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Machine learning-based vorticity evolution and superresolution of homogeneous

isotropic turbulence using wavelet projectiona)

Tomoki Asaka,1, b) Katsunori Yoshimatsu∗,1, c) and Kai Schneider1, d)

(Dated: 15 March 2024)

A wavelet-based machine learning method is proposed for predicting the time evolu-

tion of homogeneous isotropic turbulence where vortex tubes are preserved. Three-

dimensional convolutional neural networks and long short-term memory are trained

with a time series of direct numerical simulation (DNS) data of homogeneous isotropic

turbulence at the Taylor microscale Reynolds number 92. The predicted results are

assessed by using flow visualization of vorticity and statistics, e.g., probability density

functions of vorticity and enstrophy spectra. It is found that the predicted results

are in good agreement with DNS results. The small-scale flow topology considering

the second and third invariant of the velocity gradient tensor likewise shows an ap-

proximate match. Furthermore, we apply the pre-trained neural networks to coarse-

grained vorticity data using superresolution. It is shown that the superresolved flow

field well agrees with the reference DNS field and thus small-scale information and

vortex tubes are well regenerated.
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I. INTRODUCTION

Self-organization in small-scale turbulence is ubiquitous for instance in the form of co-

herent vortex tubes. The vortices defined as regions of intense vorticity magnitude are char-

acteristic at scales in the dissipation range (e.g., Refs. 1 and 2). They are intermittently

distributed in physical space. Moreover, they play key roles for the dynamics of e.g., inertial

particle clustering,3 mixing in combustion,4 and extreme acceleration of fluid particles.5 The

representative length scale and time scale are respectively the Kolmogorov length scale η

and the Kolmogorov time scale τη. Jiménez et al. 1 found that the typical diameter of the

tubes is about 10η. In turbulence modeling, such as large-eddy simulation, the influence of

the vortices is statistically modeled without resolving the scales in the dissipation rage.

Machine learning in fluid dynamics is an active rapidly evolving and promising field. For

reviews we refer to Refs. 6–8. The increasing power and capabilities of machine learning

approaches can provide benefit to in particular computational fluid dynamics. Computation-

ally expensive direct numerical simulation (DNS) computations may thus be reduced or even

avoided in the near future by training neural networks with available turbulent flow data.9,10

The application of machine learning covers, e.g., extraction of flow features, turbulence mod-

eling, superresolution (SR) of unresolved flows, and time-evolution of flows. Among various

applications, we focus in the following on SR and predicting the time evolution of flows.

SR is not limited to improve the resolution of images.11 Dong et al. 12 proposed a deep-

learning SR method, by using convolutional neural networks (CNN) which learn the local

area of flow structure via convolution filters. SR using two-dimensional (2D) CNN has been

applied to turbulence; 2D freely-decaying homogeneous turbulence,13 urban turbulence,14

three-dimensional (3D) forced homogeneous isotropic turbulence (e.g., Refs. 15 and 16),

and 3D turbulent channel flows (e.g., Refs. 15 and 16). Liu et al. 15 trained velocity fields

and showed that the SR using a time series of the coarse-grained data as an input is able to

reconstruct turbulent statistics better than the SR using a single time input data. Gener-

ative adversarial networks (GAN) were introduced by Ledig et al. 17 The learning by GAN

progresses such that the probability density function (PDF) of the generated data is well su-

perimposed on that of the correct data, and therefore GAN can well reconstruct the statistics

of the correct data. SR based on an unsupervised learning model using a cycle-consistent

GAN (CycleGAN)18 has been proposed in Kim et al. 16 and applied in the context of homo-
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geneous isotropic turbulence and turbulent channel flow. They trained 2D slices of velocity

fields and showed that SR using the CycleGAN well preserves statistics of velocity and vor-

ticity. Güemes et al. 19 use a 2D GAN for SR of turbulent velocity fields in channel flows, and

proposed a downsampling factor normalized by the wall-unit quantities in the estimate of SR

of channel turbulent flows. Yousif et al.20 proposed a GAN-based model for reconstructing

3D turbulent velocity fields from velocity data in 2D planes. Asaka et al.21 developed an

SR method using wavelets and 3D CNN. They showed that SR of the coarse-grained vor-

ticity field reproduces the vortex tubes much better than that of the coarse-grained velocity

for homogeneous isotropic turbulence. Applying wavelets to the flow fields yields a sparse

multiresolution representation and thus well reduces the number of degrees of freedom of

turbulence at all scales, in particular at the scales in the dissipation range. The wavelet

transform well catches the information of position and scale of the fields and thus reflects

spatial locality and neighboring relationships.

For a review of machine-learning-based SR reconstruction for vortical flows, we refer to

Ref. 22. Recently, Refs. 23–25 have developed SR reconstruction from data observed at

sparsely distributed positions in physical space using computational and experimental fluid

dynamic data. Yousif et al.26 combined a transformer27 with an SR GAN28 for predicting

velocity fields of a spatially developing turbulent boundary layer.

As expected the quality of SR becomes worse, when the input data get coarser. We

however anticipate that training of time evolution of the vortex tubes can be a key of

improvement for SR of the vortex tubes. Using DNS of homogeneous isotropic turbulence,

Yoshida et al.29 showed that the time-evolution of the DNS data of small-scale eddies at

scales kη0.2 are perfectly regenerated from the DNS data of larger-scale eddies at scales

kη0.2 after some transient time, if the latter are assimilated at each time step. Here, k is

the modulus of the wavenumber.

Hasegawa et al. 30,31 developed a method for predicting flow time evolution, using reduced

order modeling together with 2D CNN, long short-term memory (LSTM) and autoencoder

for 2D flows past a cylinder. LSTM is a neural network which learns stored information over

extended time intervals by recurrent back propagation.32 In autoencoders, the encoder re-

duces the data size, while the decoder reconstructs the data.33 The method was extended to

3D turbulent channel flows.34 The use of convolutional autoencoders, 3D CNN with LSTM

was proposed by Mohan et al.35 for different turbulent flows including 3D homogeneous
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isotropic turbulence. Shanker et al. 36 developed a method for predicting time evolution of

3D homogeneous isotropic turbulent flows, utilizing continuous neural ordinary differential

equations, which was proposed by Chen et al. 37 instead of LSTM. Guastoni et al. 38 de-

veloped proper orthogonal decomposition (POD) based machine learning for 3D turbulent

channel flow and well predicted the coefficients of POD modes near the wall region. Lucor et

al.39 proposed physics-informed neural networks for modeling turbulent convection. These

studies train representative quantities at the scales in the energy containing range, such

as velocity and temperature fluctuation. The degree of freedoms in small scales are much

reduced in the learning. Mohan et al.40 proposed a deep-learning model of large and iner-

tial scale dynamics in turbulence, by using wavelet thresholding instead of the autoencoder.

Peng et al. 41 introduced a linear attention based model, which is coupled with Fourier neural

operators,42 for 3D homogeneous isotropic turbulence. The model is trained with vorticity

fields at a relatively low Taylor micro-scale Reynolds number of 30, and showed reason-

able agreement between their predicted results and the correct data for several large-eddy

turnover times. This method is further developed for turbulence modeling in Li et al. 43

In this paper, we propose a machine learning method using orthogonal wavelets to predict

time evolution of vorticity fields in 3D homogeneous isotropic turbulence, which is one of

the most canonical turbulent flows, while preserving vortex tubes. To this end we combine

3D CNN and LSTM techniques in a concise way to design our machine learning approach,

and we train coarse-grained vorticity fields. We here use linear wavelet projection, not

wavelet thresholding, such that we can track the time-evolution of turbulence in wavelet

space without the use of an adaptive wavelet basis for data compression. Orthogonal wavelets

are suitable for representing turbulent flow fields, which are multi-scale and intermittent.

Coherent vortex tubes can be thus efficiently retained in wavelet space.44,45 The training

and test data are obtained by DNS of homogeneous isotropic turbulence. The wavenumber

where its enstrophy spectrum hits the maximum is sufficiently larger than the maximum

wavenumber in the large-scale external forcing range. We assess the proposed wavelet-based

method of flow prediction by using, e.g., visualization, PDFs of vorticity, and enstrophy

spectra. Furthermore, we apply the pre-trained machine learning model to SR in order to

predict small-scale vorticity from a coarse-grained vorticity at a given time instant, and

assess the results.

The remainder of the manuscript is organized as follows. In Sec. II, we describe DNS
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of homogeneous isotropic turbulence. We summarize orthogonal wavelet representation in

Sec. III. In Sec. IV, we show a machine learning method for time-evolution of vorticity in

homogeneous isotropic turbulence. The method is based on wavelet projection the vorticity.

The prediction by the machine learning is then assessed in Sec. V. An application of the

pre-trained model to SR is given in Sec. VI. Finally, conclusions are drawn in Sec. VII.

II. DIRECT NUMERICAL SIMULATION

For our machine learning, we use the data of 3D incompressible homogeneous isotropic

turbulence obtained by DNS in a periodic domain Ω = [0, 2π]3. The turbulent dynamics is

governed by the Navier–Stokes equations

∂u

∂t
+ (u·∇)u = −1

ρ
∇p+ ν∇2u + f , (1)

where the velocity field is divergence free, ∇·u = 0. Here, u(x, t) denotes velocity, p(x, t)

pressure, f(x, t) the external forcing, ρ the constant density, ν the constant kinematic

viscosity, t time, x = (x, y, z), and ∇ = (∂/∂x, ∂/∂y, ∂/∂z). To simplify notation, the

arguments x and t are omitted when useful. The spatial mean velocity of u is set to zero.

DNS has been carried out, using a Fourier spectral method and a fourth-order Runge–

Kutta scheme for time integration. Aliasing errors are removed by a phase shift method

and a spherical cutoff filter. Only Fourier modes satisfying k <
√

2ng/3 are retained, where

k = |k|, k is the wave vector, and ng denotes the number of grid points in each Cartesian

direction. The kinematic viscosity is set to ν = 2.3 × 10−3. The initial field of the DNS at

t = 0 is a divergence-free random velocity field whose energy spectrum ∝ k2 exp(−k2/4),

and the spatial average of energy per unit mass, denoted by E , is set to 0.5: E = (1/2)〈|u|2〉,
where 〈·〉 = (2π)−3

∫
Ω
· dx. For the forcing f , negative viscosity1 was used only for k < 2.5

such that the spatial average of energy per unit mass, denoted by E , remains constant and

equals 0.5. The number of grid points n3
g is 1283, and the time increment is 2.0× 10−3. The

data size and the resulting Reynolds number of the DNS are limited due to the memory

requirement imposed by our machine learning model (see Sec. IV).

Figure 1 shows the time development of the enstrophy Z, defined as Z = (1/2)〈|ω|2〉,
where ω is vorticity. We can see that Z becomes statistically quasi-stationary for t5. Time-

averaged statistics of the DNS are summarized in Table I. The average is obtained by using
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FIG. 1. Time development of the enstrophy Z of the DNS.

TABLE I. Time-averaged statistics of the 250 snapshots of the DNS data at t = 10 + 0.08n (n =

0, · · · , 249). The interval 0.08 is about 0.5τη and 0.17T . Here, T is a large-eddy turnover time

defined by L/u′, and τη is the Kolmogorov time scale defined by (ν/ε̄)1/2.

ε̄ L η T τη Rλ

8.57× 10−2 1.21 1.94× 10−2 0.476 0.164 91.9

250 snapshots at every 0.08 in the interval 10.00 ≤ t ≤ 29.92. The time averaged energy

dissipation rate per unit density, denoted by ε̄, is the time average of 2νZ. The integral

length scale L is defined as L = π/(2u′2)
∫ kmax

0
(1/k)Ē(k)dk, and u′ =

√
2E/3. Here, Ē(k) is

the time-averaged energy spectrum in which the energy spectrum E(k) at each time instant

is obtained by E(k) = (1/2)
∑′

k |û(q)|2, where û(k) is the Fourier transform of u(x), and∑′
k denotes the summation over the spherical shell, k−1/2 ≤ |q| < k+1/2. The Kolmogorov

microscale η is defined as η = (ν3/ε̄)1/4. Thus, kmaxη ≈ 1.16, where kmax is the maximum

wavenumber retained by the DNS. The Taylor microscale Reynolds number Rλ is defined

by u′λ/ν, where λ = (15νu′2/ε̄)1/2.
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III. WAVELET REPRESENTATION

We introduce the wavelet decomposition of a 3D vector field and represent each compo-

nent, v(x) ∈ L2(Ω), as an orthogonal wavelet series, where Ω = [0, 2π]3. The field is sampled

on 2J grid points in each Cartesian direction, where J corresponds to the number of octaves

in each space direction in the domain (e.g., J = 7 for 128 grid points). The wavelet functions

ψµ,j,i(x) yield an orthogonal basis at scale 2−j, where µ(= 1, · · · , 7) denotes directions and

i = (ix, iy, iz) position. The scaling function at scale 2−j is denoted by φj,i(x). The fast

wavelet transform (FWT) is used to compute the wavelet coefficients from the field and the

inverse fast wavelet transform (IFWT) to reconstruct the field from the wavelet coefficients,

which in some cases, e.g. for coarse-graining, are filtered. The computational complexity of

FWT and IFWT is O(23J). Similar to previous work by Refs. 44 and 45, we use Coiflet 12

wavelets which have filter length 12, four vanishing moments and compact support. We use

here PyWavelets46 in which the Coiflet 12 wavelets are denoted by ‘coif2’.

The field v(x) can be then decomposed into an orthogonal wavelet series applying either

a periodization or a folding technique,47 the latter in the case of subcubes:

vj(x) = vj−1(x) + wj−1(x), (2)

where

vj(x) =
2j−1−1∑
i1,i2,i3=0

〈v, φj,i〉φj,i(x), (3)

and

wj(x) =
7∑

µ=1

2j−1−1∑
i1,i2,i3=0

〈v, ψµ,j,i〉ψµ,j,i(x), (4)

where 〈·, ·〉 denotes the L2-inner product, defined as 〈g1, g2〉 = (2π)−3
∫

Ω
g1(x) g2(x)dx.

Note that vJ = v, v0 = 〈v〉 and j = 1, · · · , J . As the wavelets have vanishing moments,

including their mean value, we have 〈wj〉 = 0. The wavelet and scaling coefficients are given

respectively by 〈v, ψµ,j,i〉, and 〈v, φj,i〉. At scale 2−j we have 23j scaling and 7× 23j wavelet

coefficients. We recall that the flow fields satisfy periodic boundary conditions.
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IV. MACHINE LEARNING APPROACH

We develop a methodology for predicting time-evolution of vorticity of 3D homogeneous

isotropic turbulence, combining 3D CNN, LSTM, and orthogonal wavelet analysis, denoted

by WCNN-LSTM here. In the following, we describe the training data and its preprocessing

in Sec. IV A, and then present the procedure of WCNN-LSTM in Sec. IV B. In Sec. IV C we

describe the test data and the output data.

A. Training Data

We use 205 snapshots of the DNS data at every time interval ∆τ in 10.00 ≤ t ≤ 26.32 in

our machine learning, where ∆τ = 40∆t. The time step of the DNS is ∆t = 2.0× 10−3, and

here ∆τ is about half of the Kolmogorov time τη, i.e., ∆τ ≈ 0.5τη. The spatial resolution of

the DNS data is 1283 grid points, as mentioned in Sec. II. The time correlation of vorticity is

defined as 〈ω(x, t)·ω(x, t+∆τ)〉/[〈|ω(x, t)|2〉〈|ω(x, t+∆τ)|2〉]1/2 ≈ 0.81 and the correlation

is obtained by the time-average of the snapshots. Sequential six vorticity fields at every time

interval ∆τ at t = t
(i)
0 + n∆τ (n = −4,−3, · · · , 0, 1) are randomly chosen. Here, our batch

size is 4, and t
(i)
0 (i = 1, 2, 3, 4) is an initial time of each set labelled by (i). The five fields

for n ≤ 0 are used as input data, while one field for n = 1 , i.e. at t = t
(i)
0 + ∆τ , is used

as its correct data. We here use wavelet projection for compression of the DNS data. Each

snapshot is decomposed into a 3D orthogonal wavelet series applying the FWT with periodic

boundary conditions, decomposing only one level. We then obtain wavelet coefficients in

seven directions and the scaling coefficients at the coarser scale 2−J+1. Here we have J = 7.

The sampled values of v(x) are well approximated by the scaling coefficients weighted by

23J/2 at scale 2−J .47 Our machine learning model trains the weighted coefficients. In the

case of Haar wavelets the projection corresponds to the application of a box filter, while for

Coiflet 12 we use here the projection corresponds to a more sophisticated low pass filter.

B. Machine Learning Model

We illustrate the procedure of our machine learning model WCNN-LSTM in Fig. 2. The

training scheme is implemented using the TensorFlow open-source library48 together with

Python 3.6.8 interaction interface. We use ConvLSTM3D layer, LayerNormalization (LN),
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FIG. 2. Illustration of the structure of the machine learning model, WCNN-LSTM.

and Conv3D layer (keras.io) for 3D CNN and LSTM. Our machine learning model has

seven layers; one input layer, five middle layers and one output layer. The first layer is

the input layer, while the seventh layer is the output layer. In the middle layers, we use

filters which are 3D kernels with their sizes being 3× 3× 3 in order to catch local features

of the turbulence data. The second layer is ConvLSTM3D layer having 128 filters. The

third and fifth layers are LN layers, i.e., for layer normalization. The fourth and sixth layers

are Conv3D layers having 48 and 3 filters, respectively. Zero-padding is employed at each

layer, to keep the size of the output data being the same as those of the input data. As

the activation functions for Conv3D layer, we use the linear function. For LSTM we use

tanh as activation function and sigmoid as the recurrent activation function. The adaptive

moment estimation optimizer, called Adam optimizer49 is used. The number of epochs is

set to 200. The error is measured by the use of a loss function, where the mean-absolute

of the difference between the output data and the correct data. Figure 3 shows a plot of

the loss and the validation loss as a function of the epochs. The optimal parameters in the

model are determined by using modelcheck such that the validation loss is the smallest in

epoch considered here. Our learning follows this procedure 15 times, and then we get 15

possible models. Each model predicts its output data, using remaining training data which
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FIG. 3. Epoch-dependence of the loss and validation loss in WCNN-LSTM.

are not used in the learning of the 15 possible models. In the following we select the model

where the absolute value of the mean of the output data is the lowest. Note that for the

DNS data the spatial average, i.e., the mean of vorticity ω vanishes, 〈ω〉 = 0. The output

of TensorFlow and the code of this machine learning is open access and can be found on

GitHub https://github.com/KYoshimatsu/WCNNLSTM.git.

C. Test Data and Output Data

The flow prediction procedure is detailed in the following. First, we use five vorticity

fields obtained by the DNS at time instants, t = t̂ + n∆τ (n = −4,−3,−2,−1, 0) as input

data, and predict the field at t = t̂+n∆τ with n being positive. Our test data are five DNS

snapshots in the interval 29.60 ≤ t ≤ 29.92 for each ∆τ . Here, t̂ is a starting time, and we

set t̂ to 29.92.

Our model predicts the scaling coefficients at scale 2−J+1 (J = 7) and at time t = t̂+∆τ .

We then apply IFWT to the coefficients to get the output vorticity data at t = t̂+∆τ(= 30.0)

in physical space, while the wavelet coefficients at scale 2−J+1 are set to zero. The output

data in physical space satisfy periodic boundary conditions. The input data in the next step

are four vorticity fields of DNS at t = t̂ + n∆τ (n = −3, · · · , 0) and the field predicted by

WCNN-LSTM at t = t̂+ ∆τ . Then we predict the vorticity field at t = t̂+ 2∆τ , using the

same procedure as what we have used in getting the output data at t = t̂ + ∆τ . We apply
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TABLE II. Time evolution of enstrophy Z for DNS data, CG1 data, and ML data at time t̂+n∆τ

(n = 1, 4, 6, 8, and 10).

Z t = t1 t = t4 t = t6 t = t8 t = t10

DNS 20.0 20.0 20.0 19.9 19.8

CG1 18.3 18.4 18.3 18.2 18.1

ML 17.9 17.9 17.5 17.2 17.1

this procedure step by step. The input data in the `-th step with ` ∈ N are the data at

t = t̂ + n∆τ (n = −5+, · · · , `). The data for positive n are the predicted data obtained

by WCNN-LSTM at the previous steps, while the data for n ≤ 0 are the test data. We

took another set of DNS data with different t̂ and confirmed that we got results which are

qualitatively similar to those shown in Sec. V.

V. MACHINE LEARNING RESULTS OF VORTICITY EVOLUTION

In this section, we verify and estimate our WCNN-LSTM flow prediction, using visu-

alization of vorticity and turbulence statistics. Figure 4 presents the visualization of the

modulus of vorticity |ω| for the DNS data and the predicted data by WCNN-LSTM, at

t = t̂ + n∆τ (n = 1, 4, 6 and 8). Here we denote the predicted data for simplicity by ML.

Shown are isosurfaces satisfying |ω| = ωm + 2.5ωσ with 1283 grid points, where ωm and

ωσ are respectively the mean and standard deviation of |ω| of the DNS data at each time

instant. We find that pronounced vortex tubes are well preserved by ML, though we can see

some discrepancy between the tubes obtained by DNS and by ML. The tubes predicted by

ML are less intense compared to those obtained by DNS. To look at the vorticity obtained

by the DNS and ML in detail, we visualize one vorticity component, ωx, in an x− y plane

at different time instants in Fig. 5. We can see that the ML vorticity excellently agrees

with the DNS vorticity at n = 1. However, the discrepancy between the vorticity fields

obtained by DNS and by ML seems to become larger with increasing time, as is expected.

It is to be noted that owing to flow sensitivity of turbulence, small discrepancy between two

statistically identical turbulent flows at a given time instant grows in time.
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FIG. 4. Visualization of the isosurfaces of |ω| at |ω| = ωm + 2.5ωσ at each time instant. Here

ωm and ωσ are the mean value and the standard deviation of the corresponding vorticity modulus

|ω| for the DNS data, respectively: (left) DNS data and (right) ML data, which are our predicted

data, at t = t̂+ nτ (n = 1, 4, 6 and 8).
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FIG. 5. Visualization of the vorticity components ωx on an x−y plane: (left) DNS data and (right)

ML data at t = t̂+ nτ (n = 1, 4, 6 and 8).

Table II presents the enstrophy Z at five time instants for the ML data in comparison

with Z for the DNS data and for the coarse-grained data at scale 2−J+1. The latter is

hereafter denoted by CG1. We can see that the enstrophy Z for the ML data well agrees

13



TABLE III. Time evolution of energy E for ML data. The energy of the DNS is kept constant at

0.5, as mentioned in Sec. II. In the CG1 data, E ≈ 0.5 and therefore we omit them for brevity

from Table III.

E t = t1 t = t4 t = t6 t = t8 t = t10

ML 0.48 0.45 0.44 0.45 0.46

with Z for the DNS at each time instant within the difference ranging from about 10% to

14%. The difference increases with time t̂ + n∆τ . The reason is mainly attributed to the

wavelet projection at scale 2−J+1 necessary for getting CG1 data. We recall that before

applying the IFWT the wavelet coefficients at scale 2−J+1 are set to zero in WCNN-LSTM.

The enstrophy Z of the ML data agrees with Z of the CG1 data much better than Z of

DNS. Table III gives the energy E for the ML data. We can see that E of the DNS is well

reproduced by the ML at each time. The difference of E between the ML data and DNS data

ranges between 4% to 12%. The velocity fields of the data are obtained from the predicted

vorticity ω by using the Biot–Savart law: u = −∇−2(∇× ω).

We show the PDFs of the x-components of vorticity ωx and velocity ux at different time

instants in Fig. 6. In Fig. 6(a), we can see that the PDFs of ωx for ML well overlap with

those of ωx for DNS at each time instant. We observe some departure between the PDFs for

ML and DNS, especially in the stretched tails of the PDFs. The departure becomes larger

as time progresses. The PDFs for ML are narrower than those for DNS, which implies that

the vorticity predicted by ML is less intermittent than that of DNS. In Fig. 6(b), we can see

that at n = 1, the PDF of ux for ML well overlaps with that for DNS. The PDFs are close

to a Gaussian distribution. At n = 6 and 8, we see that the PDFs for ML depart from those

of DNS. We omit the PDFs of the y and z-components of vorticity and velocity, because the

observations are the same as in the case of the PDFs of the x-components due to statistical

isotropy.

In order to get deeper information of the ML data, we examine small-scale flow topol-

ogy. The topology can be characterized by the second and third invariant of the velocity

gradient tensor.50,51 These invariants are respectively defined as Q = −(1/2)AijAji and

R = −det(Aij), where Aij = ∂ui/∂xj and the Einstein summation convention is used for
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FIG. 6. PDFs of (a) the x-component of vorticity ωx, and (b) the x-component of velocity ux. We

here omit the PDF of ωx for CG1 data at n = 1, because the PDF well agrees with the counterpart

of the DNS data.

the repeated subscripts. Here, we use the notation (x1, x2, x3) = (x, y, z). It is to be noted

that Aii = 0 for DNS, owing to the divergence-free condition. In our ML, Aii = 0 likewise

vanishes, because we have used the Biot–Savart law for computing the velocity fields for

ML. Figure 7 shows isolines of the joint PDFs of Q and R. The PDFs for DNS are tear-drop

like, as reported in e.g., Refs. 51 and 52. Figure 7 (a) shows that the joint PDF of Q and

R well agrees with that of DNS at n = 1. We can see in Figs. 7 (b) and 7 (c) for n = 6, 8

that the isolines of the highest value 5 × 10−3 in the joint PDFs for ML are in fairly good

agreement with those for DNS, though we can also see some discrepancy between ML and

DNS PDFs for the other smaller isoline values. We omit the PDFs of Q and R for CG1 for

brevity, because the PDFs for CG1 excellently agree with those for DNS.

Next, we analyze our ML data considering the enstrophy spectrum Z(k), which is defined

as Z(k) = (1/2)
∑′

k |ω̂(q)|2 and we have Z(k) = k2E(k), where E(k) denotes the energy
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origin. The green dotted lines represent 27R2/4 +Q3 = 0.
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spectrum. The reason for selecting Z(k) is to catch the statistics in the dissipation range

well. Here, ω̂(k) is the Fourier transform of ω(x). We see in Fig. 8(a) that the peak of

Z(k) where the enstrophy spectra hit the maximum is about 0.2, while the external force

is imposed in kη0.05 (see Sec. II and Table I). Hence the peak departs from the forcing

range. As Rλ increases implying that η becomes smaller, a forcing range departs further

from the peak (e.g. Ref. 2). Figure 8(a) shows that the enstrophy spectra for ML are

in almost perfect agreement with those of DNS. For wavenumbers kη0.5, we observe some

small discrepancy of Z(k) between ML and DNS. We can see that the spectrum for CG1,

the coarse-grained data at scale 2−J+1, well overlaps with Z(k) for ML at n = 1. This

discrepancy can thus be attributed to the wavelet projection where the wavelet coefficients

at scale 2−J+1 are set to zero, as mentioned in Sec. IV B. We therefore conclude that the

discrepancy is not crucial. Figure 8(b) plots the energy spectra E(k) for ML and DNS. We

see that the spectra of ML excellently agree with those of DNS. The observed differences for

the enstrophy spectra Z(k) in kη0.5 are much reduced for E(k). Therefore, the enstrophy

spectra yield better indicators for the verification of machine learning prediction of vorticity

than the energy spectra.

In the LSTM flow prediction using an autoencoder and CNN, Nakamura et al. 34 show

their predicted energy spectra in the high wavenumber range near by the maximum

wavenumber. These are enhanced in comparison with the correct spectra for turbulent

channel flow, i.e. they overpredict energy. This overprediction can be also observed in

Refs. 35 and 36 for the machine-learning time-evolution prediction using an autoencoder of

isotropic turbulence.

Finally, we examine the influence of the divergence of the vorticity ω for the ML data in

which ∇·ω 6= 0 in general, while for DNS we have ∇·ω = 0. The divergent part is given

by ξ(k) = {k·ω̂(k)}k/k2 in k space. Figure 9 shows the spectra of this part Ξ(k) given

as Ξ(k) = (1/2)
∑′

k |ξ(q)|2. We can see that the influence of the divergence is not crucial

in particular at small scales. The values of Ξ(k) at large scale, kη0.05 for later times, are

somewhat comparable to the value of Z(k), about 25 percent of the magnitude of Z(k).

However, this issue can be be overcome by using divergence-free biorthogonal wavelets.53,54
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VI. APPLICATION OF WCNN-LSTM TO SUPERRESOLUTION

We now apply the pre-trained WCNN-LSTM to regenerate vortices at an instant ts(=

30.0) from a given coarse-grained vorticity field at ts. This can be regarded as a type of SR

applied for recovering the fine-scale flow evolution from coarse-scale predicted flow data. A

key quantity for the degree of the coarse-graining is the normalized wavenumber kcη, where

the larger scale data are almost or completely kept for kkc while the smaller scale data

are almost or completely lost for kkc. One can expect that SR becomes more difficult for

decreasing kcη.

A. Coarse-Grained Input Data

We first obtain a coarse-grained vorticity field from the DNS data. We apply an FWT,

remove the wavelet coefficients at scales 2−J+2 and 2−J+1, and then reconstruct the flow field

from the scaling coefficients at scale 2−J+2 using an IFWT at scale 2−J . We call the obtained

coarse-grained vorticity CG2. We confine ourselves to the same DNS data as those used in

our machine learning in Sec. IV, taking the same periodic boundary conditions imposed on

the DNS, as well as the memory limitation into account. The DNS has been computed at

resolution 1283 and kmaxη ≈ 1.16, as described in Sec. II. Thus, we have J = 7, and the CG2

field lost the data for kη0.3. It is to be noted that the regeneration of vorticity from this type

of fields is not learned by our machine learning. We then use the SR method developed by

Asaka et al.21 using wavelets, subcube division, and 3D CNN. We call the method WCNNSR

here. WCNNSR learns the five snapshots of the DNS data of vorticity at 1283 grid points

from the training data which are described in Sec. II. The data at each time instant are

divided into 64 subcubes with 323 grid points in physical space. The subcubes data are then

transformed in wavelet space using Coiflet 12 wavelets at one level, by imposing symmetric

boundary conditions on the subcubes, the so-called folding technique. In PyWavelets,46 the

boundary condition requires five extra elements of the array in each direction, and thus the

size of each subcube becomes finally 8× 213 in wavelet space. Figure 10 shows the losses in

the WCNNSR as a function of epoch.

We now apply the WCNNSR to the CG2 data at t = ts = 30.0, and then we use the

resulting data as an input data. The CG2 data are much coarse-grained for WCNNSR, and
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FIG. 10. Epoch-dependence of loss and validation loss in WCNNSR.

therefore WCNNSR does not recover the small-scale flow contributions at least visually well.

It is to be noted that the DNS data at t = ts are not our training data in the WCNNSR

and the WCNN-LSTM. Figure 12 shows the isosurfaces of |ω| for DNS, the coarse-grained

data CG2, the predicted data using WCNN-LSTM including SR (ML), and SR applied to

CG2 only (WCNNSR). The visualization for the DNS data is the same as the DNS at n = 1

shown in Fig. 4. The vorticity tubes observed in the DNS are not well retained in CG2, due

to the coarse-graining. We can see some fragmentation of the tubes in CG2. In contrast,

applying SR to CG2 using WCNNSR, which is denoted by WCNNSR for simplicity, we

can observe that some tubes regenerated, however much fewer than in DNS. Moreover, the

degree of coarse-graining of the WCNNSR data is almost the same as the CG2 data, as

shown in Sec. VI C. Therefore, the WCNNSR data are expected to be likewise suitable as

input data for WCNN-LSTM. Asaka et al.21 reported that the WCNNSR method works well

for less coarse-grained input data at higher Rλ. A result of WCNN-LSTM of the CG2 data

without WCNNSR is presented in Appendix A.

B. Procedures of superresolution using WCNN-LSTM

Figure 11 illustrates our SR procedure using the pre-trained WCNN-LSTM, introduced

in Sec. IV B. Our input data are four empty data sets whose values are zero for pseudo-

time instants ts + m∆τ (m = −4,−3,−2,−1) together with the predicted vorticity data
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FIG. 11. SR method based on the pre-trained WCNN-LSTM.

obtained by WCNNSR at time ts, where ∆τ ≈ 0.5τη. We have chosen the four empty data

sets such that the influence of the input data at the instants given by negative indices m

on the SR at ts can be reduced. WCNN-LSTM predicts the scaling coefficients of vorticity

at scale 2−J+1 and at time ts + ∆τ . Using the FWT with periodic boundary conditions, we

decompose them into the scaling coefficients at scale 2−J+2 and the wavelet coefficients at

scale 2−J+2. Then, we copy the scaling coefficients at scale 2−J+2 of the input WCNNSR

data at ts to the scaling coefficients at scale 2−J+2 which have been obtained in the above

decomposition. Therefore, the information corresponding to the wavelet coefficients at scale

2−J+2 evolves in our SR results. Afterwards using the IFWT, we obtain the output data in

physical space at ts + ∆τ . They are then used as input data in the next step, in addition

to three empty data sets at ts +m∆τ (m = −3,−2,−1) and one WCNNSR data at ts. We

obtain the output data at ts + 2∆τ . The input data in the `-th step are the data ts +m∆τ

(m = −4 + `,−3 + `,−2 + `,−1 + `), where ` ∈ N . The data at negative indices m are

empty, the data at m = 0 are the WCNNSR data, and the data at positive indices m are

predicted by the WCNN-LSTM with the above-mentioned copy of the scaling coefficients at

scale 2−J+2 of the WCNNSR data. The data at ts+`∆τ are obtained by the same procedure

described above. Eventually we get the output data in physical space using IFWT with the
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FIG. 12. Visualization of isosurfaces of |ω| at |ω| = ωm + 2.5ωσ for the DNS data at t = ts, the

CG2 data at t = ts, the SR data obtained by WCNN-LSTM, which is denoted by ML, at m = 4,

and the WCNNSR data at t = ts. Here, ωm and ωσ are the mean value and the standard deviation

of |ω| for the DNS data, respectively. The grid resolution is 1283.

periodic boundary conditions at each pseudo-time instant.

C. Results of the superresolution

Now, we verify the SR using the WCNN-LSTM to recover fine-scale information of the

flow. Figure 12 shows the isosurfaces of vorticity magnitude |ω|. ML denotes the visualiza-

tion for the SR of the WCNNSR result, by using the WCNN-LSTM. The ML results seem

to well preserve most of the positions of the tubes in DNS, though we can observe some

differences between the visualizations of DNS and ML: the isosurfaces of DNS are smoother

than those of ML. Figure 13 visualizes ωx on an x−y plane. We can see that ML reproduces

the vorticity distribution of DNS well, though there are again some differences between ML
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FIG. 13. Visualization of the vorticity components ωx on an x−y plane for the DNS data at t = ts,

the CG2 data at t = ts, the ML data at m = 4, and the WCNNSR data at t = ts.

and DNS looking at details. Table IV shows the enstrophy Z for DNS, CG2, WCNNSR,

and ML. The enstrophy Z for ML is comparable to Z for DNS, while the other values for

CG2 and WCNNSR data are much reduced.

We move on to the statistics of small-scale quantities. Figure 14 gives a plot of PDFs

of ωx for the different fields. We observe that the PDFs for WCNNSR and CG2 are much

narrower than the PDF for DNS. We can also see that the PDF of ML becomes wider as

the pseudo-time progresses. We find that the PDF of ML at m = 4 (orange line) is in good

agreement with that of DNS, though the former is somewhat narrower than the latter. In

Fig. 15, we compare the joint PDFs of the second and third invariant of the velocity gradient

tensor, Q and R, for WCNNSR and ML (m = 4) with those of DNS. We can see that the

PDFs of WCNNSR and ML well agree with the joint PDF of DNS. The departure from the

DNS results can be seen only at the smallest isoline value, 10−4.

To get deeper insight into the small scales, we examine the enstrophy spectra Z(k). In

Fig. 16, we can see that for CG2 and WCNNSR, the enstrophy spectra are much reduced
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TABLE IV. Enstrophy of the DNS data at t = ts, the CG2 data at t = ts, the ML data at m = 4,

and the WCNNSR data at t = ts.

DNS CG2 WCNNSR ML

Z 20.0 13.1 14.4 19.4
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FIG. 14. PDFs of ωx for DNS, ML (m = 1, 3, 4), WCNNSR and CG2.

for kη0.2. We find that the degree of coarse-graining of the WCNNSR data is almost the

same as that of the CG2 data in terms of Z(k). The values of Z(k) for ML for kη0.2 grow in

the pseudo-time, and almost saturate at m = 3 and m = 4. We can see that Z(k) for ML at

m = 4 excellently agrees with that for DNS. We recall that we copy the scaling coefficients

at scale 2−J+2 (J = 7) of the WCNN data to the output data every pseudo-time instant

in the SR method using the WCNN-LSTM prediction. Therefore, the enstrophy spectra of

ML are almost the same as Z(k) for WCNNSR for kη0.2. Figure 17 shows the divergence

spectra of the vorticity for ML. This confirms that the influence of divergence is not crucial.

VII. CONCLUSIONS

We have developed a wavelet-based machine learning method (WCNN-LSTM) for pre-

dicting the time evolution of vorticity for homogeneous isotropic turbulence where vortex

tubes are preserved. To this end, we combined two neural network architectures, 3D CNN
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FIG. 15. Joint PDFs of Q and R for (a) DNS and WCNNSR, and for (b) DNS and ML (m = 4).

The contour lines for DNS, WCNNSR, and ML are denoted by the red dashed lines, black solid

lines, and the blue solid lines, respectively. The contour lines for all cases are set to 10−4, 10−3

and 5× 10−3, starting near the origin. The green dotted lines represent 27R2/4 +Q3 = 0.

and LSTM. The latter permits learning the time evolution, while the former trains the net-

work to reproduce not only the turbulent flow but also the pronounced and well-localized

vortex tubes. We have used compactly supported orthogonal wavelets. By construction

wavelets well catch the information of position and scale of the fields. The wavelets effi-

ciently represent multi-scale and intermittent fields, here turbulent vorticity fields exhibit-

ing vortex tubes.44,45 The fast wavelet transform and its inverse allow switching rapidly

between physical space and wavelet coefficient space. Wavelet projection is then used to

reduce the size of the input data. Therefore, the projection reduces the memory required for

learning. We applied the developed WCNN-LSTM to DNS data of homogeneous isotropic
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of the DNS data at ts is plotted as a reference.

turbulence in a (2π)3 periodic box at the Taylor microscale Reynolds number 92 computed

at resolution 1283 and kmaxη ≈ 1.16. The dimensionless wavenumber kη where the enstro-

phy spectra hit the maximum is about 0.2, while the external force is imposed in kη0.05.

The results predicted by WCNN-LSTM have been assessed in comparison with the DNS

data. The predicted fields satisfy periodic boundary conditions by using the IFWT. Visu-

alization of isosurfaces of vorticity magnitude showed that vortex tubes are well retained in

the WCNN-LSTM flow prediction. The PDFs of vorticity and velocity, which are predicted

by WCNN-LSTM, well agree with those of the DNS data at time instants larger than 3τη,

where τη is the Kolmogorov time-scale, The flow topology characterized by second and third
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invariants of the velocity gradients is likewise well retained by WCNN-LSTM. We employed

the enstrophy spectra to get deeper information into the dissipation range. We observed

that the predicted enstrophy spectra well agree with those for the DNS. The influence of the

divergence of the predicted vorticity was shown to be negligible. As expected we found that

the enstrophy spectra are more suitable than the energy spectra for verification of machine

learning prediction of vorticity.

Then, we applied our pre-trained WCNN-LSTM model to the SR of a coarse-grained

vorticity of the DNS data at a time instant ts. The information at kη0.2 is much reduced

in the coarse-grained data, and the vortex tubes of the DNS data at t = ts are lost in

the coarse-grained vorticity. We showed that the vortex tubes are well regenerated from

the coarse-grained vorticity by the SR, though the previously developed wavelet-based SR

model at a time instant21 failed in the SR of the coarse-grained vorticity. It is to be noted

that the WCNN-LSTM model was not trained to learn the regeneration. The vortex tubes

are visualized by using isosurfaces of the modulus of the vorticity. We can see that the

isosurfaces for the predicted vorticity well agree with those of the DNS data, though the

latter are smoother than the former. Further improvement of the quality of SR using machine

learning of the time evolution of vorticity remains an interesting issue for future studies.

Predicting the dynamics in fully developed turbulent flow with DNS is a costly endeavor,

because the number of degrees of freedom increases approximately with R
9/2
λ . Machine

learning of turbulent flows thus requires much more memory and computational cost, as the

Reynolds number increases. The memory and cost could be reduced by multi-level wavelet

decomposition with or without nonlinear wavelet filtering. In machine learning based on

multi-level wavelet decomposition, the wavelet coefficients at each scale are learned, which

means scale-by-scale machine learning. In Farge et al.,55 coherent vortex simulation was

proposed to compute the time evolution of the coherent vorticity, while neglecting the influ-

ence of the incoherent flow to model turbulence dissipation. The coherent vorticity consists

of few intense wavelet coefficients of vorticity, and the intense coefficients are extracted by

using wavelet nonlinear filtering.44,45 Tracking the time evolution of the coherent vorticity

in wavelet space while reducing the required memory needs adaptive computation based on

wavelets. The application of the adaptive computation to the machine learning remains an

open issue. Moreover, the concept of time parallelization (e.g., Ref. 56) could be useful

for efficient learning longer time evolution of turbulence. We look forward to parallelization
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of machine learning that will resolve the present limitation of the GPU memory and the

computational time. It could be also interesting to examine whether machine learning can

reconstruct the time evolution of 3D turbulent flows from 2D slices of the flow. The pre-

diction of time evolution of turbulence with different dynamics, e.g., inertial particles can

be interesting on the basis of Oujia et al.57,58 for synthesizing preferential concentration of

particles in isotropic turbulence.
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Appendix A: WCNN-LSTM without WCNNSR

We shortly describe the SR of the CG2 data by using the WCNN-LSTM without WC-

NNSR. This SR is here denoted by SRCG2. We select the enstrophy spectra Z(k) here. The

spectra provide good verification of the results in the dissipation range, as discussed in Sec.

VI C. Figure 18 shows that Z(k) for SRCG2 at m = 4 takes somewhat larger values than

the Z(k) of DNS at m = 4 for kη ≈ 0.4.
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38L. Guastoni, A. Güemes, A. Ianiro, S. Discetti, P. Schlatter, H. Azizpour, and R. Vinuesa,

“Convolutional-network models to predict wall-bounded turbulence from wall quantities,”

J. Fluid Mech. 928, A27 (2021).

39D. Lucor, A. Agrawal, and A. Sergent, “Simple computational strategies for more effective

physics-informed neural networks modeling of turbulent natural convection,” J. Comput.

Phys. 456, 111022 (2022).

40A. T. Mohan, D. Livescu, and M. Chertkov, “Wavelet-powered neural networks for tur-

bulence,” in ICLR 2020 Workshop on Tackling Climate Change with Machine Learning

(2020).

41W. Peng, Z. Yuan, Z. Li, and J. Wang, “Linear attention coupled Fourier neural operator

for simulation of three-dimensional turbulence,” Phys. Fluids 35, 015106 (2023).

42Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar, “Fourier neural operator for parametric partial differential equations,”

arXiv:2010.08895v3 (2021).

43Z. Li, W. Peng, Z. Yuan, and J. Wang, “Long-term predictions of turbulence by implicit

U-Net enhanced Fourier neural operator,” Phys. Fluids 35, 075145 (2023).

44M. Farge, G. Pellegrino, and K. Schneider, “Coherent vortex extraction in 3D turbulent

flows using orthogonal wavelets,” Phys. Rev. Lett. 87, 054501 (2001).

45N. Okamoto, K. Yoshimatsu, K. Schneider, M. K., Farge, and Y. Kaneda, “Coherent vor-

tices in high resolution direct numerical simulation of homogeneous isotropic turbulence:

32

https://www.climatechange.ai/papers/iclr2020/16


A wavelet viewpoint,” Phys. Fluids 19, 115109 (2007).

46G. R. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt, and A. O’Leary, “Pywavelets: A

python package for wavelet analysis,” J. Open Source Softw. 4, 1237 (2019).

47S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way (Elsevier,

2008).

48M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Man, R. Monga, S. Moore, D. Mur-

ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-

houcke, V. Vasudevan, F. Vigas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,

and X. Zheng, “Tensorflow: Large-scale machine learning on heterogeneous distributed

systems,” http://download.tensorflow.org/paper/whitepaper2015.pdf (2015).

49D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980v9 (2017).

50M. S. Chong, A. E. Perry, and B. J. Cantwell, “A general classification of three-dimensional

flow fields,” Phys. Fluids A 2, 765 (1990).

51J. Soria, R. Sondergaard, B. J. Cantwell, M. S. Chong, and A. E. Perry, “A study of the

fine-scale motions of incompressible time-developing mixing layers,” Phys. Fluids 6, 871

(1994).

52L. Chevillard, C. Meneveau, L. Biferale, and F. Toschi, “Modeling the pressure Hessian

and viscous Laplacian in turbulence: Comparisons with direct numerical simulation and

implications on velocity gradient dynamics,” Phys. Fluids 20, 101504 (2008).

53E. Deriaz and V. Perrier, “Divergence-free and curl-free wavelets in two dimensions and

three dimensions: application to turbulent flows,” J. Turbul. 7, N3 (2006).

54E. Deriaz, M. Domingues, V. Perrier, K. Schneider, and M. Farge, “Divergence-free

wavelets for coherent vortex extraction in 3d homogeneous isotropic turbulence,” in

ESAIM: Proceedings, Vol. 16 (EDP Sciences, 2007) p. 146.

55M. Farge, K. Schneider, and N. Kevlahan, “Non-Gaussianity and coherent vortex simula-

tion for two-dimensional turbulence using an adaptive orthonormal wavelet basis,” Phys.

Fluids 11, 2187 (1999).

56M. J. Gander, “50 years of time parallel time integration,” in Multiple Shooting and Time

Domain Decomposition Methods: MuS-TDD, Heidelberg, May 6-8, 2013 (Springer, 2015)

33

http://dx.doi.org/10.21105/joss.01237


p. 69.

57T. Oujia, S. S. Jain, K. Matsuda, K. Schneider, J. West, and K. Maeda, “Neural networks

for synthesizing preferential concentration of particles in isotropic turbulence,” in Proceed-

ings of the Summer Program 2022, Center for Turbulence Research, Stanford University

(2022) p. 153.

58T. Maurel-Oujia, S. S. Jain, K. Matsuda, K. Schneider, J. R. West, and K. Maeda, “Neural

network models for preferential concentration of particles in two-dimensional turbulence,”

arXiv:2312.14829v1 (2023).

34


	Machine learning-based vorticity evolution and superresolution of homogeneous isotropic turbulence using wavelet projection
	Abstract
	Introduction
	Direct Numerical Simulation
	Wavelet Representation
	Machine Learning Approach
	Training Data
	Machine Learning Model
	Test Data and Output Data

	Machine Learning Results of Vorticity Evolution
	Application of WCNN-LSTM to superresolution
	Coarse-Grained Input Data
	Procedures of superresolution using WCNN-LSTM
	Results of the superresolution

	Conclusions
	Acknowledgments
	WCNN-LSTM without WCNNSR
	References


