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Synthesizing impurity clustering in the edge plasma of tokamaks using
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This work investigates the behavior of impurities in edge plasma of tokamaks using high-resolution numerical
simulations based on Hasegawa—Wakatani equations. Specifically, it focuses on the behavior of inertial particles,
which has not been extensively studied in the field of plasma physics. Our simulations utilize one-way coupling of
a large number of inertial point particles, which model plasma impurities. We observe that with Stokes number (S7)
which characterizes the inertia of particles being much less than one, such light impurities closely track the fluid flow
without pronounced clustering. For intermediate St values, distinct clustering appears, with larger Stokes values, i.e.
heavy impurities even generating more substantial clusters. When St is significantly large, very heavy impurities tend
to detach from the flow and maintain their trajectory, resulting in fewer observable clusters and corresponding to
random motion. A core component of this work involves machine learning techniques. Applying three different neural
networks - Autoencoder, U-Net, and Generative Adversarial Network (GAN) - to synthesize preferential concentration
fields of impurities, we use vorticity as input and predict impurity number density fields. GAN outperforms the two
others by aligning closely with direct numerical simulation data in terms of probability density functions of the particle
distribution and energy spectra. This machine learning technique holds the potential to reduce computational costs by

eliminating the need to track millions of particles modeling impurities in simulations.

PACS numbers:
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I. INTRODUCTION

The pursuit of a sustainable and abundant energy source
has sparked greater attention towards nuclear fusion, which is
the process responsible for powering celestial bodies such as
stars. Nuclear fusion is distinct from nuclear fission as it in-
volves the fusion of light atomic nuclei to create heavier ones,
resulting in the release of a significant amount of energy. Fu-
sion is highly regarded as the ultimate goal in energy produc-
tion due to its capacity to generate significant power while
causing minimal harm to the environment.

Fusion reactors confine and heat a plasma, consisting of
ions and electrons, to enable fusion reactions at high temper-
atures. However, the task of confining plasma poses a consid-
erable challenge due to the presence of multiple instabilities
that can result in energy loss. Impurity accumulation in the
plasma core can result in heat loss through radiation, leading
to a decrease in confinement quality. Therefore, it is crucial to
conduct a thorough investigation of impurity in fusion plasma.

The dynamics of magnetically confined plasma flow are
influenced by drift-wave turbulence and zonal flows. The nu-
merical high-resolution simulations for modeling the plasma
flow carried out within this work are based on the Hasegawa—
Wakatani model, which governs cross-field transport by elec-
trostatic drift waves in magnetically confined plasmas. A
modified version of the model! is likewise investigated to
take into account zonal flows. The electric field perpendicu-
lar to magnetic field lines is particularly significant because
it strongly drives cross-field fluxes, impacting edge pressure

profiles and stability.>? E x B flows strongly influence the
motion of coherent structures, which can account for substan-
tial particle losses in tokamaks.*® The resulting fluxes on
walls can cause sputtering, erosion, and impurity injection,
further degrading confinement and safe operation.>’-8

For the particles, there has been growing interest in La-
grangian perspective in recent years.””'! This approach in-
volves the analysis of trajectories of numerous tracers. Nu-
merical simulations involve solving equations to determine
the trajectories of test particles within a specific velocity field,
such as the E x B velocity field. The Lagrangian approach
highlights the significant impact of coherent structures on
transport. The combined effect of eddy trapping and zonal
shear flows often leads to non-diffusive transport.!>'# In fu-
sion plasma research, previous studies have primarily focused
on passive flow tracers without considering inertial effects in
the edge plasma using the Hasegawa—Wakatani model.!>~!7
We increase the complexity of these models and add the effect
of inertia, which has not been done so far, to the best of our
knowledge. Therewith we can study the behavior of heavy
and light atoms and see the impact on the impurity distribu-
tion. A crucial aspect of understanding inertial impurities is
their self-organization, such as clustering and void formation,
which can be quantified mathematically by deviation from
Poissonian statistics.'® Their dynamics can then be analyzed
using tesselation based techniques. '’

There is a growing interest in studying spatial patterns in
turbulence exploring machine learning.”>! Our study uses
machine learning to estimate mesoscale inertial particle clus-
tering in turbulence, relying on flow field data rather than



individual particle information. We apply machine learning
tools that have been successfully implemented in the field of
hydrodynamics, see Ref. 22 and 23. Three neural networks
— Autoencoder, U-Net, and Generative Adversarial Network
(GAN) — are trained to predict impurity particle densities
from vorticity field snapshots. The results are visually and
statistically compared with actual DNS particle data. This ap-
proach reduces the cost for predicting particle density distri-
butions.

The paper is structured as follows: Sec. II outlines the the-
oretical basis used for simulation, introducing the Hasegawa—
Wakatani edge plasma model and the motion of inertial im-
purity particles. Sec. III details the numerical simulations and
results. In Sec. IV, we explore machine learning models such
as Autoencoders, U-net, and GAN to synthesize impurity con-
centration fields. Finally, Sec. V summarizes our findings and
suggests potential directions for future investigations.

Il. MODELS FOR EDGE PLASMA TURBULENCE AND
IMPURITY PARTICLES

A. Hasegawa—\Wakatani model

The numerical simulations are based on Hasegawa—Wakatani
(HW) equations for plasma edge turbulence driven by drift-
wave instability.* Our focus is on the two-dimensional, slab
geometry of the HW model, see e.g. Ref. 10. Fig. 1 depicts
a representation of the flow configuration. The magnetic field
lines are assumed to be constant, straight and perpendicular
to the slab. Ions are considered cold, and the effects of the
temperature gradient are ignored.

The HW model consists of two partial differential equations
that describe the time evolution of the plasma electrostatic po-
tential ¢ and fluctuating plasma density n:

(jt - vV2> Vi = [V29,0] +c(¢ —n), (1)
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All quantities are dimensionless and normalized as de-
scribed in Refs. 11 and 25. The constant D and v are cross-
field diffusion coefficient of plasma density fluctuations and
kinematic viscosity, respectively. The constant x defined

as K = —d,Inng, is a measure of the density gradient. The
Poisson bracket is defined as: [A,B] = g—Ag—B — g—Ag—B. In
X oy y ox

this system, the electrostatic potential ¢ acts as a stream-
function for the E x B flow velocity, denoted by u = V+¢,
where V* = (—d,,0dx). Thus, we have u, = —d¢/dy and
uy = d¢/dx. The vorticity is defined as @ = V?¢. The
turnover time of turbulent eddies, 7y, is defined as 1 /N 2Z s,
with Z,,; denoting the mean-square vorticity. The adiabaticity
parameter c is:

FIG. 1. Illustration of the two-dimensional slab geometry in the toka-
mak edge used in the Hasegawa—Wakatani system. The radial direc-
tion is represented by x, while y is the poloidal direction. There is an
imposed mean plasma density gradient Vg in the radial direction.
The 2D flow is computed within a domain whose size is equivalent
to 64 times the Larmor radius (ps). This computational domain is
marked with a green square. On the right, a vorticity field for the
classical Hasegawa—Wakatani (cHW) is shown. The figure is adapted
from Ref. 11.
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where 7 is the electron resistivity. Here k is the effec-
tive parallel wavenumber. The parameter ¢ controls the phase
difference between the electrostatic potential and the plasma
density fluctuations. The case ¢ > 1 is known as the adia-
batic limit. In this limit, the Hasegawa—Wakatani model re-
duces to the Hasegawa—Mima equation, and the electrons in
the plasma follow a Boltzmann distribution. In that case, there
is no phase shift between ¢ and n. Conversely, when ¢ < 1
(the hydrodynamic limit), the system reduces to a form that is
analogous to a two-dimensional Navier—Stokes equation. In
this regime, the density fluctuations are passively advected by
the E x B flow.!% The most physically interesting situation
in fusion plasma is when ¢ ~ 1, known as the quasi-adiabatic
regime. In this regime, there is a phase shift between ¢ and n.
This phase shift permits the presence of particle transport.

In the context of the classical Hasegawa—Wakatani model
(cHW), as detailed above, zonal flows are not observed.
To specifically obtain zonal flows, a modified Hasegawa—
Wakatani model (mHW) can be considered. This modification
was introduced in Ref. 1 where the coupling term c¢(¢ — n) is
set to zero for modes k, = 0.



B. Impurity particles model

Previous studies!>~!7 have assumed that impurity particles
perfectly follow the fluid flow without deviating from the flow
path. However, this assumption may not always be valid, par-
ticularly when the particles have significant mass, resulting in
observable inertial effects.

1. Stokes number

To account for the inertial effects, the concept of the Stokes
number (St) is introduced.2® The Stokes number is a dimen-
sionless parameter used to quantify the inertia of particles in
a fluid flow. The Stokes number is defined as:

St=—, “)

where 7, is the impurity particle’s relaxation time. This is
a measure of how quickly an impurity particle can respond
to changes in the fluid flow. It is determined by factors like
the particle’s size, mass, as well as the viscosity of the fluid.
The turbulent eddy turnover time is T,. This is a measure of
how quickly the fluid flow is changing. A high Stokes number
suggests that the particle’s motion is dominated by its inertia,
meaning it will continue moving in its current direction even
when the fluid flow changes. Note that the Stokes number is a
simplification, and real-world particle-fluid interactions may
involve other complex phenomena, like particle-particle in-
teractions, two-way coupling, finite particle-size effects, etc.
Nevertheless, the Stokes number provides a valuable predic-
tion of particle behavior in a turbulent flow.

2. Motion of inertial impurity particles

We assume the behavior of impurities does not influence the
plasma’s overall dynamics. This study is focused on tracking
individual particles using Lagrangian mechanics. The equa-
tions governing the motion of these particles are:

ATy i
% = Vimp,j )

dVimpj _ Vimp,j — Wimp,j ©)

dt Tp

The particles are denoted by j (j = 1,...,N, where N is the
total number of impurity particles in the system). Here, vj
is the velocity vector of the j-th impurity particle, and w;;p, ;
represents the fluid velocity vector at the location of the par-
ticle, @;mp, ;. The force resisting the motion of these parti-
cles is assumed to be in the form of Stokes drag, which is
directly proportional to the relative velocity between the par-
ticle and the fluid. The constant of proportionality, 1/7,, is
the inverse of particle relaxation time.?’~2° In the initial phase

of our study, we excluded electromagnetic forces to focus on
establishing a fundamental understanding without introducing
additional complexity. The effects of electromagnetic forces
on the particles will be integrated incrementally in future stud-
ies.

Il. NUMERICAL SIMULATIONS
A. Flow configurations and physical parameters

The simulation was conducted within a domain with peri-
odic boundary condition that spans an area of 642 and it was
discretized using a resolution of 10242 grid points. The time
step was 5 x 10~#, while values for diffusivity of plasma den-
sity D and kinematic viscosity v were both set to 5 x 1073,
The value for k was set to 1. Simulations for the flow begin
with Gaussian random initial conditions and run until achiev-
ing a saturated, fully developed turbulent flow (see Ref. 10).
After this phase,10° uniformly distributed inertial impurity
particles are injected.

B. Numerical schemes

The systems of HW equations, specifically Eq. (1) and
Eq. (2) are solved using a Fourier pseudospectral method. It
is particularly well-suited for problems with periodic bound-
ary conditions and provides excellent accuracy for smooth
solutions.>® The equations governing the motion of the im-
purity particles, namely Eq. (5) and Eq. (6), are solved using
a second-order Runge—Kutta (RK2) scheme. This method
provides a balance between accuracy and computational ef-
ficiency. Simulating a large ensemble of particles presents a
considerable computational challenge. Our solution leverages
High-Performance Computing (HPC) to overcome this com-
plexity, employing parallel computing with Message Passing
Interface (MPI). For further details on the numerical method
and its implementation, we refer to Ref. 10.

C. Results

Fig. 2 shows the vorticity field (without impurity particles)
in a fully developed turbulence regime of classical Hasegawa—
Wakatani model (cHW) for different ¢ values and modified
Hasegawa—Wakatani model (mHW) for ¢ = 2. Larger vor-
tices were exhibited in hydrodynamic cases (cHW, ¢ = 0.01),
while smaller ones were observed in quasi-adiabatic (cHW,
¢ = 0.7) and adiabatic cases (cHW, ¢ = 2). For the modified
Hasegawa—Wakatani model, with ¢ = 2, zonal flows are pre-
sented. To quantify the distribution of kinetic energy of the
flow across different scales of the turbulent flow, we compute
the Fourier energy spectra:3!
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FIG. 2. Vorticity fields without impurity particles in fully developed turbulence regime.
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FIG. 3. Kinetic energy spectra of the flow. The slope k=3 is pro-
vided for reference.

where (k) = [ [ u(x)exp(—i2nwk-x)dx is the 2D Fourier
transform of the flow velocity, i = v/—1 and k = (k,k,) the
wave vector. The summation in Eq. (7) is carried out over
concentric shells in wave number space. In Fig. 3 the Fourier
energy spectra E (k) are shown. We observe a peak at smaller
wavenumbers for the cases ¢ = 0.01 (¢cHW and mHW) and
¢ = 2 (mHW), indicating the presence of larger structures.
Furthermore, the spectra display a power-law scaling, with an
exponent nearing -3.5 for the case ¢ =0.7.

In this paper, we focus on the quasi-adiabatic regime (¢ =
0.7), which is the relevant case for edge plasma of tokamaks.
For readers interested in zonal flow, relevant discussions can
be found in Appendix A. Fig. 4 shows the visualization of vor-
ticity fields and 10* superimposed impurity particles for var-
ious Stokes numbers in quasi-adiabatic regime. From Fig. 4
we can observe clustering of impurity particles for the case
of St = 0.25 and St = 1, while for St = 0 and St = 50, the

impurity density field homogeneously fills the entire physi-
cal domain and does not show significant spatial correlation.
When the particles are very light, the response time of the
particles is much smaller than the turnover time of the turbu-
lent eddies, i.e., T, < Ty (St ~ 0). Their response time is so
quick that they can adjust their velocity to match any changes
in the flow immediately. They behave as usual tracers like
those in previous studies.!>~!7 When Tp > Ty (St > 1), the
inertia of the impurity particles is so high that they are almost
unaffected by the eddies. Particles are moving ballistically
and are randomly distributed, resulting in less clustering and
more dispersion. When the response time of the particles is
comparable to the eddy turnover time, i.e., T, ~ Ty (St ~ 1),
particles are subject to centrifugal effect of turbulent eddies.
Eddies can accelerate the particles to a degree where they are
thrown out of the eddy due to their inertia. This ejection and
the subsequent movement towards areas of lower vorticity re-
sult in particle clustering. The clustering of impurity particles
results in inhomogeneous poloidal distributions (y direction in
the domain) of the impurity density, which can modify radial
collisional transport.

To analyze and statistically interpret the distribution of im-
purity particles, we increase the number of particles from 10*
to 10°. Displaying the position of each particle in the flow is
impractical due to this large quantity. Instead, we visualize
the particle density. We achieve this by dividing the entire do-
main into 512 x 512 boxes and defining the impurity density
nimp as the number of particles in each box, i.e. we compute
a histogram. Fig. 5 shows the impurity density field for the
case of ¢ = 0.7 considering different Stokes numbers. When
St = 0, the impurity density is distributed uniformly through-
out the flow. As St increases, variations in impurity density
become apparent, with some areas exhibiting high density and
others low. This uneven distribution indicates the formation of
voids and clustering of particles. When St = 50, the impurity
density returns to a more uniform distribution. The impurity
density fields exhibit patterns similar to those seen in the ear-
lier visualization involving 10* impurity particles.

To analyze the impurity density distribution at different
scales, we compute the Fourier energy spectra similar to
Eq. (7) replacing the flow velocity w by the impurity density
distribution n;,,. The spectral characteristics of impurity den-
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FIG. 4. Visualization of vorticity fields in fully developed turbulence regime and superimposed impurity particles (10* impurity particles) for

various Stokes numbers in the case of ¢ = 0.7 (cHW).

sity field are shown in Fig. 6 in terms of the Fourier energy
spectra. The variance of the impurity density is equivalent
to the cumulative sum of the corresponding spectral energy.
This is visually represented as the area under the energy spec-
tra curve. As observed, the variance initially increases with
the Stokes number up to St = 1, indicating stronger fluctua-
tions. From St = 1 to St = 50, there is a decrease, suggesting
less fluctuations. For St = 0, representing tracer particles
without inertia as in previous studies, the impurity particles
are distributed randomly. Random spatial distribution of par-
ticles follows a Poisson probability density function (PDF)
with mean and variance equal to the mean density (nim), see
e.g. Ref. 31. The slope of the spectra for St = 0 in 2D is 1,
as prescribed by the equidistribution of variance among all
wavenumbers. The spectrum for St = 50 is observed to col-
lapse on those of St = 0 at small scales (high wavenumbers),
thus resembling the same characteristics as for randomly dis-
tributed particles.

IV. NEURAL NETWORKS FOR SYNTHESIZING
PREFERENTIAL CONCENTRATION OF PARTICLES

Simulating flow without impurity particles to obtain the
vorticity field is not computationally expensive, but includ-
ing and tracking 10° impurity particles increases costs. Since
a specific statistically stationary distribution of impurity den-
sity is linked to a specific vorticity field, we propose creating a
neural network that can directly predict the distribution of im-
purity density based on the vorticity field. This network uses
as input the vorticity field (easily obtained from DNS) and
produces as output the corresponding impurity density field
for a specific Stokes number. With this neural network, we
can run DNS to get the vorticity field, use it as input for the
network, and efficiently predict the impurity density distribu-
tion for a specific Stokes number. This approach eliminates
the need for costly simulations involving millions of particles.

We will evaluate and compare three different neural net-

work architectures that have previously been utilized in particle-

laden hydrodynamic turbulence studies:*>?3 the Autoencoder,
U-Net, and Generative Adversarial Network (GAN). To de-
termine the most effective neural network architecture for
accurately predicting the impurity density fields, a thorough
analysis of the statistical attributes of the impurity density
fields generated by these neural networks is carried out. In
the following, we will consider the cHW model for the quasi-
adiabatic case (¢ = 0.7).

A. Different machine learning models: Autoencoder, U-Net,
and GAN

The models used in this study are based on those utilized
in Ref. 22 and 23. Fig. 7 displays the architectures tailored
from the standard structure, which we have implemented us-
ing TensorFlow.

e Autoencoder: Autoencoder? is the basic model in our
study, comprising of an encoder that compresses the
data, and a decoder that reconstructs the output from
this compressed version.

e U-Net: U-Net** is essentially an Autoencoder but with
added skip connections. These connections facilitate
non-sequential connections between layers which helps
in the preservation of information at different scales
throughout the network.

e GAN: GAN (Generative Adversarial Network) consists
of two neural networks,?® a Generator and a Discrimi-
nator, trained simultaneously through adversarial pro-
cesses. The Generator attempts to produce synthetic
data, while the Discriminator tries to distinguish be-
tween real and synthetic data. We use U-Net as the
generator.’® More details can be found in Ref. 22 and
23.

In this study, we use the data of one long simulation in the
statistically stationary regime. This simulation has a tempo-
ral span equivalent to 220 eddy turnover times. Within this
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FIG. 5. Visualization of impurity density fields (10® impurity particles) for various Stokes numbers in the classical Hasegawa—Wakatani model
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FIG. 6. Energy spectra of impurity density for St = 0, 0.25, 1 and 50
in the case of ¢ = 0.7(cHW). The slope k is provided for reference.

simulation, we have captured 400 snapshots of the vorticity
field. For each snapshot of the vorticity field, there are 5 cor-
responding impurity density fields (St = 0.01,0.05,0.25,1,5).
The neural network is then trained to learn the relation be-
tween the vorticity field and the corresponding impurity den-
sity field. 70% of the dataset is for training the model and 30%
for evaluating its performance. Vorticity data are normalized
between -1 and 1. Impurity density data are normalized be-
tween 0 and 1 to enable the use of binary cross-entropy.

The Adam optimizer’’ was used to train the neural net-

works. Training on a single sample from the training set is
termed a ‘step’. The Autoencoder and U-net models were

trained for 28,000 training steps. The GAN model required
more steps for convergence and was trained for 56,000 steps
The Python codes were run on an NVIDIA graphics card Tesla
V100 32GB.

B. Visual Results

Fig. 8 shows the vorticity field and corresponding impu-
rity density field (St = 1) obtained from DNS for the case of
¢ = 0.7 (cHW). Fig. 9 illustrates impurity density field (St =
1) predicted from Autoencoder, Unet and GAN for ¢ = 0.7
(cHW) using vorticity field as input. When comparing DNS
impurity density fields with those predicted by the Autoen-
coder and U-Net, we find that both DNS and predicted fields
exhibit similar structures, but the clustering in the predicted
fields is slightly fuzzy. The GAN model successfully predicts
void areas and filament-like structures to some degree of suc-
cess, but it sometimes struggles with predicting the details of
regions with impurities.

C. Statistical analysis

To better understand the performance of our models, we
analyze the results using the probability density functions
(PDFs) and energy spectra of the impurity number density.
Fig. 10 shows the PDFs of DNS data and predicted data us-
ing three different architectures for St = 1. From Fig. 10 we
observe that the GAN model excels in predicting the den-
sity distribution, as its predictions closely align with DNS.
In contrast, U-Net and Autoencoder exhibit shortcomings,
particularly in predicting higher densities. The deviations in
the PDFs of U-Net and the Autoencoder suggest that these
models may struggle to accurately replicate the intricate char-
acteristics present in high-density regions.

Fig. 11 shows the energy spectra of DNS data and predicted
data using three different architectures for St = 1. In Fig. 11
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FIG. 7. The neural network architectures are illustrated as: Autoencoder in purple; U-Net in purple and red; GAN in purple, red, and green.

we observe that the GAN’s energy spectra are nearly identi-
cal to that of the DNS data. This demonstrates the remarkable
accuracy of the GAN model in predicting the energy spectra
of the impurity density. On the contrary, both U-Net and the
Autoencoder exhibit a significant drop at high wave numbers,
which correspond to fine structures in the data. This indicates
that U-Net and the Autoencoder are unable to accurately cap-
ture these fine-scale structures and may struggle to represent
the intricate details present in the impurity density.

Overall, the analysis of the PDFs and energy spectra reaf-
firms that GAN outperforms the other two for St = 1. Thus,
we utilize GAN in the following to investigate more Stokes
numbers values. From the PDF of impurity density as shown
in Fig. 12, we can see that for St = 0.25, GAN predicts lower
impurity density when compared with DNS. For small St
(St = 0.01,0.05), GAN predicts more particles than DNS.
When dealing with a large Stokes number (St = 5), the PDF
is similar to the DNS results. In the case of St = 1, the GAN
predictions align perfectly with DNS. For energy spectra, as
shown in Fig. 13, it is noticeable that the GAN predictions
align very well with the DNS. In the GAN predicted energy
spectra, notable spikes were identified at frequencies corre-
sponding to the edges and corners of the domain. This could
be because the initial encoding of domain periodicity was in-
adequate. To correct this, adjustments in the code are needed
for true periodic convolution. Unfortunately, as of the time of
this writing, TensorFlow does not yet provide native support

for periodic padding.

In our study, we train the AI model specifically for c = 0.7,
which is a typical value for edge plasma. This model predicts
impurity density fields for St = 0.01,0.05,0.25,1 and 5 using
the vorticity field at ¢ = 0.7 as input. The model’s validity is
specific to ¢ = 0.7 and the aforementioned Stokes numbers.
Its extrapolability is shown and discussed in Appendix B.

Now we know that GAN is the optimal model. Next, we
can conduct simulations to generate more vorticity fields with-
out particles, a process which is computationally efficient. We
then input these vorticity fields into GAN to predict the impu-
rity density fields. Subsequently, we can perform detailed
analyses of transport characteristics and clustering, using
methods like multiresolution analysis and Voronoi tessella-
tion. There are several possible ways to enhance the model.
One method is to adjust architectural features like the number
of layers, filter sizes, and channel counts. Another effective
approach is to integrate physical constraints into the model,
ensuring that predictions align with established physical laws,
such as mass or energy conservation, for more accurate and
plausible results.

V. CONCLUSIONS

This study focuses on inertial impurity within fusion plas-
mas, which is different from previous literature where the
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FIG. 8. Vorticity field (left)) and corresponding impurity density field (right) (St = 1) obtained from DNS for the case of ¢ = 0.7, cHW.
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FIG. 9. From left to right: For the case of ¢ = 0.7 (cHW), impurity density field (St = 1) predicted from Autoencoder, U-Net and GAN,

respectively.

focus has typically been on ‘passive tracers’ following the
flow. We used high-resolution numerical simulations based on
Hasegawa—Wakatani equations with impurity particles hav-
ing different inertia. We studied the quasi-adiabatic regime
(c = 0.7), typical for Tokamak edge plasma. Our findings
show that the inertia of particles, quantified by the Stokes
number St, plays a vital role in their behavior. At lower St
values, impurities move along the flow streamlines. As St
increases, impurities tend to cluster at low-vorticity regions.
At very high St values, impurities show random movement
due to substantial inertia, resulting in much less clustering.

As simulating 10% or more impurity particles is a compu-

tationally intensive task, we utilized machine learning tech-
niques to create a surrogate model. Three neural networks -
Autoencoder, U-Net, and GAN - were developed to synthesize
impurity densities, using vorticity fields as input. All mod-
els produced visually comparable results to simulations, with
varying degrees of success. The GAN closely matches DNS
values in terms of probability density functions and energy
spectra of density. This confirms GAN’s effectiveness in mod-
eling both the general distribution and finer structures. Based
on the results, future work will involve: Improving GAN by
adjusting the architectures or involving physical constraints
directly into the model; running simulations for more vortic-
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FIG. 10. PDFs of impurity density of DNS data and predicted data
using three different architectures for St = 1.
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FIG. 11. Energy spectra of impurity density of DNS data and pre-
dicted data using three different architectures for St = 1.

ity fields, then using the GAN to predict impurity fields for
analyzing clustering and transport properties; Including elec-
tromagnetic interactions for more accurate impurity particle
models.
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FIG. 12. PDFs of impurity density of DNS data (solid lines) and
predicted data using GAN (dashed lines) for different Sz.
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FIG. 13. Energy spectra of impurity density of DNS data (solid lines)
and predicted data using GAN (dashed lines) for different St.
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Appendix A: Impurities in zonal flows

-0.2 0.2 0.4 0.6

0.0
Vorticity

FIG. 14. Visualization of vorticity fields in fully developed turbu-
lence regime and 10* superimposed impurity particles for various
Stokes numbers in the modified Hasegawa—Wakatani model (¢ = 2).

In the modified Hasegawa—Wakatani model at ¢ = 2 with
10* impurity particles as shown in Fig. 14, the zonal flow is
very strong and the vorticity values are weaker compared to
cHW. The particles appear to be distributed evenly across the
fluid, and in proximity to the zonal flow, it seems that cluster-
ing is not evident To gain deeper insights, we examined the
impurity density fields obtained from 10® impurity particles.
As depicted in Fig. 15, there is some preferential concentra-
tion of impurities in the shear layer region for St = 0.25, 1 and
5. The impurity particles are ejected by the zonal flow, and for
St=1 the effect seems to be the strongest. For St = 0 and 50
the impurity particles are randomly distributed.

Appendix B: Extrapolability

In the following we test the extrapolability of the GAN
model for different c-values. The model has been trained us-
ing the data with ¢ = 0.7. As input data we then use vortic-

10

—T—
14 16

8 10 12
Impurity number density njm,

FIG. 15. Visualization of impurity density fields (10° impurity
particles) for various Stokes numbers in the modified Hasegawa—
Wakatani model (¢ = 2).

ity fields for c-values different from 0.7 and assess the impu-
rity densities obtained with the GAN model. The results are
shown from Fig. 16 to Fig. ??. In the hydrodynamic regime
(c = 0.01), we observe that GAN predicts the PDF and en-
ergy spectra of impurity density very well at St = 1. At other
Stokes numbers, discrepancies arise between GAN predic-
tions and DNS results in terms of PDFs and energy spectra. In
the adiabatic regime (c = 2), the PDFs and energy spectra of
impurity density predicted by GAN tend to have larger values
than the DNS results. Note that the results are good from sta-
tistical point of view, but the obtained impurity density fields
differ visually from the DNS results.
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