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Abstract—In modern Open RAN architectures, the classic
gNB radio protocol stack is disaggregated and implemented
in different virtualized components, the Centralized Unit (CU),
the Distributed Unit (DU), and the Radio Unit (RU). Each
of these units is deployed throughout the cloud-enabled RAN
infrastructure in order to achieve users’ required Quality of
Service (QoS). Within this framework, our study is dedicated
to maximizing the admission of User Equipments (UEs) into the
system while ensuring their specific QoS needs. We focus on
two primary tasks: (i) establishing an association between UEs
and RUs and (ii) placing CUs and DUs across the network’s
cloud hosts. We initially address these tasks by formulating
the joint association-placement optimization problem, subject
to the system’s available resources and QoS-related constraints.
Although it is an NP-Hard problem, we discuss how we can
frame it into an Integer Linear Programming (ILP) model.
Then, we propose an approximation algorithm based on the
decomposition of the original ILP model. We show through
exhaustive simulations that our proposed ILP model provides
higher admissibility levels than other baseline models. Moreover,
it significantly minimizes the deployment costs and increases
the overall fairness. Finally, we remark that our decomposition
algorithm presents a short optimality gap in practice, with up
to 6% less admissions, while reducing the solution time by up to
98%.

Index Terms—Open RAN, Resource Allocation, Operations
Research, Simulation

I. INTRODUCTION

Traditional radio access networks (RANs) have historically
been characterized by proprietary, vertically integrated so-
lutions, resulting in vendor lock-in and limited operational
flexibility for network operators. However, in response to the
rapidly evolving 5G cellular network environment, a joint ef-
fort to promote Open RAN standardized architectural solutions
was founded by O-RAN Alliance [1], gathering a vast range of
academic and industrial partners. Open RAN offers a paradigm
shift by advocating for disaggregation and standardization of
open interfaces, fostering interoperability and vendor diver-
sity [2]. This approach enables network operators to leverage a
diverse ecosystem of hardware and software components from
multiple vendors, promoting innovation and competition.

In its most recent technical report [3], O-RAN consolidates
the implementation (and extension) of the 3GPP 7.2x Split for
gNB disaggregation: the 3GPP’s radio protocol stack in classic
gNBs is separately implemented in three different functional
units: (i) Open Radio Units (O-RU), implementing low-PHY
protocols; (ii) Open Distributed Units (O-DU), handling high-
PHY and MAC tasks; and (iii) Open Centralized Units (O-
CU) in charge of the upper layers. Additionally, as introduced
in [3], O-RAN architectures may integrate cloud systems
(the O-Cloud, in the official O-RAN nomenclature) in order

to run virtualized instances of each functional unit. These
features offer enhanced capabilities and flexible provision
of communication services, placing O-RAN architectures as
the succeeding iteration of Virtualized Radio Access Net-
works (vRANs) [1]. The use of the O-Cloud leverages dif-
ferent strategies for the deployment of the disaggregated O-
RAN functional components (e.g., scenario B and C among
others [3]; where scenario B refers to the case where the DUs
and CUs are situated at the edge cloud, and scenario C where
the DUs and the CUs are at the edge and the regional cloud,
respectively).

This paradigm shift allows the disaggregated functional
units to be deployed at O-Cloud hosts located at different
proximity levels concerning the cell site, where the RUs are
placed. By distributing these functional units across different
nodes, network operators gain the flexibility to adapt to
specific network demands and to meet minimum Quality of
Service (QoS) requirements, such as high throughput and low
latency. For instance, they can strategically install functional
units closer to end-users, at the cell sites, to reduce end-to-
end latency for applications with stringent delay requirements.
Alternatively, they may choose to deploy these components in
further cloud hosts, where more computing resources might
be available to handle larger volumes of transiting packets.
Thus, if, on the one hand, the disaggregation and distribution
of functional units throughout the O-Cloud network provide
flexibility, on the other hand, its deployment must be carefully
designed to satisfy challenging constraints.

In this paper, we investigate how to maximize the number
of UEs admitted to the system that have their minimum
QoS requirements satisfied. To this end, we propose an op-
timization model that determines the admission decision at
every transmission time interval (TTI) considering (i) CU-
DU placement, which defines end-to-end, user-centric traffic
forwarding throughout the O-Cloud network and (ii) resource
allocation, specifically assigning sufficient resource blocks
(RBs) to different users. We initially solve this problem jointly,
then we propose a lightweight decomposition solution, where
the master problem is split into two simpler sub-problems
that, in turn, are solved sequentially. We evaluate our proposed
model, and we show its superiority over other baseline models
with limited RAN control options. Moreover, we discuss the
performance of the proposed decomposition heuristic in terms
of computational complexity and execution time.

The rest of the paper is organized as follows: Section II
provides a brief overview of the related work. The system
model and our proposed ILP-based solutions are described
in Section III and IV, respectively. Section V details the
simulation framework. Section VI illustrates the performance
evaluation of the proposed algorithms. Finally, Section VII
concludes the paper.



II. RELATED WORK

Various studies have tackled the optimization of radio func-
tion placement in the context of evolving RAN architectures.
The emergence of O-RAN architecture [1], has paved the way
for new research directions in this area.

In [4], authors combine RB allocation and DU selection
to enhance energy efficiency and ensure low-latency traffic
within the O-RAN architecture. They propose an energy-aware
optimization model that jointly addresses RB allocation and
DU selection. Moreover, authors in [5] introduce a dynamic
DU placement approach, allowing flexibility in DU positioning
throughout the network for the sake of minimizing O-RAN
costs. However, these works maintain fixed CU locations,
which may result in sub-optimal outcomes.

Authors in [6] propose a deep reinforcement learning
method to determine optimal O-Cloud locations for DU and
CU Virtualized/Cloud-native network functions (VNFs/CNFs)
and establish optimal user equipment (UE) to RU associations.
Their primary objective is to minimize latency and reduce
deployment costs. However, their model lacks consideration
of the diverse service requirements of different users. In [7],
authors address the optimization problem of efficiently placing
DUs and CUs, considering the distributed nature and limited
capacity of processing pools with the aim of minimizing the
number of active processing pools and total network latency.
Notably, their work does not account for slice-specific require-
ments and does not specifically address the users’ association
with Radio Units (RUs).

Furthermore, network function placement shares similari-
ties with task distribution in Multi-access Edge Computing
(MEC) systems. The authors in [8] reinterpret the problem of
maximizing the total throughput, considering task placement
and routing under latency constraints as a betweenness-based
flow assignment problem, and in [9], they propose a streaming
algorithm to approximate the optimal solution with optimality
guarantees under specific assumptions.

Additionally, our prior work in [10] concentrates on the
dynamic placement of CUs and DUs but overlooks the critical
aspect of UE-to-RU association, which plays a crucial role in
optimizing network performance. However, in this paper, we
jointly address these challenges, aiming to maximize users’
admittance ratio while meeting the diverse QoS requirements
of different slices. The next section provides a detailed de-
scription of our system model.

III. SYSTEM MODEL

The system consists of a set R of RUs located across a
fixed squared area of side L, such that each RU r ∈ R has a
position determined by coordinates Pr = (Xr, Yr) ∈ [0, L]2.
We hereafter refer to the geographical deployment of RUs as
the cell site. Consider a set U of UEs arbitrarily located across
the cells site, such that the position of each u ∈ U is given by
coordinates Pu = (Xu, Yu) ∈ [0, L]2.

The O-Cloud network is modeled as a graph G = (H, E),
where H is the set of vertices, representing the cloud hosts,
and E is the set of edges, representing the physical links
connecting two neighboring hosts. H is further partitioned
based on hosts’ proximity to the cell site in two domains:
the set of edge-cloud hosts HE and the set of regional-cloud
hosts HR, such that H = (HE ∪HR). For each host h,
if h ∈ HE , then it is located at Ph ∈ [L,L′]2, otherwise,
if h ∈ HR, its location is Ph ∈ [L′′, L′′′]2. Each RU in the
cells site is fully connected to edge-cloud hosts.

Each UE requests the provision of a communication service
from the set of slices S. Each slice has QoS requirements in

terms of (i) achieved data rate (throughput) and (ii) end-to-
end (E2E) delay1. If the system is currently able to meet all
the QoS requirements of a given UE’s slice, then it admits
the UE and provides the requested communication service.
In the following, we discuss the system’s characteristics that
impact the provision of UEs’ required QoS and consequently
determine its admittance.

A. UE-RU Association

Each UE is within reach of potentially multiple RUs simul-
taneously and, if it is admitted to the system, it must be associ-
ated with one of its neighboring RUs. The UE-RU association
decision is captured by variables xRU

u,r ∈ {0, 1},∀u ∈ U ,∀r ∈
R, indicating whether UE u is associated with RU r, xRU

u,r = 1,
or not, xRU

u,r = 0. The vector of association variables is denoted
by xRU = [xRU

u,r : ∀u ∈ U ,∀r ∈ R].
We assume classic OFDMA scheduling, such that RUs’

time-bandwidth is split into radio resource blocks (RBs) that
can be assigned to associated UEs. Each RU r ∈ R has a total
of Mr ∈ Z+ RBs that are further distributed among all slices
in S. We introduce variables ρr,s ∈ Z+,∀r ∈ R,∀s ∈ S , to
capture the number of RBs dedicated to slice s at RU r.

The number of RBs RBu,r required by user u if associated
to RU r is computed as following

RBu,r ≜

⌈
λs(u)

ηu,r

⌉
,∀u ∈ U ,∀r ∈ R . (1)

where s(u) ∈ S is the slice requested by UE u, λs ∈ R+ is
the data rate required by slice s ∈ S and ηu,r ∈ R+ is the
(wireless) link capacity per RB measured using the principles
of Shannon theory as in [11]. We note that a user u assigned
to an RU r is supposed to get its required number of RBs in
order to transmit at its required data rate. The number of RBs
assigned to a UE u is determined as follows

RBu(x
RU) ≜

∑
r∈R

RBu,r · xRU
u,r, ∀u ∈ U . (2)

B. DU-CU Placement

We consider, as in [10], a hybrid deployment scenario
between the scenarios B and C that are defined in [12], where
the DU functions are implemented at the edge cloud, while
the CU functions can be on either the edge or regional clouds.
Firstly, we introduce variables xDU

u,h ∈ {0, 1},∀u ∈ U ,∀h ∈ H,
indicating whether UE u’s DU is placed at cloud host h
(i.e., xDU

u,h = 1) or not (i.e., xDU
u,h = 0)2. We denote the vector of

DU-placement variables by xDU = [xDU
u,h : ∀u ∈ U ,∀h ∈ H].

Correspondingly, we introduce variables xCU
u,h ∈ {0, 1},∀r ∈

R,∀h ∈ H, indicating whether UE u’s CU, specifically its
User Plane component (CU-UP), is placed at cloud host h
(i.e., xCU

u,h = 1) or not (i.e., xCU
u,h = 0). The vector of CU-

placement variables is denoted by xCU = [xCU
u,h : ∀u ∈

U ,∀h ∈ H]. We denote by x = [xRU,xDU,xCU] the vector
of association-placement variables.

1We consider a scenario with symmetric requirements for both uplink and
downlink. For the sake of presentation and without loss of generality, we
define our model exclusively in terms of downlink.

2We consider the “Shared-RU” framework introduced in [12, Chapter 14],
where each RU may have multiple associated DUs. We further assume that
DUs belonging to the same RU context coordinate to perform UE scheduling.



C. O-Cloud Computation Model
Each cloud host has enough computational capacity (RAM

and CPU) to run a limited number of functional unit instances.
Each instance of functional unit (FU), i.e., DU and CU, has an
associated computational cost [13], given in Giga Operations
Per Second (GOPS), that is defined as follows

gFU
u (xRU)≜

αFU · (3A+A2+M · C · L/3)
10

· RBu(x
RU), (3)

where FU is replaced with either CU or DU, M represents
the modulation bits (i.e., the number of bits per symbol), C
denotes the coding rate, L is the number of MIMO layers, A
corresponds to the number of antennas, and RBu(x) is the
number of resource blocks assigned to user u, as defined in (2).
The constants αDU and αCU , defined for each FU, serve
as a scaling factor representing the average computational
load of DUs and CUs, respectively, with respect to their
total computational requirements. Specifically, in our system,
we adopt the Split-7.2x between RU and DU and the Split-
2 between DU and CU, and based on the computational
load distribution described in [14], we assign αDU = 50%
and αCU = 10% of the computational workload to the DU
and the CU, respectively (the RU is in charge of the remain-
ing 40%). We formalize the total computational utilization in
node h as

gh(x
RU) ≜

∑
u∈U

gCU
u (xRU) · xCU

u,h + gDU
u (xRU) · xDU

u,h, (4)

where the computational cost functions gCU
u (·) and gDU

u (·) are
defined in (3).

D. E2E Delay Model
Assuming deterministic delay-bound forwarding is in place

in the backhauling segment as commonly done starting from
3G (e.g. using carrier Ethernet, MPLS-TE or DETNET tech-
nologies), we consider that the variations in E2E delay experi-
enced by a given UE are primarily affected by the propagation
delay between communicating functional units, which has two
major components: Midhaul (MH) and Fronthaul (FH) delay.
For each UE u, the MH delay is measured between the CU
to the DU, is given by:

dMH
u (x) ≜

∑
h,h′∈H

||Ph − Ph′ ||
vFiber

· xCU
u,h · xDU

u,h′ , (5)

where vFiber ∈ R+ is the propagation speed over fiber, and ∥·∥
represents the Euclidean distance between two hosts. Similarly,
for each UE u, the FH delay, i.e., from the DU to the RU, is
defined as

dFH
u (x) ≜

∑
r∈R

∑
h∈H

||Pr − Ph||
vFiber

· xDU
u,h · xRU

u,r. (6)

IV. PROBLEM DEFINITION

Our goal is to optimize the system’s performance by
maximizing the admittance of UEs that is conditioned to
the system’s capability to satisfy their requested services’
requirements. We formulate the full association-placement
joint optimization problem as follows in Problem 1. Table I
summarizes the notations used throughout the paper.

The objective function (7) aims to maximize the number of
admitted UEs weighted by a priority ϵs(u) defined for each
slice requested by UE u, s(u). Constraints (8) ensures that an
admitted UE u has exactly one functional unit of each type
associated to it. Additionally, due to delay bounds [12], we

TABLE I: System notations

Notations Definition

R,U,H,S Sets of RUs, UEs, Hosts, and Slices, respectively

Mr Parameter for the number of RBs available in RU r

au Binary variable indicating UE u admittance

xRU
u,r Binary variable indicating UE u association to RU r

xCU
u,h Binary variable indicating if node h hosts UE u’s CU

xDU
u,h Binary variable indicating if node h hosts UE u’s DU

ρr,s Integer variable for the RBs in RU r allocated to slice s

ηu,r Transmission rate per PRB defined by Shannon’s theorem

λs Required data rate by slice s

dFH
u Maximum allowed fronthaul delay for user u

dMH
u Maximum allowed midhaul delay for user u

ϵs Priority value for slice s

consider that DUs must be deployed at the vicinity of the cell
sites, so they can only be placed in the edge-cloud domain. On
the other hand, CUs can be deployed in both edge or regional
domains. This limitation is captured by (9).

With (10), we guarantee that the total amount of resources
of RU r assigned to each slice does not exceed its total number
of resource blocks Mr. Considering that every slice has
different RB requirements, the number of UEs of slice s that
RU r can accommodate is limited to its maximum amount of
RBs ρr,s dedicated to that slice. We represent these constraints
in (11). In (12), we ensure that the computational utilization
at each node h does not exceed its available computational
capacity Gh. Finally, in (13) and (14), we enforce that both
the MH and FH delays satisfy their tolerance values DMH

u
and DFH

u , respectively. We refer to the (optimal) solution of
Problem 1 as x∗ and ρ∗ illustrated in figure 1.

Problem 1 (Full joint Problem).

maximize
x,ρ

aJoint(x)=
∑
u∈U

∑
r∈R

∑
h,h′∈H

ϵs(u) ·xRU
u,r ·xDU

u,r ·xCU
u,r

(7)

subject to
∑

h,h′∈H

xDU
u,h·xCU

u,h′ =
∑
r∈R

xRU
u,r,∀u ∈ U (8)∑

h∈HR

xDU
u,h = 0,∀u ∈ U (9)∑

s∈S
ρr,s ≤ Mr,∀r ∈ R (10)

RBu(x
RU) ≤ ρr,s,∀r ∈ R,∀s ∈ S (11)

gh(x
RU) ≤ Gh,∀h ∈ H (12)

dMH
u (x) ≤ DMH

u ,∀u ∈ U (13)

dFH
u (x) ≤ DFH

u ,∀u ∈ U (14)

xRU
u,r ∈ {0, 1},∀u ∈ U ,∀r ∈ R (15)

xCU
u,h, x

DU
u,h ∈ {0, 1},∀u ∈ U ,∀h ∈ H (16)

ρr,s ∈ Z+,∀r ∈ R,∀s ∈ S (17)

Proposition IV.1. Problem 1 is NP-Hard.

The intuition behind Proposition IV.1 is that a reduced
version of Problem 1 has knapsack-like constraints [15]. Then,
it is at least as hard as Knapsack problems, which is proven
to be NP-Hard. Therefore, Problem 1 is NP-Hard as well.



Figure 1: Full joint solution

Figure 2: Decomposed sequential solution

Although Problem 1 is NP-Hard, we discuss in section IV-B
how we can linearize it to find exact solutions in practice.

A. Two-stage Decomposition
Problem 1 could be further decomposed into two sub-

problems that can be solved in different time scales. We define
the first sub-problem in Problem 2. We consider a fixed group
of UEs that we need to determine their optimal association
with the RUs by (i) distributing Resource Blocks (RBs) of
each RU across the different service types and (ii) determining
the most suitable RU for each user, aiming to maximize the
number of users successfully associated with an RU.

Problem 2 (Primary Sub-Problem).

maximize
x,ρ

aSP1(x) ≜
∑
u∈U

ϵu · xRU
u,r (18)

subject to (10), (11), (15), (17)

We define the second optimization sub-problem in Prob-
lem 3. We address the placement of CUs and DUs for the
UEs, taking into account their respective RU associations
determined in Problem 2, i.e, x̂RU and ρ̂. Problem 3’s objec-
tive (19) is to maximize the number of admitted UEs (among
the associated ones), by finding a valid CU-DU placement in
terms of the remaining constraints.

Problem 3 (Secondary Sub-Problem).

maximize
x

aSP2(x) ≜
∑
u∈U

ϵs(u) · xDU
u,h · xCU

u,h (19)

subject to
∑

h,h′∈H

xDU
u,h·xCU

u,h′ ≤
∑
r∈R

x̂RU
u,r,∀u ∈ U (20)∑

u∈U
ĝCU
u ·xCU

u,h + ĝDU
u ·xDU

u,h ≤ Gh,∀h ∈ H (21)

(9), (13), (14), (16)

We remark that the coherence constraints (8) must be
converted to inequality constraints (20), given that not all asso-
ciated users will have a feasible CU-DU placement. Moreover,
computational cost functions (3) are now constant values, i.e.,
gCU
u (x̂RU) = ĝCU

u and gDU
u (x̂RU) = ĝDU

u . Therefore, we can
replace original constraints (12) with new constraints (21).
Constraints (9), (13), (14), and (16) remain the same. The
final DU-CU placement resulting from solving Problem 3 is
denoted by x̂DU and x̂CU.

Finally, we propose to tackle Problem 1, by sequentially
solving Problem 2 and Problem 3. The resulting solution is
illustrated in figure 2.

Remark. This strategic division of the problem aims to strike
a balance between computational efficiency and solution opti-
mality. In a real-world scenario where the system is constantly
changing (for example, the locations of users), the way we
break down the problem tends to favor a sequential solution
for the complete admission problem (referred to as ”Problem
1”) in a time-efficient manner. Problem 2 can be solved within
a short time frame and update the users association to RUs
after each frame. Then, after a larger time interval, Problem 3
addresses O-Cloud placement decisions for users while taking
into account the latest association decisions of the short time
scale problem and so on.

B. Linearization
The nonlinear objective function and constraints of our

problem, e.g., equations (7), (8) and (12), include a product of
two or more binary variables. This can be linearized using (and
extending) the bilinear terms’ linearization method [16]. Due
to space constraints, we discuss in detail only the linearization
of constraints (8), which has the product of xDU

u,h and xCU
u,h′ .

The idea is to introduce a set of auxiliary binary variables that
are virtually defined as

zuhh′ ≜ xDU
u,h · xCU

u,h′ ,∀u ∈ U ,∀h, h′ ∈ H, (22)

although, in practice, their values’ coherence is enforced by
imposing the following set of constraints

zuhh′ ≤ (xDU
u,h + xCU

u,h′)/2, ∀h, h′ ∈ H,∀u ∈ U (23)

zuhh′ ≥ xDU
u,h + xCU

u,h′ − 1, ∀h, h′ ∈ H,∀u ∈ U . (24)

The same technique can be applied to equations (7), (12),
(13), (14), (19), and (20). Even though the linear version of
Problem (1) has larger space complexity due to the addi-
tional variables and constraints, it can be solved using tra-
ditional integer programming techniques, such as Branch-and-
Bound [17]. We emphasize that solving realistic instances of
our proposed ILP model might entail substantial computational
requirements and long solution time.

V. SIMULATION FRAMEWORK

We build our simulation setup based on the same network
topology proposed in [10]. It consists of |R | = 4 RUs,
distributed across a squared area of side L = 1 km. The UEs
are scattered within the defined area uniformly at random. The
system employs a 20-MHz bandwidth, resulting in 100 RBs
available per TTI at each RU. Additional radio parameters
include four antennas, two MIMO layers, and 64-QAM mod-
ulation. The number of UEs varies from | U | = 10 to 110,
which in turn varies the load in the system from underloaded
to overloaded systembased on the selected number of O-RUs.
Users belong to different slices, including enhanced Mobile
Broadband (eMBB), ultra-Reliable Low Latency Communi-
cation (uRLLC), and massive Machine Type Communication
(mMTC), following the distribution in [14] for an industrial
area where 25% of users are eMBB users, 25% are uRLLC
users, and 50% are mMTC users. The eMBB and uRLLC
UEs are given higher priority over mMTC UEs ensuring a
balanced admission among users of different slice type. For
the calculation of the required number of RBs per UE in eq.
(1), the required data rate λs is set to 20 Mb/s, 5 Mb/s, and
1 Mb/s for eMBB, uRLLC, and mMTC UEs, respectively. The
achievable data rate per RB is calculated using Shannon theory
as in [11]. We consider a distance-dependent path-loss model
with a transmission power of 30 dBm [11].

We consider |HE | = 3 edge-cloud nodes, such that the
distance between any pair of edge-cloud nodes and RUs is



between [L,L′] = [5, 10] km. Moreover, we consider |HR | =
1 regional-cloud node randomly located within [L′′, L′′′] =
[40, 80] km away from the edge-cloud nodes. The O-Cloud
setup is inline with the specification in [18]. The computational
capacity Gh follows a uniform random distribution ranging
from 100 to 200 GOPS for edge-cloud servers, and 1000 to
2000 GOPS for the regional-cloud nodes, which is in line with
the findings in [13]. Regarding MH delay bounds DMH

u , we
consider values taken uniformly at random from the interval
[100, 300] µsec for uRLLC users, exactly 500 µsec for eMBB
users, and 1000 µsec for mMTC users. The FH delay bounds
DDU

u are set to 100 µsec for all service types. These values are
consistent with the considerations in [14]. Notably, our ILP-
based problem is solved using IBM CPLEX software [19],
a mathematical optimization solver, running on a computer
equipped with an 11th generation Intel® Core™ i9-11950H
Processor and 16 GB RAM.

VI. NUMERICAL EVALUATION

In this section, we investigate the performance of the
proposed models for different users densities. We base our
simulation setup on the framework described in Section V.
We refer to the proposed joint and sequential solutions as
Optimal and Sequential, respectively. We compare them with
other baseline models:

• Edge-Only Model: Only the edge-cloud servers are avail-
able in this scenario. CUs and DUs are always deployed
on the edge-cloud servers. The UEs are dynamically
associated to the RUs following the description in Section
III-A.

• CU-Regional Model: CUs are all statically placed on
regional servers, while DUs are exclusively deployed on
edge servers. UEs are also dynamically associated to the
RUs as explained in Section III-A.

• Placement-Only Model: This model was proposed in [10],
in which CUs and DUs are dynamically placed across
edge and regional clouds, but UEs are associated to the
closest RU.

Figure 3: Average admittance rate as a function of the nb. of users.

We consider 100 instances of the previously described
models by randomly varying UEs’ (i) location and (ii) type
of requested service. The averages are accompanied by error
bars based on confidence intervals of 90%.

In our experiment, we employ the following performance
metrics:

• Average Admittance Ratio: it calculates the average num-
ber of admitted users at each Transmission Time Interval
(TTI) among all users in the network.

• Deployment Cost: it computes the average cost associated
with deploying CUs in terms of running computational

operations on a server (measured in GOPS). The cost of
running functions on regional servers is lower than on
edge servers, as regional servers offer greater processing
capacity and consume less energy [6]. As reported in [14],
1 GOPS costs 1.59$ at an edge server whereas 0.5$ per
GOPS at a regional cloud.

• Fairness Index: it assesses the fairness of user admission
across the three service types (eMBB, uRLLC, mMTC),
Jain’s fairness index is used [20]. It is represented by
ζ = (

∑N
j=1 AARj)

2/(N ·
∑N

j=1 AAR2
j ), where N = 3

is the number of distinct service types, and AARj is the
average admittance ratio for users of service type j.

In Figure 3, we analyze the average admittance ratio versus
the number of users for each of the considered models. As
expected the Optimal and the Sequential solutions outperform
the other models. A comparative analysis between the Optimal
and Sequential behavior shows that dividing the problem into
separate parts barely diminishes performance and moves it
slightly further away from optimality, with the Sequential
model exhibiting an admittance ratio order of 6% lower
than that of the Optimal model. Primarily, the Edge-only
model’s solution shows a similar trend. However, it exhibits a
slightly lower average admittance ratio. This decrease can be
attributed to the limitation of computational resources within
edge clouds, which makes it challenging to meet the diverse
requirements of users, particularly those of the eMBB users
who demand higher computational capacity. Secondly, the CU-
Regional model displays poorer average admittance ratios.
This observation is referred to the fact that uRLLC users
have stringent low-latency demands. Placing CUs in regional
clouds introduces latency in the communication links. Lastly,
the Placement-Only model also exhibits poor performance
compared to the optimal approach. Overall, these results
highlight the reach that our approach has, as it encompasses
UE to RU association and CU/DU placement; our models
outperform scenarios solely relying on the dynamic placement
of CUs and DUs. We remark that both CU-Regional and
Placement-Only scenarios perform worse when the number
of users is high, meaning that the static placement of the CU-
Regional model diminishes the flexibility gained at the RU
level, making it comparable in performance to the Placement-
Only model.

Figure 4 illustrates the CUs’ deployment costs when adopt-
ing different scenarios. The Edge-Only model incurs the
highest expenses due to the relatively higher cost of edge
clouds compared to regional clouds. In contrast, the Optimal
and Sequential solutions demonstrate lower deployment costs
because CUs can now be strategically placed in regional
clouds. Additionally, the Placement-Only and CU-Regional
models exhibit the lowest costs, primarily because they accom-
modate fewer users compared to the other scenarios. Figure

Figure 4: CU deployment costs for each scenario



5 evaluates the Jain’s fairness index of the admittance ratio
among the three service types. Notably, the Optimal and
Sequential models present the higher fairness index among
users than other baselines. On the other hand, the CU-Regional
scenario shows the worst performance.

Figure 5: User fairness as a function of the number of users.
Finally, we evaluate the execution time of our two proposed

solutions. Figure 6 reports the reduction in execution time of
the Sequential solution in comparison with the Optimal one.
The execution time required by the former is reduced by up
to 98% compared to that of the latter. Overall, our simulation
results demonstrate that both Optimal and Sequential solutions
outperform static CU-DU placement and static UE to RU
association in terms of user admission and computational
deployment cost. Nevertheless, our two proposed solutions
showcase a trade-off between user admission and computa-
tional efficiency, as reflected in the reduction of execution time
analysis.

Figure 6: Reduction of execution time (in %) of the Sequential model
compared to the Optimal one as a function of the number of users

VII. CONCLUSION

The transition to the Open RAN architecture leads to a
transformative architectural shift in access networks, char-
acterized by increased openness, flexibility, and intelligence.
In this paper, we address the challenge of optimizing the
placement of CU and DU O-RAN components across edge and
regional clouds while simultaneously considering users-to-RU
associations. Our approach involves formulating two math-
ematical optimization models aimed at efficiently allocating
available system resources, encompassing radio and computing
resources, both jointly and sequentially. The primary objective
was to maximize the number of users in the system while
meeting their QoS requirements by efficiently utilizing these
resources within the O-RAN framework. A comprehensive
performance analysis of our approach with respect to baselines

from state-of-the-art shows an enhanced user admission and
that it can ease offloading O-RAN network functions to
regional clouds, thereby reducing costs. Furthermore, we study
the advantage of deploying a sequential optimization model
instead of a joint one in terms of reduced execution time. As
future work, we plan to leverage this decomposed optimization
model to develop a two-time-scale solution, incorporating a
temporal dimension for addressing the user association and
functionality placement problem in a mobile scenario.

VIII. ACKNOLEDGEMENT

This work was funded by the ANR HEIDIS project (nb: ANR-21-CE25-
0019; https://heidis.roc.cnam.fr).

REFERENCES

[1] O-RAN Alliance, “O-RAN WhitePaper - Building the Next Generation
RAN,” https://www.o-ran.org/resources, October 2018.

[2] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding o-ran: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Comm. Surveys Tutorials, 2023.

[3] O-RAN Working Group 6, “O-ran cloud architecture and deployment
scenarios for o-ran virtualized ran 4.0,” O-RAN Alliance, Tech.
Rep. O-RAN.WG6.CADS-v04.00, October 2022. [Online]. Available:
https://orandownloadsweb.azurewebsites.net/specifications

[4] T. Pamuklu, S. Mollahasani, and M. Erol-Kantarci, “Energy-efficient and
delay-guaranteed joint resource allocation and DU selection in o-RAN,”
in 2021 IEEE 4th 5G World Forum (5GWF). IEEE, oct 2021.

[5] A. Ndao, X. Lagrange, N. Huin, G. Texier, and L. Nuaymi, “Optimal
placement of virtualized dus in o-ran architecture,” in 2023 IEEE 97th
Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–6.

[6] R. Joda, T. Pamuklu, P. E. Iturria-Rivera, and M. Erol-Kantarci, “Deep
reinforcement learning-based joint user association and cu–du placement
in o-ran,” IEEE Trans. on Network and Service Mang., 2022.

[7] M. Klinkowski, “Latency-aware du/cu placement in convergent packet-
based 5g fronthaul transport networks,” Applied Sciences, vol. 10, 2020.

[8] G. Iecker Ricardo, A. Benhamiche, N. Perrot, and Y. Carlinet, “Latency-
constrained task distribution in multi-access edge computing systems,”
in 2022 IEEE 11th Intern. Conf. on Cloud Networking (CloudNet), 2022.

[9] G. I. Ricardo, A. Benhamiche, N. Perrot, and Y. Carlinet, “Heuristic
distribution of latency-sensitive tasks in multi-access edge computing
systems,” in 2022 IEEE Globecom Workshops (GC Wkshps), 2022.

[10] H. Hojeij, M. Sharara, S. Hoteit, and V. Vèque, “Dynamic placement
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