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ABSTRACT
The behavior management controls proposed for social robots are
mostly designed for highly controlled scenarios. In the real world
though, robots have to adapt to new situations, generalizing learned
behaviors. To address this adaptation challenge, neural network
models with embedding layers could be used. We present here an
approach to better understand the inductive biases of our robotic
gaze model. It was trained with multimodal features as inputs –
either endogenous or exogenous to the robot. Inductive biases were
explored by observing feature representations in the embedding
spaces. We found that the model was able to distinguish between
the robot speech intentions that either request or provide informa-
tion. Similarly, pairs of partners seem grouped according to their
social behavior (speaking time, gaze). Finally, we checked that these
groupings had a real impact on the model’s performance. Driving
these biases when facing new people should allow to generate
adapted behavior.

CCS CONCEPTS
• Computing methodologies→ Cognitive robotics.
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1 INTRODUCTION
Even if gaze is one of the most studied non-verbal cues for Human-
Robot Interaction (HRI) [1], gaze generation is still mostly restricted
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to highly controlled scenarios. The real-world implementation of
natural gaze control for a robot raises a number of challenges, in-
cluding its generalizability to new scenarios and new interlocutors.
The control must be able to take into account and react effectively
to a wide range of variabilities. We know, for example, that there are
differences in the generation and perception of gaze depending on
gender, age and culture [8, 12, 13, 18], but other variabilities likely
have an effect. However, the majority of gaze controls proposed
for multi-party interaction are heuristic models or are based on
distributions obtained from human behavior studies [11, 15, 17].
With such predefined considerations, adaptability is not at the core
of the built systems. In this paper, we propose to build a gaze man-
agement model for a robot in multi-party interaction, based on
neural networks. By exploring the embeddings layers of this model,
we aim to probe its inductive biases [6, 7], which could later be
used as levers to drive a model that shows adaptation. Embeddings
have already been successfully used in the speech domain [19], as
well as in style transfer for virtual agent gesture generation [3]. We
therefore believe that their use and exploration is an interesting
approach in the context of robot gaze control.

This paper will first describe the construction of the gaze model
for a game animator robot facing two players. Then, we’ll focus
on the analysis of its embeddings, such as that of a pair of players’
bias, in order to understand the relationships that they may have
captured. Finally, we’ll check that the addition of player bias is
used by the model and that this addition has a real impact on its
performance.

2 MODEL DESCRIPTION
This section describes the construction of our robot’s gaze model
whose aim is to continuously generate gaze targets and meaningfull
head movements [5].

2.1 Dataset for our Model
The dataset used is the RoboTrio2 corpus [4], a collaborative game
with two human players, animated by an iCub robot [16] that is
immersively teleoperated [2]. The robot transmits the voice of a
human pilot located in an adjacent room and reproduces the pilot
movements (eyes, head, lips). Wearing a virtual reality headset, the
pilot can hear and see the two players through the robot’s ears
and its motorized eyes. The pilot’s attention behaviour is recorded,
along with the sound and two HD videos filming the players.
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In this game, the players have to find out which words are the
most quoted from a theme word. While giving the themes and
scores, the pilot has to encourage them to collaborate and provide
answers. A tablet placed in front of the robot provides him with all
the information about the game.

The dataset is composed of 11 sequences of around 20 minutes
each (total of 4 hours), with 9 themes played in each. For each
sequence, the robot’s pilot, a man, is the same, but the player pairs
are different and separated by gender, with male or female pairs.

2.2 Model Building
The gaze model proposed here (see Figure 1) is a cascaded model
composed of causal Convolutional Neural Network (CNN) and
Long Short-TermMemory (LSTM) layers, where the first sub-model
predicts gaze targets. This output is given as input to the second
sub-model which predicts head movements. Gaze targets are lim-
ited to 5 classes: UserLeft (left player), UserRight (right player),
Tablet, Elsewhere and OcularSaccade. For training data, the pilot’s
gaze has been automatically annotated using Gaussian models mix-
ture (GMM). The predicted head movements correspond to the 3
recorded head angles: pitch (up/down), roll (tilt), yaw (left/right).
To ensure good convergence of the head sub-model, it is trained
with both predicted and real gaze targets. The models have a seq-
to-seq architecture, with time sequences that correspond to a game
theme (around 180 seconds per batch, 10 800 frames at 60Hz). The
structure of the model is shown in Figure 1.

2.2.1 Model Inputs and Biases. The input features are multimodal,
and are limited to signals and states that could be observed by a
robot in a future real-time implementation. All inputs are passed
through an embedding layer.

• Endogenous to the robot (Pilot activity):
– Speech: speaking or not (embeddings dimension: 2)
– Speech Intent: intent of the sentence, 24 different classes
(asking for proposal, for validation, giving the theme, the
score, . . . ) (embeddings dimension: 3). Classes were defined
to best combine the various pilot sentences.

– Addressee: 1 embedding for each player to cover the 0, 1
or 2 addressees cases (embeddings dimension: 2)

• Exogenous to the robot (Users activity):
– SpeechL, SpeechR:whether left (resp. right) user is speaking
or not (embeddings dimension: 2)

– GazeL, GazeR: user is looking at the other user, at the robot,
or at elsewhere (embeddings dimension: 2)

Features were annotated manually for verbal features, and auto-
matically for users’ gazes and the pilot’s address [5]. In addition to
these inputs, we decided to bias the model with the dyad number
(the 11 pairs of players) facing the robot. We expect that the pilot’s
behavior can be influenced by certain social characteristics of the
players. To encourage collaboration, he may need to adapt his be-
havior to balance participation if one player is more engaged than
the other. This bias is encoded by an embedding of dimension 3.

2.2.2 Model Training and Evaluation. For the training of the model,
two loss functions are used: categorical cross-entropy for gaze clas-
sification (5 targets) andMean Square Error (MSE) for the prediction
of the 3 head angles. The training process is separated into two
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Figure 1: Diagram of Model Structure.

stages, the first 50 epochs with a learning rate of 0.005, and the next
50 epochs with a learning rate of 0.001. In both stages, an Adam [10]
optimizer is used. To best evaluate the model, we performed a 9-
fold cross-validation. The mean F1-score for gaze classification is
0.57± 0.01 and the mean RMSE for head generation is 3.0°±0.1 with
predicted gaze, and 2.1°± 0.1 with real gaze.

3 EMBEDDINGS ANALYSIS
To explore the inductive biases of our model, we performed an
analysis of the embedding layers to identify what was encoded and
what relationships could be inferred from the multimodal features.
In this paper, we restrict analysis to the embedding matrix of the
robot’s Speech Intent, and that of the dyad number. The aim is to
compare the representations of each class (each speech intention,
each dyad) in the space of their embedding matrix and to identify if
there are any correlations between these representations and social
cues. To make the study of these correlations robust, they will be
evaluated not on the embeddings of a single model, but on a combi-
nation of representations from our 9-fold models. The method used
to obtain representations for Speech Intent and dyad embeddings
is as follows: 1) Reducing the dimensions of the embedding space,
by applying a Principal Component Analysis (PCA) [20] to retain
only the first two components (more than 90% of the explained
variance). 2) Each vector of the embedding matrix (1 vector per
speech intention/dyad) is then projected into this reduced space.
The result is a 2D representation of a set of 24 points for the Speech
Intent embedding tensor, and respectively a set of 11 points for the
dyad embedding tensor. 3) Steps 1 and 2 are performed for the em-
beddings of the 9-folded models, giving 9 possible representations.
In order to pool together these maps, the 9 sets of points obtained
are realigned using the Kabsch-Umeyama algorithm to find the
optimal translations and rotations [9]. As seed reference, we choose
the set that minimises the final dispersion. The final representation
of each speech intent/dyad number corresponds to the centroid of
the covariance ellipse of the 9 realigned set of points.

The following sub-sections present the results obtained for the
two analyzed features.
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Figure 2: Speech intents representation after realignement

3.1 Analysis of Embeddings of Speech Intents
Figure 2 shows the average representation obtained for all the
speech intentions. The covariance ellipses are represented as well
as their centroids. Confronted with this representation of the differ-
ent speech intentions, we had the intuition that two groups emerge:
either by providing or by requesting information. To confirm this
first impression, we divided the intentions into three groups and
assigned a colour to each. Intentions classified as providing informa-
tion are represented in red with a triangle marker, those classified
as requesting information in green with a diamond marker, and
neutral intentions in grey with a round marker. We can therefore
see that the horizontal axis acts as a scale for the transfer of infor-
mation: with on the left the speech intents that provide information
(giving the theme, the score, etc.) and on the right those that request
information (asking for proposals, for validation of proposals, or if
people are ready for the next theme with SyncThm).

The clustering of speech intents by the model seems consistent
with the communicative intentions they convey. This could be
partly explained by the need to use (or not) the tablet during certain
utterances, and therefore to look at it to read the information it
contains. This is a particularly interesting observation, which could
lead to the use of this model in new interaction scenarios, where
the speech intents could be different, but placed in relation to those
already employed.

3.2 Analysis of Embeddings of Dyads of Players
Figure 3 shows the average representation obtained for all dyads
with their covariance ellipse and centroid. The first hypothesis we
wanted to verify was that of a grouping based on the gender, i.e. is
there a relationship between the gender of the players in the dyad
and their representation in the embedding space? For this, the points
of dyads composed of female players are represented in green with
a triangle marker, and those composed of male players in blue with
a round marker. No grouping can be made on the basis of gender.
The embedding layers do not appear to have encoded player gender
information. If 3 groupings seem to emerge (22, 19, 20, 21, 15, 17), (09,
18, 14, 16), and the isolated 13, it is difficult to explain them simply by
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Figure 3: Dyads representation after realignement
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Figure 4: Examples of linear regression between the horizon-
tal axis of dyad embeddings representation and social cues

looking at this figure. To find any hidden relationships behind these
clusters, we calculated correlations between the representation axes
and quantifiable social indices. Table 1 summarizes the correlations
obtained after a Spearman test [14].

The horizontal axis seems to be strongly correlated with two so-
cial cues: the percentage of time during the interaction when at least
one of the two players was speaking, and the percentage of time
when at least one of the players was looking at the robot. These two
social cues can be linked to a measure of the players engagement

Table 1: Correlation coefficients between social cues and the
two axis of dyad embeddings representations

Social Cues Horizontal Axis Vertical Axis
Corr p-value Corr p-value

Final Game Score -0.42 0.20 -0.3 0.37
Users’ Mean Age 0.1 0.75 -0.18 0.6
Diff Users’ Age -0.02 0.96 0.15 0.65
%Users’ Speaking Time -0.76 0.006 -0.57 0.06
Diff Users Speaking Time 0.23 0.50 0.27 0.42
%Users Mutual Gaze -0.42 0.20 -0.47 0.14
%Users Look at Robot 0.76 0.006 0.48 0.13
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Figure 5: Heatmap of RMSE performances for each head angle depending on the dyad number given as input

in the interaction. However, the correlations are opposite, with an
inversely proportional correlation for speech percentage, which is
not the case for gaze percentage. Figure 4 shows the linear regres-
sions obtained for these two correlations (on left with percentage
of speech, on right percentage of gaze), where we can clearly see
this opposition. One hypothesis to explain this opposition could be
that very active players will think a lot and talk more to each other
to make proposals, and therefore look less at the robot than more
passive players. This result is particularly interesting, and seems to
provide an inductive bias for actively adapting the model according
to the players’ involvement in the interaction, which is a necessity
for a robot animator.

No strong correlation was found on the vertical axis. We haven’t
tested every possible social cue. Furthermore, this analysis is based
on only 11 points, and is limited to the search for linear correlations,
which is not necessarily the case. Note that “causal” regression is
a method that attempts to explain what our model might have
captured, but cannot prove causality.

4 IMPACT OF EMBEDDINGS OF DYADS ON
GAZE AND HEAD PREDICTIONS

In the previous section, we highlighted certain biases in our model,
especially linked to player behavior. Due to these biases, the model
clustered dyads that were more or less similar, but do these differ-
ences really impact predictions? We then tested the predictions of
our model by swapping the dyad number given as input. In total,
an interaction sequence with dyad number N will be predicted 11
times, once by giving the dyad number N as input, and 10 times by
giving the numbers of the 10 other dyads. Each prediction is then
evaluated, by calculating an F1-score for the gaze targets, and the
RMSE value for each of the 3 head angles.

Figure 5 shows heat maps of head angles generation performance
for each dyad. The diagonal of each heat map corresponds to the
performance when no swap has been applied. We can confirm that
the best performances for each dyad are obtained on this diagonal.
We can clearly see that the model’s performance can vary consid-
erably depending on which of the dyad numbers is swapped. In
more detail, we can see that for the Pitch angle, dyads numbers
14, 16, 17, 18 have their results strongly impacted when we replace
their number with dyads 19, 20, 21, 22, with differences close to

2 degrees, and reciprocally. For the Yaw angle, it’s dyads 19 and 22
that seem to distinguish from the 9 others: on Figure 3, we could
see that these two dyads were positioned close together and a little
more in the negative. Finally, on the Roll angle heat map, the lines
of dyad 13 stand out clearly, with performance differences of almost
5 degrees, this dyad is actually a bit isolated on the Figure 3.

Regarding the impact on gaze target prediction performance, no
dyad appears to differ clearly from the others, but performance
can drop to F1-scores below 0.45 for some swaps, well below the
average at 0.57.

The dyad number bias has a real impact on the performance of
our model. The importance of this impact can be associated with the
representation of the dyads in the embedding spaces. Swapping two
dyad numbers that are distant from each other in the map induces
a significant drop in performance, whereas swapping dyads that
are close to each other results in a smaller drop in performance.

5 CONCLUSIONS
To design a gaze model for our robot interacting with two people
that could be easily generalised to other scenarios and other inter-
locutors, we proposed using neural networks biased by inductive
embeddings. By analysing the spaces of these embeddings, we were
able to identify some possible inductive biases that could be used
for generalisation. We observed that the model made a distinction
between speech intentions that corresponded to requests for infor-
mation and those that provided information. Similarly, it groups
together different pairs of interaction partners, which could be ex-
plained by social cues linked to engagement such as speaking time
and gaze. We then show that these distinctions have a real impact
on the model’s predictions. These results are promising and seem to
offer a solution for better flexibility and adaptation of the model to
be reused in front of different pairs of people and for other scenarios
of interaction such as a hotel receptionist robot or a bartender. Such
inductive bias can only be found as a by-product of end-to-end mod-
elling: this analysis-by-generation process hopefully contributes in
bridging science and deep learning technology.
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