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Abstract

We consider the numerical resolution of the incompressible Navier-Stokes equa-
tions. We present a new compatible Finite Volume discretisation that generalises the
famous Marker-and-Cell (MAC) method to polyhedral meshes that we call PolyMAC.
In the first part of the paper, we recall the principles of compatible schemes and detail
the key operators of the discretisation. The convergence and robustness of PolyMAC
is assessed numerically on a benchmark from the FVCA conferences. We consider
a problem of industrial complexity that allows us to confirm the robustness of Poly-
MAC on complex problems. The second part of the article is dedicated to the efficient
numerical resolution of the resulting linear system. Concretely, we use a PISO-like
prediction-correction approach and develop efficient preconditioners for linear systems.
In particular, we show that the saddle-point system arising from the correction step is
very challenging for iterative methods on distorted meshes. In this work, we develop a
robust preconditioner based on an algebraic transformation of the system. In partic-
ular, this new preconditioner shows impressive convergence on problems of industrial
complexity.

1 Introduction

We consider the discretisation of the incompressible Navier-Stokes equations{
∂t~u+ (~u · ∇)~u− ν∆~u+∇p = ~f ,

∇ · ~u = 0 ,
in Ω , (1)

where Ω is a 2D or 3D domain. ~u is the velocity of the fluid, p the pressure and ν > 0 the
viscosity. The discretisation of Equation (1) is at the core of Computational Fluid Dynamics
(CFD) and has been studied abundantly. Most common methods include Finite Differences
(FD) [15, 40], Finite Elements (FE) [22, 36] and Finite Volumes (FV) [21, 29] schemes.

In this article, we present a mimetic or compatible FV method that is called PolyMAC,
for reasons specified below. Mimetic methods aim at preserving continuous relations at the
discrete level, such as conservation laws. In particular, the discrete representation of the
unknowns is done in agreement with their physical natures. Mimetic methods have been
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developed since the 1950s and comprehensive summary of their development can be found
in [28] while a modern introduction is presented in [11, Chapter 2].

In general, FV methods are appreciated in industrial contexts for their conservative
properties [17] which make it easy to ensure the conservation of key variables at the discrete
level such as the mass or energy. It is especially crucial in the context of nuclear operation and
safety: most thermal-hydraulics simulation codes (CATHARE, TRACE, RELAP, FLICA,...)
rely on FV methods [9, 10]. Moreover, these codes favour staggered spatial discretisations
similar to the MAC scheme [23] which are known to avoid perturbations caused by spurious
modes.

However, MAC schemes are defined on Cartesian grids which strongly limit their ap-
plication range. Industrial applications are more and more sophisticated and unstructured
meshes with polyhedral elements are necessary to yield suitable discrete models. However,
few efforts have been made to extend the MAC scheme to finite volume on general meshes -
see however [19, 31]. More recently, Bonelle and Ern developed a mimetic FV discretisation
of Stokes equations [12, 11], which was further extended to Navier-Stokes for face-based
schemes [30]. Beltman et al also present a discretisation of the incompressible Navier-Stokes
equations on a polytopal mesh in [7].

In this paper, we propose a new mimetic scheme which generalizes the MAC scheme
to polyhedral meshes: PolyMAC. This scheme is available on the open-source platform
TRUST1 [14] maintained by the Commissariat à l’Energie Atomique et aux Energies Al-
ternatives (CEA). The development of this numerical scheme was subject to the following
requirements:

� Suitable for polyhedral and non-conforming meshes,

� Similar properties of convergence, stability and conservation as MAC,

� Equivalent to the MAC scheme on Cartesian grids.

We offer a detailed presentation of PolyMAC along a numerical analysis showing its robust-
ness with respect to the mesh.

PolyMAC can be seen as a generalisation of the MAC-scheme to polyhedral meshes. As
such, it reproduces the staggering of the unknowns of the original scheme: the pressure is
located at the center of the cells while the velocity is discretised by its normal components
at the faces. The accuracy and robustness of PolyMAC is evaluated against a benchmark
inspired by the FVCA conferences [24, 18, 13] and include very fine and distorted meshes.
We use those results to evaluate the convergence order of PolyMAC in both velocity and
pressure. We extend this analysis to a problem of industrial complexity that represents an
assembly of nuclear rods for a sodium-cooled fast reactor. We show that the robustness of
PolyMAC still holds on this complex case.

Finally, one of the major contributions of this work lies in the development of a robust
iterative method to solve the linear system resulting from the discretisation. Indeed, Navier-
Stokes equations lead to a double saddle-point system which is hard to solve with iterative
solvers [1] and in practice, engineers often fall back on direct solvers. Here, we present an
efficient method based on a PISO-like approach [25, 26] which allows to solve the resulting
system with only iterative solvers. We highlight the complexity of the systems resulting from
distorted meshes and show that classical block preconditioners are inefficient. Instead, we
propose an innovative block preconditioner that presents an increased robustness and yields
satisfactory results on all test cases.

1Note that there are currently three versions of PolyMAC available on TRUST. A brief description of
each can be found in [3]. We focus here on the first PolyMAC version, called PolyMAC I in [3].
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Figure 1: Control Volumes on the primal mesh for PolyMAC

The remaining of this paper is organised as follows. In Section 2, we describe briefly
mimetic methods and introduce the PolyMAC discretisation. In Section 3, the benchmark
is introduced and the convergence analysis is performed to demonstrate numerically the
robustness of the approach. In Section 4, we introduce an iterative method to solve the
linear systems resulting from the PolyMAC discretisation. Finally, conclusions are drawn in
Section 5.

2 The PolyMAC scheme

PolyMAC belongs to the class of mimetic methods that have been developed since the 50s -
see [28] for a historical review of such methods. The main characteristic of mimetic methods
is to preserve some mathematical properties at the discrete level - for instance conservation
laws or exact identities - even on polyhedral meshes. First, the experience shows an increase
in robustness and accuracy. Second, a scheme that conserves physical quantities - such
as the mass in the incompressible Navier-Stokes equations - is very satisfying for the end
users. Among all variations of mimetic methods that have been developed through the years,
PolyMAC is a Finite Volume method that lies in the framework of Compatible Discrete
Operators (CDO) [11].

As for all FV methods, the unknowns and equations are integrated over control volumes
built on the mesh. The precise choice of control volumes defines the method and in the case
of CDO, they are chosen according to the physical nature of the fields [11]:

� a potential field will be discretised at vertices s ∈ S (dim=0),

� a circulation along edges a ∈ A (dim=1),

� a flux at the faces f ∈ F (dim=2),

� a density on volumes e ∈ E (dim=3).

These four types of control volumes are illustrated in Figure 1 and make up the primal
mesh. We make the following hypotheses in PolyMAC:

� faces f are planar, with the center of gravity ~xf

� cells e are star-shaped with respect to their center of gravity ~xe, i.e. ∀~x ∈ e, [~xe, ~x] ⊂ e.

A key idea of CDO schemes is the explicit use of a dual mesh for the discretisation: the
unknowns as well as the equations can be discretised on the primal and the dual mesh. Note
that both meshes interact during the discretization process but the dual mesh does not need
to be seen explicitly by an external user.
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Figure 2: Control Volumes on the dual mesh for PolyMAC

There are several ways of defining a dual mesh; in this work, we consider a barycentric
dual mesh. Three dual control volumes are defined, as illustrated in Figure 2:

� dual cells e ∈ E (dim=0): center of gravity of cell e. Note that #E = #E.

� dual faces f ∈ F (dim=1): for the face f ∈ F , the union of the segments joining
~xf with ~xam and ~xav, the centers of gravity of the upstream and downstream cells
respectively. Note that #F = #F .

� dual edges a ∈ A (dim=2): for the edge a ∈ A, the union of the surfaces defined by
the dual faces f - of each face f surrounding a - joining ~xa, the middle of the edge a.
Note that #A = #A.

We denote by | · | the measure of a control volume, e.g. |e| is the volume of cell e.
Moreover, ~nf is the normal vector to the face f and ~ta is the tangential vector to the edge a.

In the FV framework, the discretization of a field F is realized by the integration of this
field on some control volumes. According to the principles of CDO schemes, the following
choices are made for PolyMAC:

� the velocity ~v is discretised by the average of its normal components at the faces:

[v(x, t)]f =
1

|f |

∫
f

(~v · ~nf ) dS , (2)

� the vorticity ~ω by the average of its tangential components at the edges:

[ω(x, t)]a =
1

|a|

∫
a

(~ω · ~ta)dx , (3)

� the pressure p by its value at the dual cell:

[p(x, t)]e = p(xe, t) . (4)

We define similarly the following quantities

� at the cells e:

[·]e =
1

|e|

∫
e

· dV , (5)
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� at the dual faces f :

[·]f =
1∣∣f ∣∣
∫
f

~·.~τfdx , (6)

� at the dual edges a:

[·]a =
1

|a|

∫
a

~·.~nadS . (7)

We denote by [·]I the column vector containing all values [·]i for i ∈ I.
This choice combined with appropriate control volumes for the discretization of the equa-

tions and with the classical integral theorems leads to exact discrete operators for the gra-
dient, the divergence and the curl - in the sense that the CDO does not introduce any
consistency error, as we will show in Section 2.1. Moreover, such a discretisation process
helps to represent correctly the null space of these operators and to prevent the apparition
of spurious modes in the numerical solutions [11].

Approximations will still be required for other operators which will introduce some error
in the numerical scheme. Such operators will be called approximated in the following sections.

2.1 Exact operators

As said above, the definition of the control volumes in a CDO scheme is done so that some
operators are exact. In other words, the discretisation on control volumes A of a field O(F )
resulting of the application of a linear operator O on a field F discretised on control volumes
B can be written as

[O(F )]A = Odisc [F ]B ,

where Odisc is the (exact) discrete representation of the operator O. It is a matrix of dimen-
sions NA ×NB. There are four such exact operators in PolyMAC.

Discretisation of the gradient: The discretisation at the dual faces f ∈ F of the gradient
of a field defined at the dual cells e ∈ E - such as the pressure in the case of PolyMAC - is
such an operator. Indeed, the gradient theorem for line integrals yields:∫

f

∇p · ~τf = [p]eav − [p]eam .

In other words,

[∇p]f =
[p]eav − [p]eam

|f |
=

1

|f ||f |
(G [p]E)f , (8)

where [p]eav is downstream with respect to the face f and [p]eam upstream. The matrix G is

of dimension #F × #E = #F × #E.

Discretisation of the divergence: The discretisation at the cells e ∈ E of a field discre-
tised by its normal components to the faces f ∈ F - as is the velocity ~v in PolyMAC - can
be deduced from Ostrogradsky theorem [5]:∫

e

∇ · ~v =

∫
∂e

~v · ~n∂e .

In terms of the PolyMAC variables, we have:

[∇ · ~v]e =
1

|e|
∑
fVe

|f | [v]f =
1

|e|
(D [v]F )e , (9)
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where fVe indicates the sum over all faces f of the cell e and the normal components of
the velocity are pointing outward of the cell e. Moreover, the matrix D is of dimension
#E × #F = #E × #F and the discretisation choices made in Equations (8) and (9) ensure

G = −DT (10)

where ·T indicates the transpose of the matrix.

Discretisation of the curl: The curl operator will appear twice in the continuous form
of the incompressible Navier-Stokes equations as will be written later in Equation (23): in
the momentum equation and in the definition of the vorticity. As before, we will use the
integral theorems of vector calculus to determine an exact discretisation of these operators
- in this case, the Green-Stokes theorem [5]:∫

S

∇× ~v · ~nSdS =

∫
∂S

~v · ~t∂S

where ∂S is positively oriented with respect to S. In the primal and dual meshes, we have
two kinds of surfaces: the primal faces f and the dual edges a.

First, on the primal faces, we get the following result:

[∇× ~ω]f =
1

|f |
∑
aVf

|a| [ω]a =
1

|f ||f |
(RF [ω]A)f (11)

where we have implicitly considered the curl of the vorticity which makes sense given we
discretize the vorticity by its tangential component at the edges. As before, aVf indicates
that the sum is taken over all the edges a surrounding the face f oriented anti-clockwise
with respect to the normal ~nf . The matrix RF is then of dimensions #F × #A = #F × #A.

On the dual edges, the Green-Stokes theorem yields:

[∇× ~v]a =
1

|a|
∑
fVa

|f | [v]f =
1

|a||a|
(RA [v]F )a (12)

where we have implicitly considered the curl of the velocity. fVa indicates that the sum is
taken over all dual faces f surrounding the dual edge a oriented anti-clockwise with respect
to the tangent ~ta of the edge a.The matrix RA is then of dimensions #A × #F = #A × #F .
Moreover, the normalisation in Equations (11) and (12) yields

RA = (RF )T . (13)

2.2 Approximated operators

It is necessary to define relations between the different control volumes. For instance, a field
that is discretised at the faces may be needed at the dual faces to discretize another term
of the equations. This is done by the so-called Hodge operator at the faces. However, those
operators are not exact and introduce some error in the discretisation process, hence the
name approximated operators. Four of them are needed in PolyMAC.

� The discretisation of a vector field at the cells [~v]E from its discretisation at the faces
[v]F

[~v]e ≈
1

|e|
(
ΠF [v]F

)
e
. (14)
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This relation is established in [35] and is based on the integral indentity∫
e

~vdV +

∫
e

~x(∇ · ~v)dV =
∑
fVe

∫
f

vf~xdS . (15)

The second term can be neglected at first order and we get

[~v]e ≈
1

|e|
∑
fVe

[v]f |f |(~xe − ~xf ) , (16)

which can be rewritten as Equation (14).

� The discretisation of a vector field at the cells [ω]E from its discretisation at the edges
[ω]A

[~ω]e ≈
1

|e|
(
ΠA [ω]A

)
e
. (17)

This relation is established in a similar fashion as above [35].

� The discretisation of a vector field at the dual faces [v]F from its discretisation at the
faces [v]F (Hodge operator at the faces)

[v]f ≈
1

|f ||f |
(
M (f) [v]F

)
f
. (18)

This operator is not unique but satisfy local properties of symmetry and consis-
tency [11]. The discretisation of the velocity at the dual faces is expressed as

|f | [v]f =

∫ ~xf

~xeam

~v · d~x+

∫ ~xeav

~xf

~v · d~x = |f eam | [v]f,eam + |f eav | [v]f,eav , (19)

where eam is the upstream cell and eav the downstream cell. Each term can be expressed
at first order

|f e| [v]f,e =

∫ ~xf

~xe

~v · d~x ≈ [~v]e · (~xf − ~xe) =
1

|f ||f e|

∑
f ′Ve

((ΠF
e )TΠF

e )ff ′ [v]f ′ . (20)

The matrix defined in the right hand side of Equation (20) is not positive definite
because it is not of maximal rank. Mimetic methods usually define the local Hodge
operator by the sum [7]

M (f)
e = (ΠF

e )TΠF
e + (NF

e )TPeN
F
e , (21)

where NF
e is a matrix whose columns are vectors of an orthonormal basis of ΠF

e and
Pe is a symmetric positive definite matrix. It typical to choose Pe = γI, where I is the
identity. γ = |e|/2 makes M

(2)
e a diagonal matrix on a Cartesian mesh. The matrices

M
(f)
e can then be assembled into the global matrix M (f) from Equation (18).

� The discretisation of a vector field at the dual edges [ω]A from its discretisation at the
edges [ω]A (Hodge operator at the edges)

[ω]a ≈
1

|a||a|
(
M (a) [ω]A

)
a
. (22)

can be obtained in a similar fashion.

As opposed to the exact operators described in Section 2.1, all these operators introduce
an error in the discretisation. Note also that they are not uniquely defined. In the case of
PolyMAC, they are of order 1. A more detailed analysis of the discrete Hodge operators can
be found in [11, 7].
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2.3 The Navier-Stokes equations

In this section, we will now present how the incompressible Navier-Stokes equations (1)
are discretised in PolyMAC. We use a similar approach as [7] and [12]: the diffusion is
expressed in terms of the vorticity ~ω thanks to the incompressibility constraint. Here, the
convection term is also written as the divergence of the tensor product of the velocity with
itself ∇ · (~v ⊗ ~v). The equations become

∂t~v +∇ · (~v ⊗ ~v)− ν∇× ~ω +∇p = ~f ,

∇× ~v − ~ω = 0 , (23)

∇ · ~v = 0 ,

where the first equation represents the conservation of momentum, the second equation is
the definition of the vorticity and the last one the continuity equation. Along those three
equations, there are now three unknowns: the velocity ~v, the vorticity ~ω and the pressure p.

In PolyMAC:

� the velocity ~v is discretised by the average of its normal component at the faces [v]f

� the vorticity ~ω is discretised by the average of its tangential component at the edges
[ω]a

� the pressure p is discretised by its value at the dual cells [p]e, i.e. by its value at the
center of gravity of the cell e,

whereas the following choice was made for the equations:

� the momentum equation is discretised on the dual faces f ∈ F

� the definition of the vorticity is discretised on the dual edges a ∈ A

� the continuity equation is discretised at the cells e ∈ E.

For example, this means that the momentum equation is integrated along each dual face and
the various terms appearing in this equation need to be expressed on these control volumes.
This is explicited in the next paragraphs where we consider each equation in turn.

Momentum equation: As stated above, the momentum equation is discretised at the
dual faces and each term must be expressed on those control volumes.

� Time derivative ∂t~v. Since the velocity is discretised at the (primal) faces, we need to
use the Hodge operators M (f) to deduce the expression of this term on the dual faces:

|f |
∣∣f ∣∣ [∂t~v]f = (M (f)∂t [v]F )f . (24)

� Convective term ∇ · (~v ⊗ ~v). We consider the following approach:

1. Build the velocity at the cells [~v]e from the velocity at the faces by the relation (14):
[~v]e = 1

|e|(Π
F [v]F )e.

2. Convect the velocity at the cells [~v]e by a convection scheme2 which yields [∇ · (~v ⊗ ~v)]e.

2PolyMAC offers the choice between an upwind or a centered scheme
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3. Integrate the tangential component of the convection term at the elements on the
dual faces which ultimately yields

|f |
∣∣f ∣∣ [∇ · (~v ⊗ ~v)]f = (CF ([v]F ) [v]F )f . (25)

This approach was chosen to avoid the apparition of spurious modes in the velocity.

� Diffusion term ν∇×~ω. Since ~ω is discretised at the edges, the exact operator RF gives
the discretisation of ∇× ~ω at the faces [∇× ~ω]F = RF [ω]A. To get the discretisation
at the dual faces, we just need to apply the Hodge operator M (f):

|f |
∣∣f ∣∣ [ν∇× ~ω]f = ν(M (f)RF [ω]A)f . (26)

� Pressure gradient ∇p. Since the pressure is discretised at the dual faces, we have
directly

|f |
∣∣f ∣∣ [∇p]f = (G [p]E)f . (27)

Vorticity equation: A similar reasoning is applied to both terms of the equation. This
time the control volumes are the dual edges.

� Curl of the velocity ∇×~v. The operator RA allows to compute an exact representation
of the curl operator from a field discretised on the dual faces. Since the velocity is
discretised at the faces, we need first to apply the Hodge operator M (f). Ultimately,
we get

|a||a| [∇× ~v]a = (RAM (f) [v]F )a. (28)

� Diagonal term ~ω. The vorticity ~ω is discretised at the edges and we simply need to
apply the Hodge operator M (a) to get the discretisation at the dual edges:

|a||a| [ω]a = (M (a) [ω]A)a. (29)

Continuity equation: The last equation is discretised at the cells.

� Divergence ∇ · ~v. The definition of the exact operator D yields

|e| [∇ · ~v]e = (D [v]F )e. (30)

Linear system: By combining all terms and equations into a single system, we getM(f)

∆t
+ CF ([v]tF ) M (f)RF G
RAM (f) − 1

ν
M (a) 0

−D 0 0

 [v]t+∆t
F

ν [ω]t+∆t
A

[p]t+∆t

E

 =

M(f)

∆t
[v]tF

0
0

 . (31)

The time derivative is treated by an implicit scheme, except in the convective term CF ([v]tF )
where it is explicited. This can be seen as a Picard linearisation applied to the Navier-Stokes
equations. This system is presents a double saddle-point structure and is challenging to solve
as a whole. In this work, we study a splitting approach similar to PISO [25] - see Section 4.
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Boundary conditions: To complete the discretisation of system (1) we need to take into
account the boundary conditions, which may be imposed on the pressure and the velocity.

Concerning the pressure, the situation is quite simple. We usually encounter a condition
directly on the pressure in the form [p]f = pboundary. To include it into the discretisation, we
just need to update the term G [p]E.

However, the situation is more complex for the velocity. Indeed, boundary conditions on
the velocity can come in different forms and affect different terms in system (31).

� If the normal component of the velocity is imposed on a face f , the equation related
to f must be updated by [v]f = vboundary.

� If the tangential component of the velocity vtan is imposed on a face f , the equations
where the edges of f appear must be modified to take into account vtan in the rota-
tional RAM (f). In order to do this, the integral on the boundary of the involved dual
edges must be closed, as described on Figure 3. This modification is necessary as the
boundary of the domain are not included in the dual edges.

� If a no-slip condition is imposed on a face f , the equations of the vorticity at the edges
a of f can be replaced by [ω]a = ωboundary = 0.

Figure 3: Closing of the integration path to take into account the boundary conditions
imposing the tangential velocity. The dual edge is in blue, the integration path on the inside
of the domain is in green and the additional contributions from the boundary conditions are
in red.

3 Numerical study of the convergence

The convergence of PolyMAC is investigated here numerically on some test problems. We
consider a typical Navier-Stokes problem that we discretise on a series of meshes chosen to
illustrate the robustness of our method. These meshes were defined in benchmarks estab-
lished and presented during previous cycles of the FVCA conferences [24, 18, 13] and they
represent a discrete unit square in 2D and a discrete unit cube in 3D. They are listed in
Table 1 and some of them are illustrated on Figure 4. Note that their characteristics are di-
verse: there are various geometric shapes (triangles, polygons, ...), some are 2D while other
are 3D, some unstructured and some non-conforming that present hanging nodes. While
this list is not exhaustive, the variety of meshes that it covers gives some reassurance about
the robustness of the approach. To characterize the convergence of PolyMAC, each mesh
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is refined successively. The number of sizes considered for each mesh is indicated in the
column Refinement, while the largest number of cells - i.e. the number of cells on the finest
mesh - is given in the column Cells. In the column Matrix Size, we indicate the size of the
matrix solved during the Correction step, see Section 4.1. The dimension of the problem is
indicated by the column Dimension. A small star ? next to the name of a mesh indicates
the presence of hanging nodes in this mesh.

Name Refinement Cells (×104) Matrix Size (×105) Dimension
Cartesian 7 6.5 1.9 2D
Triangles 5 10.4 2.6 2D

Quadrangles 7 6.5 1.9 2D
Polygons 6 5.3 2.1 2D

Locally Refined 2D? 5 16.4 4.9 2D
Kershaw 2D 6 1.0 0.31 2D
Hexahedras 5 3.3 1.3 3D

Locally Refined 3D? 4 9.0 3.7 3D
Kershaw 3D 4 26.2 16.1 3D

Checkerboard? 5 14.7 7.4 3D
Voronoi 5 0.03 0.03 3D

Tetrahedras 5 6.1 1.8 3D
Random 4 3.2 2.4 3D
Prism 4 12.8 4.5 3D

PrismHexa 4 6.7 / 3D

Table 1: Characteristics of the different meshes used in the benchmark. The star ? indicates
the presence of hanging nodes.

The test problem is a standard rotating Navier-Stokes problem described in [13] with
a viscosity ν = 10−2 (hence, a Reynolds number of 102). The discretisation is run by the
TRUST [14] software on a Intel(R) Xeon(R) Gold 5222 CPU @ 3.80GHz. Formally, we try
to find ~u and p such that:{

−ν∆~u+ (~u · ∇)~u+∇p = ~f in Ω ,

∇ · ~u = 0 in Ω ,
(32)

where ~u is the velocity and p the pressure and ν > 0 is the viscosity. As stated above, the
domain Ω ⊂ Rd (d = 2 or 3) is the unit square in 2D and the unit cube in 3D.

More precisely, in 2D, the analytical solution is given by

~u =

(
y
−x

)
p = (x2 + y2)/2− 1

3

, (33)

while in 3D, the exact solution is given by

~u =

y − zz − x
x− y

 ,

p = (x2 + y2 + z2)− xy − xz − yz − 1
4
.

(34)

The right-hand-side can be computed accordingly. For instance, in 3D we get:

~f =

2x− y − z
2y − z − x
2z − x− y

 . (35)

11



(a) Quadrangles (b) Triangles (c) Locally Refined (d) Polygons

(e) Checkerboard (f) Kershaw (g) Voronoi (h) Random

Figure 4: Representation of some meshes from the benchmark.

This allows us to evaluate precisely the error made by PolyMAC. Concretely, we evaluate
the (relative) error in velocity by

err2
v =

‖~v − ~vh‖2
2

‖~v‖2
2

≈
∑

e∈E ‖~ve − [~v]e ‖2|e|∑
e ‖~ve‖2|e|

(36)

where ~ve is the analytical solution velocity ~v evaluated in the element e, [~v]e is the approxi-
mated solution built at the elements from the velocity at the faces by the relation (14) and
|e| is the volume of the element e. The (relative) error in pressure is computed in a similar
fashion:

err2
p =

‖p− ph‖2
2

‖p‖2
2

≈
∑

e∈E ‖pe − [p]e ‖2|e|∑
e ‖pe‖2|e|

. (37)

The convergence rate between two successive mesh refinements l and l + 1 can then be
estimated

r = −d log(erri[l + 1]/erri[l])

log(#E(l + 1)/#E(l))
, (38)

where d is the dimension of the space, #E(l) is the number of elements in the lth mesh and
i takes the values v, p.

The results are shown in Figure 5. The L2-error in velocity and pressure is shown along
the evolution of the number of cells (to the power 1/2 or 1/3 according to the dimension)
for all considered meshes. All the cases converge which suggests that PolyMAC is indeed a
robust discretisation method. The asymptotic convergence rates for both the velocity and
the pressure are reported in Table 2 to give a quantitative insight to the observations. In
most cases, the convergence order of the velocity is about 1.0 as expected. It is interesting to
note that some super-convergence is observed. This phenomenon has already been observed
and documented on meshes with some regularity such as Cartesian, Hexahedras, or even
Locally Refined 3D [11, 30, 7]. Here, however, we also observe that phenomenon for very
deformed meshes such as Kershaw 2D and Kershaw 3D. The order of convergence of the
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Figure 5: L2-error in velocity (left) and pressure (right) in 2D (top) and 3D (bottom).

pressure are between 0.5 and 2.0 and very mesh-dependent. Globally, the results are as
expected and coherent with the litterature [7]. Note that the super-convergence on Kershaw

2D and Kershaw 3D is also happening for the pressure, with a convergence rate close to 2.0:
PolyMAC seems especially robust on deformed meshes.

3.1 Industrial case

One of the objectives of PolyMAC is to be used in an industrial context, where geometries
can be much more complex than the unit square or cube. As a consequence, the meshes used
are usually unstructured and very deformed. In this work, we consider the flow through an
assembly of nuclear rods. One such mesh is represented in Figure 6. Its structure is much
more challenging than the meshes from the FVCA benchmarks, notably there does not exist
an analytical solution. The cylindrical holes in the domain represent the fuel rods around
which the fluids flows. Furthermore, each rod is circled by a spacer wire that is also visible
in Figure 6. This spacer is a known difficulty when modelling sodium-cooled fast reactor

13



Velocity Pressure
Cartesian 2.00 1.83
Triangles 1.00 0.55

Quadrangles 1.00 0.49
Polygons 0.99 0.63

Locally Refined 2D 1.51 1.00
Kershaw 2D 1.92 1.75
Hexahedras 1.78 1.59

Locally Refined 3D 1.58 1.53
Kershaw 3D 1.93 1.27

Checkerboard 0.99 0.75
Voronoi 0.98 1.86

Tetrahedras 1.11 0.70
Random 1.06 0.71
Prism 1.00 1.46

PrismHexa 0.98 0.54

Table 2: Order of convergence in velocity and pressure of the PolyMAC method on the
different meshes described in Table 1.

and liquid-metal reactors [37, 27]. It is also a challenge for the mesher which tends to give
high aspect ratio cells along it. In this article, we consider tetrahedric cells.

Figure 6: Representation of a meshed assembly from the Rapsodie reactor.

Here, we solve the time-dependent incompressible Navier-Stokes equations{
∂t~v − ν∆~v + (~v · ∇)~v +∇p = ~f in Ω ,

∇ · ~v = 0 in Ω .
(39)

The associated boundary conditions specify the pressure at the inlet and the outlet and
the velocity along the walls - the nuclear rods are associated to walls. More precisely, we
have

Pin = 105Pa

Pout = Pin − ρgz
~vwall = (0, 0, 0) ,

14



Refinement 1 2 3 4 5 6 7 8

Cells (×104) 0.9 1.8 4.9 21.8 43.5 80.9 127.0 462.4
Matrix Size (×105) 0.3 0.5 1.5 6.4 13.5 24.2 38.1 138.7

Table 3: Sizes of the successive refinements of the Assembly mesh.

where g is the gravitational acceleration and ρ the density of the fluid - here, of water in
normal conditions - while z is the height of the assembly. The initial condition is stated as

~v0 = (0, 0, 0) .

The time discretisation is done by implicit Euler scheme and yields:
~vn+1 − ~vn

∆t
− ν∆~vn+1 + (~vn · ∇)~vn+1 +∇pn+1 = ~f in Ω ,

∇ · ~vn+1 = 0 in Ω .
(40)

As before, the equations are discretised by the TRUST [14] software on an Intel(R) Xeon(R)
Gold 5222 CPU @ 3.80GHz. We use a series of more and more refined meshes whose sizes
are shown in Table 3.

On each mesh, the simulation is run until the norm of the time derivative of the velocity
is below some threshold that was set at 10−8. The solution on the finest mesh (~vf , pf ) is
considered as the reference solution and the error made by the coarser meshes is estimated
with respect to the couple (~vf , pf ). In practice, the computation of errv and errp is done by
the same formulas (36) and (37) and the convergence rate is estimated as previously with
the expression (38). The results are represented in the Figure 7. The blue continuous line
represents the evolution of the relative error with the mesh size: on the left, is the velocity
error and on the right, the pressure error. The black dashed line represents the first order
of convergence and the continuous black line, the second order. The computed convergence
rate is indicated in the legends of the Figure 7. As can be seen, the order of convergence is
close to 1.0 for the velocity, as was observed on FVCA cases. The order of convergence for
the pressure is much higher, close to 3.0. However, the smallest mesh is quite coarse and
does not reflect precisely the geometry of the assembly. If we take it out of the study, the
convergence rate drops to 0.99, much closer to what we expect from the previous analysis.
These results show the robustness of PolyMAC in an industrial context.

4 Numerical Resolution

The key advantage of PolyMAC is its robustness, especially on very large unstructured
and distorted meshes. As presented in the previous section, results are still robust even
on meshes and geometry of industrial complexity. However, this advantage cannot be fully
taken advantage of if we do not have an efficient method to solve the resulting linear systems.
It is especially important in an industrial context where one is required to work with (very)
large systems. In this work, we consider matrix sizes up to 107 unknowns.

The system of linear equations resulting from the discretisation of the incompressible
Navier-Stokes equations by PolyMAC is given by Equation (31). This system presents a
velocity-pressure saddle-point which makes it hard to solve by iterative methods - see [4, 20]
for recent approaches to tackle such systems. To get around this difficulty, alternative
approaches have been developed by engineers and mathematicians; a famous example is the
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(a) Velocity convergence order: 0.93 (b) Pressure convergence order: 3.24

Figure 7: Convergence curves associated to the velocity (a) and the pressure (b) for the
Assembly industrial case.

SIMPLE method developed in the 70s by Spalding and Patankar [34]. In this work, we
consider the PISO method introduced in 1984 by Issa [25, 26]. The common idea of these
methods is to split the resolution of the global system into several steps.

4.1 The PISO method

The Pressure-Implicit with Splitting Operators - PISO for short - algorithm was developed
by Issa in the 80s. The PISO method implements a non-iterative method to solve coupled
transport equations. The method is made of two complementary steps: the predictor and
the corrector step. Note that the corrector step can be repeated to increase the accuracy of
the solver with respect to the time step [25]. PolyMAC is a low-order method and in this
context, one corrector step satisfies our accuracy requirements.

The aim of the predictor step is to compute the intermediate velocity [v]?F and vorticity
[ω]?A by solving the momentum equation with the pressure [p]tE at the previous time step t.
In other words, the method requires to solve the system(

M(f)

∆t
+ CF ([v]tF ) M (f)RF

RAM (f) − 1
ν
M (a)

)(
[v]?F
ν [ω]?A

)
=

(
M(f)

∆t
[v]tF −G [p]tE

0

)
. (41)

Note that the resulting velocity [v]?F is not necessarily divergence-free.

In the corrector step, we compute a correction [δv]F to the velocity so that [v]t+∆t
F =

[v]?F + [δv]F is divergence-free. In the same time, we compute [δp]E such that [p]t+∆t

E
=

[p]E + [δp]E. To simplify the presentation of the derivation of the corrector step, we write
the Navier-Stokes equations in velocity and pressure only.

We are looking for [v]t+∆t
F that is divergence free. To do so, we rewrite the momentum

equation as

M (f)

∆t
([v]

(t+∆t)
F − [v]?F ) + CF ([v]tF ) [v]?F − ν∆h [v]?F +G [p]

(t+∆t)

E
= f t , (42)

where we write the discrete Laplacian as ∆h which is expressed as the curl of the vorticity
in practice. The only implicit term is the pressure [p]

(t+∆t)

E
. Remember that the momentum

equation solved in the predictor step is written as

M (f)

∆t
([v]?F − [v]tF ) + CF ([v]tF ) [v]?F − ν∆h [v]?F +G [p]

(t)

E
= f t . (43)

16



Substracting Equation (43) to Equation (42) and taking the divergence of the result, we get

−D [δv]F + ∆t∆h [δp]E = 0 . (44)

Taking advantage of the fact that [v]t+∆t is divergence free, we can rewrite this last equation
as

∆t∆h [δp]E = −D [v]?F , (45)

which can also be rewritten as(
M (f) G
−D 0

)(
[δv]F

∆t [δp]E

)
=

(
0

−D [v]?F

)
, (46)

which ultimately yields

[v]t+∆t
F = [v]?F + [δv]F ,

[p]t+∆t

E
= [p]tE + [δp]E .

4.2 Iterative approach to the Correction Step

Applying the PISO-like method presented in the previous section to the linear system (31)
arising from PolyMAC discretisation requires to solve the two systems (41) and (46). Both
systems present a saddle-point but the system (41) can be solved efficiently by a GMRES
solver preconditioned by ILU and does not cause any significant difficulties.

However, the system (46) sometimes proves harder to solve even though its structure
is rather simple and usual preconditioner for saddle-point systems are assumed to work
efficiently. Classical iterative solvers for systems such as (46) usually rely on block precondi-
tioners associated to a Krylov method such as GMRES - see [8] for a review. A block-diagonal
preconditioner will have the followind structure:(

M̃ (f)

S̃

)
, (47)

where M̃ (f) is a good approximation of the matrix M (f) while S̃ approximates the Schur
complement S = D(M (f))−1G.

In the present case, M (f) is SPD and can be assimilated to a mass matrix in practice.
For such cases, DM - the diagonal part of M (f) - provides in general a good approximation
of M (f). A typical block preconditioner would be(

DM

DD−1
M G

)
, (48)

where the second block is then similar to a discrete Laplacian since it is essentially the
product of a discrete divergence D and a discrete gradient G. When the preconditioner
is applied, this block can be efficiently inverted by a standard algebraic multigrid (AMG)
method.

Nevertheless, this standard preconditioner fails to yield an efficient solver for the correc-
tion step on the more challenging meshes, as is illustrated in the next Section. The main
reason is a loss of diagonal dominance of the matrix M (f) when the cells get distorted: the
stencil of M (f) becomes wider and M (f) cannot be approximated by its diagonal DM any-
more. Note that this issue, to the extent of our knowledge, has not been much studied in
the litterature related to iterative solvers for saddle point problems. A solution would be
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to replace the top left block of P by a better approximation of M (f), for instance an AMG
approximation. However, this cannot be done for the inverse of DM in the approximation of
the Schur complement and the results in Section 4.3 will show that using the diagonal DM

in the approximation of the Schur complement is not adequate.
To illustrate the difficulties met with classical preconditioners for saddle-point systems,

we consider the following block triangular matrix

PClas =

(
M̃ (f)

−D DD−1
M G ,

)
(49)

where M̃ (f) is an AMG approximation of M (f). Notay showed in [32] that such a precondi-
tioner is a good indicator of the efficiency one can expect from a wide range of widely used
preconditioners, such as inexact Uzawa or symmetric block Gauss-Seidel. If M (f) and S are
well approximated by the diagonal blocks, all these preconditioners yield similar results. On
the contrary, if one of these preconditioners struggle, one can expect all of them to struggle.
Note that we could have used a block diagonal preconditioner such as (48) to illustrate this
behavior. However, in the following, the preconditioner we propose is itself block triangular
so we choose PClas as in Equation (49) to ease the comparison.

We propose a more robust preconditioner for systems like (46) when classical saddle-point
preconditioners fail. The key idea is to apply an algebraic transformation to the system (46)
and to solve the transformed system instead. We hereafter call this method the transform-
then-solve approach, since it is similar to what is done in [33, 2, 4]. The solution to the
original system is recovered by applying the inverse transformation. The transformation is
defined by:

Â =

(
M (f) G
−D

)(
I −D−1

M G
I

)
=

(
M (f) (I −M (f)D−1

M )G
−D DD−1

M G

)
. (50)

We write Ĉ = DD−1
M G and Ĝ = (I − M (f)D−1

M )G. It is interesting to note that Ĉ is
similar to a discrete Laplacian, since it is essentially the product of a discrete divergence
and a discrete gradient. Note that the off-diagonal blocks are first order discrete derivatives.
The system (50) has then a structure that is similar to a Stokes system for which optimal
preconditioners are well-known [16]. State-of-the-art preconditioners are defined by(

Q
˜̂
C

)
, (51)

where Q is the mass matrix3 which is spectrally equivalent to the Schur complement for
Stokes problems [16]. Since Ĉ is close to a discrete Laplacian, it is standard to use an AMG
method to precondition that block. To approximate the mass matrix Q, it is natural to use
the matrix M (f). Since the Schur complement of Â is M (f) + ĜĈ−1D, we choose Q = 2M (f).
Finally, to improve the efficiency of the preconditioning, we can consider a block triangular
preconditioner such as (

2M (f) Ĝ
˜̂
C

)
. (52)

Indeed, there is no benefit in keeping a symmetric preconditioner since the matrix Â is non-
symmetric. Furthermore, the application of the triangular preconditioner implies almost no

3Note that the unknowns are reversed with respect to Stokes problems: the Laplacian here acts on the
pressure.
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extra cost with respect to the block diagonal one: only one matvec operation with Ĝ and
one vector addition are needed. No additional memory is required.

It is possible to simplify the preconditioner (52) by replacing M (f) with its diagonal DM

and we get the preconditioner

PTrans =

(
2DM Ĝ

˜̂
C

)
. (53)

Note that this simplification is not in contradiction with the difficulties related to the loss
of diagonal dominance we reported at the start of the Section 4.2. The transformation has
brought back weight on the diagonal, notably via the block Ĉ, which allows to replace M (f)

by DM without putting the convergence of the iterative method at risk.
The theoretical analysis of this approach is outside the scope of this paper and will be

the subject of future work. We provide a heuristic justification of this approach in the next
section via numerical results.

4.3 Results

In this section, we compare the transform-then-solve preconditioner PTrans described in the
previous section with a classical block diagonal preconditioner PClas. The results are shown
in Tables 4, 5 and 6. We consider the number of iterations needed by GMRES [39] to decrease
the relative residual by a factor of 10−6. We set the maximal number of iterations to 200 and
if the method does not converge within this limit, we indicate > 199 in the results. If the
method diverges (increase of the relative residual), we put / in the results. The first column
of each table indicates the relative size of each problem: 1 corresponds to the smallest system
and 7 to the largest one. For each problem, the size of the largest system is shown in Table 1
and in Table 3 for Assembly. Assembly is by far the largest system to solve, with more than
107 unknowns. For each problem, the number of iterations corresponding to the so-called
Classical approach are reported in the column Class. while the one corresponding to the
transform-then-solve approach is in the column Trans..

The comparison between preconditioners were realised on a Dell computer with an In-
ter(R) Core(TM) i9-10900 CPU @ 2.80GHz. Both preconditioners were implemented in
Python with the module SciPy [42]. As indicated above, the system was solved with a
Krylov subspace method, here, GMRES [39] since the system (50) is not symmetric. The
implementation of the Classical preconditioner (48) requires the inversion of both diagonal
blocks. This was done with PyAMG [6] parametrised with the Ruge-Stuben algorithm [38] -
see [41] for a more modern presentation. The transform-then-solve preconditioner (53) also

uses PyAMG with the Ruge-Stuben algorithm for the inversion of the Ĉ block, while the
inversion of DM does not require any special treatment.

The Table 4 gathers the 2D problems (except Kershaw 2D which is shown in Table 5).
For these cases, both approaches work well and converge to the tolerance largely within the
maximal number of iterations. Typically, the transform-then-solve approach converges as
fast as the classical approach. However, the transform-then-solve approach is more costly
because of the transformation and the classical approach would likely be the most efficient.
Looking at Tables 5 and 6, we get a different picture. Some cases behave similarly as
previously: Hexahedras, Checkerboard, Voronoi and Prism. However, the cases Kershaw

2D, Kershaw 3D, Random and Tetrahedras show a different behavior: at first, for smaller
sizes of the systems, the classical method converges. Then there is a degradation of the
convergence and for the larger sizes, the maximal number of iterations is reached. On the
other hand, for those same cases, the transform-then-solve approach always converge within
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Cartesian Triangles Quadrangles Polygons LR 2D

Size Class. Trans. Class. Trans. Class. Trans. Class. Trans. Class. Trans.

1 3 3 11 9 7 7 9 8 8 8
2 5 4 12 12 10 11 11 10 9 10
3 5 4 13 12 10 10 9 10 11 9
4 5 5 14 15 10 11 10 11 10 10
5 5 5 18 13 9 10 11 12 11
6 5 6 9 10 13
7 10 6 12

Table 4: Comparison of the number of iterations needed to decrease the relative residual by a
factor of 10−6 by the so-called Classical preconditioner (Class.) and the transform-then-solve
approach (Trans.).

Kershaw 2D Hexahedras Kershaw 3D Checkerboard Voronoi

Size Class. Trans. Class. Trans. Class. Trans. Class. Trans. Class. Trans.

1 41 56 2 2 145 59 8 8 21 11
2 57 54 4 4 150 60 11 25 10 14
3 62 58 5 4 > 199 109 15 18 13 13
4 70 63 14 5 > 199 112 17 18 14 16
5 > 199 63 4 26 17 12
6 > 199 64

Table 5: Comparison of the number of iterations needed to decrease the relative residual by a
factor of 10−6 by the so-called Classical preconditioner (Class.) and the transform-then-solve
approach (Trans.).

the maximal number of iterations. This shows the robustness of the transform-then-solve
approach. The most impressive result concerns the Assembly case: the classical approach
diverges, while the transform-then-solve method converges for all sizes. The reduction of the
number of iterations observed between size 1 and 3 is much likely due to the fact that the
mesh is too coarse to accurately represent the continuous system and the resulting matrices
may have a more complicated structure as a result.

To summarise those observations, the classical preconditioner and the transform-then-
solve approach yield equivalent results in the simpler cases: for the 2D problems (except
Kershaw 2D) and and the 3D problems that show some regularity (Hexahedras, Checkerboard).
For more complex cases, the transform-then-solve approach is better suited and much more
robust. Note that this is in agreement with the results described in [2] where the robustness
of a similar approach was highlighted for Stokes problems. The most impressive results are
obtained for the industrial problem Assembly where our approach allows us to get results,
whereas the classical preconditioner fails to converge.

5 Conclusions

This article has two main objectives. On the one hand, we propose a compatible Finite
Volume discretisation scheme for the incompressible Navier-Stokes on general meshes called
PolyMAC. On the other hand, we study the specific challenges related to the numerical
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Random Prism Tetrahedras Assembly

Size Class. Trans. Class. Trans. Class. Trans. Class. Trans.

1 16 18 46 24 25 22 / 88
2 51 22 36 34 27 28 / 49
3 / 68 52 32 88 26 / 25
4 / 80 54 32 > 199 27 / 23
5 > 199 29 / 28
6 / 33
7 / 33

Table 6: Comparison of the number of iterations needed to decrease the relative residual by a
factor of 10−6 by the so-called Classical preconditioner (Class.) and the transform-then-solve
approach (Trans.).

resolution of the linear systems arising from the discretisation.
In the first part of the article, we detail how each continuous operator is discretised and

we deduce the discretisation of the Navier-Stokes equations. In particular, we specify the
structure of the resulting linear system. In the next section, we study the convergence of
PolyMAC on a broad set of meshes taken from different FVCA conferences. We make sure
that the method converges both in velocity and pressure and we compute the asymptotic
convergence rate. As expected, the order of convergence is around 1.0 for both the pressure
and velocity. Super-convergence is observed for some meshes, but most notably for the
distorted cases Kershaw 2D and Kershaw 3D. We then apply PolyMAC to a problem of
industrial complexity that was studied by the CEA: Assembly represents an assembly of
nuclear rods that has been used in practice for safety studies and is representative of the
difficulties met in practice in the industry. We start by checking that the convergence
properties assessed for the benchmark are preserved for the Assembly case: a convergence
order of about 1.0 is indeed observed. This highlights the robustness of the PolyMAC scheme.

In a second time, we focus on the resolution of the linear system in an industrial context.
Since the systems may be large, the use of direct solvers is prohibited and we need robust and
efficient iterative solvers. The system presents a double saddle-point that is well-known to
be challenging for iterative solvers. To get around this difficulty, we implement a PISO-like
method. We now have two smaller systems to solve and only the second one causes problems.
We start by showing that classical preconditioners fail to converge when the underlying
meshes used in the discretisation are distorted. We then develop an approach called the
transform-then-solve approach inspired by the works [33, 2] to improve the robustness of the
preconditioner. The results are impressive: all cases now converge in a reasonable number
of iterations. The convergence of the Assembly case is especially fast on finer meshes.

To conclude, we present a robust approach to solve incompressible Navier-Stokes equa-
tions, from the discretisation step to the resolution of the linear system. The main asset
of the approach is its robustness: PolyMAC converges on meshes of any shape. However,
when considering distorted meshes, the resolution of the linear systems may be surprisingly
difficult: the transform-then-solve approach allows to solve those difficulties.
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