
HAL Id: hal-04510257
https://hal.science/hal-04510257v1

Submitted on 18 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Short Paper: Mechanized Proofs of Masking Security
Roberto Blanco, Christian Doczkal, Jakob Feldtkeller, Tim Güneysu, Cătălin

Hriţcu

To cite this version:
Roberto Blanco, Christian Doczkal, Jakob Feldtkeller, Tim Güneysu, Cătălin Hriţcu. Short Paper:
Mechanized Proofs of Masking Security. 18th Workshop on Programming Languages and Analysis for
Security (PLAS 2023), Nov 2023, Copenhagen, Denmark. �hal-04510257�

https://hal.science/hal-04510257v1
https://hal.archives-ouvertes.fr


Short Paper: Mechanized Proofs of Masking Security
Roberto Blanco1 Christian Doczkal1 Jakob Feldtkeller2 Tim Güneysu2 Cătălin Hrit,cu1

1 MPI-SP, Bochum, Germany 2 Ruhr University Bochum, Germany

Abstract
Among the many threats that side channels pose to the secu-
rity of computer systems, those that exploit physical access
are among the most insidious. A general countermeasure
against these attacks is masking, a form of secret sharing
applied to sensitive data. While these techniques are effec-
tive and widespread, implementing them correctly typically
involves complex informal reasoning, where even subtle mis-
takes can invalidate the security guarantees they potentially
offer. We present our vision and initial work to provide rig-
orous formal assurances and sound reasoning principles for
circuit designers by developing a mechanization framework
for masked circuits that can be used to reason about the
security of gadgets and their composition. Our work is done
on top of the EasyCrypt proof assistant.

1 Masking Security
Side-channel attacks are significant and pervasive threats
to the security of computer systems. Among these, physical
attacks take advantage of access to the hardware to exfiltrate
secrets. Implementations of crypto primitives as hardware
circuits and the secret cryptographic material manipulated
by these are notable targets for these kinds of attacks. To
give any formal account of security against physical side
channels, a threat model is necessary. The foundational at-
tacker in this domain is given by the probing model of Ishai
et al. [12], where the attacker is able to select up to a given
number 𝑡 of wires in the circuit and observe their values. A
circuit is 𝑡-probing secure if no combination of up to 𝑡 probes
reveals anything about any sensitive value. The parameter 𝑡
represents the security order of the property. More sophisti-
cated attackers are also defined in the literature [6, 9, 10].
Among the countermeasures devised to hinder the ex-

ploitation of physical side channels on hardware circuits,
masking stands as one of the most widely used. A masked
circuit is one where each piece of secret data 𝑥 has been
decomposed into a number 𝑑 of randomized, uniformly dis-
tributed shares, 𝑥1, . . . , 𝑥𝑑 such that the original value can be
reconstructed iff all of the shares are at hand: 𝑥 = 𝑥1⊕ . . .⊕𝑥𝑑 .
Wires in masked circuits carry shares of secret inputs, out-
puts and intermediate computations, as well as random bits
used to conceal the latter. The number of shares, given by the
parameter 𝑑 , is related to the security guarantees offered by a
masked circuit, although establishing a connection between
the two is complex and error-prone.

Given a circuit, it is possible in general to obtain an equiv-
alent 𝑡-probing secure version by applying a masking trans-
formation where the number of shares satisfies 𝑑 > 𝑡 , and re-
producing the original computation on those masked shares.
In practice, a complex circuit will be divided into smaller
“gadgets,” representing, e.g., logic or arithmetic operations,
protected individually by masking and then assembled to-
gether. However, the combination of probing secure gadgets
into larger circuits is not necessarily secure. This has led
to the definition of stronger compositional security criteria,
like Strong Non-Interference (SNI) [3] and Probe-Isolating
Non-Interference (PINI) [8].

Given the difficulty of manually verifying the security of
even small gadgets at moderate orders, a more rigorous treat-
ment of the verification problem becomes essential. Most
existing verification tools apply automated reasoning tech-
niques to a selection of probing models and security proper-
ties [1, 7, 13]. These tools are not easily extensible, and do
not scale beyond the verification of small individual masked
gadgets at given, fixed orders. Despite the recent pioneering
work of Barthe et al., [2], the potential of semi-interactive
verification tools has remained largely unexplored.

We envision that by developing a formal framework for
mechanized proofs of masking security in a semi-interactive
proof assistant, we can faithfully reproduce and facilitate
the kinds of security reasoning carried out by expert cir-
cuit designers, increasing confidence and avoiding the kinds
of vulnerabilities that have marred masked designs in the
past (e.g., [11]. Our vision is one where mechanized proofs
and informal reasoning and design patterns are in close cor-
respondence, and moreover specifications and proofs are
connected to secure implementations “all the way down.”

2 Mechanized Proofs
We now outline our proposed approach to formalize masked
circuits, attacker models, and security definitions in two lay-
ers: a first layer to reason about the security of individual
gadgets (§2.1), and a second layer to reason about the compo-
sitional security of circuits formed of smaller gadgets (§2.2).
We have started developing the basic building blocks of the
framework (definitions on both layers) and also experiment-
ing with this by developing as a case study for the first layer
the core security proofs for a gadget exemplar (ISW multipli-
cation [12]). For this we use EasyCrypt [4], a semi-interactive
proof assistant for the specification and development of cryp-
tographic proofs using probabilistic relational Hoare logic
(pRHL) [5], whose judgments we use to express the security
properties of interest clearly and naturally.

1



Blanco et al.

2.1 Circuit Security
For the first layer, a natural choice, which we use in our
experiments, is to encode masked circuits as procedures in
EasyCrypt’s probabilistic While language [5]. Masked inputs
and outputs are represented as vectors of randomized shares,
intermediate computations are stored in vectors and matri-
ces, and random bits are obtained using the language’s built-
in generation primitives. Consider ISW multiplication [12],
our initial case study. A slightly simplified model of this
gadget can be given as an EasyCrypt procedure as follows:
proc mult(a b : M.vector) : M.vector = {

var w, u, r : matrix;
var c : M.vector;
r <$ dcond (dmatrix dbool)

(fun m => msym m /\ diagf m);
w <- offunm (fun i j => a.[i] /\ b.[j]);
u <- offunm (fun i j => w.[i, j] ^ r.[i, j]);
c <- offunv (fun i => BBA.bigi predT

(fun j => u.[i, j]) 0 (d + 1));
return c; }

In this programmatic representation, we can approximate
probe locations as indexes in each vector and matrix. To
study the security of these procedural circuits, we can wrap
their code in a leakage procedure that performs the compu-
tation of the circuit and extracts the values associated with
its probed variables. This is specific to each leakage model.
proc probe(a b : M.vector,

obs : ProbeSet) : LeakageSet = {
... (* compute gadget *)
return (leakage obs a b r w u c); }

For example, if the probe set contains locations . . . ,𝑤1,2, . . .,
and the gadget runs with 𝑎1 = 0, 𝑏2 = 1, the corresponding
output will leak . . . ,𝑤1,2 = (𝑎1 ∧ 𝑏2) = (0 ∧ 1) = 0, . . ..

A proof of probing security boils down to a simulation be-
tween the probes of two circuits. Technically, given a gadget
(the first circuit) and a valid set of probes, we can construct a
simulator (the second circuit) that isolates those shares of the
inputs that influence the probed values. The second circuit
uses this subset of shares to effectively simulate the probes
in the original gadget, that is, the probability distributions
of the values read by each probe are identical in the original
gadget and in the simulator. The corresponding EasyCrypt
lemma is a pRHL equivalence on the outputs of the leakage
procedures for the gadget and its simulator (={res}), start-
ing from identical inputs a, b and well-formed probes obs
(i.e., arbitrary-order while satisfying 𝑡 < 𝑑):
lemma ISWsec (probes : ProbeSet) :

equiv[Gadget.probe ~ Simulator.probe :
wf_ProbeSet probes /\
={a, b, obs} /\ obs{1} = probes ==> ={res}].

The goal of the proof is making explicit the probe sim-
ulation argument for an arbitrary probe set, and the key

step involves establishing an adequate coupling between
the randomly sampled values used to conceal the sensitive
data flowing through the gadgets. Although formal proofs
are much more detailed than paper proofs, most of this pro-
cess is a prime target for automation. However, a technically
interesting point is the disconnect between the sources of
randomness in a gadget and its simulator. Since we are only
interested in the values leaked by a fixed (but arbitrary) set
of probes, a procedure in standard style will oversample and
rearrange randomness in complex patterns, obscuring the
coupling that constitutes the core of the proof. To expose this
core, we can perform a series of game hops to obtain equiv-
alent circuits phrased in terms of lazy oracles, which only
sample those random bits that become part of the probed
values. Precise couplings are developed at this level.

We note that these proof principles extend naturally to
more powerful attackers than those of the standard prob-
ing model, easily capturing other hardware issues such as
glitches [10]. Different security propertieswill result in slightly
different proofs, but we anticipate that the same proof princi-
ples should apply to a variety of compositional criteria built
on top of the different threat models.

2.2 Gadget Composition
Once we have a library of masked gadgets, whose security
is proved once and for all, we will want to use them to build
larger circuits, and to combine their security proofs into se-
curity proofs for the resulting circuits. Because 𝑡-probing
security is not compositional, in practice we wish to prove
stronger properties, like SNI or PINI [3, 8], that add sup-
port for secure composability of gadgets under easily check-
able and automatable conditions. We expect those proofs to
largely follow the structure of existing proofs. Mechanizing
the second layer will involve formalizing the composition
theorems of these properties and some proof automation.
The encoding of gadgets-as-procedures is both intuitive

and close to EasyCrypt reasoning principles; a drawback
is that the desired composition theorems need to be stated
at the meta level. At the object level, a general theorem of
(say) SNI would need to universally quantify over families
of procedures (and the modules that contain them), but this
is not possible because procedures are not first-class values
in EasyCrypt. What we will be able to do at the object level
is to separately model gadgets and circuits as data structures
(such as standard netlists), and security properties as logic
predicates on those structures. Using this representation, we
can define and formalize theories of secure composability
that quantify over gadget structures. While mechanically
establishing a connection between gadgets-as-procedures
(where security proofs of individual gadgets are carried out)
and gadgets-as-data-structures (where those proofs are com-
posed) is not immediately clear, we can envision a compiler
translating between EasyCrypt data gadgets and procedures,
as well as a proof relating the two representations.

2



Short Paper: Mechanized Proofs of Masking Security

Acknowledgments. We thank the anonymous reviewers
at PLAS’23 for their thoughtful comments. This work was
supported in part by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) as part of the Excellence
Strategy of the German Federal and State Governments –
EXC 2092 CASA - 390781972.

References
[1] G. Barthe, S. Belaïd, G. Cassiers, P. Fouque, B. Grégoire, and F. Standaert.

maskverif: Automated verification of higher-order masking in presence
of physical defaults. In K. Sako, S. A. Schneider, and P. Y. A. Ryan,
editors, Computer Security - ESORICS 2019 - 24th European Symposium
on Research in Computer Security, Proceedings, Part I. 2019.

[2] G. Barthe, S. Belaïd, F. Dupressoir, P. Fouque, B. Grégoire, and P. Strub.
Verified proofs of higher-order masking. In E. Oswald and M. Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, Part I. 2015.

[3] G. Barthe, S. Belaïd, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub, and
R. Zucchini. Strong non-interference and type-directed higher-order
masking. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 2016.

[4] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub.
Easycrypt: A tutorial. In A. Aldini, J. López, and F. Martinelli, editors,
Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures. 2013.

[5] G. Barthe, B. Grégoire, and S. Zanella-Béguelin. Formal certification
of code-based cryptographic proofs. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, 2009.

[6] A. Battistello, J. Coron, E. Prouff, and R. Zeitoun. Horizontal side-
channel attacks and countermeasures on the ISW masking scheme. In
B. Gierlichs and A. Y. Poschmann, editors, Cryptographic Hardware and
Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings. 2016.

[7] S. Belaïd, D. Mercadier, M. Rivain, and A. R. Taleb. Ironmask: Versatile
verification of masking security. In 43rd IEEE Symposium on Security
and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. 2022.

[8] G. Cassiers and F. Standaert. Trivially and efficiently composing
masked gadgets with probe isolating non-interference. IEEE Trans. Inf.
Forensics Secur., 15:2542–2555, 2020.

[9] A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From
probing attacks to noisy leakage. In P. Q. Nguyen and E. Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Copenhagen, Denmark, May 11-15, 2014. Proceedings. 2014.

[10] S. Faust, V. Grosso, S. M. D. Pozo, C. Paglialonga, and F. Standaert.
Composable masking schemes in the presence of physical defaults &
the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):89–120, 2018.

[11] J. D. Golic and C. Tymen. Multiplicative masking and power analysis
of AES. In B. S. K. Jr., Ç. K. Koç, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers. 2002.

[12] Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hard-
ware against probing attacks. In D. Boneh, editor, Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Proceedings. 2003.

[13] D. Knichel, P. Sasdrich, and A. Moradi. SILVER - statistical indepen-
dence and leakage verification. In S. Moriai and H. Wang, editors,
Advances in Cryptology - ASIACRYPT 2020 - 26th International Con-
ference on the Theory and Application of Cryptology and Information

Security, Proceedings, Part I. 2020.

3

https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-10082-1_6
http://doi.acm.org/10.1145/1480881.1480894
http://doi.acm.org/10.1145/1480881.1480894
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.1007/3-540-36400-5_16
https://doi.org/10.1007/3-540-36400-5_16
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/978-3-030-64837-4_26

	Abstract
	1 Masking Security
	2 Mechanized Proofs
	2.1 Circuit Security
	2.2 Gadget Composition

	References

