖2∞‖∇ϕ‖2∞(1 + r + ε)

Λ2

2Γ2
n

)
.

The proof of this result is postponed in Section 4.
Now we formulate several propositions and lemmas that are used to control the components of the remainder

term Rϕ
n. The following proposition is the counterpart to the jumps diffusion of the useful Proposition 1 in [4].

Proposition 2.6. Under (A), there is a constant cV := cV ((A)) > 0 such that for any λ ∈ [0, cV ]:

I
1
2

V := sup
n≥0

E
[

exp
(
λ
√
V (Xn)

)]
< +∞. (2.11)

The analysis of the crucial Proposition 2.6 is in Section 3.

Remark 2.7. In particular, we easily see that for all λ ∈ [0, cV ] and ξ ∈ [0, 1
2 ]:

IξV := sup
n≥0

E
[

exp
(
λV (Xn)ξ

)]
< +∞. (2.12)

Note that for κ = 0 (purely continuous case), the integrability of exp
(
λV (Xn)ξ

)
is available until ξ = 1 (see

Proposition 1 in [4]). The loss of integrability is the consequence of the bound condition over λ in the Gaussian
Concentration result of Proposition 1.5.

The initial term appearing in (2.5) is handled thanks to the result bellow.

Lemma 2.8 (Initial term). For any Λ > 0 s.t. Λ
Γn

< cV
2CV,ϕ

:

E exp
(

Λ
|Lϕn|
Γn

)
≤ exp

(
2CV,ϕ

Λ

Γn

)
(I

1
2

V )
2CV,ϕΛ

cV Γn
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with cV , I
1
2

V given in Proposition 2.6.

The detailed computations to get this result are in Section 4.
Next the last remainders are controlled as following:

Lemma 2.9 (Remainders). For any Λ > 0 s.t. Λ
Γn

< 2cV(
‖∇ϕ‖∞[b]1+[〈∇ϕ,b〉]1

)√
C
V

1

Γ
(2)
n

:

E exp
( Λ

Γn

∣∣Dϕ
2,b,n

∣∣) ≤ (I
1/2
V )

Λ

(
‖∇ϕ‖∞[b]1+[〈∇ϕ,b〉]1

)√
C
V

Γ
(2)
n

2cV Γn . (2.13)

Moreover, for any Λ > 0 s.t. Λ
Γn
≤ cV
‖σ‖2∞‖D3ϕ‖∞

√
C
V

1

Γ
(2)
n

:

E exp
( Λ

Γn

∣∣Dϕ
2,Σ,n

∣∣) ≤ (I
1/2
V )

‖σ‖2∞‖D
3ϕ‖∞C

1
2
V

ΛΓ
(2)
n

2cV Γn . (2.14)

Inequalities (2.13) and (2.14) are established in Section 4.

Lemma 2.10 (Bounds for the Conditional expectations). With the notations (2.10), and for θ ∈ ( 1
2+β , 1], we

have that

|Ḡϕn|√
Γn

a.s.
≤ αn :=

[ϕ(3)]β
∥∥σ∥∥(3+β)

∞ E
[
|U1|3+β

]
(1 + β)(2 + β)(3 + β)

Γ
( 3+β

2 )
n√

Γn
→
n

0. (2.15)

The proof of this statement is also in Section 4.

Remark 2.11. The strongest condition over θ comes from this remainder term. Indeed, for θ < 2
3+β , Γ

(
3+β

2
)

n√
Γn
�

n
1−(2+β)θ

2 which goes to 0 if and only if θ > 1
2+β . Whilst for the other remainders, for θ < 1

2 , we need to have

Γ(2)
n√
Γn
� n 1−3θ

2 →n 0 which is implied by θ > 1
3 .

Now, let us deal with the remainder term Dj,n relying on the jump vector (Zk)k≥1.

Lemma 2.12 (Remainder term due to the jumps). If

Λ

Γn
< min

( 1

12‖κ‖∞‖∇ϕ‖∞ρ(r)
,

√
cV

8C1(Γ
(2)
n )1/2

,
1

4
√
C2

,
cV

8CΓ
(2)
n

)
, (2.16)

with

C1 := µ(r +
3

2
)‖κ‖2∞4

√
CV ‖∇ϕ‖∞‖D2ϕ‖∞, C2 := µ(r +

3

2
)‖κ‖2∞‖D2ϕ‖2∞‖σ‖2∞,

C := µ‖σ‖2∞‖D2ϕ‖∞(v∗)−
1
2 + µC

1
2

V

(
2‖∇ϕ‖∞ + ‖∇ϕ‖∞[b]1 + [〈∇ϕ, b〉]1 + ‖σ‖∞‖D3ϕ‖∞

)
,

and ρ(r) defined in (1.9), then we have:

E
[
exp

(
Λ

Γn
Dϕ
j,n

)]
≤ exp

(
(

Λ√
Γn

+
Λ2

Γn
)en

)
, (2.17)

where we recall that en = en((A)), n ≥ 1, is a sequence such that en →n 0.
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The proof of this lemma being one of the most intricate of this article, we postpone it to the end of
Section 4.

2.3. Proof of our main result

Proof of Theorem 2.1. Through the following analysis, we deal with P
[√

Γnνn(Aϕ) ≥ a
]
. The term

P
[√

Γnνn(Aϕ) ≤ −a
]

can be handled readily by symmetry.

From notations introduced in (2.8), νn(Aϕ) = − 1
Γn

(Rϕ
n +Mϕ

n + M̃ϕ
n ). The idea is now to write for a, λ > 0:

P
[√

Γnνn(Aϕ) ≥ a
]
≤ exp

(
− aλ√

Γn

)
E
[

exp
(
− λ

Γn
(Rϕ

n +Mϕ
n + M̃ϕ

n )
)]

≤ exp
(
− aλ√

Γn

)
E
[

exp
(
− qλ

Γn
(Mϕ

n + M̃ϕ
n )
)]1/q

E
[

exp
( pλ

Γn
|Rϕ

n|
)]1/p

, (2.18)

for 1
p + 1

q = 1, p, q > 1. We will choose later p = p(n)→n +∞ slowly enough, which implies that q = q(n)→ 1.

Let λ > 0. Recall from (2.4) that

Rϕ
n = −Lϕn +Dϕ

2,b,n +Dϕ
2,Σ,n +Dϕ

j,n + Ḡϕn.

By Cauchy-Schwarz inequality, we obtain:

E
[

exp
( pλ

Γn
|Rϕ

n|
)]1/p

≤
(
E exp

(2pλ

Γn

∣∣Lϕn∣∣)) 1
2p
(
E exp

(4pλ

Γn

∣∣Ḡϕn∣∣)) 1
4p

(2.19)(
E exp

(8pλ

Γn

∣∣Dϕ
2,b,n

∣∣)) 1
8p
(
E exp

(16pλ

Γn

∣∣Dϕ
2,Σ,n

∣∣)) 1
16p
(
E exp

(16pλ

Γn

∣∣Dϕ
j,n

∣∣)) 1
16p

.

We recall that all the long of our analysis, C > 0 denotes a generic constant, (Rn)n≥1 and (en)n≥1 are generic
non-negative sequences, (Rn)n≥1 and (en)n≥1 are generic non-negative sequences, depending on the coefficients
of the assumption (A), which may change from line to line, such that limn→∞Rn = 1, limn→∞ en = 0. For the
term associated with Lϕn in (2.19), if 2pλ

Γn
< cV

2CV,ϕ
, by Lemma 2.8 we can write:

(
E exp

(
2pλ
|Lϕn|
Γn

)) 1
2p ≤ exp

(
2CV,ϕ

λ

Γn

)
(I

1
2

V )
2CV,ϕλ

cV Γn = exp(C
λ

Γn
). (2.20)

From Lemma 2.10, with αn defined in (2.15) and by Young inequality we obtain:

(
E exp

(4pλ

Γn
|Ḡϕn|

)) 1
4p ≤ exp

( λ√
Γn
αn
)
≤ exp

( λ2

Γn2p
+
α2
np

2

)
= Rn exp

( λ2

Γn
en
)
. (2.21)

In the last equality, Rn = exp(α2
npn/2) and en = 1/2pn. Recall that αn →n 0. We choose p = pn →n +∞

such that pnα
2
n →n 0, to obtain Rn →n 1.

For the term involving Dϕ
2,Σ,n from (2.19), if 16pλ

Γn
≤ 2cV

Γ
(2)
n ‖σ‖2∞‖D3ϕ‖∞

√
C
V

, using Lemma 2.9, we can write

(
E exp

(16pλ

Γn

∣∣Dϕ
2,Σ,n

∣∣)) 1
16p ≤ (I

1/2
V )

‖σ‖2∞‖D
3ϕ‖∞C

1
2
V
λΓ

(2)
n

cV Γn = exp(C
λΓ

(2)
n

Γn
) = exp(C

λ√
Γn
en), (2.22)

where in the last equality we take en =
Γ(2)
n√
Γn

and recall that for any θ ∈ ( 1
3 , 1],

Γ(2)
n√
Γn
→
n

0.
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For the remainder depending on Dϕ
2,b,n from (2.19), if 4pλ

Γn
< 2cV

Γ
(2)
n

(
‖∇ϕ‖∞[b]1+[〈∇ϕ,b〉]1

)√
C
V

, thanks to

Lemma 2.9 we have again for en =
Γ(2)
n√
Γn

:

(
E exp

(4pλ

Γn

∣∣Dϕ
2,b,n

∣∣)) 1
4p ≤ (I

1/2
V )

λ

(
‖∇ϕ‖∞[b]1+[〈∇ϕ,b〉]1

)√
C
V

Γ
(2)
n

2cV Γn = exp(C
λΓ

(2)
n

Γn
) = exp(C

λ√
Γn
en). (2.23)

Finally, Lemma 2.12 yields that if

16pλ

Γn
< min

( 1

12‖κ‖∞‖∇ϕ‖∞ρ(r)
,

√
cV

8C1(Γ
(2)
n )1/2

,
1

4
√
C2

,
cV

8CΓ
(2)
n

)
.

with

C1 = µ(r +
3

2
)‖κ‖2∞4

√
CV ‖∇ϕ‖∞‖D2ϕ‖∞, C2 = µ(r +

3

2
)‖κ‖2∞‖D2ϕ‖2∞‖σ‖2∞,

C = µ‖σ‖2∞‖D2ϕ‖∞(v∗)−
1
2 + µC

1
2

V

(
2‖∇ϕ‖∞ + ‖∇ϕ‖∞[b]1 + [〈∇ϕ, b〉]1 + ‖σ‖∞‖D3ϕ‖∞

)
,

ρ(r) =
√
r(3 + r) +

1

8
+ 4 exp(

√
r + 1 + r/2),

then:

(
E
[
exp

(
16pλ

Γn
Dϕ
j,n

)]) 1
16p

≤ exp

(
(
λ√
Γn

+
pλ2

Γn
)en

)
≤ exp

(
(
λ√
Γn

+
λ2

Γn
)ẽn

)
, (2.24)

for p→n +∞ chosen such that pen =: ẽn →n 0. We gather (2.20), (2.21), (2.22), (2.23) and (2.24) into (2.19);
finally from (2.18) we obtain:

P
[√

Γnνn(Aϕ) ≥ a
]
≤ exp

(
− aλ√

Γn

)
E
[

exp
(
− qλ

Γn
(Mϕ

n + M̃ϕ
n )
)] 1

q exp
(
(
λ√
Γn

+
λ2

Γn
)en
)
Rn. (2.25)

Now, let us control the martingale terms thanks to Lemma 2.5. We take 0 < ε < 1, and λ > 0 s.t. qλ/Γn <
Cε

6‖κ‖∞‖∇ϕ‖∞ρ(r) , we recall that ρ(r) is defined in (1.9).

Thanks to Lemma 2.5 and the independence of Zn and Un conditionally to Fn−1 we can write

E exp
(
− qλ

Γn
(Mϕ

n + M̃ϕ
n )
)

= E
[

exp
(
− qλ

Γn
(Mϕ

n−1 + M̃ϕ
n−1)

)
E
[

exp
(
− qλ

Γn
(∆ϕ

n(Xn−1, Un) + ∆̃ϕ
n(Xn−1, Zn)

)∣∣∣Fn−1

]]
≤ E

[
exp

(
− qλ

Γn
(Mϕ

n−1 + M̃ϕ
n−1)

)
exp

(
q2λ2γn

2Γ2
n

(‖σ‖2∞‖∇ϕ‖2∞ + ‖κ‖2∞‖∇ϕ‖2∞µ(1 + r + ε))

)]
.
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By induction we obtain

E exp
(
− qλ

Γn
(Mϕ

n + M̃ϕ
n )
)
≤ exp

((q2λ2

2Γ2
n

(
‖κ‖2∞‖∇ϕ‖2∞µ(1 + r + ε) + ‖σ‖2∞‖∇ϕ‖2∞

)) n∑
k=1

γk

)

= exp

(
q2λ2

2Γn

(
‖κ‖2∞‖∇ϕ‖2∞µ(1 + r + ε) + ‖σ‖2∞‖∇ϕ‖2∞

))
.

Plugging this inequality into (2.25) yields:

P
[√

Γnνn(Aϕ) ≥ a
]

≤ exp
(
− aλ√

Γn

)
exp

( qλ2

2Γn

(
‖κ‖2∞‖∇ϕ‖2∞µ(1 + r + ε) + ‖σ‖2∞‖∇ϕ‖2∞

))
exp

(
(
λ√
Γn

+
λ2

Γn
)en

)
Rn.

(2.26)

Next, we optimize the polynomial − aλ√
Γn

+ qλ2

2Γn

(
‖κ‖2∞‖∇ϕ‖2∞µ(1 + r + ε) + ‖σ‖2∞‖∇ϕ‖2∞

)
over λ which leads

to consider:

λ := λn :=
a
√

Γn
q(‖κ‖2∞‖∇ϕ‖2∞µ(1 + r + ε) + ‖σ‖2∞‖∇ϕ‖2∞)

. (2.27)

We check first the assumptions over λ in all lemmas that we used in this proof. In (2.20) and (2.24) we need
pλn/Γn < C. And for (2.22), (2.23) and (2.24) we need pλn/Γn <

C

Γ
(2)
n

. Finally qλn/Γn < Cεn is required to

apply Lemma 2.5. We recall that we choose p→∞ and q → 1 and ε→ 0.
We recall also that from the statement of the theorem a = a(n) (possibly depending on n) s.t.
a√
Γn
≤ χn

Γ
(2)
n

→n 0. But if q → 1, for n big enough λn
Γn
� a√

Γn
< χn

Γ
(2)
n

→ 0. Hence, the condition

pλn
Γn
� pa√

Γn
<
pχn

Γ
(2)
n

< C/Γ(2)
n (2.28)

has to be satisfied. Let us calibrate p = p(n)→∞ depending on χn → 0 s.t. lim supn pχn < C. This pick of p
yields (2.28). We can also choose, for C > 0 large enough εn = C χn

Γ
(2)
n

such that all conditions over λn, p, ε are

satisfied with these choices.
The inequality (2.26) yields then for λ = λn:

P
[√

Γnνn(Aϕ) ≥ a
]
≤ Rn exp

(
− c̃na

2

2
(
µ(1 + r)‖κ‖2∞‖∇ϕ‖2∞ + ‖σ‖2∞‖∇ϕ‖2∞

) +
λn√
Γn
en

)
,

with c̃n =
µ(1+r)‖κ‖2∞‖∇ϕ‖

2
∞+‖σ‖2∞‖∇ϕ‖

2
∞

q
(
µ(1+r+ε)‖κ‖2∞‖∇ϕ‖2∞+‖σ‖2∞‖∇ϕ‖2∞

) →
n→+∞

1, and λn√
Γn
en ≤ Caen.

If a ≤ 1, we take Cn = Rn exp(Caen) →
n→+∞

1, otherwise if a > 1 then we set cn = 1− Cen
a2 →

n→+∞
1. In any

case, we write the result:

P
[√

Γnνn(Aϕ) ≥ a
]
≤ Cn exp

(
− cna

2

2
(
µ(1 + r)‖κ‖2∞‖∇ϕ‖2∞ + ‖σ‖2∞‖∇ϕ‖2∞

)).
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2.4. Proof of the Gaussian property of the jump innovation

Proof of Proposition 1.5. Suppose first that g : Rr → R is Lipschitz continuous with [g]1 ≤ 1. The case of
[g]1 > 1 follows by considering λ̃ = λ[g]1 and g̃ = g

[g]1
. We suppose w.l.o.g. that g(0) = 0. We recall that thank

to the definition (1.1) the law of Zn is the same that the law of BnY, where Bn is a Bernoulli variable with
parameter γn, independent of the random vector Y with distribution π on B(Rr). We establish first that for all
ε ∈ (0, 1] and 0 < λ < ε

ρ(r) (see (1.9))

E exp(λg(Zn)) ≤ exp(λEg(Zn) +
λ2γnµ(1 + (Eg(Y ))2 + ε)

2
). (2.29)

Denote for this proof mg := Eg(Y ). Using (GC) property of Y we can write

E exp(λg(Zn)) = µγnE exp(λg(Y )) + (1− µγn) ≤ µγn exp(λmg + λ2/2) + (1− µγn).

Let us define

∆exp
n := µγn exp(λmg +

λ2

2
) + (1− µγn)− exp(λµγnmg + λ2

µγn(1 +m2
g + ε)

2
). (2.30)

Here, the second exponential corresponds to the right-hand side in (2.29). We will show that ∆exp
n < 0. Indeed,

let us develop the difference ∆exp
n by power series expansion:

∆exp
n = µγn(λmg +

λ2

2
)− (µγnλmg + λ2

µγn(1 +m2
g + ε)

2
)

+
1

2
µγn(λmg +

λ2

2
)2 − 1

2
(µγnλmg +

µγnλ
2(1 +m2

g + ε)

2
)2 +Q(λ)

= −µγnλ
2

2
(ε+ µγnm

2
g) +

µγnλ
3

2

(
mg(1− µγn(1 +m2

g + ε))
)

+
1

8
µγnλ

4
(
1− µγn(1 +m2

g + ε)2
)

+Q(λ),

where

Q(λ) := µγn
∑
k≥3

1

k!
(λmg +

λ2

2
)k −

∑
k≥3

1

k!
(µγnλmg +

µγnλ
2(1 +m2

g + ε)

2
)k.

In particular, using µγn ≤ 1 from (S), and ε ≤ 1, we can roughly estimate:

∆exp
n ≤ −µγnλ

2

2
ε+

µγnλ
3

2

(
|mg|(3 +m2

g)
)

+
1

8
µγnλ

4 +Q(λ), (2.31)

Because g is 1-Lipschitz continuous and from the assumption (GM) we obtain:

m2
g = |Eg(Yn)|2 ≤ E|g(Yn)|2 = E|g(Yn)− g(0)|2 ≤ [g]1E‖Yn‖2 = [g]1

r∑
k=1

|Y k|2 ≤ r.

Using again µγn ≤ 1, λ ≤ 1, ε ≤ 1 we get

Q(λ) ≤ µγn
∑
k≥3

λk

k!
(
√
r +

1

2
)k + µγn

∑
k≥3

λk(µγn)k−1

k!
(
√
r +

(2 + r)

2
)k ≤ 2µγnλ

3 exp(
√
r + 1 + r/2).
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Thus combined with (2.31) gives:

∆exp
n ≤ −µγnλ

2

2
ε+

µγnλ
3

2

(
|mg|(3 +m2

g)
)

+
1

8
µγnλ

4 + 2µγnλ
3 exp(

√
r + 1 + r/2)

≤ µγnλ
2/2
{
− ε+ λ

√
r(3 + r) +

1

8
λ2 + 4λ exp(

√
r + 1 + r/2)

}
≤ µγnλ2/2

{
− ε+ λρ(r)

}
which is negative if λρ(r) < ε, with ρ(r) defined in (1.9). This proves the (2.29). Together with the inequality
m2
g ≤ r this proves the concentration inequality in the case [g]1 ≤ 1.

Remark 2.13. Note that r → ρ(r) is increasing, hence the condition we need to put on λ in order to propagate
the Gaussian concentration from Y ∈ Rr to Z became stronger if the dimension r increase.

3. Exponential integrability of the square root
of Lyapunov function

Like in [4], we control the exponential moments of the Lyapunov function to handle the remainder terms
of the decomposition of the empirical measure. But our framework yields more constraints over the analysis.
Namely, we cannot directly use exp(CVn) which is not a priori integrable here. Indeed, let us consider the

Compound Poisson process Z̃t :=
∑Nt
k=1 Ỹk where (Ỹk)k∈N is an i.i.d. sequence of a standard normal variables

independent of Nt which follows a Poisson law, which is the typical jump random variables that we aim to
approximate. Conditionally to Nt, Z̃t ∼ N (0, Nt). So, if we choose the Lyapunov function to be the standard
quadratic map, i.e. for any x ∈ Rd, V (x) = |x|2 + 1. We obtain in fine:

E[exp(λV (Z̃t)] = eλE
[
E[exp(λZ̃2

t )|Nt]
]
≥ eλE[

∫
Rd

exp(λ|yt|2) exp(−|yt|
2

2Nt
)

dyt
(2πNt)1/2

1Nt≥1],

this is integrable if almost surely Nt <
1

2λ which is not true for λ > 0.

Proof of Proposition 2.6. Preliminarily to the proof of this proposition, we write some useful controls thanks to
assumption (LV), for any x ∈ Rd,

|∇
√
V (x)| = | ∇V (x)

2
√
V (x)

| ≤
√
CV
2

, (3.1)

‖D2
√
V (x)‖ = ‖D

2V (x)

2
√
V (x)

− ∇V∇V
∗(x)

4V 3/2(x)
‖ ≤ ‖D

2V ‖∞
2
√
v∗

+
CV

4
√
v∗
. (3.2)

To begin we check that
√
V satisfies assumption (LV ) iii). We have readily that:

Ã
√
V =

1

2
√
V
ÃV − 1

8V
3
2

|σ∗∇V |2 ≤ 1

2
√
V

(−α̃V V + β̃V ) ≤ −αV
2

√
V + β̄V , (3.3)

with β̄V := β̃V
2
√
v∗

. The first inequality is a consequence of Remark 1.3. Furthermore, for the purely jump part

of the infinitesimal generator we write:

A
√
V (x)− Ã

√
V (x) = µ

∫
Rr

(
√
V (x+ κ(x)y)−

√
V (x))π(dy) ≤

√
CV µ‖κ‖∞π(| · |)

2
,
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using (3.1). The previous inequality and (3.3) implies that:

A
√
V ≤ −αV

2

√
V + β̄′V , (3.4)

where β̄′V = β̄V +
√
CV µ‖κ‖∞π(|·|)

2 .

Next, let us decompose the Lyapunov function
√
V with a Taylor expansion similarly to Lemma 2.4. We

again use a splitting between the deterministic contributions and those involving the innovation. We write for
every n ∈ N:

√
V (Xn)−

√
V (Xn−1) =

√
V (Xn−1 + γnbn−1 +

√
γnσn−1Un)−

√
V (Xn−1)

+
√
V (Xn)−

√
V (Xn−1 + γnbn−1 +

√
γnσn−1Un)

= γnA
√
V (Xn−1) +

[
γn

∫ 1

0

〈
bn−1,

[
∇
√
V (Xn−1 + tγnbn−1)−∇

√
V (Xn−1)

]〉
dt
]

−
[γn

2
Tr
(
D2
√
V (Xn−1))Σn−1

)]
+
[√

γnσn−1Un · ∇
√
V (Xn−1 + γnbn−1)

+γn

∫ 1

0

(1− t)Tr
(
D2
√
V (Xn−1 + γnbn−1 + t

√
γnσn−1Un)σn−1Un ⊗ Unσ∗n−1

)
dt
]

+
[√

V (Xn)−
√
V (Xn−1+γnbn−1+

√
γnσn−1Un)−µγnπ

(√
V (Xn−1+κ(Xn−1)·)−

√
V (Xn−1)

)]
=: γnA

√
V (Xn−1) + V1(Xn−1) + V2(Xn−1) + V3(Xn−1, Un) + V4(Xn−1, Un, Zn),

(3.5)

where for any x ∈ Rd, the first term is such that:

V1(x) = γn

∫ 1

0

〈b(x),
∇V
2
√
V

(x+ tγnb(x))− ∇V
2
√
V

(x)〉dt

= γn

∫ 1

0

〈b(x)− b(x+ tγnb(x)),
∇V
2
√
V

(x+ tγnb(x))〉dt

+γn

∫ 1

0

〈b, ∇V
2
√
V
〉(x+ tγnb(x))− 〈b, ∇V

2
√
V
〉(x)dt

=: V1
1 (x) + V2

1 (x). (3.6)

Because b is supposed to be Lipschitz continuous and thanks to (LV ) ii), we readily writes:

V1
1 (x) ≤ γ2

n[b]1
4
|b(x)|

∫ 1

0

|∇V |
2
√
V

(x+ tγnb(x))dt ≤ γ2
n[b]1CV

8

√
V (x). (3.7)

Whilst the next term is more subtle. Indeed, observe that thanks to (LV ) ii) the following term is bounded:

|∇〈b, ∇V
2
√
V
〉| ≤

∣∣Db ∇V
2
√
V
|+
∣∣bD2V

2
√
V
|+ | (∇V )(∇V )∗b

4V
3
2

∣∣ ≤ √CV [b]1
2

+

√
CV ‖D2V ‖∞

2
+
C

3/2
V

4
=: C(3.8), (3.8)

which directly yields again thanks to (LV) ii) that

V2
1 (x) ≤ γ2

nC(3.8)

∫ 1

0

t|b(x)|dt ≤
γ2
nC(3.8)

√
CV
√
V (x)

2
. (3.9)
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Hence plugging (3.7) and (3.9) into (3.6) implies that:

V1(x) ≤ γ2
n(

[b]1CV
8

+ C(3.8)

√
CV )
√
V (x). (3.10)

The second term is handled by (3.2):

V2(x) ≤ γn
2
‖σ‖2∞(

‖D2V ‖∞
2
√
v∗

+
CV

4
√
v∗

). (3.11)

The third term satisfies the following identity:

V3(x, Un) =
√
γnσ(x)Un · ∇

√
V (x+ γnb(x))

+γn

∫ 1

0

(1− t)Tr
(
D2
√
V (x+ γnb(x) + t

√
γnσ(x)Un)σ(x)Un ⊗ Unσ(x)∗

)
dt

(3.2)

≤ √
γnσ(x)Un · ∇

√
V (x+ γnb(x)) +

γn
2

(
‖D2V ‖∞

2
√
v∗

+
CV

4
√
v∗

)‖σ‖2∞|Un|2

=: V1
3 (x, Un) + V2

3 (Un), (3.12)

and the last term is:

V4(x, Un, Zn)

=
√
V
(
x+ γnb(x) +

√
γnσ(x)Un + κ(x)Zn

)
−
√
V
(
x+ γnb(x) +

√
γnσ(x)Un

)
−µγnπ

(√
V (x+ κ(x)·)−

√
V (x)

)
(3.1)

≤
√
V (x+ γnb(x) +

√
γnσ(x)Un + κ(x)Zn)−

√
V (x+ γnb(x) +

√
γnσ(x)Un)

+
µγn‖κ‖∞

√
CV π(| · |)

2

=: V1
4 (x, Un, Zn) +

µγn‖κ‖∞
√
CV π(| · |)

2
. (3.13)

Hence plugging (3.4), (3.10), (3.11), (3.12) and (3.13) into (3.5):

√
V (Xn)−

√
V (Xn−1)

≤ −γn[
αV
2

√
V (Xn−1)− β̄′V ] + γ2

n(
[b]1CV

8
+ C(3.8)

√
CV )
√
V (Xn−1)

+
γn
2
‖σ‖2∞(

‖D2V ‖∞
2
√
v∗

+
CV

4
√
v∗

) + V3(Xn−1, Un) +
µγn‖κ‖∞

√
CV π(| · |)

2
+ V1

4 (Xn−1, Un)

≤ −γn
αV
4

√
V (Xn−1) + γnβ̂V + V1

3 (Xn−1, Un) + V2
3 (Un) + V1

4 (Xn−1, Un, Zn), (3.14)

for

γn ≤
αV

4( [b]1CV
8 + C(3.8)

√
CV )

=
αV

4
( [b]1CV

8 + (
√
CV [b]1

2 +
√
CV ‖D2V ‖∞

2 + CV
4 )
√
CV
)
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which corresponds to assumption (S) and

β̂V := β̄′V +
1

2
‖σ‖2∞(

‖D2V ‖∞
2
√
v∗

+
CV

4
√
v∗

) +
µ‖κ‖∞

√
CV π(| · |)
2

.

We control the contribution of V1
3 (Xn−1, Un) and V2

3 (Un) (defined in (3.12)) in the exponential moment
of
√
V (Xn) by the Gaussian concentration hypothesis (GC) and V1

4 (Xn−1, Un, Zn) (see (3.13)) thanks to
Proposition 1.5. We define for all x ∈ Rd and λ > 0:

I1(λ, x) := E
[

exp
(
λV1

3 (x, Un)
)]
, I2(λ) := E

[
exp

(
λV2

3 (Un)
)]
,

I3(λ, x) := E
[

exp
(
λV1

4 (x, Un, Zn)
)]
.

Indeed, by (GC), we first write:

I1(λ, x) ≤ exp
(λ2γn|σ∗(x)∇

√
V (x+ γnb(x))|2

2

) (3.1)

≤ exp
(λ2γnCV ‖σ‖2∞

4

)
. (3.15)

Next, it is well known that under (GC), for any c < 1
2 , Ic := E [exp(c|Un|2)] < +∞. So we have for any

λ < 2c
√
v∗

(CV /2+‖D2V ‖∞)‖σ‖2∞γ1
, by Jensen’s inequality:

I2(λ) ≤
[
E exp

(
c|Un|2

)]λγn2c (
‖D2V ‖∞

2
√
v∗

+
CV

4
√
v∗

)‖σ‖2∞
= exp

(
γn ln(Ic)

λ

2c
(
‖D2V ‖∞

2
√
v∗

+
CV

4
√
v∗

)‖σ‖2∞
)
. (3.16)

Now, let us deal with the third term I3(λ, x). First of all, note that from definition in (3.13) and (3.1) the
function z 7→ V1

4 (Xn−1, Un, z) is ‖κ‖∞
√
CV -Lipschitz continuous.

Furthermore, we have that

|E[V1
4 (x, Un, Zn)|Un]| = µγn|E[V1

4 (x, Un, Yn)|Un]| ≤ µγn
√
CV ‖κ‖∞π(| · |).

Hence, by the Proposition 1.5, and for any 0 < λ < 1
6‖κ‖∞

√
CV ρ(r)

(see (1.9)), for the corresponding notation of

Proposition 1.5 we take ε = 1, and we get:

I3(λ, x) ≤ E
[
E
[
exp

(
λV1

4 (x, Un, Zn)
)
|Un
]]

≤ E
[

exp
(
λE[V1

4 (x, Un, Zn)|Un] +
µ(2 + r)γnλ

2[V1
4 (x, Un, ·)]21

2

)]
≤ exp

(
λµγn‖κ‖∞

√
CV π(| · |) + µ(2 + r)‖κ‖2∞CV

λ2γn
2

)
. (3.17)

From now on, we assume that for all

λ < λV := min
(

1,
λ0

2c̄
,

2c
√
v∗

(CV /2 + ‖D2V ‖∞)‖σ‖2∞γ1
,

1

6‖κ‖∞
√
CV ρ(r)

)
.
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Gathering identities (3.14), (3.15), (3.16), and by the Cauchy-Schwarz inequality, we obtain that for any λ < λV ,

E exp
(
λ
√
V (Xn)

)
= E

[
exp

(
λ
√
V (Xn−1)

)
E
[

exp
(
λ(
√
V (Xn)−

√
V (Xn−1))

)∣∣Fn−1]
]

≤ E
[

exp
(
λ[
√
V (Xn−1)(1− α

V

4
γn) + β̂V γn]

)
I1(2λ,Xn−1)1/2I2(4λ)1/4I3(4λ,Xn−1)1/4

]
≤ exp

(
λγnβ̂

′
V

)
E
[

exp
(
λ(1− γnα̂V )

√
V (Xn−1)

)]
,

where we have defined:

β̂′V := β̂V +
C
V
‖σ‖2∞
2

+ ln(Ic)
(‖D

2V ‖∞
2
√
v∗

+ CV
4
√
v∗

)‖σ‖2∞
2c

+ µ‖κ‖∞
√
CV 2π(| · |) + 2µ(2 + r)‖κ‖2∞CV ,

and

α̂V := min
( 1

γ1
,
αV
4

)
∈ (0,

1

γ1
].

So (1− γnα̂V ) ∈ [0, 1) and we deduce by Jensen inequality:

E exp
(
λ
√
V (Xn)

)
≤ exp

(
λγnβ̂

′
V

)
E
[

exp
(
λ
√
V (Xn−1)

)](1−γnα̂V )

. (3.18)

For any λ > 0, we introduce

CV,λ := max
(
E[eλ

√
V (X0)], eλβ̂

′
V /α̂V

)
.

In particular, we have E[eλ
√
V (X0)] ≤ CV,λ.

Let us check by induction that for every n ∈ N:

E[eλ
√
V (Xn)] ≤ CV,λ.

We deduce from (3.18) and by induction assumption that:

E exp
(
λ
√
V (Xn)

)
≤ exp

(
λγnβ̂

′
V

)
C

(1−γnα̂V )
V,λ ≤ CV,λ.

We pick cV < λV and the proof is completed.

Remark 3.1. Observe also that v∗ := infx∈Rd V (x) > 0, we have that for all (n, ξ) ∈ N× [0, 1
2 ], λ < λV (v∗)1−ξ:

E exp(λV ξn ) = E exp
(
λ(v∗)ξ

(Vn
v∗

)ξ
︸ ︷︷ ︸
≥1

)
≤ E exp

(
λ(v∗)ξ−1Vn

)
≤ CV,λ(v∗)ξ−1 < +∞.

Hence, ξ ∈ [0, 1], λ < λV (v∗)1−ξ , supn∈N E exp(λ
√
V
ξ

n) < +∞.
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4. Proof of the technical lemmas

Proof of Lemma 2.4. For k ∈ [[1, n]], we first write:

ϕ(Xk)− ϕ(Xk−1) = (ϕ(Xk)− ϕ(Xk−1 + γkbk−1 +
√
γkσk−1Uk))

+(ϕ(Xk−1 + γkbk−1 +
√
γkσk−1Uk)− ϕ(Xk−1 + γkbk−1)) + (ϕ(Xk−1 + γkbk−1)− ϕ(Xk−1))

=: Tk−1,j(ϕ) + Tk−1,r(ϕ) + Tk−1,d(ϕ),

(4.1)

with

Tk−1,j(ϕ) = (ϕ(Xk)− ϕ(Xk−1 + γkbk−1 +
√
γkσk−1Uk)),

Tk−1,d(ϕ) = γk〈∇ϕ(Xk−1), bk−1〉+ γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1〉dt,

Tk−1,r(ϕ) =
√
γkσk−1Uk · ∇ϕ(Xk−1 + γkbk−1)

+γk

∫ 1

0

(1− t)Tr
(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗ Ukσ∗k−1

)
dt.

Thanks to this splitting, we are able to isolate the deterministic, the sub-Gaussian random variable approximat-
ing Brownian increments, and the jump contributions. Then we proceed by Taylor expansion up to the order 2
for the function ϕ in the two last terms of the r.h.s. of (4.1),

ϕ(Xk)− ϕ(Xk−1) = γkAϕ(Xk−1)

+ϕ(Xk)− ϕ(Xk−1 + γkbk−1 +
√
γkσk−1Uk)− µγk

∫
Rr

(ϕ(Xk−1 + κk−1y)− ϕ(Xk−1))π(dy)

+[γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1〉dt]

+[
γk
2

(D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1))] + [
√
γkσk−1Uk · ∇ϕ(Xk−1 + γkbk−1)

+γk

∫ 1

0

(1− t)Tr
(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗ Ukσ∗k−1

−D2ϕ(Xk−1 + γkbk−1)Σk−1

)
dt].

We then write

ϕ(Xk)− ϕ(Xk−1)

= γkAϕ(Xk−1) +Dk,ϕ
2,b (Xk−1) +Dk,ϕ

2,Σ + ψϕk (Xk−1, Uk)

+ϕ(Xk)− ϕ(Xk−1 + γkbk−1 +
√
γkσk−1Uk)− µγk

∫
Rr

(ϕ(Xk−1 + κk−1y)− ϕ(Xk−1))π(dy)

= γkAϕ(Xk−1) +Dk,ϕ
2,b (Xk−1) +Dk,ϕ

2,Σ + ψϕk (Xk−1, Uk)

+[ϕ(Xk−1 + κk−1Zk)− ϕ(Xk−1)− µγk
∫
Rr

(ϕ(Xk−1 + κk−1y)− ϕ(Xk−1))π(dy)]

+[ϕ(Xk)− ϕ(Xk−1 + γkbk−1 +
√
γkσk−1Uk)− (ϕ(Xk−1 + κk−1Zk)− ϕ(Xk−1))]

= γkAϕ(Xk−1) +Dk,ϕ
2,b (Xk−1) +Dk,ϕ

2,Σ(Xk−1) + ψϕk (Xk−1, Uk)

+∆̃ϕ
k (Xk−1, Zk) +Dk,ϕ

j (Xk−1, Uk, Zk). (4.2)
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Note finally, that by definition of Dk,ϕ
j (Xk−1, Uk, Zk) in the previous expansion (4.2):

ψϕk (Xk−1, Uk) = ϕ(Xk)−ϕ(Xk−1)−γkAϕ(Xk−1)−∆̃ϕ
k (Xk−1, Zk)

−
(
Dk,ϕ

2,b (Xk−1)+Dk,ϕ
2,Σ(Xk−1)+Dk,ϕ

j (Xk−1, Uk, Zk)
)

= ϕ(Xk−1+γkbk−1+
√
γkσk−1Uk)+ϕ(Xk−1+κk−1Zk)−γkAϕ(Xk−1)−2ϕ(Xk−1)

−∆̃ϕ
k (Xk−1, Zk)−

(
Dk,ϕ

2,b (Xk−1) +Dk,ϕ
2,Σ(Xk−1)

)
,

hence after differentiating, we see that u 7→ ψϕk (Xk−1, u) and hence u 7→ ∆ϕ
k (Xk−1, u) are Lipschitz continuous

with a modulus bounded by
√
γk−1‖σk−1‖‖∇ϕ‖∞ ≤

√
γk−1‖σ‖∞‖∇ϕ‖∞.

Moreover, from the definition E[∆ϕ
k (Xk−1, Uk)|Fk−1] = 0 and using the definition of Zn we get

E[∆̃ϕ
k (Xk−1, Zk)|Fk−1] (4.3)

= E
[
ϕ(Xk−1 + κk−1Zk)− ϕ(Xk−1)

∣∣Fk−1

]
− µγk

∫
Rr

[
ϕ(Xk−1 + κk−1y)− ϕ(Xk−1)

]
π(dy) = 0.

Proof of Lemma 2.5. We first prove the point ii).
For all ε ∈ (0, 1) and 0 < Λ

Γn
< ε

6[∆̃n(Xn−1,·)]1ρ(r)
(ρ(r) set in (1.9)), thanks to Proposition 1.5, we have for

every n ∈ N:

E
[
exp

(
− Λ

Γn
∆̃ϕ
n(Xn−1, Zn)

) ∣∣∣Fn−1

]
≤ exp

(
− Λ

Γn
E[∆̃ϕ

n(Xn−1, Zn)|Fn−1] + µγn
Λ2

2Γ2
n

[∆̃ϕ
n(Xn−1, ·)]21(1 + r + ε)

)
. (4.4)

By definition of ∆̃ϕ
n(Xn−1, Zn) in (2.3), and from (4.3) we have:

E[
Λ

Γn
∆̃ϕ
n(Xn−1, Zn)

∣∣Fn−1] = 0, and [∆̃ϕ
n(Xn−1, ·)]21 ≤ ‖κ‖2∞‖∇ϕ‖2∞.

The previous control with (4.4) directly yield:

E
[
exp

(
Λ

Γn
∆̃ϕ
n(Xn−1, Zn)

) ∣∣∣Fn−1

]
≤ exp

(
µγnΛ2

2Γ2
n

‖κ‖2∞‖∇ϕ‖2∞(1 + r + ε)

)
, (4.5)

with the constraint 0 < Λ
Γn

< ε
6‖κ‖∞‖∇ϕ‖∞ρ(r) .

The proof of the point i), is a direct consequence of the previous analysis without using Proposition 1.5,
which yields no restriction on λ.

Proof of Lemma 2.8. By assumption (Tβ), we know that there exists CV,ϕ > 0 such that for any x ∈
Rd, |ϕ(x)| ≤ CV,ϕ

(
1 +

√
V (x)

)
, so we obtain:

E exp
(

Λ
|ϕ(X0)− ϕ(Xn)|

Γn

)
≤ E exp

(
Λ
CV,ϕ(2 +

√
V (X0) +

√
V (Xn))

Γn

)
≤ exp

(
2CV,ϕ

Λ

Γn

)[
E exp

(
2CV,ϕΛ

√
V (X0)

Γn

)] 1
2
[
E exp

(
2CV,ϕΛ

√
V (Xn)

Γn

)] 1
2

≤ exp
(

2CV,ϕ
Λ

Γn

)
(I

1
2

V )
2CV,ϕΛ

cV Γn .
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The last inequality is obtained by Jensen’s inequality for Λ
Γn

< cV
2CV,ϕ

and by Proposition 2.6.

Proof of Lemma 2.9. From the definition (2.4) we can write:

Dk,ϕ
2,b = γk

∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1)−∇ϕ(Xk−1), bk−1〉dt

= γk

[ ∫ 1

0

〈∇ϕ(Xk−1 + tγkbk−1), bk−1 − b(Xk−1 + tγkbk−1)〉dt

+

∫ 1

0

(
〈∇ϕ, b〉(Xk−1 + tγkbk−1)− 〈∇ϕ, b〉(Xk−1)

)
dt
]
.

From the boundedness of ∇ϕ, Lipschitz property of the mapping x 7→ b(x) (assumption (C0)) and Lipschitz
property of the mapping x 7→ 〈∇ϕ(x), b(x)〉 (assumption (Tβ)), using the assumption (LV), ii) one derives
that:

|Dk,ϕ
2,b | ≤ γ

2
k

(
‖∇ϕ‖∞[b]1 + [〈∇ϕ, b〉]1

) |bk−1|
2
≤ C(4.6)γ

2
k

√
Vk−1, (4.6)

for C(4.6) := (‖∇ϕ‖∞[b]1 + [〈∇ϕ, b〉]1)
√
CV
2 . Hence

|Dϕ
2,b,n| ≤

n∑
k=1

C(4.6)γ
2
k

√
Vk−1.

Next, by the Jensen inequality (for the exponential function with 1

Γ
(2)
n

∑
k=1 γ

2
kδk as a measure), we deduce

that:

E exp
( Λ

Γn
|Dϕ

2,b,n|
)
≤ 1

Γ
(2)
n

n−1∑
k=1

γ2
kE
[

exp
(

Γ(2)
n

Λ

Γn
C(4.6)

√
Vk−1

)]

≤ 1

Γ
(2)
n

n−1∑
k=1

γ2
kE
[

exp
(
cV
√
Vk−1

)]C(4.6)ΛΓ
(2)
n

cV Γn
,

for Λ
Γn
≤ cV

C(4.6)Γ
(2)
n

= 2cV
(‖∇ϕ‖∞[b]1+[〈∇ϕ,b〉]1)

√
CV Γ

(2)
n

< 1, and cV is introduced in Proposition 2.6 which readily

yields:

E exp
( Λ

Γn
|Dϕ

2,b,n|
)
≤ 1

Γ
(2)
n

n−1∑
k=1

γ2
k(I

1/2
V )

C(4.6)ΛΓ
(2)
n

cV Γn = (I
1/2
V )

C(4.6)ΛΓ
(2)
n

cV Γn .

For the second inequality, we first use a Taylor expansion:

|Dk,ϕ
2,Σ| =

γk
2

∣∣∣Tr
((
D2ϕ(Xk−1 + γkbk−1)−D2ϕ(Xk−1)

)
Σk−1

))∣∣∣ (4.7)

≤ 1

2
‖σ‖2∞‖D3ϕ‖∞γ2

k|bk−1| ≤
1

2
‖σ‖2∞‖D3ϕ‖∞

√
C
V
γ2
k|Vk−1|

1
2 .
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So

|Dϕ
2,Σ,n| ≤

1

2
‖σ‖2∞‖D3ϕ‖∞

√
C
V

n∑
k=1

γ2
k|Vk−1|

1
2 .

Hence, like previously, by Jensen inequality and Proposition 2.6 for Λ
Γn
≤ 2cV
‖σ‖2∞‖D3ϕ‖∞

√
C
V

Γ
(2)
n

< 1 we obtain

E exp
( Λ

Γn
|Dϕ

2,Σ,n|
)
≤ E exp

( Λ

2Γn
‖σ‖2∞‖D3ϕ‖∞

√
C
V

n∑
k=1

γ2
k|Vk−1|

1
2

)
≤ 1

Γ
(2)
n

n∑
k=1

γ2
kE exp

(ΛΓ
(2)
n

2Γn
‖σ‖2∞‖D3ϕ‖∞

√
C
V
|Vk−1|

1
2

)
≤ (I

1/2
V )

ΛΓ
(2)
n ‖σ‖

2
∞‖D

3ϕ‖∞
√
C
V

2cV Γn .

Proof of Lemma 2.10. The proof is similar to the analysis of Lemma 3 in [4]. By the definition (2.3), and because
Uk, k ∈ [[1, n]], has the same moments as the standard Gaussian random variable up to order three (see (GM))
we have for every k ∈ [[1, n]]:

E [ψϕk (Xk−1, Uk)|Fk−1] = γk

∫ 1

0

(1− t)Tr
(
E
[
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗ Ukσ∗k−1

−D2ϕ(Xk−1 + γkbk−1)Σk−1|Fk−1

])
dt,

where

E
[
Tr
(
D2ϕ(Xk−1 + γkbk−1 + t

√
γkσk−1Uk)σk−1Uk ⊗ Ukσ∗k−1−D2ϕ(Xk−1 + γkbk−1)Σk−1

)∣∣∣Fk−1

]
= t
√
γk

∫ 1

0

E
[
Tr
((

[D3ϕ(Xk−1 + γkbk−1 + ut
√
γkσk−1Uk)−D3ϕ(Xk−1 + γkbk−1)]σk−1Uk

)
(
σk−1Uk ⊗ Ukσ∗k−1

))∣∣∣Fk−1

]
du.

Then,

|E [ψϕk (Xk−1, Uk)|Fk−1]| ≤ γk

∫ 1

0

(1− t)t1+β [ϕ(3)]βE
[
γ

1+β
2

k ‖σk−1‖3+β |Uk|3+β

∫ 1

0

uβdu
∣∣∣Fk−1

]
dt

=
[ϕ(3)]βγ

3+β
2

k ‖σk−1‖3+βE [|Uk|3+β ]

(1 + β)(2 + β)(3 + β)
.

(4.8)

We sum over k to get the result.
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Proof of Lemma 2.12. Recall that we have denoted for n ∈ N0, Fn := σ
(
X0, (Uj , Zj)j∈[[1,n]]

)
and F̃n = Fn ∨

σ(Un+1).

E
[

exp
( Λ

Γn

n∑
k=1

Dk,ϕ
j (Xk−1, Uk, Zk)

)]
(4.9)

= E
[

exp
( Λ

Γn

n−1∑
k=1

Dk,ϕ
j (Xk−1, Uk, Zk)

)
E
[

exp
( Λ

Γn
Dϕ
j,n(Xn−1, Un, Zn)

)∣∣∣F̃n−1

]]
.

The idea is to control the last conditional expectation using Proposition 2.6. Recall that

Dϕ
j,n(Xn−1, Un, Zn) = ϕ(Xn−1+γnbn−1+

√
γnσn−1Un+κn−1Zn)−ϕ(Xn−1+γnbn−1+

√
γnσn−1Un)

−
[
ϕ(Xn−1 + κn−1Zn)− ϕ(Xn−1)

]
.

Moreover, we have for any z ∈ Rr:

|∇zDϕ
j,n(Xn−1, Un, z)|

= |κ∗n−1

(
∇ϕ(Xn−1 + γnbn−1 +

√
γnσn−1Un + κn−1z)−∇ϕ(Xn−1 + κn−1z)

)
| ≤ 2‖κ‖∞‖∇ϕ‖∞.

(4.10)

Hence for all Xn−1, Un fixed the function z → Dn,ϕ
j,ϕ (Xn−1, Un, z) is Lipschitz continuous satisfying

[Dϕ
j,n(Xn−1, Un, z)]1 ≤ 2‖κ‖∞‖∇ϕ‖∞.

This estimation is used to bound Λ for which we can apply Proposition 1.5. However, we need a more subtle
control of the last Lipschitz modulus. Namely, using Taylor expansion we can write

|∇zDϕ
j,n(Xn−1, Un, z)|

≤ |κ∗n−1

(
∇ϕ(Xn−1 + γnbn−1 + κn−1z)−∇ϕ(Xn−1 + κn−1z)

)
|

+|κ∗n−1

(
∇ϕ(Xn−1 + γnbn−1 +

√
γnσn−1Un + κn−1z)−∇ϕ(Xn−1 + γnbn−1 + κn−1z)

)
|

≤ ‖κ‖∞
(√

2‖∇ϕ‖
1
2∞|∇ϕ(Xn−1+γnbn−1+κn−1z)−∇ϕ(Xn−1+κn−1z)|

1
2 +
√
γn‖D2ϕ‖∞‖σ‖∞|Un|

)
≤ √γn‖κ‖∞

(√
2C

1
4

V ‖∇ϕ‖
1
2∞‖D2ϕ‖

1
2∞V

1
4 (Xn−1) + ‖D2ϕ‖∞‖σ‖∞|Un|

)
.

(4.11)

Now for any Λ satisfying 0 < Λ
Γn

< 1
12‖κ‖∞‖∇ϕ‖∞ρ(r) , we get from Proposition 1.5 (with ε = 1 for the

corresponding notation)

E
[
exp

(
Λ

Γn
Dϕ
j,n(Xn−1, Un, Zn)

) ∣∣∣F̃n−1

]
(4.12)

≤ exp
( Λ

Γn
E[Dϕ

j,n(Xn−1, Un, Zn)|F̃n−1] +
µγnΛ2

2Γ2
n

(2 + r)[Dϕ
j,n(Xn−1, Un, ·)]21

)
≤ exp

(
Λ

Γn
µγnE[Dϕ

j,n(Xn−1, Un, Yn)|F̃n−1] +
µγ2

nΛ2

2Γ2
n

(
C1

√
V (Xn−1) + C2|Un|2

))
,
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where we have denoted

C1 = µ(2 + r)‖κ‖2∞4
√
CV ‖∇ϕ‖∞‖D2ϕ‖∞, C2 = 2µ(2 + r)‖κ‖2∞‖D2ϕ‖2∞‖σ‖2∞,

and used the following identities:

Dϕ
j,n(Xn−1, Un, 0) = 0,

and

E[Dϕ
j,n(Xn−1, Un, Zn)|F̃n−1] = µγnE[Dϕ

j,n(Xn−1, Un, Yn)|F̃n−1],

which is a consequence of the definition of Zn in (1.1). To control E[Dϕ
j,n(Xn−1, Un, Yn)|F̃n−1] we introduce for

any (x, y) ∈ (Rd)2 the function:

ϕ̄(x, y) := E[ϕ(x+ κ(y)Yn)]− ϕ(x),

which readily implies that:

E[Dϕ
j,n(Xn−1, Un, Yn)|F̃n−1] = ϕ̄(Xn−1 + γnbn−1 +

√
γnσn−1Un, Xn−1)− ϕ̄(Xn−1, Xn−1).

The idea in the following is to apply the expansion of Lemma 2.4 with κ = 0 to the function x → ϕ̄(x, y),
which also corresponds to the expansion of Lemma 1 in [4] for diffusion without jumps. If κ = 0, then Xn =

Xn−1 + γnbn−1 +
√
γnσn−1Un, we can write using (2.5) and the definition (2.3) of ∆ϕ̄

k with M̃ ϕ̄
n = Dϕ̄

j,n = 0:

ϕ̄(Xn, Xn−1)− ϕ̄(Xn−1, Xn−1) = γnÃϕ̄(Xn−1) +Dϕ̄
2,b,n(Xn−1) +Dϕ̄

2,Σ,n(Xn−1) + ψϕ̄n (Xn−1, Un). (4.13)

All the terms in the right have obviously the same properties as the corresponding terms in the similar expansion
of ϕ given by Lemma 2.4 with κ = 0. In particular, for any y ∈ Rd, the map ϕ̄(·, y) is Lipschitz continuous with

‖∇ϕ̄(·, y)‖∞ ≤ 2‖∇ϕ‖∞, ‖D2ϕ̄(·, y)‖∞ ≤ 2‖D2ϕ‖∞, ‖D3ϕ̄(·, y)‖∞ ≤ 2‖D3ϕ‖∞. (4.14)

Furthermore, Dϕ̄
2,b,n and Dϕ̄

2,Σ,n satisfy similar inequalities as (4.6) and (4.7) where ϕ is replaced by ϕ̄. We
directly have thanks to the definitions (1.4), (2.4), identities (4.6), (4.7) and (4.14):

γn|Ãϕ̄(Xn−1)| = γn|〈bn−1,∇ϕ̄(Xn−1)〉+
1

2
Tr
(
σσ∗D2ϕ̄(Xn−1)

)
|

≤ γn(2
√
CV
√
V (Xn−1)‖∇ϕ‖∞ + ‖σ‖2∞‖D2ϕ‖∞) ≤ γnC3

√
V (Xn−1),

|Dϕ̄
2,b,n(Xn−1)| = γn|

∫ 1

0

〈∇ϕ̄(Xn−1 + tγnbn−1)−∇ϕ̄(Xn−1), bn−1〉dt|

≤ γ2
n

(
‖∇ϕ̄‖∞[b]1 + [〈∇ϕ̄, b〉]1

) |bn−1|
2
≤ γ2

n2C(4.6)

√
V (Xn−1),

|Dϕ̄
2,Σ,n(Xn−1)| =

∣∣γn
2

Tr
((
D2ϕ̄(Xn−1 + γnbn−1)−D2ϕ̄(Xn−1)

)
Σn−1

)∣∣
≤ γ2

n‖σ‖2∞‖D3ϕ‖∞C
1
2
V

√
V (Xn−1),

where C3 := 2
√
CV ‖∇ϕ‖∞ + ‖σ‖2∞‖D2ϕ‖∞(v∗)−

1
2 , we recall that 0 < v∗ ≤ infx∈Rd V (x) introduced in (LV)

and C(4.6) = (‖∇ϕ‖∞[b]1 + [〈∇ϕ, b〉]1)
√
CV
2 . Therefore, from the previous controls and using (4.12) and (4.13),
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we get that there is a constant C = C((A)) > 0 such that:

E
[
exp

(
Λ

Γn
Dϕ
j,n(Xn−1, Un, Zn)

) ∣∣∣F̃n−1

]
≤ exp

( Λ

Γn
γn
(
Cγn
√
V (Xn−1) + ψϕ̄n (Xn−1, Un)

)
+

Λ2

2Γ2
n

γ2
n

(
C1

√
V (Xn−1) + C2|Un|2

))
, (4.15)

with

C = µ
(
C3 + 2C(4.6) + ‖σ‖∞‖D3ϕ‖∞C

1
2

V

)
= µ‖σ‖2∞‖D2ϕ‖∞(v∗)−

1
2 + µC

1
2

V

(
2‖∇ϕ‖∞ + ‖∇ϕ‖∞[b]1 + [〈∇ϕ, b〉]1 + ‖σ‖∞‖D3ϕ‖∞

)
. (4.16)

Next, we separate the unbounded contribution from the terms involving (
√
V (Xk))k∈[[1,n]], (|Uk|2)k∈[[1,n]] by a

global Cauchy-Schwarz inequality:

E

[
exp

(
Λ

Γn

n∑
k=1

Dk,ϕ
j (Xk−1, Uk, Zk)

)]

≤ E

[
exp

(
2Λ

Γn

n∑
k=1

[
Dk,ϕ
j (Xk−1, Uk, Zk)− γ2

k(C + C1
2Λ

Γn
)
√
V (Xk−1)− 2Λ

Γn
γ2
kC2|Uk|2

])] 1
2

×E

[
exp

(
2Λ

Γn

n∑
k=1

[
γ2
k

(
C + C1

2Λ

Γn

)√
V (Xk−1) +

4Λ2

Γ2
n

γ2
kC2|Uk|2

])] 1
2

=: Υ
1
2
1 ×Υ

1
2
2 . (4.17)

Again by the Cauchy-Schwarz inequality, we get:

Υ
1/2
2 ≤ E

[
exp

(
4

Λ

Γn

(
C + C1

2Λ

Γn

) n∑
k=1

γ2
k

√
V (Xk−1)

)] 1
4E
[

exp
(8Λ2

Γ2
n

n∑
k=1

γ2
kC2|Uk|2

)]1/4
. (4.18)

We control the second expected value under condition
8C2Λ2γ2

1

Γ2
n

< 1 using Jensen inequality:

E
[

exp
(8C2Λ2

Γ2
n

n∑
k=1

γ2
k|Uk|2

)]1/4
≤
( n∑
k=1

γ2
k

Γ
(2)
n

E
[

exp
(8C2Λ2Γ

(2)
n

Γ2
n

|Uk|2
)])1/4

≤ E
[

exp
( |U1|2

4

)] 8C2Λ2Γ
(2)
n

Γ2
n . (4.19)

Because U1 satisfies (GC), E[exp( |U1|2
4 )] < +∞. We handle the first expectation in (4.18) by the same method,

using Jensen inequality under condition Λ
Γn

< cV
8CΓ

(2)
n

, Λ2

Γ2
n
< cV

16C1Γ
(2)
n

and Proposition 2.6 and we obtain:

E
[

exp
(

4
Λ

Γn

(
C + C1

2Λ

Γn

) n∑
k=1

γ2
k

√
V (Xk−1)

)] 1
4

≤
(

1

Γ
(2)
n

n∑
k=1

γ2
kE
[

exp
(

4Γ(2)
n

Λ

Γn

(
C + C1

2Λ

Γn

)√
V (Xk−1)

)]) 1
4

≤ (I
1/2
V )

ΛΓ
(2)
n

cV Γn

(
C+C1

2Λ
cV Γn

)
. (4.20)
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Gathering (4.18), (4.19) and (4.20), and recalling that
Γ(2)
n√
Γn
→ 0, we deduce that:

Υ
1/2
2 ≤ exp

(
(

Λ√
Γn

+
Λ2

Γn
)en

)
. (4.21)

The first term in (4.17), Υ1, is handled by identity (4.15).

Υ1 ≤ E
[

exp
(2Λ

Γn
γnψ

ϕ̄
n (Xn−1, Un)

+
2Λ

Γn

n−1∑
k=1

[
Dk,ϕ
j (Xk−1, Uk, Zk)− γ2

k

(
C + C1

2Λ

Γn

)√
V (Xk−1)− 2Λ2

Γ2
n

γ2
kC2|Uk|2

])]
= E

[
E
[

exp
(2Λ

Γn
γnψ

ϕ̄
n (Xn−1, Un)|Fn−1

]
× exp

(2Λ

Γn

n−1∑
k=1

[
Dk,ϕ
j (Xk−1, Uk, Zk)− γ2

k

(
C + C1

2Λ

Γn

)√
V (Xk−1)− 2Λ2

Γ2
n

γ2
kC2|Uk|2

])]
,

and because Un satisfies the condition (GC):

Υ1 ≤ exp
(2Λ

Γn
γ

1+ 3+β
2

n

2[ϕ(3)]β
∥∥σ∥∥(3+β)

∞ E
[
|U1|3+β

]
(1 + β)(2 + β)(3 + β)

+
4Λ2

Γ2
n

4γ3
n‖σ‖2∞‖∇ϕ‖2∞

)
×E
[

exp
(2Λ

Γn

n−1∑
k=1

[
Dk,ϕ
j (Xk−1, Uk, Zk)− γ2

k

(
C + C1

2Λ

Γn

)√
V (Xk−1)− 2Λ2

Γ2
n

γ2
kC2|Uk|2

])]
.

The last inequality is a consequence of the inequality (4.8) in the proof of Lemma 2.10 and the Lipschitz modulus
control of ψϕ̄n (Xn−1, ·) in Lemma 2.4. Hence, we iterate this procedure and with some positive constants C̃1, C̃2

not depending on Λ neither n but only on the assumptions we get:

Υ1 ≤ exp
( C̃1ΛΓ

( 5+β
2 )

n

Γn
+
C̃2Λ2Γ

(3)
n

Γ2
n

)
= exp

(
(

Λ√
Γn

+
Λ2

Γn
)en

)
, (4.22)

where, using
Γ(2)
n√
Γn
→ 0 for θ > 1

3 . Eventually, inequalities (4.21) and (4.22) yields that:

E
[

exp
( Λ

Γn

n∑
k=1

Dk
j (Xk−1, Uk, Zk)

)]
≤ exp

(
(

Λ√
Γn

+
Λ2

Γn
)en

)
.

5. Numerical results

This section is a numerical illustration of the deviations results of the empirical measure νn from
Theorem 2.1. We consider the mono-dimensional case, d = r = 1. The innovations (Ui)i≥1 and X0 are Gaussian
variables. Also, a difficulty is to approximate the jump part of generator Aϕ, namely π(ϕ(x + κ(x)·) − ϕ(x))
for x ∈ R. To avoid this problem, we choose (Yk)k≥0 to be Bernoulli variables, hence we directly get
π(ϕ(x + κ(x)·) − ϕ(x)) = 1

2

(
ϕ(x + κ(x)) + ϕ(x − κ(x))

)
− ϕ(x). We consider for the coefficients and the test
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Figure 1. Plot of a 7→ gn(a), for θ = 1
3 , with ϕ(x) = σ(x) = cos(x).

function b(x) = −x2 , and σ(x) = κ(x) = ϕ(x) = cos(x) in (E). Note, in particular, that we have picked a degen-
erate framework. Thanks to Theorem 2.1, for (γk)k≥1 = (k−θ)k≥1, θ ∈ [1/3, 1] (corresponding to β = 1 therein)
the function

a ∈ R+ 7→ gn(a) := log
(
P[|
√

Γnνn(Aϕ)| ≥ a]
)

is such that for

gn(a) ≤ −cn
a2

2‖σ‖2∞‖∇ϕ‖2∞ + 4‖κ‖2∞‖∇ϕ‖2∞
+ log(2Cn).

In Figure 1, we plot the the curves of gn for θ = 1
3 + 10−3, also we perform the simulations for n = 5 × 104,

the probability is estimated by Monte Carlo simulation with MC = 104 realizations of the random variable
|
√

Γnνn(Aϕ)| in the unbiased case. Let us also introduce the function

Sν(a) := − a2

2‖σ‖2∞‖∇ϕ‖2∞ + 4‖κ‖2∞‖∇ϕ‖2∞
,

such that gn(a) ≤ cnSν(a) + log(2Cn).
The Figure 1 enhance the fact that gn(a) is indeed under a quadratic form in a. Nevertheless, we see that

the result of Theorem 2.1 is not sharp, to obtain such a result we have to avoid the dimension dependency and
to provide a more accurate concentration property than the one of Proposition 1.5.
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