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Numerical approximation of a class of constrained
Hamilton-Jacobi equations

Benoît Gaudeul∗, Hélène Hivert†

Abstract

In this paper, we introduce a framework for the discretization of a class of constrained Hamilton-
Jacobi equations, a system coupling a Hamilton-Jacobi equation with a Lagrange multiplier determined
by the constraint. The equation is non-local, and the constraint has bounded variations. We show that,
under a set of general hypothesis, the approximation obtained with a finite-differences monotonic scheme,
converges towards the viscosity solution of the constrained Hamilton-Jacobi equation.

Constrained Hamilton-Jacobi equations often arise as the long time and small mutation asymptotics
of population models in quantitative genetics. As an example, we detail the construction of a scheme for
the limit of an integral Lotka-Volterra equation. We also construct and analyze an Asymptotic-Preserving
(AP) scheme for the model outside of the asymptotics. We prove that it is stable along the transition
towards the asymptotics.

The theoretical analysis of the schemes is illustrated and discussed with numerical simulations. The
AP scheme is also used to conjecture the asymptotic behavior of the integral Lotka-Volterra equation,
when the environment varies in time.
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1 Introduction
We are interested in the design and analysis of numerical schemes for a class of constrained Hamilton-Jacobi
equations, 




∂tu(t, x) + b (x, I(t))H (∇xu(t, x)) +R (t, x, I(t)) = 0, x ∈ Rd, t > 0

min
x∈Rd

u(t, x) = 0, t ⩾ 0,
(HJ)

supplemented with an initial condition uin, and where the Hamiltonian p 7→ H(p) is strictly convex. Equations
such as (HJ) often arise as long time and small mutations asymptotics of models of population structured by
a phenotypic trait [15, 36, 9, 13, 35, 30, 29]. This is a particular case of models of the theory of adaptive
evolution [33, 21, 20, 32, 14]. They describe the size nε(t, x) of a population, where t denotes the time, x
the phenotypic trait, and ε ∈ (0, 1] a scaling parameter. In what follows, we will consider as an example the
following Lotka-Volterra integral equation

ε∂tnε(t, x)−
1

εd

∫

Rd

K
(
y − x

ε

)
b (y, Jε(t))nε(t, y)dy −R(t, x, Jε(t))nε(t, x) = 0, x ∈ Rd, t > 0, (1.1)

where Jε denotes a weighted size of the population. The weight ψ being given, it is defined by

Jε(t) =

∫

Rd

ψ(x)nε(t, x)dx,

for all t ⩾ 0. Equation (1.1) is supplemented with an initial condition ninε ∈ L1(Rd). The parameters in
(1.1) and (HJ) are chosen according to the biological context. Indeed, with the above notations, the evolution
of the population is driven by births, through the birth rate b(x, Jε), and deaths. The net growth rate is
denoted here R(t, x, Jε). Note that b and R depend on the phenotypic trait x, meaning that some individuals
may be advantaged because they are better adapted. They also depend on the population burden on the
environment, through the size of the population Jε. The phenotypic trait of the parent is transmitted to its
offspring, possibly with mutations. In [5, 4] and in (1.1), it is modelled by an integral, where K denotes a
probability kernel. It could also have been represented by a Laplacian [37, 4, 31].

Considering the limit ε → 0 in models such as (1.1), stands for the study of the population, in an
asymptotic regime of long time and small mutations. It is usually referred to, as the separation of ecological
and evolutionary time scales. If the population does not extinct or grow uncontrolled, when ε → 0, the
population nε(t, x) is expected to concentrate around a set of dominant traits, see for instance [37, 9]. The
dynamics of this concentration is usually studied using the Hopf-Cole transform, a logarithmic transform of
the unknown, as in [5, 9, 15, 31]. Namely, vε = −ε ln(nε) is introduced. With the example (1.1), it satisfies





∂tvε(t, x) +

∫

Rd

K(z) b (x+ εz, Jε (t)) e−(vε(t,x+εz)−vε(t,x))/εdz +R (t, x, Jε (t)) = 0

Jε (t) =

∫

Rd

ψ(x)e−vε(t,x)/εdx,

(Pε)

with initial condition vinε = −ε ln(ninε ). Under suitable assumptions, see [5, 4], vε is expected to converge,
when ε→ 0, to the solution u of a constrained Hamilton-Jacobi equation such as (HJ), with

∀p ∈ Rd, H (p) =

∫

Rd

K (z) e−z·pdz. (1.2)

The size of the population Jε, also converges, its limit is denoted I in (HJ). In the asymptotic regime, it is
not defined as the population size anymore, but it behaves as a Lagrange multiplier regarding the constraint
minu = 0.

The main difficulty in the analysis of (HJ) comes from the regularity of its solution. Indeed, u is expected
to enjoy no more than Lipschitz regularity, as it can be expected for viscosity solutions of Hamilton-Jacobi
equation [3, 11, 17], but I may have jumps discontinuities [37, 36, 4]. Because of these discontinuities, the
appropriate functional space for the well-posedness of (HJ) is W 1,∞

loc (Rd) × BVloc. The uniqueness of the
pair (u, I) solution of (HJ) has been addressed in some particular cases [37, 34, 26], and then in a more
general setting close to the problem under study [8]. Keeping in mind the biological models it comes from,
the hypothesis set on the parameters in (HJ) are done following [4], and assumptions are added for (HJ) to
be in the framework of [8]. In what follows, we will then suppose that H, b, R, and uin satisfy the following
assumptions:
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• H : Rd −→ Rd, is of class C2, and such that

H is strictly convex, and lim
|p|→+∞

H(p)

|p| = +∞, (A1)

and moreover
H (0) = 0, and ∀p ∈ Rd, H (p) ⩾ 0. (A2)

Remark 1.1. We assume here that H (0) = 0, but it is in general not true in the models, see [5, 4, 35]
for instance. However, this assumption is done for a sake of simplicity and can be relaxed. Indeed,
remarking that

∂tu+ bH (∇xu) +R = ∂tu+ b (H (∇xu)−H (0)) +R+ bH (0) ,

gives the key to adapt the results to more general convex Hamiltonians which are minimal at p = 0.

• b : Rd × R → R, is a smooth positive and bounded function. We suppose that there exists bM > 1 such
that

∀x ∈ Rd, ∀I ∈ R, 0 < bM
−1 ⩽ b (x, I) ⩽ bM , and ∀(i, j) ∈ [[1, d]]2, |∂2xi,xj

b (x, I) | ⩽ bM , (A3)

and such that it is also a Lipschitz constant of b in both variables

∀x, y ∈ Rd, ∀I, J ∈ R, |b (x, I)− b (y, J)| ⩽ bM (|x− y|+ |I − J |) . (A4)

Moreover, we suppose that
∀x ∈ Rd, I 7→ b (x, I) is non-increasing. (A5)

This hypothesis is relevant when considering the biological meaning of b and I. Indeed, it implies that
the larger the population is, the smaller its birth rate is, as the environment may not offer enough
resources for the population.

• R : R+ × Rd × R −→ R, is smooth, and decreasing in its last variable. More precisely, there exists a
constant K1 such that

∀t ⩾ 0, ∀x ∈ Rd, ∀I ∈ R, −K1 ⩽ ∂IR (t, x, I) ⩽ −K−1
1 < 0, (A6)

and IM ⩾ Im > 0, such that

IM
K1

− bM ⩾ 1, min
t⩾0,x∈Rd

R (t, x, Im) ⩾ 0, max
t⩾0,x∈Rd

R (t, x, IM ) ⩽ 0. (A7)

We emphasize on the fact, that the first condition is purely technical, and will appear naturally in what
follows. Note that since R is decreasing in its last variable, IM can be chosen according to the third
condition in (A7), and then be increased enough so that the first one is satisfied. Let us also define K2

such that
∀t ⩾ 0, ∀I ∈ [min(Im/2, Im − 1), 2IM ], ∥R (t, ·, I) ∥W 2,∞(Rd) ⩽ K2, (A8)

and suppose in addition that (t, I) −→ ∥R (t, ·, I) ∥L∞(Rd) is bounded on any bounded set of R+ × R.
Finally, the dependence in time of R is supposed to be LipR-Lipschitz,

∀x ∈ Rd, ∀I ∈ R,∀t, s ∈ R+, |R (t, x, I)−R (s, x, I) | ⩽ LipR|t− s|, (A9)

and to simplify notations, we introduce

K = max{K1, K2, LipR}. (1.3)

Remark 1.2. One can notice that I 7→ b (x, I)H (p) + R (t, x, I) is decreasing for all t ∈ R+, x ∈ Rd

and p ∈ Rd. This is indeed a consequence of (A2)-(A5)-(A6). It is an important condition for I to be
uniquely determined as the Lagrange multiplier of the viscosity solution of (HJ), see [8].

• uin is Lipin-Lipschitz,
∀x, y ∈ Rd, |uin(x)− uin(y)| ⩽ Lipin|x− y|, (A10)

is coercive
∃ a > a > 0, ∃ b, b ∈ R, ∀x ∈ Rd, a|x|+ b ⩽ uin(x) ⩽ a|x|+ b, (A11)

and its minimum is equal to 0

uin ⩾ 0, and ∃ x0 ∈ Rd, uin(x0) = 0, (A12)

even though this minimum point is not necessarily unique. Note that | · | denotes here the Euclidean
norm on Rd.
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Considering (HJ) with R(t, x, I) = R(x, I), the following result holds

Theorem 1.1 ([8]). Suppose that assumptions (A1) to (A12) are satisfied, and that R does not depend on t.

(i). Let (u1, I1) and (u2, I2) two solutions of (HJ) in W 1
loc × BVloc with the same initial data uin. Then

u1 = u2 and I1 = I2 almost everywhere.

(ii). Let I ∈ BV (0, T ) be given. Then the variational solution u of

∂tu(t, x) + b(x, I(t))H (∇xu(t, x)) +R(x, I(t)) = 0, t > 0, x ∈ Rd, (1.4)

with initial data uin, is the unique locally Lipschitz viscosity solution of (1.4) over (0, T ]×Rd. Moreover,
u is independent of the choice of a representative of I in BV . Namely, if (1.4) is considered with two
source terms I1 and I2 in BV (0, T ) such that I1 = I2 almost everywhere, then u1 = u2.

Remark 1.3. The uniqueness result for the solution of (HJ) is a priori only true when R is independent of t, and
when the previous assumptions are satisfied. However, we will assume that it is still valid for more general R,
with Lipschitz regularity with respect to t. From a modelization point of view, this enables the environment
to change in time. Proving that Theorem 1.1 still holds when R depends on t, with Lipschitz regularity
would deserve a dedicated study. As Lipschitz regularity is standard for time-dependency in Hamilton-Jacobi
equations [3], we believe this conjecture likely to be true.

The analysis of a finite-differences scheme for a simplified (HJ), with b ≡ 1, H(p) = |p|2, and R independent
of t, has been carried out in [7]. The goal of this paper is to generalize it, and to propose a framework for the
numerical analysis of constrained Hamilton-Jacobi equations, such as (HJ). When the parameters are regular
enough, and when dealing with bounded solutions, the approximation of viscosity solutions of Hamilton-
Jacobi equations can be handled with finite-differences monotonic schemes, see [12, 38]. Here, the two main
difficulties of the problem are hence the coercivity of uin (A11), and the lack of regularity of I. As in [7],
we use Theorem 1.1 to overcome separately these concerns, since it enables decoupling the Hamilton-Jacobi
equation from its constraint. Indeed, at the continuous level, one can consider u, the viscosity solution of (HJ)
with I given as a source term, show separately that minu(t, ·) = 0 for all t, and conclude that (u, I) solves
(HJ). Following these considerations, we approximate the classical Hamilton-Jacobi part of the problem
with a monotonic scheme which enjoys a discrete maximum principle [12, 38]. The approximation of I is
treated with a nonlinear problem to solve, so that the constraint is satisfied. In this step, the monotony of
I 7→ b(x, I)H(p) +R(t, x, I) yields stability, and counterparts the lack of regularity of I.

However, the generalization of [7] to more general Hamiltonians brings additional difficulties, in particular
when proving that the scheme preserves the semi-concavity of the solution of (HJ) (see [17]). This property is
crucial for the stability of the scheme, and for the convergence of the approximation of I. It was easily satisfied
in [7], but it may require much more precise estimates here. We hence distinguish two classes of schemes,
depending on their behavior when investigating the discrete semi-concavity of the solutions. The scheme
proposed in [7] belongs to the class designated as the flat setting. In this case, the discrete Hamiltonian
is positive, as is H, but it is not necessarily convex. As they do not represent a particular difficulty, the
semi-concavity estimates for this class of schemes can be established in a general framework, so that the
convergence of the schemes belonging to this class is true in any dimension, and even when adding a smooth
dependency in x to H. On the contrary, discrete Hamiltonians are convex but not necessarily positive in the
convex setting. This framework is natural, as the convexity of H is a crucial hypothesis for the well-posedness
of the continuous problem (HJ), but the discrete semi-concavity estimates are more intricate. In this case,
we establish the convergence of the scheme only in dimension 1, and we postpone the investigation of the
generalization to a future work.

We then illustrate the construction of schemes for (HJ), by detailing the example where the Hamiltonian
H is defined by (1.2). For this particular case, we propose five approximations of (HJ), and we discuss their
properties. We also come back to the biological model, and the ε-dependent problem (Pε) that converges
to (HJ) in the limit ε → 0, and we propose and analyze an asymptotic-preserving scheme adapted to this
asymptotics. Such schemes enjoy stability properties when ε → 0, meaning that they are accurate in all the
regimes, with no constraint on the discretization parameters. In particular, we show with numerical tests
that they catch the asymptotics of the model, even when the population goes to an extinction, so that the
asymptotic regime is no more described by (HJ).

The paper is organized as follows: the scheme for (HJ) is constructed and discussed in Section 2. In
addition, examples of schemes for the integral-defined Hamiltonian (1.2) are presented in Section 3, where
an asymptotic-preserving scheme for (Pε) is also constructed and analyzed. The convergence of the scheme
for (HJ) is then proved in Section 4. Various properties of the schemes are illustrated and discussed via
numerical tests in Section 5. Finally, technical points related to the asymptotic-preserving scheme of Section
3 are proved in Appendix A.
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2 Construction of the scheme and main results
In this section, we present a general framework for the construction of schemes for (HJ) in dimension d = 1,
which converge towards the viscosity solution of (HJ). This is a generalization of the scheme proposed in [7]
for the special case H (p) = p2, and it is designed according to the following principles:

• The time-dependent Lagrange multiplier I in (HJ) is implicited in the schemes, to make sure that the
constraint minu = 0 in (HJ) is preserved at the discrete level.

• Following [12, 38], H is discretized with a monotonous explicit scheme. However, in comparison to
[12, 38], we relax the consistency hypothesis of the discrete Hamiltonian. Indeed, this assumption means
that H (p) can be computed without approximation for any p ∈ R, and this is for instance not relevant
when H is defined as an integral, as in (1.2). To this end, we introduce a discretization parameter η,
accounting for the quality of the approximation of H : R −→ R, and we denote Hη : R2 −→ R the
approximated Hamiltonian.

• It may happen, that the net growth rate R is not computed without approximation, especially when H
is modified as in Remark 1.1. As previously, an approximation of R is then introduced. Still denoting
η the discretization parameter, we define Rη : [0, T ]×Rd ×R −→ R the approximated net growth rate.

According to these considerations, the properties of Hη and Rη are stated as follows. First of all, as in
[12, 38, 7], an appropriate discretization of H should be increasing in its first variable, and decreasing in the
second one. However, this property can be slightly relaxed. Indeed, following the ideas of the Lax-Friedrichs
scheme, one can add a viscosity to Hη to force the monotony in a given bounded set of R2. To allow for these
discretizations in the framework of our study, we let L > 0 and assume that

∀(p, q) ∈ [−L,L], ∀e > 0, Hη (p, q + e) ⩽ Hη (p, q) ⩽ Hη (p+ e, q) . (A13)

We also suppose that no discretization error is committed in (A2), meaning that

Hη (0, 0) = 0. (A14)

Note that this assumption is purely technical, but simplifies several expressions in what follows. However,
one could also avoid this restriction by considering Hη −Hη (0, 0). For the same reason, we also assume that
the discrete Hamiltonian Hη is non-negative on the diagonal

∀ |p| ⩽ L, ∀η ∈ (0, 1], Hη (p, p) ⩾ 0. (A15)

The quality of the approximation of H by Hη is quantified as follows

∃CL ⩾ 0, ∀|p| ⩽ L, ∀η ∈ (0, 1], |Hη (p, p)−H (p)| ⩽ CL η, (A16)

and the approximation of R by Rη is also quantified with η

∀t ⩾ 0, ∀x ∈ R, ∀I ⩾ 0, ∀η ∈ (0, 1], |R (t, x, I)−Rη (t, x, I) | ⩽ Kη, (A17)

where the constant K is used again, as in (1.3), to simplify notations. In addition, we suppose that Rη satisfies
(A6)-(A7)-(A8) and (A9), as does R. Finally, we assume that Hη is smooth enough for a pseudo differential
to be defined, and that the following function is well-defined, for all L > 0

LipHη
(L) = bM sup

η⩽1
sup

|p|,|q|⩽L

sup
(dp,dq)∈∂Hη(p,q)

(|dp|+ |dq|), (2.1)

where bM is defined in (A3). This function will be used for various stability conditions and error estimates.
Suppose that Hη and Rη enjoy the above properties, and let T > 0, and the number NT of time steps be

given. The time step is defined as ∆t = T/NT , and let tn = n∆t for n ∈ [[0, NT ]]. The trait step is denoted
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∆x > 0, and the grid is defined with xi = x0 + i∆x for all i ∈ Z. For n ∈ [[0, NT − 1]] and i ∈ Z, the scheme
for (HJ) is given by





un+1
i − uni

∆t
+ b

(
xi, I

n+1
)
Hη

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
+Rη

(
tn+1, xi, I

n+1
)
= 0

min
j∈Z

un+1
j = 0.

(S)

It is initialized with
u0i = uin(xi), (2.2)

for all i ∈ Z, and it is such that minj∈Z u
0
j = 0, thanks to (A12).

Definition 2.1. A scheme is L-well chosen if Rη satisfies (A6)-(A7)-(A8)-(A9), and (A17), if Hη satisfies
(A13), (A14), (A15), (A16), is smooth enough for (2.1) to be well-defined and finite for all 0 ⩽ L ⩽ L, and if
one one the following conditions holds:

• Convex setting : Hη is convex on [−L,L]2,

• Flat setting : for all η ∈ (0, 1] and p, q such that −L ⩽ p ⩽ 0 ⩽ q ⩽ L, Hη (p, q) = 0.

Remark 2.1. It is possible for a scheme to be L-well chosen for all L. In that case, it will simply be said that
it is well-chosen.

Remark 2.2. When in the flat setting, (A15) is automatically satisfied. Indeed, if p ⩾ 0 we have 0 = Hη (0, p) ⩽
Hη (p, p), and similarly if p < 0.

Remark 2.3. One can notice that the flat and convex settings are not mutually exclusive. Moreover, it is
always possible, when in the convex setting, to build a scheme that is also in the flat setting. Indeed, since
H (p) ⩾ 0, one can consider max (Hη (p, q) , 0).

Focus now on the properties of the trait-time mesh and the choice of η. Since an explicit discretization
for the derivative of u with respect to trait x in (HJ) is chosen, stability conditions (CFL) must be satisfied.
They allow the monotony of the numerical scheme in most results. It assumes

∆tLipHη
(Lipin +KT ) ⩽ ∆x, and ∆tLipHη

(a+KT ) ⩽ ∆x, (2.3)

where Lipin is defined in (A10), a in (A11), and K in (1.3). Note that ∆tLipHη
(a + KT ) ⩽ ∆x is then

automatically satisfied since a ⩽ a, where a is also defined in (A11). However, a stronger condition is needed
to conclude the proof of the convergence of (S) towards the viscosity solution of (HJ),

∆tLipHη
(14(Lipin +KT ) + 1) ⩽ ∆x, (2.4)

so that
Lmax = 14(Lipin +KT ) + 1, and CHη

= LipHη
(Lmax), (2.5)

are defined, and that the ratio ∆x/∆t is fixed, such that

∆tmax
(
2LipHη

(a+KT ), 2LipHη
(Lipin +KT ), CHη

)
⩽ ∆x. (2.6)

Note that in most cases, the maximum of the two last items is CHη
, and that this condition is restrictive.

However, it can be relaxed in practice, see Section 4.3. Any monotonous function of ∆t that tends to 0 when
∆t→ 0 can be chosen to define η. In what follows,

η = min(
√
∆x, 1), (2.7)

will be considered, as this choice simplifies the estimates in the convergence proof. The cut-off for ∆x > 1
is introduced to use the definition of LipHη

(L) in (2.1). Finally, a restriction on the discretization step is
necessary, that is

∆x ⩽
1

KwTLipHη
(Lipin +KT )

, and ∆x ⩽
4

(eT + 1)2
, (2.8)

with

wT = eβT
(
γT + sup

x∈R
uin

′′
(x)

)
(2.9)
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γ = K + bM max {−Hη (−Lipin −KT,Lipin +KT ) , Hη (Lipin +KT,−Lipin −KT )} (2.10)
β = 4LipHη

(Lipin +KT ). (2.11)

Note that these assumptions are mostly technical. Indeed, removing the first bound requires slightly more
regularity on R, as Im − 1 must then be lowered in (A7). The second one gives rise to the 1 in the definition
of Lmax in (2.5).

Let us now introduce the notion of an adapted discretization, to refer to a discretization ∆t, ∆x, η
satisfying these constraints:

Definition 2.2. A triplet (∆t,∆x, η) is adapted to Hη and Rη if (Hη, Rη) is a Lmax-well chosen scheme, and
(2.6), (2.7), (2.8) are satisfied.
A discretization Hη, Rη, ∆t, ∆x, η is adapted if (∆t,∆x, η) is adapted to (Hη, Rη).

Remark 2.4. (Hη, Rη) is assumed to be Lmax-well chosen to ensure that CHη
is well-defined.

As scheme (S) is implicit, let us start by stating an existence result, along with qualitative properties on
u = (uni )n∈[[0,NT ]],i∈Z and on I = (In+1)n∈[[0,NT−1]].

Proposition 2.3 (Scheme (S): existence of solutions and qualitative properties). Let Hη, Rη, ∆t, ∆x, η be
an adapted discretization (Definition 2.2). Then, scheme (S) is well-posed: there exists u ∈ RZ×[[1,NT ]], and
I ∈ R[[1,NT ]], satisfying (S), where u0 = (u0i )i∈Z. Moreover u and I satisfy the following properties:

(i). Lipschitz property: un is Lipx(t
n)-Lipschitz,

∀n ∈ [[0, NT ]], ∀(i, j) ∈ Z2, |uni − unj | ⩽ Lipx(t
n)∆x|i− j|, (2.12)

where Lipx(t) = Lipin + tK, and with Lipin defined in (A10), and K in (1.3).

(ii). Bounds for un: let bt = b − tbMHη (a,−a) − tK, bt = b − tbMHη (−a, a) + tK, where a, a, b, b are
defined in (A11) and bM in (A3). Then

∀n ∈ [[0, NT ]], ∀i ∈ Z, a|xi|+ btn ⩽ uni ⩽ a|xi|+ btn . (2.13)

(iii). Let n ∈ [[1, NT ]] and j ∈ Z such that unj = 0, then

Rη (t
n, xj , I

n) ⩾ 0. (2.14)

(iv). Bounds for I: for all n ∈ [[1, NT ]], Im − 1 ⩽ In ⩽ IM , where Im and IM are defined in (A7).

(v). Bound from below for the jumps of I: there exists a constant κ > 0 such that for all n ∈ [[1, Nt−1]],

In+1 − In ⩾ −κ∆t. (2.15)

Moreover, in the flat setting, κ = K2 , with K defined in (1.3). In the convex setting, κ = K2 +
K∆x w (T ) LipHη

(Lipx (T )) suits, with LipHη
defined in (2.6), Lipx in item (i), and w in item (vi).

(vi). Semi-concavity: in the convex setting, there exists a function w : [0, T ] → R such that for all t ∈ [0, T ],

w (t) ⩽ eβt
(
γt+ sup

x∈R
uin

′′
(x)

)
, (2.16)

with β, γ defined in (2.11)-(2.10), and such that for all n ∈ [[0, NT ]], and for all i ∈ Z

uni−1 − 2uni + uni+1

∆x2
⩽ w (tn). (2.17)

(vii). Bound from below for Hη: for all n ∈ [[0, NT ]], and for all i ∈ Z,

Hη

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
⩾ −∆xLipHη

(Lipx(t
n))w (tn)/bM , (2.18)

with LipHη
defined in (2.1), Lipx in item (i), w in (vi) and bM in (A3).
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Moreover, I is uniquely determined if

bMHη (−Lipx(T ),Lipx(T )) +K−1 ⩾ 0, (2.19)

where bM is defined in (A4), Lipx in item (i) and K in (1.3).

Remark 2.5. In the flat setting, (vi) is a priori not true. However (vii) holds, since Hη (p, q) ≥ 0 for all p
and q. This property is a consequence of the flat setting definition (Definition 2.1), and of (A13).
Remark 2.6. As a consequence of Remark 2.5, it is worth noticing that (2.19) is automatically satisfied in
the flat setting. In the convex setting, Hη (−Lipx (T ) ,Lipx (T )) may be non-positive, so that condition (2.19)
means that Rη must be sufficiently decreasing w.r.t. I in comparison to b, to have In+1 uniquely determined
by (S). We emphasize on the fact that (2.19) is a sufficient condition, and that it seems that in practice
(A5)-(A6) are enough, see Section 4.1.6.
Remark 2.7. Property (vi) is the discrete equivalent of a classical result for Hamilton-Jacobi equations: they
preserve an upper bound on the second derivative, see [17]. As in the continuous case, the convexity of Hη is
a crucial assumption for this result.
Remark 2.8. When R does not depend on t, the time-dependent Lagrange multiplier I in (HJ) is expected
to be a non-decreasing function in BV (0, T ), see [8]. In the simpler case studied in [7], this property was
conserved at the discrete level. Here, it is in fact still true in the flat setting, but the convex setting is not
enough to have the monotony of I, see Section 5.1. However the bound (2.17) gives an estimate on the
decreasing part.
Remark 2.9. Even when it is not expected to be non-decreasing, I defined in (HJ) is in BV (0, T ). Moreover,
no more regularity is to be expected, since it can have jumps, see Section (5.1). However, the bound from
below for the jumps of I in (v) yields that the decreasing jumps cannot be of order larger than ∆t. It suggests
that, in the continuous case (HJ), I can only have increasing jumps, or, equivalently, that it can only decrease
continuously.

Prop. 2.3 strongly relies on monotony properties of scheme (S), it is proved in Section 4.1. Let us now
focus on the convergence of these approximate solutions (u, I) towards the unique viscosity solution of (HJ).
As in [7], the proof of this convergence uses compactness arguments, so that we need to pass from the discrete
solutions (u, I) of (S), to the solutions (u, I) of (HJ). To that extend, let us introduce I∆t the constant by
part reconstruction of I. Formally:

∀n ∈ [[0, NT − 1]], ∀s ∈ (0,∆t], I∆t(t
n + s) := In+1, and I∆t(0) = I1. (2.20)

Note that the choice of I∆t(0) is made only for technical purposes and does not bear any biological signification.
For the extension of u, let us introduce for all s ∈ (0,∆t], and for all f : R −→ R, the operator MI

s

∀x ∈ R, ∀I ∈ R, MI
s(f)(x) = f(x)− s b (x, I)Hη

(
f(x)− f(x−∆x)

∆x
,
f(x+∆x)− f(x)

∆x

)
, (2.21)

and let us define (t, x) 7→ u∆t(t, x) on [0, T ]× R, such that for all n ∈ [[0, NT − 1]], s ∈ (0,∆t] and x ∈ R,

u∆t(t
n + s, x) = MI∆t(t

n+s)
s (u∆t(t

n, ·))(x)− s Rη (t
n + s, x, I∆t(t

n + s)) , (2.22)

supplemented by the initial condition u∆t(0, ·) = uin. One can notice that for all n ∈ [[0, NT ]], i ∈ Z,

u∆t(t
n, xi) = uni , (2.23)

that is, that the approximate solution corresponds with the scheme on the grid. If Rη does not depend on t,
one may also notice that, for all x ∈ R, u∆t(·, x) is piecewise linear. The following result states the convergence
of (u∆t, I∆t) defined in (2.22)-(2.20) towards the viscosity solution of (HJ).

Proposition 2.4 (Scheme (S) : convergence). Let (Hη, Rη) be a well chosen scheme (Def. 2.1), and
(∆tn,∆xn, ηn) be a sequence of discretizations adapted to (Hη, Rη) (Def. 2.2) with ∆tn → 0 when n → ∞.
Let (u∆tn , I∆tn)n defined as in (2.22)-(2.20)-(2.23). Then, the following results hold:

• u∆tn converges locally uniformly towards u ∈ C0([0, T ],R), i.e. for all compact Ω of R

∥u∆tn − u∥L∞([0,T ]×Ω) −→
n→+∞

0,

where u is defined as the viscosity solution of (HJ).
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• I∆tn converges pointwise on (0, T ) towards I0 ∈ BV (0, T ), which satisfies

Im ⩽ I0 ⩽ IM ,

and I0 = I almost everywhere on (0, T ), where I is defined as the Lagrange-multiplier in (HJ).

Remark 2.10. Scheme (S) is introduced on an infinite trait grid (xi)i∈Z, and Prop. 2.4 is stated in the same
framework. In practice, Scheme (S) can be implemented on a grid that is reduced at each time step, so that
no approximation has to be introduced on the boundaries, and that Prop. 2.4 holds. This represents however
an increase in terms of computational cost, as grids larger than necessary are to be handled with. To work
with a fixed grid, one can approximate the values that are outside of the grid. This has been proposed and
numerically tested in [7], but the convergence cannot be properly established with these assumptions. Another
issue, when dealing with grids larger than necessary, is that stability condition (2.6) may become much more
restrictive on a larger grid, especially when trying to deal with data that are only Locally Lipschitz. This
latter can be dealt with by linearizing Hη where slopes are stronger than necessary, see Section 4.3.

Prop. 2.4 states the convergence of scheme (S), but does not give any clue on the convergence rate. This
is due to the fact that the proof relies on compactness arguments for the sequences (u∆t)∆t⩾0, and (I∆t)∆t⩾0,
thanks to the stability estimates of Prop. 2.3. Their limits are then identified with the viscosity solution of
(HJ), using viscosity procedure. This goes through an appropriate regularization of I∆t, as Lipschitz regularity
is needed for time-dependency of source terms in the standard Hamilton-Jacobi framework [3, 11, 17]. We
refer to Section 4.2 for details.

3 An example: Lotka-Volterra integral equations
In previous section the presentation of the hypothesis on Hη was deliberately broad so that scheme (S) could
be used in various applications, as soon as the equation satisfies the hypothesis of Theorem 1.1, and the
discretization is adapted. In this section, we focus on a model of population dynamics described by (Pε), and
propose some schemes for (HJ)-(1.2). However, in order for (A2) to be satisfied, we will rather denote

H (p) =

∫

R
K (z) e−zpdz − 1, (3.1)

and modify R accordingly. Here K(z) is even, non negative and of integral 1. To make sure that H is properly
defined, it is also supposed that z 7→ K(z)e−zp, and z 7→ |z|K(z)e−zp, are integrable for all p ∈ R. This is for
instance the case when K is a Gaussian or a compactly supported kernel.

3.1 Examples of schemes
In this part, we assume that R can be analytically computed, so that no approximation is needed. The choice
Rη = R is natural in this context, and we discuss here the choice of the approximation Hη of H. Several
classical schemes are covered by our analysis. Assume that we dispose of an approximation of the integral
(3.1), and thus of Hη such that for all |p| ⩽ Lmax:

|Hη (p)−H (p) | ⩽ η, and Hη (0) = H (0) = 0.

Suppose also that Hη is convex, even, and that it is increasing for p > 0, as is H. For instance, considering
a quadrature of H with a symmetric grid, and renormalized for Hη to be 0 at p = 0 suits, although other
choices may also be adapted. The so-called flat setting (see Def 2.1) includes the scheme (2.5) of [12]

∀(p, q) ∈ R, Hη
CL(p, q) = Hη(p

+) +Hη(−q−), (Hη
CL)

where p+ = max(0, p) is the positive part of p and q− = max(0,−q) the negative part of q. One issue with
this choice of discretization is that for a local maximum (i.e p > 0, q < 0), one can have Hη

CL(p, q) >
η+supd∈[q,p] Hη(d). This means that the value of the Hamiltonian at local maxima is overestimated by up to
a factor two, when the local maximum enjoys symmetry. To avoid this issue, another scheme is for instance
used in [22]

∀(p, q) ∈ R2, Hη
upw(p, q) = max

(
Hη(p

+),Hη(−q−)
)
. (Hη

upw)

In this case, the issue is the lack of regularity when Hη(p
+) and Hη(−q−) are equal. Both schemes (Hη

CL)-
(Hη

upw) are in the flat and convex settings, as defined in Definition 2.1. In [12], a Lax-Friedrichs scheme is
also introduced

∀(p, q) ∈ R2, Hη
LF(p, q) = Hη

(
p+ q

2

)
− θ(q − p), (Hη

LF)
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with θ large enough, so that Hη increasing in its first variable, and decreasing in the second one. This choice
no longer satisfies the flat hypothesis, but is still in the convex setting. Another choice stems from the limit
of a natural asymptotic-preserving scheme introduced in [6] and analyzed in Section 3.2. Formally, introduce
h+η (p), h−η (p), some monotonous and convex functions such that

∣∣∣∣h−η (p)−
∫

R−
K(z)e−zpdz +

1

2

∣∣∣∣ ⩽ η/2,

∣∣∣∣h+η (q)−
∫

R+

K(z)e−zqdz +
1

2

∣∣∣∣ ⩽ η/2,

and
h+η (0) = h−η (0) = 0.

Roughly speaking h+η and h−η respectively approximate the positive and negative part of the integral. This
choice is intended to provide monotony properties (A13) to the approximation of H. Using these notations,
let

∀(p, q) ∈ R2, Hη
P1(p, q) = h−η (p) + h+η (q). (Hη

P1)

As intended, Hη is convex and enjoys the wished monotony properties (A13). However, when it is true for
the solution of the continuous model (HJ), the monotony of I is not true for the solution of scheme (S), see
section 5.1. This a drawback of (Hη

P1). Indeed, when the net growth rate R does not depend on t, the
monotony of I is a property that should be preserved.

We propose in what follows, a concave-convex-split scheme. It is intended to enforce the flat setting, and
preserve the monotony of I when it is relevant. Assume that the choice of Hη discretizing the whole integral
is consistent with the choices of h+η and h−η made above, that is: Hη(p) = h+η (p) + h−η (p). We make use of
the smoothness of the viscosity solutions in the convex area using (Hη

upw), and the lack of regularity in the
concave area using (Hη

P1). Namely, we propose

∀(p, q) ∈ R2, Hη
CCS(p, q) =

{
Hη

upw(p, q) if p < q

Hη
P1(p, q) else.

(Hη
CCS)

It is worth noticing that (Hη
CCS) is the maximum of (Hη

upw) and (Hη
P1). It is then a convex function of

(p, q).
Let us close this section with a remark about the discretization of the integral defining H in (3.1). In

several cases, for instance the Gaussian kernel, the bilateral Laplace transform of K is known analytically,
thus the addition of the parameter η may seem artificial. Obviously, the construction and analysis of the
schemes covered by this article is possible when the constant CL in (A16) is zero.

3.2 Asymptotic-preserving scheme
The main goal of this paper is to provide a general framework for the numerical analysis of constrained
Hamilton-Jacobi equations such as (HJ). The justification we have in mind for these models, is that they
often appear as long-time and small mutations limits of population dynamics models. In this section, we focus
more precisely on Lotka-Volterra integral equations (Pε), supplemented with an initial condition vinε which
satisfies (A10)-(A11). We also suppose that there exists two constants cinm, cinM such that

cinmε ⩽ min vinε ⩽ cinMε, (A18)

and we assume that, b, R, and R = R+ b in (Pε) satisfy the same assumptions as the ones in (HJ), and that
K is defined as in (3.1). It is worth noticing that, in comparison to (HJ), problem (Pε) is no longer a coupled
problem where the unknowns are a solution of a PDE, and a Lagrange multiplier associated to a constraint.
Instead, Jε is determined here with vε with the second line of (Pε). It accounts for a weighted measure of the
size of the population, where the weight ψ is such that

∃ (ψm, ψM ) ∈ R2, ∀x ∈ Rd, 0 < ψm ⩽ ψ(x) ⩽ ψM < +∞, and ψ ∈W 2,∞(Rd). (A19)

The following result holds

Theorem 3.1. ([4, 8]) Assume that the assumptions of Theorem 1.1 are satisfied, as well as (A18)-(A19),
and that R does not depend on t. Let vε be the solution of (Pε), and Jε be defined in (Pε). Suppose also
that (vinε )ε is a sequence of uniformly continuous functions which converges uniformly to uin. Then, (vε)ε
converges locally uniformly to a function u ∈ C0([0,+∞[×Rd), and (Jε)ε converges almost everywhere to a
function I, such that I ∈ BV (0, T ) for all T > 0, and that (u, I) is the unique viscosity solution of (HJ), with
H defined in (3.1), and R replaced by b+R.
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Remark 3.1. As for Theorem 1.1, the above convergence result is a priori only true when R does not depend
on t.

However, focusing on the asymptotic regime may be not completely relevant in terms of modeling. Con-
sidering the problem at some distance of the asymptotic regime may then give more information. Another
issue when dealing only with asymptotic regimes such as (HJ) is, that it restricts the possibilities of biological
situations that can be represented. Indeed, such asymptotic regimes are obtained under strong hypothesis
on the birth rate b and the net growth rate R, that make sure that the population never extincts, nor grows
uncontrolled. The question of the asymptotic behavior of the population in a regime of long time and small
mutations, under more general hypothesis on the parameters of the model, has been addressed in the parabolic
case for some changing environments in recent works [18, 19, 10, 39]. Up to our knowledge, it is an open
problem for Lotka-Volterra integral equation (Pε). If some of the assumptions on b and R were not satisfied,
Theorem 3.1 might not hold. Indeed, the population may vanish or explode, depending on the fact that the
environment is poorly adapted or too advantageous. Very formally, suppose that it is possible to show that
(vε)ε has a limit when ε → 0. Then, these behaviors can be understood with the asymptotic behaviors of
(min vε)ε, and consequently of (Jε)ε:

• if min vε converges to a positive limit, then Jε →ε→0 0, meaning that the population vanishes,

• conversely, the population explodes if the limit of min vε is negative, meaning that Jε →ε→0 +∞.

The numerical resolution of (Pε) requires specific attention, as (Pε) becomes stiff when ε is small. If no specific
strategy was employed, the convergence of the numerical scheme for (Pε) would fail in the asymptotic regime.
Schemes specifically designed for such singular problems are said to be Asymptotic Preserving (AP). Their
properties are often summarized in the following diagram

(Pε)
ε→ 0−−−−−−−→ (HJ)

h→ 0

x

x
h→ 0

(
Sh
ε

)
−−−−−−−→
ε→ 0

(
Sh
0

)

. (3.2)

The first line represents the continuous level: the solution of (Pε) converges when ε → 0 to the viscosity
solution of (HJ). The second line refers to the numerical schemes. The scheme (Sh

ε ), where h summarizes all
the discretization parameters, is required to converge to the solution of (Pε) when ε > 0 is fixed and h → 0.
Moreover, it must degenerate when ε→ 0 with fixed h to another scheme (Sh

0 ), which approximates properly
the viscosity (HJ) when h → 0. An AP scheme can also enjoy the stronger property of being Uniformly
Accurate (UA), meaning that its precision is independent on ε. AP schemes were introduced for kinetic
equations [27, 28, 24], and various asymptotics have been considered [25, 16].

The design of AP schemes for Hamilton-Jacobi limits of biological models has been investigated more
recently. An AP scheme for a Hamilton-Jacobi limit of a kinetic equation has been proposed in [23], and
a model structured in age and phenotypic trait but in which no mutations are considered is treated in [1].
Regarding Lotka-Volterra models, an AP scheme for the parabolic case has been proposed and analyzed in [7].
A finite-differences based scheme which enjoys stability properties in the limit ε→ 0 has been proposed in [6],
for a problem close to (Pε) and in dimension d = 1. It can be easily adapted in a scheme for (Pε). Namely,
let ∆z > 0, and define for all k ∈ Z, zk = k∆z. For the other variables, we use the grids of scheme (S). To
write the scheme in the spirit of the notation (2.21), we define, for all J ∈ R, a function MJ

ε : RZ → RZ , such
that, for all v = (vi)i∈Z, and for all i ∈ Z,

MJ
ε (v)i = vi −∆t∆z

∑

k∈Z, εzk∈[0,∆x]

K(zk)b (xi + εzk, J) e−zk(vi+1−vi)/∆x (3.3)

−∆t∆z
∑

k∈Z, εzk∈[−∆x,0)

K(zk)b (xi + εzk, J) e−zk(vi−vi−1)/∆x

−∆t∆z
∑

k∈Z, |εzk|>∆x

K(zk)b (xi + εzk, J) e
−(ṽi,k−vi)/ε,

where ṽi,k denotes the linear interpolation of (x,v) at abscissa xi + εzk.
Remark 3.2. As ṽi,k is a linear interpolation of v, there is formally no difference between the difference
quotients (ṽi,k − vi)/ε and zk(vi+1 − vi)/∆x, if 0 < εzk ⩽ ∆x (or zk(vi − vi−1)/∆x, if −∆x ⩽ εzk < 0).
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In fact, they both are the slope of the linear interpolation of (x,v). The three lines of (3.3) may then seem
artificial at first sight. However, when implemented, this reformulation ensures stability in the limit ε → 0.
Indeed, the expression (ṽi,k − vi)/ε does not behave well when ε → 0, as approximation errors in the linear
interpolation are excessively increased, when divided by ε≪ 1, and injected in the exponential.

In order to state monotony properties for MJ
ε , let us define for all L ⩾ 0,

LipHAP
η

(L) = ∆zbM
∑

k∈Z
|zk|K(zk)e

L|zk|, (3.4)

where bM is defined in (A3). Note that LipHAP
η

is well-defined since it was supposed that z 7→ |z|K(z)e−zp, is
integrable for all p ∈ R. The monotony of MJ

ε is stated in the following lemma

Lemma 3.2. Let L ⩾ 0, J ∈ R, and let v and w ∈ RZ such that for all i ∈ Z, |vi+1 − vi| ⩽ L∆x, and
|wi+1 − wi| ⩽ L∆x. Moreover, assume that ∆tLipHAP

η
(L) ⩽ ∆x, with LipHAP

η
defined in (3.4). We have,

(i). if vi ⩽ wi for all i ∈ Z, then for all i ∈ Z, MJ
ε (v)i ⩽ MJ

ε (w)i,

(ii). If v −w ∈ ℓ∞(Z), then, MJ
ε (v)−MJ

ε (w) ∈ ℓ∞(Z), and ∥MJ
ε (v)−MJ

ε (w)∥∞ ⩽ ∥v −w∥∞.

(iii). for all i ∈ Z,
∣∣MJ

ε (v)i+1 −MJ
ε (v)i

∣∣ ⩽ L∆x.

(iv). For all i ∈ Z, J 7→ MJ
ε (v)i is non-decreasing.

Proof. The proof of this proposition is straightforward once one notices that the linear interpolation preserves
inequalities. Namely, it means that for all (i, k) ∈ Z2, ṽi,k ⩽ w̃i,k. Then, condition ∆tLipHAP

η
(L) ⩽ ∆x makes

MJ
ε be a non-decreasing function of all its arguments, and the first point of the Lemma comes immediately.

The second point is a consequence of the first one, of the inequalities wi − ∥v−w∥∞ ⩽ vi ⩽ wi + ∥v−w∥∞,
and of

∀c ∈ R, ∀i ∈ Z, MJ
ε (v + c) = MJ

ε (v) + c.

The third point is done similarly with wi = vi+1 ± L∆x, while the last point comes from (A5), since K is
non-negative.

Using notation (3.3), the scheme for (Pε) is then defined for all n ∈ [[0, NT − 1]] and all i ∈ Z, by




vn+1
i = MJn+1

ε (vn)i −∆tR
(
tn+1, xi, J

n+1
)

Jn+1 = ∆x
∑

i∈Z
ψ(xi)e

−vn+1
i /ε.

(Sε)

It has been constructed with a quadrature in the integral kernel representing the births in (Pε), and the stiffest
term, J , is taken implicit to ensure stability in the regime ε → 0. In what follows, it will be supposed that
∆z is not too large, so that the quadrature in MJ

ε is accurate enough. In particular, we will assume that
∣∣∣∣∣∆z

∑

k∈Z
K(zk)− 1

∣∣∣∣∣ ⩽
1

2bM
, (3.5)

with bM defined in (A3). Note that both (vn+1)n∈[[0,NT−1]] and J depend on ε, although this dependency
is omitted to simplify notations. The following proposition states the well-posedness of scheme (Sε), and
uniform w.r.t. ε stability properties

Proposition 3.3 (Scheme (Sε): existence of solutions and stability properties). Suppose that vinε satisfies
(A10)-(A11)-(A12)-(A18), that ψ satisfies (A19), that b satisfies (A3)-(A4)-(A5), that R and R = R + b
satisfy (A6)-(A7)-(A8)-(A9), and that ∆t and ∆x are fixed such that

∆x LipHAP
η

(Lipx(T )) ⩽ ∆t, (3.6)

with LipHAP
η

defined in (3.4), Lipx defined in Prop. 2.3-(i). Then, scheme (Sε) is well-posed: there exists
v ∈ RZ×[[0,NT ]] satisfying (Sε). Moreover, there exists an ε0 > 0, depending only on the constants arising in
the assumptions, and on ∆t and ∆x, such that for all ε ∈ (0, ε0), the sequence (vn)n∈[[0,NT ]] satisfies:
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(i). Uniform Lipschitz continuity in trait: For all n ∈ [[0, NT ]], vn enjoys Lipx(t
n)-Lipschitz property:

∀i ∈ Z,
∣∣∣∣
vni+1 − vni

∆x

∣∣∣∣ ⩽ Lipx(t
n),

with Lipx defined in Prop. 2.3-(i).

(ii). Uniform bound from below for vn: For all n ∈ [[0, NT ]], for all i ∈ Z,

vni ⩾ a|xi|+ β
tn
,

with a defined in (A11), and for all t ∈ [0, T ],

β
t
= b− bM t∆z

∑

k∈Z
K(zk)e

a|xi| − tK,

with b, bM and K defined in (A11), (A3) and (1.3).

(iii). Uniform bounds for J: For all n ∈ [[0, NT − 1]],

Im/2 ⩽ Jn+1 ⩽ 2IM ,

where Im and IM are defined in (A7).

(iv). Estimate for minvn: There exists cm and cM such that for all n ∈ [[0, NT ]],

cmε ⩽ minvn ⩽ cMε,

and cm ⩽ cinm, cM ⩾ cinM depend only on the constants defined in the assumptions, and on ∆x and ∆t.

This proposition and its proof are very close to the stability properties proved in [7] for an AP scheme
designed for parabolic Lotka-Volterra equations. The proof is adapted to the present case in Appendix A.1.
Using the results of Prop. 3.3, the following proposition holds, that describes the asymptotic behaviour of
(Sε) when ε→ 0. It is proved in Appendix A.2.

Proposition 3.4 (Convergence of the scheme (Sε) when ε → 0). Suppose that the assumptions of Theorem
3.1 are satisfied, and that ∆t and ∆x are fixed such that (3.6) holds. Let v and J be the ε-dependent sequences
defined by (Sε). Then, for all n ∈ [[0, NT − 1]],

∥vn+1 − un+1∥∞ −→
ε→0

0, and Jn+1 −→
ε→0

In+1,

where u and I satisfy {
un+1
i = MIn+1

0 (un)i −∆tR
(
tn+1, xi, I

n+1
)

minun+1 = 0,
(S0)

and for all I ∈ R, for all u = (ui)i∈Z and for all i ∈ Z, MI
0 : RZ → RZ is defined by

MI
0(u)i = ui − b (xi, I)∆t∆z


∑

k⩾0

K(zk)e
−zk(ui+1−ui)/∆x +

∑

k⩽−1

K(zk)e
−zk(ui−ui−1)/∆x


 . (3.7)

Remark 3.3. The above proposition states the asymptotic behavior of scheme (Sε) when ε → 0. It is easy
to remark that the limit scheme (S0) is convergent towards the viscosity solution of the limit constrained
Hamilton-Jacobi equation (HJ), with H defined in (3.1) and R replaced by b+R. Indeed, it can be rewritten
with the formalism of (S), with

HAP
η (p, q) = ∆z


K(0) +

∑

k⩽−1

K(zk)e
−zkp +

∑

k⩾1

K(zk)e
−zkq


−∆z

∑

k∈Z
K(zk), (3.8)

and, if R can be analytically computed,

RAP
η (t, x, I) = b (x, I)∆z

∑

k∈Z
K(zk) +R (t, x, I) . (3.9)

Notice then that HAP
η belongs to the class (Hη

P1) of choices proposed for Hη, in Section 3.1. Then, under
the hypothesis of Prop. 3.4, the discretization HAP

η , RAP
η , ∆t, ∆x, η is adapted if ∆z is small enough (Def.

2.2). In particular, u and I enjoy the properties of Prop. 2.3 and Prop. 2.4.
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Remark 3.4. It it worth noticing that MI
0, defined in (3.7), satisfies the properties of Lemma 3.2. As for MJ

ε ,
defined in (3.3), this is a consequence of the monotony of MI

0 in all its arguments, if the constraint (3.6) is
satisfied.

Remark 3.5. Prop. 3.4 only holds if its assumptions are satisfied, that is if there is no extinction nor explosion
of the population. However, numerical tests suggest that scheme (Sε) is also stable when such behaviors are
to be observed. In these cases, the asymptotics of (Pε) can be conjectured by considering scheme (Sε) with
small ε. We refer to section 5.3 for more details.

Remark 3.6. The scheme (Sε) is defined for infinite grids in x and z, that have to be truncated when imple-
mented. The truncation in z is done according to the decrease of K. It is for instance easy when K is Gaussian
or compactly supported. Once the grid in z is truncated, scheme (Sε) can be implemented on a grid in x that
is reduced at each time step, as in Remark 2.10. To reduce the computational cost, the values of v outside of
the grid may also be approximated, thanks to the coercivity of v, see Remark 2.10. In the numerical tests of
Section 5, we use linear extrapolation of v outside of the grid.

Remark 3.7. Prop. 3.4 gives the asymptotic behavior of scheme (Sε) when ε → 0, and Prop. 2.4 gives the
convergence of the limit scheme (S0). To complete the AP diagram (3.2), the convergence of scheme (Sε)
for fixed ε > 0 is needed. Even though it yields tedious computations, this can be proved similarly as in [7],
with stability estimates coming from the monotony properties (3.3), and truncation errors propagated with
implicit function theorem. The main issue here is the truncation error, which is roughly defined as the error
made by replacing derivatives by finite differences in the equation. If the solution vε of (Pε) is smooth enough,
it can be easily estimated with Taylor expansions. However, contrary to the parabolic case treated in [7], we
do not have any result about the regularity of vε. As a consequence, the convergence of scheme (Sε) for fixed
ε is true for smooth solutions with bounded derivatives, and remains an open question otherwise.

4 Convergence of scheme (S)
In this section, we come back to (HJ), to scheme (S), and to its reformulation (2.22), and we prove Prop.
2.3 and 2.4. These propositions strongly rely on monotony properties of scheme (S). Using the formalism
of (2.22), this means that the operator MI

s in (2.21) is monotonic if a stability condition is satisfied. More
precisely, the following result holds

Lemma 4.1. Let I ∈ [Im − 1, IM ], s ∈ (0,∆t], x ∈ R, L > 0, and assume that ∆tLipHη
(L) ⩽ ∆x we have:

(i). If u∆t and v∆t are such that u∆t(t
n, x) ⩽ v∆t(t

n, x), u∆t(t
n, x±∆x) ⩽ v∆t(t

n, x±∆x), and

|u∆t(t
n, x±∆x)− u∆t(t

n, x)| ⩽ L∆x, and |v∆t(t
n, x±∆x)− v∆t(t

n, x)| ⩽ L∆x,

then MI
s(u∆t(t

n, ·))(x) ⩽ MI
s(v∆t(t

n, ·))(x), and u∆t(t
n + s, x) ⩽ v∆t(t

n + s, x).

(ii). If u∆t(t
n, ·) is L-Lipschitz, then MI

s(u∆t(t
n, ·)) is also L-Lipschitz. If In+1 ∈ [Im − 1, IM ], we have in

addition that u∆t(t
n + s, ·) is (L+ sK)-Lipschitz, with K defined in (1.3).

Proof. Let f be a L-Lipschitz function. Notice that MI
s(f)(x) is increasing in f(x), f(x − ∆x), f(x + ∆x)

thanks to (2.1) so that the first point is straightforward. The second point, is a consequence of

∀(x, y) ∈ R2, −L|x− y|+ f(y) ⩽ f(x) ⩽ L|x− y|+ f(y)

so that MI
s(f)(x)−MI

s(f)(y) ⩽ MI
s(L| · −y|+ f(y))(x)−MI

s(L| · −y|+ f(y))(y). Elementary computations
give:

MI
s(L| · −y|+ f(y))(x)−MI

s(L| · −y|+ f(y))(y) ⩽ L|x− y|,
and (A8) then yields the Lipschitz bound of u∆t(t

n + s, ·).

4.1 Proof of Prop. 2.3
In this section, the scheme is considered with formalism (S), and the proof of Prop. 2.3 is done by induction
on the time step n. Thanks to (2.2), the properties of Prop. 2.3 are true for n = 0. Let us suppose that
the hypothesis of Prop. 2.3 are satisfied and that u0, ... , un ∈ RZ satisfy (S)-(i)- (ii)-(iii) and (vi) if the
convex setting is considered, and show that un+1 also satisfies these properties, that In+1 satisfies (iv) and
(v), and that un satisfies (vii).
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4.1.1 un satisfies property (vii)

First of all , remark that the fact that un satisfies property (vii) is straightforward in the flat setting (see
Remark 2.5), and that is a consequence of (vi) in the convex setting. Indeed, in the convex setting, for all
i ∈ Z, we have

uni+1 − uni
∆x

=
uni − uni−1

∆x
+
uni+1 − 2uni + uni−1

∆x
⩽
uni − uni−1

∆x
+∆xw (tn) ,

and the monotony of Hη, see (A13), and the stability condition (2.6) yield

Hη

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
⩾ Hη

(
uni − uni−1

∆x
,
uni − uni−1

∆x
+∆xw (tn)

)
.

Property (vii) is then the consequence of an inequality of convexity for Hη, and of the definition of LipHη
in

(2.1), namely

Hη

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
⩾ Hη

(
uni − uni−1

∆x
,
uni − uni−1

∆x

)
−∆xw (tn) LipHη

(Lipx(t
n)) /bM .

Eventually, since Hη (p, p) ⩾ 0 for all p, see (A15), property (vii) holds.

4.1.2 Existence of In+1

The well posedness of (S) for a given In+1 is straightforward, since it is explicit in un. The only issue could
stem from the implicit computation of I. Let us introduce, for any I ∈ R, un+1,I such that

un+1,I
i = uni −∆tb (xi, I)Hη

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
−∆tRη

(
tn+1, xi, I

)
, (4.1)

and show that there exists I ∈ R, such that min
i
un+1,I
i = 0.

Remark 4.1. Coming back to Lemma 4.1, one can notice that if un, vn are such that |uni+1 − uni | ⩽ L∆x,
|vni+1 − vni | ⩽ L∆x for all i ∈ Z, and if ∆tLipHη

(L) ⩽ ∆x then,

• If for all i ∈ Z, uni ⩽ vni , then un+1,I
i ⩽ vn+1,I

i for all i ∈ Z, and for all I ∈ R,

• for all i ∈ Z, for all I ∈ [Im − 1, IM ], |un+1,I
i+1 − un+1,I

i | ⩽ (L+∆tK)∆x.

Thanks to this remark, the bounds of un in (2.13) can be propagated using the stability condition (2.6).
It yields, for all i ∈ Z, and for all I ∈ R,

a|xi|+ btn −∆tbMHη (a,−a)−∆tRη

(
tn+1, xi, I

)
(4.2)

⩽ un+1,I
i ⩽ a|xi|+ btn −∆tbMHη (−a, a)−∆tRη

(
tn+1, xi, I

)
,

where (A3) was used, considering that Hη (−a, a) ⩽ Hη (0, 0) = 0 ⩽ Hη (a,−a) thanks to (A13) and (A14).
Then, (A8) yields the coercivity of un+1,I , so that

φ : I 7→ min
i∈Z

un+1,I
i , (4.3)

is well-defined for all I ∈ R. Moreover, the minimum is in fact taken over a finite number of indices, thanks
to (4.2) and φ is hence continuous on all compact sets of R. Let us now consider an index j such that
unj = minun = 0, then for all I ∈ R,

φ(I) ⩽ un+1,I
j = −∆tb (xj , I)Hη

(−uni−1

∆x
,
uni+1

x

)
−∆tRη

(
tn+1, xi, I

)

⩽ −∆tbMHη (−Lipx(T ),Lipx(T ))−∆tRη

(
tn+1, xi, I

)
,

where the last inequality comes from (A3), (A13), and (2.12). Taylor expansion of Rη

(
tn+1, xi, I

)
at Im and

(A6) then yields for I ⩽ Im

φ(I) ⩽ −∆tbMHη (−Lipx(T ),Lipx(T )) + ∆tK−1(I − Im)−∆tRη

(
tn+1, xi, Im

)
,
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and we use (A7) to get

φ(I) ⩽ −∆tbMHη (−Lipx(T ),Lipx(T )) + ∆tK−1(I − Im) −→
I→−∞

−∞.

Hence, there exists I− ⩽ Im such that φ(I−) < 0. Coming back to (4.1), one has since uni ⩾ 0 for all i ∈ Z,

un+1,I
i ⩾ −∆tbMHη (Lipx(T ),−Lipx(T ))−∆tRη

(
tn+1, xi, I

)
,

where we used (A3), (A13) and (2.12). Then, as previously, (A6) yields for all i ∈ Z, and for I ⩾ IM

un+1,I
i ⩾ −∆tbMHη (Lipx(T ),Lipx(T )) + ∆t(I − IM )K−1 −→

I→+∞
+∞,

so that there exists I+ ⩾ IM such that φ(I+) > 0. As φ is continuous on [I−, I+], there exists I such that
φ(I) = 0. Altough it may be not uniquely determined, In+1 is then well-defined, and so is un+1 = un+1,In+1

.

4.1.3 Properties (iii) and (iv)

The upper bound for In+1 is a consequence of (A7) and (A6). Indeed, since uni ⩾ 0 for all i ∈ Z, we use
Remark 4.1, and (2.6)-(2.12)-(A14) to propagate this bound. It writes, for all i ∈ Z

un+1
i ⩾ −∆tRη

(
tn+1, xi, I

n+1
)
.

Considering now j ∈ Z such that un+1
j = minun+1 = 0, then yields (iii). Moreover, remark that

Rη

(
tn+1, xj , I

n+1
)
⩾ 0 ⩾ Rη

(
tn+1, xj , IM

)
,

thanks to (A7), and use (A6) to conclude that In+1 ⩽ IM . To get the bound from below of I, remark that
as un+1 satisfies (S), un+1

i ⩾ 0 for all i ∈ Z. Let j ∈ Z such that unj = minun = 0, we have

un+1
j = −∆tb

(
xj , I

n+1
)
Hη

(
unj − unj−1

∆x
,
unj+1 − unj

∆x

)
−∆tRη

(
tn+1, xj , I

n+1
)
⩾ 0,

so that property (vii) yields

Rη

(
tn+1, xj , I

n+1
)
⩽ ∆x w (tn) LipHη

(Lipx (t
n)) . (4.4)

Since Rη

(
tn+1, xj , Im

)
⩾ 0 (see (A7)), we obtain

Rη

(
tn+1, xj , I

n+1
)
−Rη

(
tn+1, xj , Im

)
⩽ ∆xw (tn) LipHη

(Lipx (t
n)) .

Remark now that the result is straightforward if In+1 ⩾ Im, and suppose then that In+1 < Im. Since Rη is
decreasing w.r.t. I, (A6) yields

−K−1(In+1 − Im) ⩽ ∆xw (tn) LipHη
(Lipx (t

n)) , (4.5)

that is In+1 ⩾ Im − 1, thanks to (2.8).

Remark 4.2. It is worth noticing that the right-hand side of (4.4) can be replaced by 0 in the flat setting. In
this case, the inequality In+1 ⩾ Im holds, as in the continuous case, [4]. However, the convex setting does
not preserve this qualitative property.

Remark 4.3. Note that (4.5) yields in fact a more precise bound from below for In+1,

In+1 ⩾ Im −∆xwTLipHη
(Lipx(T )), (4.6)

with wT defined by (2.9), and Lipx in (i).
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4.1.4 Property (v)

The proof of property (v) is very similar to the one of (iv). Starting from (4.4), we use property (iii) to get

Rη

(
tn+1, xj , I

n+1
)
−Rη (t

n, xj , I
n) ⩽ ∆xw (tn) LipHη

(Lipx (t
n)) ,

where j ∈ Z is an index such that unj = minun = 0. Introduce then Rη

(
tn+1, xj , I

n
)

in the left-hand side,
and use the Lipschitz-in-time regularity of Rη, see (A9), to get

Rη

(
tn+1, xj , I

n+1
)
−Rη

(
tn+1, xj , I

n
)
⩽ K∆t+∆xw (tn) LipHη

(Lipx (t
n)) .

One can then notice as above that property (v) is straightforward if In+1 ⩾ In, and use the fact that Rη is
decreasing w.r.t. I, (A6) to obtain if In+1 < In

−K−1(In+1 − In) ⩽ K∆t+ ∆x w (tn) LipHη
(Lipx (t

n)) ,

which is property (v).

Remark 4.4. The above result can be made more precise in the flat setting. Indeed, according to Remark 2.5,
the right-hand side of (4.4) can be replaced by 0. It means that the approximation of the Hamiltonian H in
(HJ) does not make I decrease, whereas it can happen in the convex case. This is the justification of the two
expressions of κ in property (v).

Remark 4.5. In the flat setting, and when Rη does not depend on t, the previous computations yield that
In+1 ⩾ In. As a consequence, I is non-decreasing, as is I defined in (HJ), see [8]. We emphasize on the fact
that this qualitative property is not preserved in the convex setting, see Section 5.1.

To go on with the proof of Prop. 2.3, property (vi) must be proved in the convex setting (Def. 2.1). This
is the purpose of the next section.

4.1.5 Property (vi) - convex setting

Suppose now that scheme (S) is in the convex setting, so that Hη is convex. To show that it preserves an
upper bound on the discrete second derivative, let us introduce for all i ∈ Z, qni = (uni+1 − uni )/∆x. Then
|qni | ⩽ Lipx(T ) because of property (i), and

qn+1
i =qni − ∆t

∆x

(
b
(
xi+1, I

n+1
)
Hη

(
qni , q

n
i+1

)
− b

(
xi, I

n+1
)
Hη

(
qni−1, q

n
i

))
(4.7)

− ∆t

∆x

(
Rη

(
tn+1, xi+1, I

n+1
)
−Rη

(
tn+1, xi, I

n+1
))
.

In order to use the monotony of Hη (see (A13)), remark that thanks to property (vii),

qni+1 ⩽ qni +∆xw (tn) , and qni+2 ⩽ qni+1 +∆xw (tn) ,

so that the following inequalities hold

Hη

(
qni−1, q

n
i

)
⩾ Hη (q

n
i −∆xw (tn) , qni ) , and Hη

(
qni+1, q

n
i+2

)
⩾ Hη

(
qni+1, q

n
i+1 +∆xw (tn)

)
.

Using then the convexity of Hη, one has for all (dp,dq) ∈ ∂Hη

(
qni , q

n
i+1

)
,

Hη

(
qni−1, q

n
i

)
⩾ Hη

(
qni , q

n
i+1

)
−∆xw (tn) dp−

(
qni+1 − qni

)
dq (4.8)

Hη

(
qni+1, q

n
i+2

)
⩾ Hη

(
qni , q

n
i+1

)
+
(
qni+1 − qni

)
dp+∆xw (tn) dq, (4.9)

and we inject these inequalities in qn+1
i+1 − qn+1

i expressed thanks to (4.7). We obtain

qn+1
i+1 − qn+1

i ⩽A+B+ C+D+ E (4.10)

where

A = −∆t

∆x

[
Rη

(
tn+1, xi+2, I

n+1
)
− 2Rη

(
tn+1, xi+1, I

n+1
)
+Rη

(
tn+1, xi, I

n+1
)]

(4.11)

B = −∆t

∆x

[
b
(
xi+2, I

n+1
)
− 2b

(
xi+1, I

n+1
)
+ b

(
xi, I

n+1
)]
Hη

(
qni , q

n
i+1

)
(4.12)
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C = −∆t

∆x

[
b
(
xi+2, I

n+1
)
− b

(
xi, I

n+1
)]

∆xw (tn) dq

D = −∆t

∆x

[
b
(
xi+2, I

n+1
)
− b

(
xi, I

n+1
)] (

qni+1 − qni
)
dp

E =

[
∆t

∆x
b
(
xi, I

n+1
)
(dp− dq)

]
∆xw (tn) +

[
1− ∆t

∆x
b
(
xi, I

n+1
)
(dp− dq)

] (
qni+1 − qni

)
,

and each term can be estimated separately. First of all, the W 2,∞ estimate of Rη in (A8), and the property
Im − 1 ⩽ In+1 ⩽ IM yield

|A| ⩽ ∆t∆xK, (4.13)

and similarly, (A4)-(2.1) give
|C| ⩽ 2∆t∆xLipHη

(Lipx (T ))w (tn) .

The estimate of B is a consequence of (A3) and of

Hη (−Lipx(T ),Lipx(T )) ⩽ Hη

(
qni+1, q

n
i

)
⩽ Hη (Lipx(T ),−Lipx(T )) ,

so that
|B| ⩽ ∆t∆xbM max (−Hη (−Lipx(T ),Lipx(T )) , Hη (Lipx(T ),−Lipx(T ))) . (4.14)

For the term E, it is worth noticing that since Hη is increasing in its first variable, and decreasing in its second
variable, then dp− dq ⩾ 0 for all (dp, dq) ∈ ∂Hη

(
qni , q

n
i+1

)
. Moreover, using the stability condition (2.6) one

has
∀ (dp, dq) ∈ ∂Hη

(
qni , q

n
i+1

)
, 0 ⩽

∆t

∆x
b
(
xi, I

n+1
)
(dp− dq) ⩽ 1,

meaning that E is a convex combination of ∆xw (tn) and qni+1 − qni . It yields

E ⩽ ∆x w (tn) .

However, D cannot be estimated in all cases. Indeed, if b
(
xi+2, I

n+1
)
− b

(
xi, I

n+1
)
⩽ 0, it can be rewritten

using (vii),

D =
∆t

∆x

∣∣b
(
xi+2, I

n+1
)
− b

(
xi, I

n+1
)∣∣ (qni+1 − qni

)
dp ⩽ 2∆t∆xLipHη

(Lipx (T ))w (tn) ,

but otherwise, the only estimate that can be used is D ⩽ 0, if qni+1 ⩾ qni . We can now gather these results to
conclude that if qni+1 ⩾ qni ,

qn+1
i+1 − qn+1

i

∆x
⩽ ∆tγ + w (tn) (1 + β∆t) , (4.15)

with γ, β defined in (2.10)-(2.11). In the other case, namely when qni+1 < qni , we reformulate (4.10) as

qn+1
i+1 − qn+1

i ⩽ qni+1 − qni + A+B+ F+G,

where A and B have been defined in (4.11)-(4.12), and

F = −∆t

∆x
b
(
xi, I

n+1
) [
Hη

(
qni−1, q

n
i

)
−Hη

(
qni , q

n
i+1

)]

G = −∆t

∆x
b
(
xi+2, I

n+1
) [
Hη

(
qni+1, q

n
i+2

)
−Hη

(
qni , q

n
i+1

)]
.

Use again (4.8)-(4.9), to get for all (dp,dq) ∈ ∂Hη

(
qni , q

n
i+1

)

F ⩽
∆t

∆x
b
(
xi, I

n+1
) [

∆xw (tn) dp+ (qni+1 − qni )dq
]

G ⩽
∆t

∆x
b
(
xi+2, I

n+1
) [

∆xw (tn) (−dq)−
(
qni+1 − qni

)
dp
]
,

and use these estimates, the ones of A, B in (4.13)-(4.14), the definition of γ in (2.10) and the one of LipHη

in (2.1) to obtain

qn+1
i+1 − qn+1

i ⩽

[
1− ∆t

∆x

(
b
(
xi+2, I

n+1
)
dp− b

(
xi, I

n+1
)
dq
)] (

qni+1 − qni
)
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+∆tγ + 2∆tw (tn) LipHη
(Lipx (T )) .

Eventually, the stability condition (2.6) yields that

1− ∆t

∆x

(
b
(
xi+2, I

n+1
)
dp− b

(
xi, I

n+1
)
dq
)
⩾ 0,

and since qni+1 − qni < 0, the above estimate can be simplified

qn+1
i+1 − qn+1

i

∆x
⩽ ∆tγ + w (tn) ,

where the stability condition (2.6) also gave an upper bound of the last term. Hence, estimate (4.15) holds
in fact in both cases, and

w (tn) ⩽ eβt
n

(γtn + w (0)) ,

so that property (vi) is satisfied.

4.1.6 Conclusion

To conclude the induction, remark that properties (i) and (ii) are straightforward using Remark 4.1, item
(iv) and (A8). Let us now discuss the fact that In+1 could be not uniquely determined as the solution of
φ(I) = 0, where φ is defined in (4.3). It is worth noticing that it is not a crucial issue in the proof above,
since any suitable In+1 can be chosen in Section 4.1.2. Moreover, even if In+1 is not uniquely determined,
Prop. 2.4 holds.

Actually, the fact that In+1 could be not uniquely determined is a purely numerical phenomenon, and it
is only associated to the convex setting defined in Def. 2.1. Indeed, as Hη ⩾ 0, in the flat setting (see Remark
2.5), (A5) and (A6) yield that for all i ∈ Z and for all n ∈ [[0, Nt − 1]],

I 7→ un+1,I
i , (4.16)

with un+1,I defined in (4.1), is increasing. As a consequence, if I < J are such that minun+1,I = minun+1,J =
0, then for all i ∈ Z,

un+1,I
i < un+1,J

i , un+1,I
i ⩾ 0, un+1,J

i ⩾ 0,

and considering an index j such that un+1,J
j = minun+1,J = 0 in the above expressions gives a contradiction.

This remark also gives a sufficient condition for In+1 to be uniquely determined in the convex setting. Indeed,
coming back to the definition of un+1,I in (4.1), one can remark that the finite-differences in Hη are bounded
thanks to the Lipschitz bounds of un stated in Prop. 2.3-(i). Hence, (4.16) is increasing if (2.19) is satisfied.

However, this condition is too restrictive in practice, since the bound of Hη seems to be far too large
around the minimal points of un+1,I . In fact, we observed in the numerical tests that un+1,I is flat around
its minimal points, although we were not able to quantify it precisely. As a consequence,

Hη

(
uni − uni−1

∆x
,
uni+1 − uni

∆x

)
,

is small around the minimal points of un, as are the finite differences in Hη. The condition (2.19) can then
be relaxed in practice, and we could not exhibit a test case in which In+1 was not uniquely determined.

4.2 Proof of Prop. 2.4
In this section, we consider u∆t and I∆t defined by (2.20) and (S). As they are defined with a reformulation
of scheme (S), such that I∆t is a constant by parts reconstruction of I, and that u∆t coincides with u on
the grid points, it is natural to expect (u∆t, I∆t) to satisfy similar properties as in Prop. 2.3. Indeed, the
following result holds

Lemma 4.2. Let Hη, Rη, ∆t, ∆x, η be an adapted discretization (Definition2.2), and let u∆t and I∆t be
defined by (2.22) and (2.20). We have:

(i). Lipschitz-in-space property: for all t ∈ [0, T ], u∆t(t, ·) is Lipx(t)-Lipschitz, with Lipx defined in
Prop. 2.3.

(ii). Lipschitz-in-time property: for all x ∈ R, u∆t(·, x) is Lipt-Lipschitz with Lipt given by Lipt =
bMHη (Lipx(T ),−Lipx(T )) +K, bM defined in (A3), and K in (1.3).
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(iii). Bounds for u∆t: for all (t, x) ∈ [0, T ]× R,

a|x|+ bt ⩽ u∆t(t, x) ⩽ a|x|+ bt,

with a, a defined in (A11), and bt, bt in Prop. 2.3.

(iv). Bounds for I∆t: for all t ∈ [0, T ], Im − 1 ⩽ I∆t(t) ⩽ IM , with Im and IM defined in (A7).

Proof. As I∆t is constant by parts and takes only the values of I, (iv) is a reformulation of Prop. 2.3-(iv).
Items (i) and (iii) can then be proved by induction using Lemma 4.1, and similarly to what is done in the
proof of Prop. 2.3. Item (ii) is a consequence of (i). More precisely, we only need to remark that for all
n ∈ [[0, NT − 1]], x ∈ R,
∣∣∣∣b
(
x, In+1

)
Hη

(
u∆t(t

n, x)− u∆t(t
n, x−∆x)

∆x
,
u∆t(t

n, x+∆x)− u∆t(t
n, x)

∆x

)
+Rη

(
tn+1, x, In+1

)∣∣∣∣ ⩽ Lipt.

This inequality is true thanks to (A3), (A13), (A8), and items (i) and (iv).

The proof of Prop. 2.4 then follows the lines of the proof of [7, Prop. 2.3], with technical adaptations to
the case considered here. It is indeed a simple case of the general framework that is dealt with in this paper.

In Section 4.2.1, we show that u∆t, and I∆t have limits when ∆t, ∆x, and η go to 0, and some properties
of these limits are stated. Section 4.2.2 is devoted to the regularization of I and I∆t, and associated numerical
and viscosity solutions are introduced. Finally, Section 4.2.3 is devoted to the identification of the limits
derived in Section 4.2.1, as the unique viscosity solution of (HJ).

4.2.1 Limits of u∆t, and I∆t

To start with, let us remark that Lemma 4.2 provides enough compactness to extract a limit. More precisely,

Lemma 4.3. Under the assumptions of Prop. 2.4, there exists u0 ∈ C0([0, T ],R), I0,I+0 ∈ BV (0, T ), and a
subsequence (∆tn)n of the discretization such that ∆tn →n→+∞ 0, and

(i). u∆tn converges locally uniformly towards u0: for all compact Ω of R,

∥u∆tn − u0∥L∞([0,T ]×Ω) −→
n→+∞

0.

(ii). u0 is Lipx(T )-Lipschitz in trait, Lipt-Lipschitz in time, with Lipx defined in Prop. 2.3-(i), and Lipt in
Lemma 4.2-(ii). Moreover, u0 satisfies:

∀t ∈ [0, T ], min
x
u0(t, x) = 0.

(iii). (I∆tn)n converges almost everywhere on (0, T ) towards I0 and I+0 .

(iv). I0 is lower semi-continuous, I+0 is upper semi-continuous, and both satisfy:

Im ⩽ I0 ⩽ IM , and Im ⩽ I+0 ⩽ IM .

Proof. This lemma is equivalent to [7, lemma 4.3]. The proof is similar, using Ascoli theorem for the con-
vergence of u∆t in (i), and Helly’s selection theorem for I∆t in (iii). Indeed, one can notice that Lemma
2.3-(iv)-(v) provides an uniform bound of I∆t in total variation. Actually, it is piecewise constant, equal to
In+1 on (tn, tn+1) for all n ∈ [[0, NT − 1]], uniformly bounded on (0, T ), and with uniformly bounded total
height of jumps down. Item (ii) is then a consequence of the local uniform convergence of the uniformly
coercive and Lipschitz functions (u∆tn)n. Eventually, (iv) comes from (4.6).

Remark 4.6. In what follows, the mention ∆t→ 0 will always refer to a subsequence for which the convergences
of Lemma 4.3 hold true.

Note that neither I0, nor I∆t, are continuous on (0, T ), this behavior is showcased in Section 5.1. To be
able to use the standard framework of Hamilton-Jacobi equations with Lipschitz Hamiltonian, we introduce
in the next subsection a Lipschitz regularization of I0, and I∆t, and we regularize u0 and u∆t accordingly.
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4.2.2 Regularization of I∆t and I0

Following [7, 8, 2] let us introduce, for all ∆t > 0, k > 0, and t ∈ [0, T ]:

Ik,−∆t = inf
s∈[0,T ]

I∆t(s) + k|t− s|, and Ik,+∆t = sup
s∈[0,T ]

I∆t(s)− k|t− s|. (4.17)

Similarly, for I0, we let for all k > 0, t ∈ [0, T ]:

Ik,−0 = inf
s∈[0,T ]

I0 (s) + k|t− s|, and Ik,+0 = sup
s∈[0,T ]

I+0 (s)− k|t− s|. (4.18)

These choices of regularization allow for stronger convergence properties than established in previous section.
The needed results are provided by [7, Lemma 4.4], and they are recalled in the following lemma:

Lemma 4.4. Let Ik,−∆t , Ik,−0 , Ik,+∆t ,Ik,+0 , and I∆t be defined by (4.17), (4.18) and (2.20). Suppose that the
hypothesis of Lemma 4.3 are satisfied, so that I0, I+0 are well-defined. Then, the following results hold:

(i). For all ∆t > 0, for all k > 0,

Im − 1 ⩽ Ik,−∆t ⩽ IM , Im ⩽ Ik,−0 ⩽ IM ,

Im − 1 ⩽ Ik,+∆t ⩽ IM , Im ⩽ Ik,+0 ⩽ IM ,

with Im and IM defined in (A7).

(ii). For all ∆t > 0, for all t ∈ [0, T ], the following convergences hold when k → ∞,

Ik,−∆t ↗ I∆t, Ik,−0 ↗ I0, Ik,+∆t ↘ I∆t, Ik,+0 ↘ I+0 .

(iii). For all ∆t > 0, for all k > 0, Ik,−∆t , Ik,−0 , Ik,+∆t and Ik,+0 are k-Lipschitz functions on [0, T ].

(iv). For all k > 0, ∥Ik,−∆t − Ik,−0 ∥∞ →∆t→0 0, and ∥Ik,+∆t − Ik,+0 ∥∞ →∆t→0 0.

The proof of this lemma is only computational, and partly done in [7]. The last point might seem surprising,
but we emphasize on the fact that the convergences are not uniform in k.

Using these regularized versions of I as parameters, one can then define associated viscosity solutions of
(HJ) and solutions of scheme (S). More precisely, for t > 0 and x ∈ R, let us introduce vk, and wk the
viscosity solutions of

∂tv
k (t, x) + b

(
x, Ik,−0 (t)

)
H
(
∇xv

k
)
(t, x) +R

(
t, x, Ik,−0 (t)

)
= 0 (4.19)

∂tw
k (t, x) + b

(
x, Ik,+0 (t)

)
H
(
∇xw

k
)
(t, x) +R

(
t, x, Ik,+0 (t)

)
= 0, (4.20)

with initial condition uin. Similarly, let ∆t > 0, n ∈ [[0, NT − 1]], s ∈ [0,∆t], and define vk∆t, and wk
∆t as in

(S), by

vk∆t (t
n + s, ·) = MIk,−

∆t (tn+s)
s

(
vk∆t (t

n, ·)
)
− sRη

(
tn + s, · , Ik,−∆t (tn + s)

)
(4.21)

wk
∆t (t

n + s, ·) = MIk,+
∆t (tn+s)

s

(
wk

∆t (t
n, ·)

)
− sRη

(
tn + s, · , Ik,+∆t (tn + s)

)
, (4.22)

once again with initialization uin. One can notice that, in the four cases, the constraint minu = 0 is no longer
enforced. Properties of vk, wk, vk∆t and wk

∆t are stated in the following lemma,

Lemma 4.5. Suppose that the hypothesis of Prop. 2.3 are satisfied. Let vk, wk, vk∆t, w
k
∆t and u∆t be defined

by (4.19)-(4.20)-(4.21)-(4.22) and (2.22), and I0, and I+0 defined in Lemma 4.3. Then,

(i). Uniform Lipschitz continuity in trait: for all t ∈ [0, T ], for all k > 0, for all ∆t > 0, vk (t, ·),
wk (t, ·), vk∆t (t, ·), and wk

∆t (t, ·) are Lipx(T )-Lipschitz, with Lipx defined in Prop. 2.3-(i).

(ii). Uniform Lipschitz continuity in time: for all x ∈ R, for all k > 0, for all ∆t > 0, vk (·, x),
wk (·, x), vk∆t (·, x), and wk

∆t (·, x) are Lipt-Lipschitz, with Lipt defined in Lemmas 4.2-(ii).
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(iii). Uniform bounds: for all t ∈ [0, T ], for all x ∈ R, for all k > 0, for all ∆t > 0,

a|x|+ bt ⩽ vk∆t (t, x) ⩽ a|x|+ bt

a|x|+ bt ⩽ wk
∆t (t, x) ⩽ a|x|+ bt

a|x|+ b− t

(
K + sup

p∈[−a,a]

H(p)

)
⩽ vk (t, x) ⩽ a|x|+ b+ tK

a|x|+ b− t

(
K + sup

p∈[−a,a]

H(p)

)
⩽ wk (t, x) ⩽ a|x|+ b+ tK,

with a, a, b, b defined in (A3), bt and bt in Prop. 2.3-(ii), and K in (1.3).

(iv). Monotony of the approximation: for k → ∞ we have vk ↗ v∞, and wk ↘ w∞, pointwise on
[0, T ]× R, where v∞, w∞ are viscosity solution of respectively

∂tv
∞ + b (x, I0)H (∇xv

∞) +R (t, x, I0) = 0 (4.23)

∂tw
∞ + b

(
x, I+0

)
H (∇xw

∞) +R
(
t, x, I+0

)
= 0, (4.24)

with initialization uin.

(v). We have vk∆t ⩽ u∆t ⩽ wk
∆t.

Remark 4.7. Item (iv) and the fact that I0 = I+0 a.e., yield that v∞ = w∞ thanks to Theorem 1.1.

Proof. Items (i)-(ii) are classical properties of viscosity solutions, (iii) stems from a comparison principle, and
(iv) from [8]. Eventually, (v) is a consequence of Lemma 4.1, and of the fact that I 7→ MI

s is non-decreasing,
with MI

s defined in (2.21). Indeed, if vk∆t(t
n, ·) ⩽ u∆t(t

n, ·) ⩽ wk
∆t (t

n, ·), and since (2.6) is satisfied, then

MIk,−
∆t (tn)

s vk∆t (t
n, ·) ⩽ MI∆t(t

n)
s vk∆t (t

n, ·) ⩽ MI∆t(t
n)

s u∆t (t
n, ·) ,

and
MI∆t(t

n)
s u∆t (t

n, ·) ⩽ MI∆t(t
n)

s wk
∆t (t

n, ·) ⩽ MIk,+
∆t (tn)

s wk
∆t (t

n, ·) .
These two chains of inequalities give the desired result thanks to (A6), and a straightforward induction.

4.2.3 (u0, I0) is the viscosity solution of (HJ)

In this section, we show that v∞ = w∞ = u0, and that Prop. 2.4 holds. Following [12, 7], let us introduce for
α ∈ (0, 1), σ > 0, and (t, x, τ, ξ) ∈ [0, T )× R× [0, T ]× R,

Ψ−
α,σ (t, x, τ, ξ) =v

k (t, x)− vk∆t (τ, ξ)−
(x− ξ)

2

2
√
∆x

− (t− τ)
2

2
√
∆t

(4.25)

− α
et

2
(x2 + ξ2)− α

T − t
−
(
σ + CHη

2αeT
)
t,

Ψ+
α,σ (t, x, τ, ξ) =w

k (t, x)− wk
∆t (τ, ξ) +

(x− ξ)
2

2
√
∆x

+
(t− τ)

2

2
√
∆t

(4.26)

+ α
et

2
(x2 + ξ2) +

α

T − t
+
(
σ + CHη

2αeT
)
t,

with CHη defined in (2.5). Thanks to Lemma 4.5, Ψ−
α,σ and Ψ+

α,σ respectively admit a maximum and minimum
on [0, T )× R× [0, T ]× R, and the following lemma holds:

Lemma 4.6. Let Ψ−
α,σ and Ψ+

α,σ be defined respectively by (4.25), (4.26). We have the following properties:

• For all α ∈ (0, 1), and for all σ > 0, Ψ−
α,σ admits a maximum, and Ψ+

α,σ a minimum on [0, T ) × R ×
[0, T ]× R. They are reached respectively at (t−, x−, τ−, ξ−) and (t+, x+, τ+, ξ+).

• There exists σ+ (∆t, k), σ− (∆t, k) positive, with σ± (∆t, k) →∆t→0 0 for all k > 0 (though not uniformly
in k), such that, for all α ∈ (0, 1), and ∆t small enough

t± ⩽ 2Lipt
√
∆t. (4.27)
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Moreover,

Ψ−
α,σ

(
t−, x−, τ−, ξ−

)
⩽ 2Lip2t

√
∆t+ 10Lipx(T )

2
√
∆x

Ψ+
α,σ

(
t+, x+, τ+, ξ+

)
⩾ −2Lip2t

√
∆t− 10Lipx(T )

2
√
∆x, (4.28)

where Lipx is defined in Prop. 2.3-(i), and Lipt in Prop. 4.2-(ii).

Proof. As it is the adaptation of the particular case [7, Lemma 4.6], the proofs of these two results are strongly
related. It is however worth detailing it in what follows, since the approximations Hη (p, p), and Rη of H (p)
and R, and the general framework considered here brings technical difficulties. We focus here on the results
for σ+(∆t, k) and Ψ+

α,σ. The others can be proved with straightforward adaptations.
The proof is divided in three steps, first show that

αet
+

max
(∣∣x+

∣∣ ,
∣∣ξ+
∣∣) ⩽ 4Lipx(T ), (4.29)

and then that ∣∣t+ − τ+
∣∣ ⩽ 2Lipt

√
∆t, and

∣∣x+ − ξ+
∣∣ ⩽ 10Lipx(T )

√
∆x. (4.30)

Finally, using these two results, define σ+(τ, k), such that τ+ = 0. It yields t+ ⩽ 2Lipt
√
∆t, and deduce the

desired bound on Ψ+
α,σ.

For the first step, notice that Ψ+
α,σ (t

+, x+, τ+, ξ+) ⩽ Ψ+
α,σ (t

+, 0, τ+, 0), and so that

wk
(
t+, x+

)
− wk

∆t

(
τ+, ξ+

)
+ α

et
+

2
(x+

2
+ ξ+

2
) ⩽ wk

(
t+, 0

)
− wk

∆t

(
τ+, 0

)
.

Elementary computations and the Lipschitz-regularity of wk, and wk
∆t provided by Lemma 4.5 then give (4.29)

Similarly, the bound on (x+ − ξ+) is a consequence of Ψ+
α,σ (t

+, x+, τ+, ξ+) ⩽ Ψ+
α,σ (t

+, x+, τ+, x+).Thanks
to the non-negativity of ξ+2, and after elementary computations, it yields

(x+ − ξ+)
2

2
√
∆x

⩽ wk
∆t

(
τ+, ξ+

)
− wk

∆t

(
τ+, x+

)
+ α

et

2

(
x+

2 − ξ+
2
)
.

Thus, (4.29), proved previously and Lemma 4.5, gives the desired result, since

(
x+ − ξ+

)2
⩽ 2

√
∆x

[
Lipx(T )

∣∣x+ − ξ+
∣∣+ α

et

2

(
x+ − ξ+

) (
x+ + ξ+

)]
.

For the other estimate in (4.30), use Ψ+
α,σ (t

+, x+, τ+, ξ+) ⩽ Ψ+
α,σ (t

+, x+, t+, ξ+) and Lemma 4.5 to get

(t+ − τ+)
2

2
√
∆t

⩽ wk
∆t

(
τ+, ξ+

)
− wk

∆t

(
t+, ξ+

)
⩽ Lipt

∣∣t+ − τ+
∣∣ .

Let us now prove that τ+ = 0. We argue by contradiction, supposing that τ+ > 0, and defining σ+ (∆t, k)
such that this assumption cannot hold. Let us introduce for all (t, x) ∈ [0, T )× R,

φ+
α,σ (t, x) =w

k
∆t

(
τ+, ξ+

)
− (x− ξ+)

2

2
√
∆x

− (t− τ+)
2

2
√
∆t

− α
et

2

(
x2 + ξ+

2
)
− α

T − t
−
(
σ + CHη

2αeT
)
t,

so that Ψ+
α,σ (t, x, τ

+, ξ+) = wk (t, x)−φ+
α,σ (t, x). As φ+

α,σ is minimal at (t+, x+), and since wk is the viscosity
solution of (4.20), one has

∂tφ
+
α,σ

(
t+, x+

)
+ b

(
x+, Ik,+0

(
t+
))

H
(
∇xφ

+
α,σ

(
t+, x+

))
+R

(
t+, x+, Ik,+0

(
t+
))

⩾ 0, (4.31)

that can be reformulated as

− t
+ − τ+√

∆t
− α

et
+

2

(
x+

2
+ ξ+

2
)
− α

(T − t+)
2 − σ − CHη

2αeT

+ b
(
x+, Ik,+0

(
t+
))

H
(
−x

+ − ξ+√
∆x

− αet
+

x+
)
+R

(
t+, x+, Ik,+0

(
t+
))

⩾ 0. (4.32)
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A similar inequality is obtained considering wk
∆t and scheme (4.22). As, for all (τ, ξ) ∈ [0, T ]×R, the inequality

Ψ+
α,σ (t

+, x+, τ, ξ) ⩾ Ψ+
α,σ (t

+, x+, τ+, ξ+) holds, one has

wk
∆t (τ, ξ) + k+ ≥ wk

∆t (τ, ξ) , (4.33)

where for all (τ, ξ) ∈ [0, T ]× R,

wk
∆t (τ, ξ) =

(x+ − ξ)
2

2
√
∆x

+
(t+ − τ)

2

2
√
∆t

+ α
et

+

2
ξ2, (4.34)

and

k+ = wk
∆t

(
τ+, ξ+

)
− (x+ − ξ+)

2

2
√
∆x

− (t+ − τ+)
2

2
√
∆t

− α
et

+

2
ξ+

2
= wk

∆t

(
τ+, ξ+

)
− wk

∆t

(
τ+, ξ+

)
. (4.35)

Recall now that τ+ ∈ [0, T ) is supposed such that τ+ > 0. Then, there exists n+ ∈ [[0, NT − 1]], and
s+ ∈ (0,∆t] such that τ+ = tn

+

+ s+. The next step consists in taking τ = tn
+

and ξ = ξ+, and propagate
the inequality (4.33) to time τ+ with Lemma 4.1. To that extend, we show that the arguments of Hη in

MIk,+
∆t (τ

+)
s+

(
wk

∆t

(
tn

+
)
, ·
)
(ξ+) and MIk,+

∆t (τ
+)

s+

(
wk

∆t

(
tn

+
)
, ·
)
(ξ+) are bounded by Lmax. Concerning wk

∆t,

it is in fact a consequence of Lemma 4.5. Consider now wk
∆t, one has

wk
∆t (τ, ξ

+ ±∆x)− wk
∆t (τ, ξ

+)

∆x
= ∓x

+ − ξ+√
∆x

+

√
∆x

2
± αet

+

ξ+ + αet
+ ∆x

2
,

so that (4.29)-(4.30), and (2.8) yield
∣∣∣wk

∆t

(
τ, ξ+ ±∆x

)
− wk

∆t

(
τ, ξ+

)∣∣∣ ⩽ Lmax∆x. (4.36)

We may now compute the values of the image of each side of (4.33) by MIk,+
∆t

s+ . By definition of wk
∆t, one has

MIk,+
∆t (τ

+)
s+

(
wk

∆t

(
tn

+

, ·
)) (

ξ+
)
= wk

∆t

(
τ+, ξ+

)
+ s+Rη

(
τ+, ξ+, Ik,+∆t

(
τ+
))
, (4.37)

and the expression of MI
s (see (2.21)) yields

MIk,+
∆t (τ

+)
s+

(
wk

∆t

(
tn

+

, ·
)
+ k+

) (
ξ+
)
= wk

∆t

(
tn

+

, ξ+
)
+ k+ (4.38)

−s+b
(
ξ+, Ik,+∆t

(
τ+
))
Hη



wk

∆t

(
tn

+

, ξ+
)
− wk

∆t

(
tn

+

, ξ+ −∆x
)

∆x
,
wk

∆t

(
tn

+

, ξ+ +∆x
)
− wk

∆t

(
tn

+

, ξ+
)

∆x


 .

The propagation of inequality (4.33) to time τ+ with Lemma 4.1 then gives

0 ⩽wk
∆t

(
tn

+

, ξ+
)
+ k+ − wk

∆t

(
τ+, ξ+

)
− s+Rη

(
τ+, ξ+, Ik,+∆t

(
τ+
))

−s+b
(
ξ+, Ik,+∆t

(
τ+
))
Hη



wk

∆t

(
tn

+

, ξ+
)
− wk

∆t

(
tn

+

, ξ+ −∆x
)

∆x
,
wk

∆t

(
tn

+

, ξ+ +∆x
)
− wk

∆t

(
tn

+

, ξ+
)

∆x


 ,

that is, using (4.35) and (4.34),

0 ⩽
t+ − tn

+ − s+/2√
∆t

−Rη

(
τ+, ξ+, Ik,+∆t (τ+)

)
(4.39)

−b
(
ξ+, Ik,+∆t

(
τ+
))
Hη

(
−x

+ − ξ+√
∆x

−
√
∆x

2
+ αet

+

ξ+ − αet
+ ∆x

2
,

−x
+ − ξ+√
∆x

+

√
∆x

2
+ αet

+

ξ+ + αet
+ ∆x

2

)
.
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The choice of σ+(∆t, k), and the conclusion of the argument are a consequence of (4.32) and the previous
estimate. Indeed, adding the two expressions yields

T1 + T2 + T3 ⩾ 0, (4.40)

with

T1 =
s+

2
√
∆t

− α
et

+

2

(
x+

2
+ ξ+

2
)
− α

(T − t+)
2 − σ − CHη

2αeT

T2 = R
(
t+, x+, Ik,+0

(
t+
))

−Rη

(
τ+, ξ+, Ik,+∆t (τ+)

)

T3 = b
(
x+, Ik,+0

(
t+
))

H
(
−x

+ − ξ+√
∆x

− αet
+

x+
)
− b

(
ξ+, Ik,+∆t (τ+)

)

Hη

(
−x

+ − ξ+√
∆x

−
√
∆x

2
+ αet

+

ξ+ − αet
+ ∆x

2
,−x

+ − ξ+√
∆x

+

√
∆x

2
+ αet

+

ξ+ + αet
+ ∆x

2

)
,

and these three terms are then estimated independently. To begin with, as s+ ∈ (0,∆t], one has

T1 ⩽
√
∆t− α

et
+

2

(
x+

2
+ ξ+

2
)
− σ − CHη

2αeT . (4.41)

The second one is a consequence of the K-Lipschitz regularity of R and Rη in (A6)-(A8)-(A9), of the k-
Lipschitz regularity of Ik,+0 and Ik,+∆t (Lemma 4.4), and of the fact that Rη is supposed to be a good approxi-
mation of R,

T2 ⩽ K
∣∣t+ − τ+

∣∣+K
∣∣x+ − ξ+

∣∣+K
∥∥∥Ik,+0 − Ik,+∆t

∥∥∥
∞

+Kk
∣∣τ+ − t+

∣∣+ ∥R −Rη∥∞ ,

and thanks to (4.30), and to (A17)-(2.7), we obtain

T2 ⩽ Ck
2

(√
∆t+

√
∆x+

∥∥∥Ik,+0 − Ik,+∆t

∥∥∥
∞

)
, (4.42)

where Ck
2 depends only on K, Lipt, Lipx(T ) and on k. The estimate of T3 is obtained similarly, using the

Lipschitz property of b in (A4),the fact that Hη (p, p) is an approximation of H (p) in (A16), and the CHη
-

Lipschitz property of Hη. Note that the latter is true because (4.36) holds. More precisely, T3 is reformulated
as

T3 = Ta
3 + Tb

3 + Tc
3 + Td

3,

with

Ta
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)
Hη
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− αet
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(
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H
(
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+ − ξ+√
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− αet
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)
+ b

(
x+, Ik,+0

(
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H
(
−x

+ − ξ+√
∆x

− αet
+

x+
)
.

Then, Ta
3 is estimated with (2.1)-(2.5), Tb

3 with (A16), Tc
3 with the Lipschitz property of b in (A4), and

sup
|p|⩽Lmax

|H (p)| ⩽ LmaxCHη + CLmax ,

that holds true since H (0) = 0, becauseHη enjoys CHη -Lipschitz regularity, and because it is an approximation
of H, with (A16)-(2.7). Eventually, the k-Lipschitz property of Ik,+0 (Lemma 4.4) is used in Td

3, so that

T3 ⩽ Ck
3

(√
∆x+

√
∆t+

∥∥∥Ik,+∆t − Ik,+0

∥∥∥
∞

)
+ CHηαe

t+
(∣∣x+

∣∣+
∣∣ξ+
∣∣) , (4.43)
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where Ck
3 depends only on the constants arising in the assumptions, namely CHη , bM , CLmax , Lipx(T ), Lipt,

and on k. We now come back to (4.40), and gather (4.41), (4.42) and (4.43), so that
√
∆t+

(
Ck

2 + Ck
3

) (√
∆x+

√
∆t+

∥∥∥Ik,+∆t − Ik,+0

∥∥∥
∞

)
⩾ σ + αCHη

2
(
eT − et

+
)

+ α
et

+

2

(∣∣x+
∣∣2 − 2CHη

|x+|+ CHη

2
)
+ α

et
+

2

(∣∣ξ+
∣∣2 − 2CHη

∣∣ξ+
∣∣+ CHη

2
)
,

which finally gives the conclusion, as
√
∆t+

(
Ck

2 + Ck
3

) (√
∆x+

√
∆t+

∥∥∥Ik,+∆t − Ik,+0

∥∥∥
∞

)
⩾ σ. (4.44)

Indeed, as ∆t and ∆x depend on each other with (2.6), one can choose σ = σ+(∆t, k), with σ+(∆t, k) −→∆t→0

0 when k is fixed, such that the inequality (4.44) is a contradiction. With this choice σ+(∆t, k), the assump-
tion τ+ > 0 cannot hold, which yields the conclusion τ+ = 0. The estimate (4.27) is then a straightforward
consequence of (4.30), and the inequality (4.28) comes from the expression of Ψ+

α,σ in (4.26). Indeed, since
τ+ = 0, and wk (0, ·) = wk

∆t (0, ·), the following estimate holds true

Ψ+
α,σ

(
t+, x+, τ+, ξ+

)
⩾ wk

(
t+, x+

)
− wk

(
0, x+

)
+ wk

∆t

(
0, x+

)
− wk

∆t

(
0, ξ+

)
.

The Lipschitz regularity of wk and wk
∆t stated in Lemma 4.5, and (4.30) finally gives (4.28).

We may now show the convergence of the solution of scheme (S) towards the viscosity solution of (HJ).
It is a consequence of

v∞ ⩽ u0 ⩽ w∞, (4.45)

where v∞, and w∞ are defined in (4.23)-(4.24) and u0 in Lemma 4.3. As in the proof of Lemma 4.6, let us
detail only the upper bound here, as the bound from below is very similar. For all (t, x) ∈ [0, T ]×R, one has,
using (4.28), and the fact that (t+, x+, τ+, ξ+) is a minimum point of Ψ+

α,σ,

−2Lip2t
√
∆t− 10Lipx(T )

2
√
∆x ⩽ Ψ+

α,σ

(
t+, x+, τ+, ξ+

)
⩽ Ψ+

α,σ (t, x, t, x) ,

that is,

−2Lip2t
√
∆t− 10Lipx(T )

2
√
∆x ⩽ wk (t, x)− wk

∆t (t, x) + αetx2 +
α

T − t
+
(
σ+(∆t, k) + CHη

2αeT
)
t.

Let now α→ 0 in previous inequality, it gives

u∆t (t, x)− 2Lip2t
√
∆t− 10Lipx(T )

2
√
∆x− σ+ (∆t, k) t ⩽ wk (t, x) ,

where we also used the estimate u∆t ⩽ wk
∆t stated in Lemma 4.5. Let now ∆t → 0, with k > 0 fixed. By

definition of ∆x, σ+ (∆t, k) and u∆t the limit of the right-hand side is u0 (t, x). Therefore, for all k > 0,
t ∈ [0, T ], and x ∈ R,

u0 (t, x) ⩽ wk (t, x) .

One can finally let k → ∞ in the previous inequality, so that for all t ∈ [0, T ] and for all x ∈ R, u0 (t, x) ⩽
w∞ (t, x), which is the second estimate in (4.45).

To conclude, recall that v∞ = w∞, thanks to Remark 4.7, and that u0, v∞ and w∞ enjoy Lipschitz
regularity. Then, inequalities in (4.45) are in fact equalities, and u0 is the viscosity solution of (4.23) (or
(4.24), equivalently). In addition, for all t ∈ [0, T ], minu0 (t, ·) = 0, as proved in Lemma 4.3, so that Theorem
1.1 yields that (u0, I0) is the viscosity solution of (HJ). Eventually, as Theorem 1.1 also states the uniqueness
of the viscosity solution of (HJ), the restriction up to a subsequence of Remark 4.6, can then be removed, so
that Prop. 2.4 holds.

4.3 Relaxation of the CFL condition
The convergence of scheme (S) is proved under strong assumptions on the relative size of the discretization
parameters ∆t and ∆x. Indeed, the CFL condition (2.6) must be satisfied, but the definition of Lmax in
(2.5) includes a security margin required by the proof of the convergence. It makes the CFL very restrictive,
and refining time meshes, so that (2.6) holds, leads to very costly numerical computations. This is especially
accurate when the Hamiltonian H contains an exponential, as in the example (3.1).

In practice, considering the CFL with the larger slope that appears in the computations, instead of Lmax,
is enough to ensure the stability of the computations. One can even prove that the scheme converges, using
this relaxed CFL condition. The key idea is to linearize H and Hη for slopes stronger than what appears in
the simulations. The process is the following:
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(i). Make an educated guess of the steepest slope S that could appear. In the worst-case scenario, Lipx(T )
suits, but smaller values are targeted.

(ii). Let, for all p ∈ R:

H̃(p) =





H(S) + (p− S)H′(S) if p > S

H(p) if − S ⩽ p ⩽ S

H(−S) + (p− S)H′(−S) if p < −S.
Note that if S is greater than the stronger slope of the solution u of (HJ), the values outside of [−S, S]
are never reached by p = ∇xu. Hence, replacing H by H̃ in (HJ) does not change the equation. Then,
linearize Hη for slopes stronger than S. Let for all (p, q) ∈ R2:

H̃η(p, q) =





Hη(p, q) if − S ⩽ p ⩽ S, −S ⩽ q ⩽ S

Hη(p, S) + (q − S)H′(S) if − S ⩽ p ⩽ S, q > S

Hη(p,−S) + (q + S)H′(−S) if − S ⩽ p ⩽ S, q < −S
Hη(S, q) + (p− S)H′(S) if p > S, −S ⩽ q ⩽ S

Hη(−S, q) + (p+ S)H′(−S) if p < −S, −S ⩽ q ⩽ S

Hη(S, S) + (p− S)H′(S) + (q − S)H′(S) if p > S, q > S

Hη(S,−S) + (p− S)H′(S) + (q + S)H′(−S) if p > S, q < −S
Hη(−S, S) + (p+ S)H′(−S) + (q − S)H′(S) if p < −S, q > S

Hη(−S,−S) + (p+ S)H′(−S) + (q + S)H′(−S) if p < −S, q < −S.

Note that, if S is large enough, replacing Hη by H̃η does not change the scheme. However, in any case,
H̃η satisfies the assumptions required for Hη. As the slope of H̃η does not increase for |p| ⩾ S or |q| ⩾ S,
no security margin is to be added in the proof of Section 4.2.3.

(iii). Choose ∆x according the CFL associated to S, for instance

∆tLipHη
(S) =

∆x

2
, (4.46)

and η =
√
∆x as in (2.7).

(iv). Compute the solutions of the new system, and check that for all i and all n,
∣∣uni − uni−1

∣∣ ⩽ S∆x. If this
does not hold, try again from step (i) with a more educated guess. For instance, if the first time with
larger slopes is 0 < t < T , one could try S′ = Lipin + (S − Lipin)T/t.

5 Numerical tests and discussion
In this section, we present some numerical tests to highlight the properties of schemes (S) and (Sε). Unless
other choices are specified, the following birth rate, and net growth rate parameters will be used

b(x, I) =
8− (x+ 1)2

1 + (x+ 1)2
1

2 + I
, (5.1)

R(t, x, I) = − (x+ 3)2

1 + (x+ 3)2
− x2

1 + x2
(t+ 1)I. (5.2)

Two initial data uin are considered, depending on the tests. The first one will be denoted uinconv. It is convex,
and defined for all x ∈ R by,

uinconv =
√
1 + x2 − 1. (5.3)

The second one has two local minima, is hence not convex, and will be denoted uinnot conv. It is given for all
x ∈ R by,

uinnot conv(x) =

((
1 + (x+ 3)

2
)1/4

− 1

) ((
2 + (x− 2)

2
)1/4

− 1

)
. (5.4)

In all tests, the x domain is [−10, 10], but the final time T varies and will always be specified. Regarding
the discretization, ∆t is defined specifically for all tests, and ∆x is determined as a function of ∆t using the
relation (4.46). The value of S will always be indicated, and an order of magnitude of ∆x will be given for
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information. Among the list of discretizations of H proposed in Section 3.1, we focus on (Hη
P1) and (Hη

CCS).
We indeed favored, (Hη

P1) as it naturally appears as the limit of the AP scheme (Sε). It is in the convex
setting but not in the flat setting, and (Hη

CCS) is its modification to a scheme in the flat setting. The choice
will be made clear for each test.

5.1 Properties of (S)
We investigate the properties of scheme (S), starting with its convergence. It is established in Proposition
2.4, but the compactness argument that is used in the proof does not yield any convergence rate. We test it
numerically in what follows. Contrary to the particular case of the quadratic Hamiltonian H(p) = p2 that
has been tested in [7], no analytical solution of (HJ) is available when H is defined by (3.1). We hence define
a reference solution for scheme (S), using the same scheme with a refined grid. Let T = 0.5, S = 2, and fix
b, R and a convex initial data as in (5.1), (5.2) and (5.3). The reference solution (ured, Iref) is computed
with ∆t = 4 · 10−5 (which yields ∆x ≃ 2.4 · 10−3), and it is compared to solutions (u∆t, I∆t) computed for
a sequence of ∆t varying from 10−2 to 10−4. The corresponding ∆x hence vary approximately from 0.6 to
6 · 10−3. Both (Hη

P1) and (Hη
CCS) are tested, and the convergence errors
∥∥∥uNref

T

ref − u
N∆t

T

∆t

∥∥∥
∞
, and ∥Iref − I∆t∥L1(0,T ) , (5.5)

are displayed as a function of ∆t in logarithmic scale in Figure 1. These errors are defined using suitable
norms regarding the expected regularity of the solution of (HJ), see [7] for details. This suggests that the
numerical order of scheme S is 1, both for (Hη

P1) and (Hη
CCS).
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Figure 1: Scheme (S) with T = 0.5, ∆tref = 4 · 10−5, S = 2, b, R and uinconv defined in (5.1), (5.1) and (5.3).
Convergence test for the solution of (S) with (Hη

P1) and (Hη
CCS). Left: Error (5.5) on the component u, as

a function of ∆t (log scale). Right: Error (5.5) on the component I, as a function of ∆t (log scale).

Focus now on the qualitative properties of scheme (S), and especially on the properties of I, or equivalently
of I∆t defined by (2.20). When the dependency in t of R is Lipschitz, (2.15) yields that the constraint I in
(HJ) can decrease, but only continuously. It is indeed the limit of I∆t when ∆t→ 0, thanks to Proposition 2.4,
and its finite differences are bounded from below. Roughly speaking, this means that I has only increasing
jumps. This property is illustrated on the left-hand side of Fig. 2, where I∆t is displayed for as a function of
t ∈ [0, 1/2]. One can notice that I∆t starts with a smooth decay, before a increasing jump. The right-hand
side of Fig. 2 presents u, or equivalently u∆t defined by (2.22), as a function of t and x. Remark that the
location of the minimum of u∆t jumps when I∆t jumps. These figures have been obtained with discretization
(Hη

P1), parameters b and R defined by (5.1) and (5.2), the initial data uinnot conv as in (5.4), ∆t = 2 · 10−5

(hence ∆x ≃ 1.2 · 10−3).
When R does not depend on t, it has been proved in [8], that I is non-decreasing. It is worth noticing that

this property is numerically preserved only in the flat setting. Fig. 3 highlights this behavior. We considered
once again b defined in (5.1) and the initial data uinnot conv (5.4). We used R(0, x, I) instead of R defined in
(5.2), to make it independent of t. We represented I∆t as a function of t, when it is computed with a scheme
in the flat setting as (Hη

CCS), or with a scheme in the convex setting as (Hη
P1). The left-hand side of Fig. 3

is computed with a very coarse grid, ∆t = 10−2 (that is, ∆x ≃ 0.6). The numeric-induced decay of I∆t in the
convex setting (Hη

P1) is clearly visible, while I∆t is non-decreasing in the flat setting (Hη
CCS). Of course,
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Figure 2: Scheme (S) with T = 0.5, ∆t = 2 · 10−5, S = 2, b, R and uinnot conv defined in (5.1), (5.2) and
(5.4). Qualitative properties of (S) with (Hη

P1). Left: I∆t as a function of t. Right: u∆t as a function of
x (trait) and t (time). The solid lines represent respectively the local minima of u∆t, and the optimal trait.
Light colors emphasize small values of u∆t.

this phenomenon is only due to numerical approximations, and the decay tends to 0 when ∆t → 0, as the
limit I of I∆t is non-decreasing. The right-hand side of Fig. 3 shows that the artificial decay of (Hη

P1) is
much smaller when ∆t = 10−4 (and ∆x ≃ 6 · 10−3).
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Figure 3: Scheme (S) with T = 1.5, S = 2, R(0, x, I) defined in (5.2), and b and uinnot conv defined in (5.1)
and (5.4). I∆t as a function of t. Left: with ∆t = 10−2. Right: with ∆t = 10−4.

5.2 Asymptotic-preserving property of scheme (Sε)
Consider now the scheme (Sε). As it is stated in Proposition 3.4, it enjoys the AP property. Indeed, its
solution converges to the solution of scheme (S) when ε goes to 0 with fixed discretization. The discretization
being fixed, denote (vε,Jε) the solution of scheme (Sε) for a given ε > 0, (u, I) the solution of scheme (S).
Thanks to the AP property, (vε,Jε) go to (u, I) when ε → 0. This property is tested in Fig. 4, where the
errors

∥vε − u∥∞ , ∥Jε − I∥L1(0,T ) , (5.6)

are displayed as functions of ε, in logarithmic scale. Here again, the functional space have been chosen
according to the expected regularity of the solutions, see [7]. As expected, these errors decrease with ε, a
saturation for the small errors in the component Jε excepted. Moreover, according to this test the numerical
order of convergence of the solution of (Pε) to the solution of (HJ) with (3.1) is 1. The schemes (S) and (Sε)
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are run with b, R and uinnot conv defined in (5.1), (5.2) and (5.4), with T = 0.5, S = 2 and ∆t = 10−3 (hence,
∆x ≃ 6 · 10−2). Scheme (S) is implemented with discretization (Hη

P1).
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Figure 4: With T = 0.5, ∆t = 10−3, S = 2, b, R and uinnot conv defined in (5.1), (5.2) and (5.4). AP property
of scheme (Sε). Scheme (S) with (Hη

P1). Left: Error (5.6) on the component v as a function of ε (log scale).
Right: Error (5.6) on the component J as a function of ε (log scale).

A stronger property of AP schemes is the fact that they can be Uniformly Accurate (UA). Indeed, in the
numerical test above, the discretization was fixed, because AP scheme may present an order degeneracy for
some values of ε, typically when their order of magnitude is comparable to the discretization parameters. On
the contrary, the UA property certifies that the precision is independent of the scaling parameter ε. The
proof of this property is far beyond the scope of this paper, as the estimated order of convergence of the limit
scheme (S) is not even theoretically determined. It can however be tested numerically. As for convergence
numerical tests, a reference solution must be computed to perform the test. It is done with b, R, and uinnot conv

defined in (5.1), (5.2) and (5.4), and T = 0.5, S = 2. For all ε > 0, the reference solution is (vε
∆tref

,Jε
∆tref

),
computed with (Sε), and a refined grid ∆tref = 2 · 10−5 (that is ∆xref ≃ 1.2 · 10−3). Then, for ε varying from
10−16 to 1, and for ∆t varying from 10−4 to 10−2 (∆x from 6 · 10−3 to 0.6), compute the (∆t, ε)-dependent
errors, ∥∥vε

∆t − vε
∆tref

∥∥
∞ ,
∥∥Jε

∆t − Jε
∆tref

∥∥
L1(0,T )

. (5.7)

They are displayed in Fig. 5, each value of ∆t being represented in logarithmic scale as a function of ε. The
component in v of the error is on the left-hand side of the figure, and the component in J is on the right-hand
side. Remark that the supremum in ε of these errors decreases with ∆t. It is in fact of the order of magnitude
of ∆x. This suggests that the scheme (Sε) enjoys the UA property, with uniform order of convergence 1.
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Figure 5: With T = 0.5, ∆t = 10−3, S = 2, b, R and uinnot conv defined in (5.1), (5.2) and (5.4). UA property
of scheme (Sε). Left: For a range of ∆t, error (5.7) on the component v as a function of ε (log scale). Right:
For a range of ∆t, error (5.7) on the component J as a function of ε (log scale).
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5.3 Scheme (Sε) when the population vanishes
Determining theoretically the asymptotic behaviour of (Pε), for given b and R not necessarily satisfying nice
hypothesis, is -up to our knowledge- an open question. It can however be conjectured using (Sε), as it is
illustrated in this section. In this section, the following birth rate will be considered,

b(x, I) = 2, (5.8)

with the initial data uinconv defined in (5.3). All the test cases are run with T = 6, ∆t = 2 · 10−5 (that is,
∆x ≃ 2.2 ·10−2), and S = 3. We focus on changing environments, as it is done in [18, 19, 10] for the parabolic
case.

Consider first a periodic varying environment, with

R(t, x, I) = −(x− 3 sin(αt))2 − I. (5.9)

Note that R does not satisfy hypothesis (A7). However, with α = 0.5, that is a slowly-varying environment,
scheme (Sε) suggests that the population does not extincts, and that the asymptotic behavior of (Pε) is (HJ),
see Fig. 6. The left-hand side of Fig. 6 displays I∆t (or, equivalently, I) computed with (S)-(Hη

P1), and J
computed with (Sε) and ε = 10−8. Note that both coincide, and that they are bounded from above and below
by positive constants, meaning that the total size of the population does not vanish nor grow uncontrolled.
The function u∆t (or the sequence u) defined by (S)-(Hη

P1) is on the right-hand side of Fig. 6 (v defined
by (Sε) is not represented, as it cannot be distinguished from the one for u∆t). The optimal trait and the
minimum of u∆t are represented by solid lines on the figure. Note that the local minimum of u∆t follows the
optimal trait with a delay, as expected thanks to [19]. Fig. 6 has been obtained with T = 6, ∆t = 2 · 10−5

and S = 3.
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∆
t

I∆t

J

Figure 6: With T = 6, ∆t = 2 · 10−5, S = 3, b, uinconv defined in (5.8), (5.3), R defined in (5.9) and α = 0.5.
Left: I∆t computed with (S) and (Hη

P1), and J computed with (Sε), as functions of t. Right: u∆t computed
with (S)-(Hη

P1) as a function of x (trait) and t (time). The solid lines represent respectively the local minima
of u∆t, and the optimal trait. Light colors emphasize small values of u∆t.

The parameter α in (5.9) drives the speed at which the environment changes. When it varies too quickly,
the population does not have enough time to adapt and may vanish, see [18] for periodic-varying environments,
or [19] for shifted environments. This behavior is illustrated in Fig. 7, where we took α = 3 in (5.9), and
where (Pε) is approximated with (Sε) for ε = 10−8. With this value of α, scheme (Sε) suggests that the
population vanishes in the asymptotics ε → 0 of (Pε). Indeed, J defined by (Sε) goes to 0 rather quickly. It
is displayed on the left-hand side of Fig.7 as a function of t. The value of v is on the right-hand side of Fig.
7, as a function of t and x. As previously, note that the minimum of v follows the optimal trait with a delay.
The fact that the minimum of v is not close to 0 after some time, informs on the extinction of the population.

Let us emphasize on the fact that the solutions of (Sε) and (S) do not coincide when the population
vanishes. Indeed, still considering R as in (5.9) with α = 3, the solution of (S)-(Hη

P1) is displayed on Fig. 8,
with the plot of u∆t as a function of t and x on the right-hand side. Observe on the left-hand side that I∆t

takes negative values. This is due to the fact that the constraint minu∆t = 0 is always satisfied in scheme
(S), possibly at the cost of the positivity of I∆t. This suggests that, in this case of fast oscillations of the
environment, the ε→ 0 limit of (Pε) is not given by (HJ), and that the asymptotic behavior of (Pε) is better
conjectured with (Sε) than with (S).
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Figure 7: With T = 6, ∆t = 2 · 10−5, S = 3, b, uinconv defined in (5.8), (5.3), R defined in (5.9) and α = 3.
Left: J computed with (Sε) as a function of t. Right: v computed with (Sε) as a function of x (trait) and
t (time). The solid lines represent respectively the local minima of v, and the optimal trait. Light colors
emphasize small values of v.
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Figure 8: With T = 6, ∆t = 2 · 10−5, S = 3, b, uinconv defined in (5.8), (5.3), R defined in (5.9) and α = 3.
Left: I∆t computed with (S) and (Hη

P1) as a function of t. Right: u∆t computed with (S)-(Hη
P1) as a

function of x (trait) and t (time). The solid lines represent respectively the local minima of u∆t, and the
optimal trait. Light colors emphasize small values of u∆t.

Eventually, we consider a constant by parts environment, as in [10], in a regime of quick changes in the
environment. In what follows, we will define R as

R(t, x, I) = − (x− 6 ⌈sin(3t− 0.9)⌉1t>0.3)
2 − I. (5.10)

Following the previous test case, we conjecture the small ε limit of (Pε) to vanish, because of the too fast
changes of the environment. Fig. 9 suggests that scheme (Sε) is robust enough to deal with the lack of
regularity of R. Indeed, J is represented as a function of t on the left-hand side of Fig. 9. Once again, it
vanishes quickly, as expected. The evolution of v is displayed on the right-hand side of Fig. 9 as a function
of t and x. As previously, the minimum of v is nonzero after some time, and its location follows the optimal
trait with a delay, despite its lack of regularity. Fig. 9 has been obtained with ε = 10−8 in (Sε).

Note that in this test case, scheme (S) again gives results far from the ones of (Sε). They are displayed in
Fig. 10, with I∆t as a function of t on the left-hand side and u∆t as a function of t and x on the right-hand
side. Once again, the constraint minu∆t = 0 leads to negative values for I∆t. Moreover, observe that I∆t has
decreasing jumps. This could not have been possible if R had Lipschitz regularity in t, see Prop. 2.3-(v). Up
to our knowledge, the well-posedness of (HJ) is this context is an open question. Despite the robustness of
(S)-(Hη

P1) regarding the lack of regularity of R, it corroborates the fact that (HJ) is not the ε → 0 limit of
(Pε) in this case.
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Figure 9: With T = 6, ∆t = 2 · 10−5, S = 3, b, uinconv and R defined in (5.8), (5.3) and in (5.10). Left: J
computed with (Sε) as a function of t. Right: v computed with (Sε) as a function of x (trait) and t (time).
The solid lines represent respectively the local minima of v, and the optimal trait. Light colors emphasize
small values of v.
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Figure 10: With T = 6, ∆t = 2 · 10−5, S = 3, b, uinconv and R defined in (5.8), (5.3) and in (5.10). Left:
I∆t computed with (S)-(Hη

P1) as a function of t. Right: u∆t computed with (S)-(Hη
P1) as a function of x

(trait) and t (time). The solid lines represent respectively the local minima of u∆t, and the optimal trait.
Light colors emphasize small values of u∆t.

5.4 Generalization
In this section, we investigate the generalization of the results of the paper, especially when the dimension
is greater than 1. Let us start with Lotka-Volterra integral equation in the multi-dimensional case, with
Hamiltonian (3.1) as in Section 3. Suppose that the mutation kernel Kd satisfies

∀x ∈ Rd, Kd(x) =

d∏

j=1

K(xj),

with K defined in (3.1). Then, the Hamiltonian H can be reformulated as

∀p ∈ Rd, H(p) =

d∏

j=1

∫

R
K(xj)e

−zjpdzj − 1,

so that the different choices of Hη proposed in Section 3.1 in dimension 1 can be plugged in the product, to
define a numerical Hamiltonian in dimension greater than 1. Remark that one has to pay attention to the
constant −1, that is not in the multiplication, but this is quickly addressed. The AP scheme of Section 3.2 is
generalized similarly, and Prop. 3.4 holds. However, the convergence of the scheme for the limit constrained
Hamilton-Jacobi equation cannot be established as easily. This is the purpose of this section.
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We studied above a class of numerical schemes for constrained Hamilton-Jacobi equations such as (HJ),
in dimension 1. We discuss here the design of a scheme for (HJ) when the dimension is greater than 1, and
when the Hamiltonian H also depends on the trait variable x. This latter case happens for instance in [35],
where the Hamiltonian is implicitly defined. Let us consider u, the viscosity solution of





∂tu(t, x) + b(x, I(t))H(x,∇xu(t, x)) +R(t, x, I(t)) = 0, x ∈ Rd, t ⩾ 0,

min
x∈Rd

u(t, x) = 0, t ⩾ 0,
(5.11)

where the initial condition uin satisfies (A10)-(A11)-(A12). As previously, we suppose that b satisfies (A3)-
(A4)-(A5), and that R satisfies (A6)-(A7)-(A8)-(A9). As H now depends also on x, the hypothesis must be
adapted. We suppose that for all x ∈ Rd, p 7→ H(x,p) is convex, and (A2) is replaced by

∀x ∈ Rd, H(x, 0) = 0, and ∀(x,p) ∈ Rd × Rd, H(x,p) ⩾ 0, (5.12)

and we emphasize once again on the fact that the condition H(x, 0) = 0 for all x ∈ Rd can be relaxed by
considering (x,p) 7→ H(x,p)−H(x, 0), and modifying R accordingly.

For a sake of simplicity, we define a uniform trait grid, with the same trait step in all the directions, but
this could be easily relaxed. Let x0 ∈ Rd and ∆x > 0. For all i = (i1, . . . , id) ∈ Zd, define then xi = x0+∆xi.
The time grid is kept unchanged.

As in dimension 1, introduce Hη : Rd×Rd×Rd → R and Rη : R×Rd×R → R, such that Hη(x,p,p) is an
approximation of the Hamiltonian H(x,p) for all x ∈ Rd, and p ∈ Rd, and that Rη approximates R(t, x, I) for
all t ⩾ 0, all x ∈ Rd and all I ∈ R. Assumptions (A13)-(A14)-(A15)-(A15)-(A16) and (A17) are adapted to
this multi-dimensional context. Introduce L > 0, and suppose that Hη and Rη satisfy the following properties:

• Regularity in x: ∀(p, q) ∈ Rd ×Rd, x 7→ Hη(x,p, q) is smooth. Moreover, Hη(·,p, q) and its first and
second derivatives are bounded uniformly with respect to (p, q) ∈ Rd × Rd such that ∥p∥∞ ⩽ L, and
∥q∥∞ ⩽ L.

• Monotony: ∀∥p∥∞ ⩽ L, ∀∥q∥∞ ⩽ L, ∀x ∈ Rd, ∀e ∈ Rd such that e ⩾ 0 (coordinate by coordinate),

Hη(x,p, q + e) ⩽ Hη(x,p, q) ⩽ Hη(x,p+ e, q),

• Exact value at 0: ∀x ∈ Rd, Hη(x, 0, 0) = 0.

• Positivity on the diagonal: ∀p ∈ Rd such that ∥p∥∞ ⩽ L, ∀x ∈ Rd, Hη(x,p,p) ⩾ 0.

• Consistency for Hη: ∃CL > 0, ∀x ∈ Rd, ∀∥p∥∞ ⩽ L, ∀η ∈ (0, 1],

|Hη(x,p,p)−H(x,p)| ⩽ CLη.

• Consistency for Rη: ∀t ⩾ 0, ∀x ∈ Rd, ∀I ⩾ 0, ∀η ∈ (0, 1],

|Rη(t, x, I)−R(t, x, I)| ⩽ Kη,

for some constant K as in (A17).

To adapt the Definition 2.1 of a L-well chosen scheme, two classes of numerical Hamiltonians are considered:

• Flat setting: If ∥p∥∞ ⩽ L, and ∥q∥∞ ⩽ L are such that ∃ℓ ∈ [[1, d]], pℓ < 0 and qℓ > 0, then for all
x ∈ Rd, and for all η ∈ (0, 1],

Hη (x,p, q) = Hη



x,




p1
...
pℓ
...
pd



,




q1
...
qℓ
...
qd







= Hη



x,




p1
...
0
...
pd



,




q1
...
0
...
qd






,

• Convex setting: for all x ∈ Rd, Hη(x, ·, ·) : B∥·∥∞(0,L)×B∥·∥∞(0,L) −→ R is convex.
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The adaptation of Definition 2.2 is straightforward. Then, notations are introduced to write the adaptation
of scheme (S) in dimension d > 1. For all ℓ ∈ [[1, d]], denote T−

ℓ : RZd −→ RZd

, and T+
ℓ : RZd −→ RZd

. They
are defined such that for all u = (ui)i∈Zd ∈ RZd

, T±
ℓ (u) ∈ RZd

, and for all i ∈ Zd,

T−
ℓ (u)i = ui1,...,iℓ−1,...,id , and T+

ℓ (u)i = ui1,...,iℓ+1,...,id ,

where we denoted ui = ui1,...,iℓ,...,id . Then, let T± : RZd −→
(
RZd

)d
, such that,

∀u ∈ RZd

, ∀i ∈ Zd, T±(u)i =



T±
1 (u)i

...
T±
d (u)i


 ,

and define the adaptation of scheme (S) for all n ∈ [[0, NT − 1]] and all i ∈ Zd, by




un+1
i − uni

∆t
+ b

(
xi, I

n+1
)
Hη

(
xi,

I − T−

∆x
(un)i,

T+ − I

∆x
(un)i

)
+Rη

(
tn+1, xi, I

n+1
)
= 0

min
i∈Zd

uni = 0,
(5.13)

with initialization u0i = uin(xi) for all i ∈ Zd. Using the assumptions and notations above, one can follow
the proofs of Prop. 2.3 and 2.4, and remark that everything can be rewritten (with a small change in (2.6)),
except the semi-concavity of the numerical solution. It is in fact straightforward in the flat setting, as in
dimension 1. However, in the convex setting, it seems that the adaptation of the proof of Prop. 2.3-(vi)
(Section 4.1.5) in dimension greater than 1, or with H depending also on x, is more delicate. This question
will be addressed in a dedicated study.

To conclude roughly, scheme (5.13) converges when Hη is in the flat setting. More precisely, Prop. 2.3
and Prop. 2.4 hold, with the necessary adaptations of notations and hypothesis. In the convex setting, no
such results hold. Coming back to Lotka-Volterra integral equation, with Hamiltonian 3.1, one can notice
that the tensor product of non necessarily non-negative convex discrete Hamiltonian Hη is not convex. Hence,
the tensor product of the examples of discrete Hamiltonians of Section 3 does not give any example of multi-
dimensional discrete Hamiltonian which would be in the convex setting but not in the flat setting. The
investigation of the convergence of scheme (5.13) in the convex setting is postponed to a future work.

A Asymptotic-preserving property of (Sε)
A.1 Proof of Prop. 3.3
In this section, we show that scheme (Sε) is well-posed, and we prove stability estimates, which are uniform
w.r.t. ε, if ε is small enough. Suppose that the hypothesis of Prop. 3.3 are satisfied. The proof we propose
above strongly relies on the monotony of (3.3), as for the proof of Prop. (2.3). Note also that, it is close with
the proof of the stability Lemma in [7] although technical details are different. It is done by induction on the
time step. Since, the items of Prop. 3.3 are true for the initial data, suppose now that vn is constructed such
that (i)-(ii)-(iv) hold. We show that there exists an unique pair (vn+1, Jn+1) satisfying (Sε), and that it
satisfies (i)-(ii)-(iii)-(iv).

The well-posedness of (Sε) is immediate remarking that Jn+1 is solution of

Jn+1 = ∆x
∑

i∈Z
ψ(xi)e

−(MJn+1

ε (vn)i−∆tR(tn+1,xi,J
n+1))/ε, (A.1)

that the right-hand side of this equality is decreasing w.r.t Jn+1 thanks to (A6) and Lemma 3.2, and that the
left-hand side in increasing. In other words, Jn+1 is the unique solution of φAP(J) = 0, with

φAP : J 7→ J −∆x
∑

i∈Z
ψ(xi)e

−(MJ
ε (v

n)−∆tR(tn+1,xi,J))/ε. (A.2)

Since (A.1) has an unique solution, it can be plugged in (Sε) so that vn+1 is also uniquely determined.
Remark A.1. In practice, Jn+1 is computed using Newton’s method for the equation φAP(J) = 0. However,
depending on the expressions of R and b, the computation of the iterations may be tricky. Moreover, the
dependency in ε forbids the use of approximated Newton’s method. Indeed, the problem becomes stiff when
ε → 0, and more computational time would be needed for small ε (if the resolution does not simply break).
To avoid this issue, automatic differentiation should be used.
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The bound from below for Jn+1 in (iii) is obtained from

φAP(J) ⩽ J −∆xψ(xj)e
−(MJ

ε (v
n)j−∆tR(tn+1,xj ,J))/ε,

which holds for all j ∈ Z and for all J ∈ R. Moreover, as b is positive, and thanks to (iv), the expression of
MJ

ε in (3.3) yields for j ∈ Z, such that vnj = minvn,

MJ
ε (v

n)j ⩽ vnj ⩽ cMε,

so that for all J ⩽ Im/2,

φAP(J) ⩽ φAP(Im/2) ⩽
Im
2

−∆xψme−cM e∆tR(tn+1,xj ,Im/2)/ε,

where the fact that φAP is increasing was used for the first inequality, and (A19) in the second. Then (A6)-(A7)
yield,

R(tn+1, xj , Im/2) ⩾ R(tn+1, xi, Im) +
Im
2K

⩾
Im
2K

,

and hence,

∀J ⩽ Im/2, φ
AP(J) ⩽

Im
2

−∆xψme−cM e∆t Im
2εK −→

ε→0
−∞.

One can conclude that there exists ε1 > 0, which depends only on Im, ψm, cM , K, ∆t and ∆x, such that for
all ε < ε1 and for all J ⩽ Im/2, φAP(J) < 0. As φAP is increasing, it gives the bound from below for Jn+1

∀ε < ε1, Jn+1 ⩾ Im/2. (A.3)

Remark A.2. We emphasize on the fact that ε1 determined above can be fixed once for all, and such that is
does not depend on n.

The propagation of the bound from below of vn in (ii) is a straightforward consequence of Lemma 3.2.
Indeed, as (3.6) is satisfied, for all i ∈ Z,

MJn+1

ε (vn)i ⩾ a|xi|+ β
tn

− bM∆t∆z
∑

k∈Z
K(zk)e

a|zk|,

and since R is decreasing w.r.t. J , assumption (A8) gives

R(tn+1, xi, J
n+1) ⩽ R(tn+1, xi, Im/2) ⩽ K.

Hence, property (ii) is obtained with the choice

β
tn+1 = β

tn
− bM∆t∆z

∑

k∈Z
K(zk)e

a|xi| −∆tK,

and together with (A.3), it yields the bound of minvn+1. Indeed, we have

Im/2 ⩽ Jn+1 = ∆x
∑

i∈Z
ψ(xi)e

−vn+1
i /ep ⩽ ∆xψM


∑

|i|⩽N

e−vn+1
i /ε +

∑

|i|>N

e−(β
T
−a|x0|+a|xi−x0|)/ε


 ,

for any N ∈ N. As xi − x0 = i∆x, the above expression is simplified, such that

Im/2 ⩽ (2N − 1)∆xψMe−minvn+1/ε +
2∆xψMe−(β

T
−a|x0|+aN∆x)/ε

1− e−a∆x/ε
.

One can now fix N such that β
T
− a|x0|+ aN∆x > 0, and determine ε2 > 0 such that

∀ε ∈ (0, ε2),
2∆xψMe−(β

T
−a|x0|+aN∆x)/ε

1− e−a∆x/ε
⩽ Im/4.

This gives minvn+1 ⩽ εcM , with

cM = max

{
− ln

(
Im

4(2N − 1)∆xψM

)
, cinM

}
.
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Remark A.3. Note that N , ε2 and cM only depend on the constants arising in the assumptions, and of ∆x.
They can hence be fixed once for all, and they are independent on n.

The upper bound for Jn+1 is a consequence of the monotony of MJ
ε , and of the previous result. Indeed,

as (3.6) is satisfied, and since the inequality vni ⩾ cmε, holds for all i ∈ Z, it can be propagated so that

∀i ∈ Z, ∀J ∈ R, MJ
ε (v

n)i ⩾ cmε−∆t∆zbM
∑

k∈Z
K(zk),

where we used (A3). Consider now vn+1 at point j such that vn+1
j = minvn+1. Such a minimum point exists,

since vn+1 satisfies (ii). Coming back to the expression of (Sε),

∆tR(tn+1, xj , J
n+1) = MJn+1

ε (vn)j − vn+1
j (A.4)

⩾ (cm − cM )ε−∆tbM∆z
∑

k∈Z
K(zk) + ∆tR(tn+1, xj , IM ),

thanks to (A7). We conclude using (A6), to get another bound from below for R(tn+1, xj , IM ),

R(tn+1, xj , IM ) ⩾ R(tn+1, xj , 2IM ) +
IM
K1

,

which is plugged in (A.4), to get with (A7)-(3.5)

∆tR(tn+1, xj , J
n+1) ⩾ ∆tR(tn+1, xj , 2IM )− ε(cM − cm) +

∆t

2
.

Then, we define ε3 such that for all ε ∈ (0, ε3), −ε(cM −cm)+ ∆t
2 ⩾ 0, and (A6) eventually yields Jn+1 ⩽ 2IM ,

that is the second inequality in (iii).

Remark A.4. Once again, we emphasize on the fact that ε3 depends only on the constants defined in the
assumptions and on ∆t. In particular, it does not depend on n.

The bound from below of minvn+1 is straightforward using Jn+1 ⩽ 2IM . Indeed, for all i ∈ Z,

ψm∆xe−vn+1
i /ε ⩽ ∆x

∑

i∈Z
ψ(xi)e

−vn+1
i /ε = Jn+1 ⩽ 2IM ,

so that (iv) holds, with cm independent of n. One can for instance consider

cm = min

{
− ln

(
2IM
ψm∆x

)
, cinm

}
.

The Lipschitz bound (i) is then a consequence of (3.6), of Lemma 3.2, and of (iii). To conclude the proof,
we eventually define ε0 = min(ε1, ε2, ε3), such that items (i)-(ii)-(iii)-(iv) hold.

A.2 Proof of Prop. 3.4
As previously, the proof of Prop. 3.4 is done by induction. Thanks to the assumptions, there exists u0 such
that ∥u0 − v0∥∞ −→ε→0 0 and that minu0 = 0. We suppose that it is true for a given n ∈ [[0, NT − 1]], and
we show that there exists un+1, and In+1 such that

∥∥vn+1 − un+1
∥∥
∞ −→

ε→0
0, and Jn+1 −→

ε→0
In+1,

and that u and I satisfy scheme (S0). First of all, Prop. 3.3 gives that (Jn+1)ε∈(0,ε0] is uniformly bounded
w.r.t. ε. Hence, there exists In+1 such that Jn+1 −→ε→0 I

n+1, up to an extraction. Consider now this
extraction and define un+1,In+1

as in the first line of (S0). Let us show that
∥∥∥vn+1 − un+1,In+1

∥∥∥
∞

−→
ε→0

0, (A.5)

and that minun+1,In+1

= 0. Let i ∈ Z, one has, with (Sε) and (S0),
∣∣∣vn+1

i − un+1,In+1

i

∣∣∣ ⩽∆t
∣∣R
(
tn+1, xi, I

n+1
)
−R

(
tn+1, xi, J

n+1
)∣∣+

∣∣∣MIn+1

0 (un)i −MJn+1

0 (un)i

∣∣∣
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+
∣∣∣MJn+1

0 (un)i −MJn+1

0 (vn)i

∣∣∣+
∣∣∣MJn+1

0 (vn)i −MJn+1

ε (vn)i

∣∣∣ ,

where the three first terms can be easily estimated. Indeed, using (A6), one has
∣∣R
(
tn+1, xi, I

n+1
)
−R

(
tn+1, xi, J

n+1
)∣∣ ⩽ K|In+1 − Jn+1|,

while the definition of MI
0 in (3.7), the fact that b is bM -Lipschitz (see (A4)), and that un is Lipx(tn)-Lipschitz

(Prop. 2.3-(i)) yield
∣∣∣MIn+1

0 (un)i −MJn+1

0 (un)i

∣∣∣ ⩽ bM
∣∣In+1 − Jn+1

∣∣∆t∆z
∑

k∈Z
K(zk)e

|zk|Lipx(t
n).

Eventually, as MJn+1

0 satisfies Lemma 3.2,
∥∥∥MJn+1

0 (un)−MJn+1

0 (vn)
∥∥∥
∞

⩽ ∥un − vn∥∞.

The estimate of the last term is obtained thanks to its expression. It is rewritten to obtain

1

∆t∆z

∣∣∣MJn+1

0 (vn)i −MJn+1

ε (vn)i

∣∣∣

⩽
∑

k⩾0

K (zk)
∣∣b
(
xi + εzk, J

n+1
)
− b

(
xi, J

n+1
)∣∣ e−zk(vn

i+1−vn
i )/∆x

+
∑

k⩽−1

K (zk)
∣∣b
(
xi + εzk, J

n+1
)
− b

(
xi, J

n+1
)∣∣ e−zk(vn

i −vn
i−1)/∆x

+
∑

εzk⩾∆x

K (zk) b
(
xi + εzk, J

n+1
)
e−zk(vn

i+1−vn
i )/∆x

+
∑

εzk⩽−∆x

K (zk) b
(
xi + εzk, J

n+1
)
e−zk(vn

i −vn
i−1)/∆x

+
∑

ε|zk|⩾∆x

K (zk) b
(
xi + εzk, J

n+1
)
e(ṽi,k−vn

i )/ε.

Then, Prop. 3.3-(i) and (A4) yield

1

∆t∆z

∣∣∣MJn+1

0 (vn)i −MJn+1

ε (vn)i

∣∣∣ ⩽ ε bM
∑

k∈Z
K (zk) |zk| e|zk|Lipx(t

n)

+ 2bM
∑

ε|zk|⩾∆x

K (zk) e
|zk|Lipx(t

n),

so that
∥∥∥MJn+1

0 (vn)−MJn+1

ε (vn)
∥∥∥
∞

−→ε→0 0. Equation (A.5) is a consequence of these estimates, and

property minun+1,In+1

= 0 comes from Prop. 3.3-(iv).
To conclude the proof, one has to show that all extractions of

(
Jn+1

)
ε∈(0,ε0)

converge to the same limit.We
argue by contradiction, supposing that there are two extractions converging respectively to In+1

a and In+1
b ,

with In+1
a < In+1

b . With the same notations as above, it provides two extractions of (vn+1
i )ε∈(0,ε0), which

converge respectively to u
n+1,In+1

a
i and u

n+1,In+1
b

i when ε → 0, with minun+1,In+1
a = minun+1,In+1

b = 0.
However, considering

u
n+1,In+1

a
i − u

n+1,In+1
b

i = MIn+1
a

0 (un)i −MIn+1
b

0 (un)i +∆t
(
R
(
tn+1, xi, I

n+1
b

)
−R

(
tn+1, xi, I

n+1
a

))
,

at the minimum point of un+1,In+1
b yields a contradiction, since I 7→ MI

0(u
n)i is non-decreasing (see Remark

3.4), and thanks to (A6).
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