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Concentration inhomogeneities occur in many flows of non-Brownian suspensions. Their

modeling requires describing the relative motion of the particle phase and of the fluid phase

and accounting for their interaction, which is the object of the Suspension Balance Model

(SBM). We systematically investigate the dynamics and the steady-state of shear-induced

migration in a wide-gap Couette flow for a wide range of particle volume fraction, and we

test the ability of the SBM to account for the observations. We use a model suspension

for which macroscopic particle stresses are known. Surprisingly, the observed magnitude

of migration is much lower than that predicted by the SBM when the particle stress in the

model is matched with the macroscopic particle stress. Another remarkable observation is

the quasi-absence of migration for semi-dilute suspensions. From the steady-state volume

fraction profiles, we derive the local particle normal stress at the origin of shear-induced

migration according to the SBM. However, the observed dynamics of migration is much

faster than that predicted by the SBM when using this stress in the model. This suggests

that there is a missing term in the usual macroscopic constitutive law for the particle nor-

mal stress driving migration. The SBM is indeed capable of accurately predicting both

the magnitude and the dynamics of migration when a phenomenological term involving a

concentration gradient is added to the particle normal stresses determined in macroscopic

experiments.
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I. INTRODUCTION

Suspensions of non-Brownian particles in a Newtonian fluid display non-Newtonian behav-

iors in the non-dilute regime, such as shear thinning, shear thickening, and normal-stress differ-

ences1–3. These behaviors have been found to be associated with the existence of direct interpar-

ticle frictional contacts. The often-observed shear thinning has been shown to result from non-

Coulomb friction between the particles4–7. Shear thickening has been related to the emergence of

frictional contacts when hydrodynamic forces overcome a short-range repulsive force between the

particles8–12. Normal stress differences are known to stem from the anisotropic microstructure that

forms due to direct contacts between pairs of rough particles, which break the fore-aft symmetry

of purely hydrodynamic interactions13,14.

From a micromechanical point of view, contacts impact the suspension total stress as the con-

tribution to the bulk stress due to the presence of the particles contains both contact and hydro-

dynamic parts1,15. In the dense regime (typically for particle volume fraction φ ≳ 40%), the part

coming from direct contact interactions between the particles even prevails over that coming from

hydrodynamic interactions16. Knowledge of these stresses is essential to understand and model

the non-Newtonian behaviors mentioned above. It is also key for understanding the concentra-

tion inhomogeneities that appear in many flows of non-Brownian suspensions and that are also a

manifestation of non-Newtonian effects. While the bulk suspension is incompressible, the particle

phase is compressible and can thus suffer density changes under the action of the normal compo-

nents of the particle-phase stress. This later particle stress is a crucial element of the two-phase

modeling of the suspension, termed the suspension balance model (SBM) in the case of viscous

suspensions17–20, which is detailed in Appendix A. It contains the same contact part as that in-

cluded in the suspension total stress mentioned above, but also a hydrodynamic part that is more

elusive, as it has been shown to differ from that contained in the suspension total stress19,20.

Concentration inhomogeneities in suspensions are exemplified in the phenomenon of shear-

induced migration of particles observed in Couette flows21–24, tube and channel flows25–27, and in

extrusion geometries28. In such flows, the particles tend to migrate from the zones of high shear,

where particle stresses are high, to the zones of low shear, where particle stresses are low. In

other words, in these geometries, the particle normal stresses are unbalanced in the initially ho-

mogeneous suspension. This leads to particle migration, which stops when particle stress balance

is achieved. This balance is ultimately reached owing to volume fraction inhomogeneities, since
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particle stresses increase with increasing volume fraction. The SBM introduced above describes

this migration phenomenon by relating the migration flux to the divergence of the normal stress of

the particle phase; see Appendix A. Since there is a closure problem in the two-phase modeling,

it is crucial to have robust constitutive rheological laws and, in particular, an accurate description

of the particle stresses as a function of the shear rate and of the volume fraction.

Particle stresses are hard to measure experimentally. Specific rheometers have to be designed

for their determination. They are all based on the same principle: the suspension is in contact with

a grid of pore size smaller than the particle size, permitting the fluid to pass through but retaining

the particles. In volume-imposed experiments, the fluid pressure is measured through the grid29–31,

and the particle stress normal to the grid is calculated as the total normal stress exerted on the

same surface minus this fluid pressure. In pressure-imposed experiments, the particle pressure

is directly applied onto the grid32 and relative motion of the pure fluid and the grid leads to a

change of the particle volume fraction until a steady state is reached; alternatively, the fluid can

be sucked through the grid to impose the fluid pressure33. It is yet unclear whether the normal

stresses measured in these experiments are identical to the particle normal stresses of the two-phase

description of the SBM or not. They may account only for the contact contribution, as they are

measured behind a grid and usually in the dense regime where contacts are dominant. It should also

be noted that these measurements are performed in homogeneous suspensions, and therefore are

unlikely to include the hydrodynamic part of the particle stresses involving concentration gradients

(see Appendix A).

The overall macroscopic rheological description of the bulk and particle stresses that emerges

for frictional suspensions of rigid spheres is given as follows. In a simple shear flow at a shear rate

γ̇ , the suspension shear stress is

τ = ηs(φ/φj)ηfγ̇, (1)

with ηf the suspending-fluid viscosity. The relative suspension viscosity ηs increases with in-

creasing φ and diverges when approaching the jamming transition at the maximum flowable vol-

ume fraction φj. For frictional spheres, φj is smaller than the random close packing fraction and

depends on the particle-size dispersion and on the frictional interactions between the particles8.

In this framework, all non-linear effects are encoded in the possible dependence of φj on the ap-

plied shear stress4,5,12,34. For monodisperse frictional hard spheres, the dimensionless viscosity
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ηs(φ/φj) is well described by the Eilers function3

ηs(φ/φj) =
(

1+
5
4

φ

1−φ/φj

)2
, (2)

for a wide range of systems.

The particle normal stresses are less known. However, recent measurements tend to show that,

defining the directions 1, 2, and 3, as the flow, the velocity gradient, and the vorticity directions,

respectively, the particle normal stresses follow3:

σ
p
11 ≃ σ

p
22 ≃ 2σ

p
33, (3)

σ
p
22 = ηn(φ/φj)ηfγ̇. (4)

The exact values of the particle normal stress ratios are still debated3; moreover, these ratios may

depend slightly on φ 30. For the sake of simplicity, we use Eqs. (3) and (4) as it does not change

significantly the conclusions of the present work.

The relative normal viscosity ηn(φ/φj) has the same divergence as the relative shear viscosity

at the approach of jamming. It can be rewritten as

ηn(φ/φj) =
ηs(φ/φj)

µ(φ/φj)
, (5)

where µ(φ/φj) is the macroscopic friction coefficient of the suspension. For frictional spheres,

µ(φ/φj) is a decreasing function of φ/φj, which tends towards a finite value of order 0.3-0.4 at the

jamming transition and diverges as φ vanishes.

Given the strong dependence of φj, and consequently of ηs(φ/φj) and ηn(φ/φj), on the de-

tails of interparticle interactions, it is crucial to obtain the complete information – suspension

stresses, particle stresses, and volume fraction fields – on the same combination of fluid and parti-

cles if one wishes to achieve an in-depth testing of the SBM. As mentioned earlier, the non-linear

macroscopic rheological behaviors in suspensions originate from microscopic particle-particle

contact and interaction with the surrounding liquid. In particular, it has been shown that the same

(polystyrene) particles dispersed in different solvents give rise to very different behaviors, linked

to changes in the interparticle contact forces7. This is why it is important to study shear-induced

migration for a reference mixture having a well-characterized rheological behavior.

Such consistent sets of data are unfortunately rare in the literature. E.g., in the seminal work

of Morris and Boulay 18 on the SBM, data for the viscosity, normal stresses, and migration orig-

inate from different systems. The only consistent set of data that we are aware of is for PMMA
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particles suspended in various mixtures of water and Triton X-100. For this combination, the

macroscopic rheology (including particle stresses) has been characterized by Boyer, Guazzelli, and

Pouliquen 32 with further confirmation by Etcheverry, Forterre, and Metzger 33 , and shear-induced

migration has been investigated in a pipe flow by Snook, Butler, and Guazzelli 27 and in Couette

cells by Sarabian et al. 24 and d’Ambrosio, Blanc, and Lemaire 35 . The predictions of the SBM

using the macroscopic rheological measurements of Boyer, Guazzelli, and Pouliquen 32 provide

reasonable concentration profiles in the pipe flow experiments of Snook, Butler, and Guazzelli 27

at large bulk volume fraction, but discrepancies regarding the centerline concentration and the

rate of migration are seen at bulk volume fractions < 40%. The steady-state migration profiles

found by d’Ambrosio, Blanc, and Lemaire 35 in a Couette cell are in good agreement with those

predicted by the SBM with the particle stresses found by Boyer, Guazzelli, and Pouliquen 32 .

However, d’Ambrosio, Blanc, and Lemaire 35 did not characterize the dynamics of migration. By

investigating the transient and steady-state profiles in a Couette cell, Sarabian et al. 24 found that

the particle stresses measured by Boyer, Guazzelli, and Pouliquen 32 actually fail to model the

dynamics of migration when injected in the SBM. Discrepancies between the SBM and the ex-

periments are also seen in the shear-induced resuspension experiments of d’Ambrosio, Blanc, and

Lemaire 35,36 with negatively-buoyant suspension. In this case, no radial migration is observed,

which seems inconsistent with the SBM and the particle stress determined in the same work.

In this paper, we propose to revisit this question by investigating in detail both the dynamics and

the steady-state of shear-induced migration of a non-Brownian suspension in a wide-gap Couette

geometry, in the whole range of bulk particle volume fraction. Our goal is to test the SBM and

to see whether macroscopic particle stress measurements and migration data can be reconciled.

We use a suspension which has been characterized extensively in the literature (more details are

provided in Sec. II A and in Appendix B). Surprisingly, the observed magnitude of migration is

much lower than that predicted by the SBM when the particle stress in the model is matched with

the macroscopic particle stress. Another remarkable observation is the quasi absence of migration

for semi-dilute suspensions. From the steady-state volume fraction profiles, we derive the local

particle normal stress at the origin of shear-induced migration according to the SBM. However,

the observed dynamics of migration is much faster than that predicted by the SBM when using this

stress in the model. This suggests that there may be a missing term in the particle normal stress

driving migration. The SBM is indeed capable of accurately predicting both the magnitude and

the dynamics of migration when a phenomenological term involving a concentration gradient is
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added to the particle normal stresses determined in macroscopic experiments.

In Sec. II, we describe the particles and fluid used in this study, and we recall the macroscopic

results obtained for this system in the literature. We also present the setup used to measure ve-

locity and concentration profiles, and show how the measurements can be analyzed to derive the

suspension viscosity and the particle normal stress at the origin of migration. In Sec. III, we

present the results regarding the steady-state and the dynamics of migration, and we compare the

particle stress at the origin of migration according to the SBM to that measured in macroscopic

experiments. In Sec. IV, we finally compare the predictions of the SBM to the experimental ob-

servations for three different sets of constitutive equations. Conclusions are drawn in Sec. V.

II. EXPERIMENTAL TECHNIQUES

A. Particles and fluid

We study suspensions of monodisperse spherical particles in a Newtonian fluid. The particles

are polystyrene (PS, from MicroBeads) beads of density 1.05 and of 140 µm diameter, with a

5% dispersion in size. The fluid is poly(ethylene glycol-ran-polypropylene glycol) monobutyl

ether (PEG, from Sigma); its viscosity is ηf = 2.1 Pa.s at 25◦C and its density is 1.05. There is

negligible density difference between the particles and the fluid, which is supported by vertical

volume fraction profiles measurements, which show no sign of sedimentation or creaming during

the experiments. Suspensions have been prepared at various volume fractions ranging from the

semi-dilute to the dense regime: 6%, 10%, 14%, 18%, 20%, 23%, 26%, 30%, 40%, 45%, 50%,

53%, 54.5%, and 56%.

An advantage of suspensions of PS beads suspended in PEG is that their macroscopic behavior

has been documented by several groups in the literature. The same system as that presently used

has been studied by Deboeuf et al. 29 and Garland et al. 31 , who have measured the shear stress τ

and the interstitial fluid pressure pf in a Couette geometry; in addition, Garland et al. 31 have mea-

sured the normal stress σ22, which, in combination with pf, provides the particle stress σ
p
22. This

system has also been studied by Boyer, Pouliquen, and Guazzelli 37 , who have characterized the

shear viscosity of homogeneous suspensions. Other data have been obtained by Boyer, Guazzelli,

and Pouliquen 32 and Tapia, Pouliquen, and Guazzelli 34 on larger PS particles (of 580 µm diam-

eter) in PEG, with a pressure-imposed rheometer; they have obtained the particle stress σ
p
22 and
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the suspension shear stress τ in the dense regime, i.e., for φ ≳ 45%. Other relevant data have

been obtained with the same PS particles (of 140 µm diameter) suspended in a fluid of very close

physicochemical nature – a polyalkylene glycol (UCON oil 75H90000 from Dow) mixed with a

water solution – by Dbouk, Lobry, and Lemaire 30 , who have characterized both the macroscopic

behavior and the particle stresses within a parallel-plate geometry thanks to a combination of

interstitial-fluid pressure and normal stress profiles measurements. All these data are shown and

discussed in Appendix. B, and compared with our local data in Sec. III A.

B. Methods

We study the flows of the suspensions in a wide-gap Couette geometry with the help of Nuclear

Magnetic Resonance (NMR) techniques, which provide the suspension velocity and particle vol-

ume fraction profiles as a function of time. This setup has been described in detail several times

elsewhere23,38,39. We give here a short description and discuss how the data can be processed to

extract a shear viscosity and a particle normal stress.

We use a wide-gap Couette geometry of inner radius Ri = 3 cm and outer radius Ro = 5.1 cm.

The inner cylinder height is H = 11 cm; it is inserted at 2 cm from the bottom of the cup to avoid

end-effects affecting the flow within the gap40. We use a serrated cylinder (roughness, 500 µm)

to avoid wall slip41. We did not observe any velocity discontinuity close to the cylinders, which

is consistent with a negligible wall slip. The Couette cell is inserted in a Magnetic Resonance

Imaging (MRI) scanner and proton NMR42,43 is used as a non-intrusive technique to measure

the local material velocity and the local particle concentration inside the gap. Experiments are

performed with a 0.5 T proton MRI scanner (Bruker Advance 24/80 DBX) operating at 20 MHz.

It is equipped with a birdcage RF coil (20 cm inner diameter) and a 3D gradient system (BGA26-

Bruker). We use a home-made NMR-compliant rheometer fully described in Ref. 38.

All data are averaged over 2 cm in the middle of the cell in the vertical direction, over 1 cm

in the azimuthal direction, and measured with a resolution of 110 µm in the radial direction. We

checked the homogeneity of the velocity and concentration profiles along the vertical direction,

which justifies averaging data. Note that in the sequences we use, only NMR signal originating

from the hydrogen nuclei belonging to the liquid phase of the sample is recorded.

Azimuthal velocity profiles V (r) are obtained with a combination of a spin-echo–spin-warp

imaging technique and a phase-encoded velocimetry42,43; more details are found in Refs. 38, 44,
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and 45. A single velocity measurement may take as little as 1 s. Particle concentration profiles

φ(r) are obtained with a spin-echo sequence42; NMR data are recorded during a readout gradient

and Fourier transformed in order to obtain information about the hydrogen density in the liquid

phase along the radial direction; more details can be found in Ref. 23. A concentration profile is

evaluated in 3 min. It can be measured either on the material at rest after a given shear history

or on the flowing material when the rotational speed is lower than 20 rpm (otherwise the signal is

lost during the measurement). In order to characterize the dynamics of shear-induced migration,

we have chosen here to rely on the velocity profiles evolution in time, which have a much better

accuracy than the concentration profiles and can be measured continuously in time.

In the experiments, we control the rotational speed Ω of the Couette cell inner cylinder. The

setup is not equipped with a torque probe. To measure the torque, the same experiment has to

be performed again with a rheometer in order to obtain the torque T (Ω) relationship, as done in

Ref. 23. As we show below, this is not a necessary step to analyze the results.

For each experiment, after loading the material, we first measure the volume fraction profile

at rest in order to check that the material is initially homogeneous. We have observed that all

suspensions prepared at volume fraction φ ranging from 6 to 54.5% are initially homogeneous; an

example is shown in Appendix C. The most concentrated suspension that we have prepared (φ =

56%) is initially inhomogeneous due to the shear flow induced by the loading (see Appendix D);

we did not study this suspension further.

Afterward, we apply a constant rotational speed Ω ranging from 1 to 120 rpm, and we measure

continuously the evolution of the suspension velocity V (r, t) in time until steady-state is reached.

For viscous suspensions, it is more relevant to study the dynamics as a function of strain than as a

function of time; this is confirmed in our experiments, where changing the rotational speed by two

orders of magnitude leads to the same velocity variations as a function of strain. Here, we simply

estimate the macroscopic strain Γ as

Γ = Ωt. (6)

When steady-state is reached, we stop the rotor rotation, and we measure the volume fraction

profile φ(r) on the fully migrated state. NMR does not provide quantitative concentration mea-

surements near the edges23. Therefore, the volume fraction cannot be accessed in a 2–3-mm zone

near the inner and outer cylinders. However, the velocity can be measured in these zones.

From these measurements, we extract the local suspension viscosity and the local friction co-

efficient as a function of the local particle volume fraction using the procedure described below.
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Local viscosity measurement

The local shear rate γ̇(r) at a radial position r in the gap can be deduced from V (r) as

γ̇(r) =V (r)/r−∂rV (r). (7)

The derivative ∂x f with respect to coordinate x of experimental data f (xi) measured at regularly

spaced positions xi is here computed as ∂x f (xi) = [ f (xi+1)− f (xi−1)]/[xi+1 − xi−1]. The stress

distribution τ(r) within the gap is obtained from the stress balance equation, which yields

τ(r) =
T (Ω)

2πr2H
, (8)

when the material is homogeneous along the vertical direction.

When a steady-state volume fraction profile φ(r) is reached, a change of variables can be

performed between r and φ in the above equations. A local stress/strain-rate relationship τ(γ̇,φ)

at a fixed and well-defined volume fraction φ(r) is then obtained by collecting the measurements

of local stress τ(r) and shear rate γ̇(r) for this single fixed r. The suspension viscosity as a function

of volume fraction follows as

η(φ(r)) =
τ(r)
γ̇(r)

. (9)

By collecting data in the whole gap within the inhomogeneous suspension, a portion of the vis-

cosity volume fraction relationship η(φ) is finally obtained for φ(Ri)< φ < φ(Ro). More details

on this methodology and its application can be found in Refs. 23, 46, and 47.

In principle, torque measurements T (Ω) need to be performed. However, it can be noted that

the relative variation of the viscosity within the gap, as compared to a reference position R1 in the

gap where the volume fraction is φ(R1), is quantitatively estimated as

η(φ(r))
η(φ(R1))

=
R2

1
r2

γ̇(r)
γ̇(R1)

, (10)

which does not require any torque measurement. The relative variation of the viscosity η with the

volume fraction φ over the whole range of φ can finally be inferred by combining local data mea-

sured at various average volume fraction. We build this curve by continuity, i.e., by overlapping

data obtained at a same local φ value for different average volume fractions. To obtain a quanti-

tative ηs(φ) curve, a last step is necessary. It consists in matching the local viscosity measured at

a given local φ value with that measured in a macroscopic experiment on a homogeneous suspen-

sion at the same φ value. Here, we have chosen to match the local data with the macroscopic data
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obtained at a moderate φ = 30% in order to infer the whole local ηs(φ) curve; at this value of φ ,

significant viscosity variation can indeed be measured macroscopically without being flawed by

migration. As shown in Sec. III, we did not obtain data in the range between 32% and 36%; local

data have thus been extrapolated in this range to ensure continuity of the local curve.

Local particle stress measurement

From the SBM discussed in Appendix A, in the absence of a diffusion term of hydrodynamic

origin in the migration equation (A10), the steady state volume fraction profile φ(r) is such that

ηn(φ(r))
ηs(φ(r))

=
1

µ(φ(r))
= Ar2, (11)

where the phenomenological expression (3) introduced in Sec. I is used, and the proportionality

factor A is obtained by ensuring mass conservation. To obtain the friction coefficient µ(φ) from

the experiments, as for the local ηs(φ) curve, we have chosen to build this curve step by step.

Assuming that the value of µ(φ) is known at a given position R1 in the gap, where the volume

fraction is φ(R1), a portion of the µ(φ) curve, for φ(Ri)< φ < φ(Ro), can be inferred from

µ(φ(r)) = µ(φ(R1))
R2

1
r2 . (12)

Then, by combining local data obtained at various average volume fraction, the relative variation of

the friction coefficient µ(φ) with the volume fraction φ over the whole range of φ can be obtained.

A quantitative µ(φ) curve is finally achieved by matching the local friction coefficient measured

at a given local φ value with that measured in a macroscopic experiment on a homogeneous sus-

pension at the same φ value. Here, we have chosen to match the local data with the expected

behavior at jamming by extrapolating our data at the jamming volume fraction. Experimental and

numerical data from the literature8,32,33 have indeed found that µ ≃ 0.35 close to jamming for

frictional suspensions, and that this value is rather insensitive to small variations in the particle

properties8. As for the local viscosity, we did not obtain data in the range between 32% and 36%;

local data have thus been extrapolated in this range to ensure continuity of the local curve. We

emphasize that this determination of a local µ(φ) is valid only under the assumption that D12 = 0

in Eq. (A10) which is the common assumption found in the literature.
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III. EXPERIMENTAL RESULTS AND COMPARISON WITH THE SBM

PREDICTIONS

A step by step analysis of the case of a 40% suspension is presented in Appendix C, to show

in detail how the data are processed. In this section, we present the data resulting from the same

analysis performed on all the studied suspensions.

In Sec. III A, we start by showing the steady-state velocity and volume fraction profiles. We

then extract the ηs(φ) and µ(φ) relationships from these measurements, as detailed in Sec. II B.

These data are compared to data from the literature presented in Sec. II A and shown in Ap-

pendix B. In Sec. III B, we then show how shear-induced migration occurs by studying the ve-

locity profiles evolution in time. The predictions of the SBM (presented in Appendix A) will be

compared to the experimental results and discussed in Sec. IV.

A. Steady state

1. Velocity and volume-fraction profiles

For clarity, only half of the measured steady-state profiles are gathered in Fig. 1, in the form of

local volume fraction variations and of dimensionless velocity profiles. Other profiles are shown

in Sec. IV. We recall that quantitative volume fraction measurements cannot be performed in a

2-3 mm region near the walls, which explains the lack of data in these regions.

In Fig. 1a, we first note that, within the experimental absolute uncertainty, previously estimated

to be ±0.2%23, the 6% suspension remains homogeneous, even after a very long time of shear

corresponding to a total macroscopic strain Γ = 7.5105. Shear-induced migration from the inner

cylinder to the outer cylinder is observed for all other studied volume fractions. The amplitude of

the volume fraction variations increases regularly as the average volume fraction is increased. The

absolute variation is of order 1% from the inner cylinder to the outer cylinder for a 10% suspension,

of order 5% for a 40% suspension, and of order 7% for a 54.5% suspension (Fig. 1a). The relative

volume fraction variation thus seems to be of the same order of magnitude for all suspensions, and

is of order 10 to 15%. The φ variations may thus be too small to be experimentally measurable in

the 6% suspension, although it is possible that there is no migration at small φ ≲ 6%, .

Consistently, the steady-state velocity profile of the 6% suspension is well-fitted to the profile

of a homogeneous Newtonian fluid (Fig. 1b). As the volume fraction is increased, the velocity pro-
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FIG. 1. (a) Local volume fraction variations ∆φ(r) (average volume fraction subtracted from the steady-state

volume fraction profiles) and (b) steady state dimensionless velocity profiles V (r)/V (Ri), for suspensions

of 6%, 10%, 14%, 26%, 40%, 50%, 53%, and 54.5% average volume fraction (see legend). The data are

plotted as a function of the dimensionless radial position r/Ri. The full line in (b) is the theoretical velocity

profile for a homogeneous Newtonian fluid.

files become more curved: the velocity decreases more and more rapidly with the radial position

near the inner cylinder. This is consistent with the shear-induced migration observed in Fig. 1a.

Indeed, the shear stress variation within the gap, from the inner cylinder to the outer cylinder, is

R2
i /R2

o in all cases (Eq. (8)). The resulting shear rate variation, which dictates the velocity cur-

vature, is then
(
ηs(φ(Ri))/ηs(φ(Ro))

)(
R2

i /R2
o
)
. This ratio becomes larger as the average volume

fraction increases for two reasons: (i) φ(Ri)− φ(Ro) increases and (ii) the viscosity variations

increase (in other words, the second derivative of the viscosity is positive for all φ ).

2. Local rheology

By combining the information given by the velocity profiles and the concentration profiles, as

detailed in Sec. II B, we build the local dimensionless viscosity and friction coefficient curves as a

function of volume fraction in Fig. 2.

The local viscosity data are in good agreement with the macroscopic data up to a 45% volume

fraction. At higher volume fraction, the local data are lower than the macroscopic data, and, con-

sequently, the data are not perfectly fitted to the rheological law – Eq. (B1) – of Boyer, Guazzelli,

and Pouliquen 32 , which nevertheless provides a reasonable correlation.
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FIG. 2. (a) Local dimensionless viscosity ηs, (b) local friction coefficient µ , and (c) local normal viscosity

ηn as a function of the local volume fraction φ , from experiments performed at various average volume

fraction (see legend). Macroscopic measurements from the literature by Dbouk, Lobry, and Lemaire 30 ,

Garland et al. 31 , Boyer, Guazzelli, and Pouliquen 32 , Tapia, Pouliquen, and Guazzelli 34 , Boyer, Pouliquen,

and Guazzelli 37 are also shown (see legend). For clarity, only the data of Boyer, Pouliquen, and Guazzelli 37

and Tapia, Pouliquen, and Guazzelli 34 are shown in (a). We recall that the local ηn and µ are deduced from

the steady-state volume fraction profiles under the assumption that there is no additional diffusion term in

the SBM. The dashed lines are the rheological laws – Eqs. (B1), (B2) and (B3) – of Boyer, Guazzelli, and

Pouliquen 32 . The full lines are the phenomenological laws Eqs. (13), (14) and (15).

Here, we find that the data are very well fitted to the simple viscosity function

ηs(φ) = 1+(5/2)φ(1−φ/φj)
−1 +(φ/φj)

2(1−φ/φj)
−2, (13)

with φj = 0.575. Note that this equation is simply Eq. (B1) with µc(φ) = 1. It has the advantage

of matching the (φj −φ)−2 divergence near jamming with the Einstein limit at low φ .

The discrepancy between local and macroscopic measurements at the approach of jamming
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may have two possible origins. First, φj is very sensitive to any variation of the interparticle fric-

tion coefficient. Although we used the same PS particles as Boyer, Guazzelli, and Pouliquen 32

and Tapia, Pouliquen, and Guazzelli 34 in the same fluid, the particles have a different diameter,

and may thus have slightly different frictional properties. Another possibility is shear-induced

migration affecting the macroscopic measurements, although migration is expected to be limited

when using annular parallel plate18 as in the experiments of Tapia, Pouliquen, and Guazzelli 34 .

Due to the viscosity divergence when approaching φj, macroscopic measurements performed in

dense suspensions are affected by any subtle change in the material volume fraction23, and migra-

tion is very hard to avoid as its development gets faster when the volume fraction is increased; it

can even occur during the material loading as shown in Appendix D for a 56% suspension.

The friction coefficient data obtained from local measurements are very different from those

obtained in macroscopic measurements, except in the dense regime. Close to jamming, the data

have been built to match the macroscopic measurements (Sec. II B). Then, as φ is decreased,

the local µ(φ) follows the same evolution as that observed by Boyer, Guazzelli, and Pouliquen 32

down to a 50% volume fraction. It subsequently increases much more than the macroscopic data.

When φ is decreased from 56% to 20%, the macroscopic friction coefficient typically increases by

a factor 10, whereas the local µ(φ) increases by a factor 100. This discrepancy is not expected to

be due to an artefact of the macroscopic measurements. It may be due to the fact that the particle

stress measured in macroscopic experiments only accounts for direct interparticle contacts and

thus is missing terms of hydrodynamic origin, as noted in Sec. I and developed in Sec. A. In

dense suspensions, however, contact forces are dominant and the impact of hydrodynamic forces

is negligible3, which might explain the good match above 50%. We will discuss this point further

when modeling migration with the SBM in Sec. IV.

To find a correlation for µ(φ) that can be used in the SBM, we need an expression that is

consistent with a strong divergence (∼ φ−3) at low φ and with Eq. (B2) for φ close to φj. We

propose the following ad-hoc expansion in (φj/φ)(1−φ/φj):

µ(φ) = µ0 +α1 ∗
(

φj

φ
(1− φ

φj
)
)
+α2

(
φj

φ
(1− φ

φj
)
)2

+α3

(
φj

φ
(1− φ

φj
)
)3

, (14)

with µ0 = 0.35, α1 = 3, α2 = 9, and α3 = 15, which provides a good fit to our experimental data

(together with φj = 0.575, as found for the viscosity). At this stage, this correlation should only

be considered as a convenient way of modeling the data in order to test the SBM.

From the local dimensionless viscosity ηs(φ) and the local friction coefficient µ(φ), the local
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FIG. 3. Evolution of the dimensionless velocity Vm measured in the middle of the gap as a function of the

macroscopic strain Γ = Ωt, for suspensions of different average volume fraction (see legend). (a) and (b)

present the same data with different scales for the two axes in order to highlight the fast migration occurring

at high φ (a) and the slow migration occurring at low φ (b).

normal viscosity ηn(φ) can be computed as ηn(φ) =ηs(φ)/µ(φ). The local ηn(φ) data are plotted

in Fig. 2c, together with macroscopic measurements from the literature. Local and macroscopic

data show some difference in the whole range of volume fraction. The local data are very well

fitted to the function obtained by combining Eqs. (13) and (14):

ηn(φ) =
ηs(φ)

µ(φ)
=

1+(5/2)φ(1−φ/φj)
−1 +(φ/φj)

2(1−φ/φj)
−2

µ0 +α1 ∗
(

φj
φ
(1− φ

φj
)
)
+α2

(
φj
φ
(1− φ

φj
)
)2

+α3

(
φj
φ
(1− φ

φj
)
)3 , (15)

with φj = 0.575, µ0 = 0.35, α1 = 3, α2 = 9, and α3 = 15.

B. Dynamics

In order to study the dynamics of shear induced migration, as discussed in Appendix C, it is

convenient to plot the time evolution of the suspension velocity in the middle of the gap of the

Couette geometry, which is very sensitive to the progressive establishment of volume fraction

gradients. The data are shown in Fig. 3 for all the studied suspensions. As observed on the steady-

state velocity profiles, the amplitude of the velocity variation increases with increasing volume

fraction. Moreover, the dynamics of this variation becomes faster.

To quantify the impact of volume fraction on the dynamics of migration, we plot in Fig. 4 the

strain Γ1/2(φ) = Ω ∗ t1/2(φ) at which half of the velocity variation is observed. This strain Γ1/2
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FIG. 4. Macroscopic strain Γ1/2(φ) = Ω∗ t1/2(φ) at which half of the velocity variation is observed in the

middle of the gap vs. average volume fraction φ : experimental data (empty squares) and prediction of the

SBM in the three cases described in the text (see legend).

decreases from ≃ 20000 to ≃ 100 when φ increases from 10% to 54.5%. The decrease of Γ1/2

with φ becomes faster when approaching jamming, with a decrease by a factor 10 from φ = 45%

to φ = 54.5%.

IV. COMPARISON WITH THE SBM

In this section, we test the predictions of the SBM against the present experiments. As de-

tailed in Appendix A, migration is driven by the divergence of the normal stress of the particle

phase. However, macroscopic measurements of this normal stress may only include its contact

portion; besides, they are performed on uniform suspensions. We have thus tentatively added

a phenomenological term involving a concentration gradient as suggested by Lhuillier 19 , i.e., a

possible diffusion term (characterized by a diffusion coefficient D12, see Eq. (A10)). To be com-

prehensive, we propose to test three different constitutive laws:

(i) We first consider the rheological laws given by Eqs. (13) and (14). These equations come

from the local rheology data derived from the steady-state velocity and volume fraction

profiles under the usual assumption D12 = 0 in the SBM (Eq. (A10)). With these constitutive

equations, the dynamics of the SBM is thus solved for D12 = 0 only.

(ii) Since the particle stress, as measured in macroscopic experiments, likely accounts for direct
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interparticle contacts only and is not consistent with Eq. (14), we also solve the SBM with

Eq. (B3) for µ(φ) and Eq. (13) for ηs(φ), together with D12 ̸= 0 in Eq. (A10) to account for

a possible term of hydrodynamic origin in the stress driving migration. Eq. (B3) is indeed in

very good agreement with direct measurements of the particle stresses for our suspension in

the literature (see Appendix B, Fig. 7). Eq. (13) is used for ηs(φ) as it is consistent with the

local viscosity measurements, in order to make sure that the velocity profiles are correctly

accounted for by the model. D12(φ) is set as a free parameter, which a priori depends on φ .

(iii) The same model is used as in (ii), but with the usual assumption D12 = 0 in the SBM for the

sake of comparison, and to understand better the impact of introducing a nonzero diffusion

coefficient in (ii).

1. Steady-state

Comparison of the steady state profiles inferred from the experiments and from the predictions

of the SBM using the three rheological laws described above are shown in Fig. 5 for nine of the

studied suspensions.

Case (i). Of course, since Eqs. (13) and (14) have been built from the steady-state velocity and

concentration profiles by assuming D12 = 0 in the SBM, a good agreement with the experimental

data is obtained when they are used in the SBM to compute the theoretical steady-state profiles.

The crucial test of the SBM lies here in the prediction of the dynamics of migration, which is

studied in the next section. It remains interesting at this stage to discuss the prediction for semi-

dilute suspensions, as it was not possible to derive local µ(φ) data from the profiles for φ ≲ 10%.

Very limited migration is predicted for the 10% suspension, with a variation from 8.5% close to

the inner cylinder to 11% close to the outer cylinder, which is in fair agreement with the observed

volume fraction profile. For the 6% suspension, the volume fraction is predicted to vary only from

5% close to the inner cylinder to 6.8% close to the outer cylinder; this is possibly too small for the

sensitivity of the NMR technique; it might also be that the divergence of µ(φ) at low φ is even

more abrupt than that extrapolated from the data in Eq. (14).

Case (iii). When D12 = 0 is assumed in the SBM, and µ(φ) is modeled by Eq. (B3), con-

sistent with the macroscopic measurements, the SBM predicts migration with a much larger

magnitude than that observed experimentally for all volume fractions below 50%, consistent with

the observed discrepancy between the local and macroscopic µ(φ) data. In the specific case of
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FIG. 5. Steady state volume fraction profiles: experimental data (squares) and predictions of the SBM

(lines) with the three sets of equations described in the text [(i): dashed-dotted line, (ii): solid line, and (iii):

dotted line]. The average volume fraction of the studied suspension is, from left to right and from top to

bottom: 6%, 10%, 14%, 20%, 30%, 40%, 45%, 50%, 54.5%.

the 6% volume fraction, the model predicts measurable shear-induced migration, in contrast with

our observation. In the dense regime, the predictions are in fair agreement with the experiments,

consistent with the good match between the macroscopic and local data for φ > 50%.

Case (ii). When D12(φ) is added as a free φ -dependent parameter, with values reported in

Tab. I, the SBM predictions match all the experimental volume fraction profiles, as the diffusive

term limits the magnitude of migration as compared to that expected from the sole contact contri-

bution. The crucial test of this rheological model now lies in the comparison between the predicted

and observed dynamics, discussed in the next section.
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φ 6% 10% 14% 20% 23% 26% 30% 40% 45% 50% 53% 54.5%

D12 10 10 10 15 20 30 75 150 250 1000 500 1000

TABLE I. Diffusion coefficient D12 used to model both the steady-state data and the dynamics of migration

in case (ii), for all average volume fractions φ investigated.

2. Dynamics

The predictions of the dynamics of migration for nine of the studied suspensions in the three

cases described above are shown in Fig. 6, where the evolution of the velocity Vm in the middle of

the gap of the Couette geometry is plotted as a function of the macroscopic strain Γ. To summarize

the predictions of three cases investigated, we also plot in Fig. 4 the strain Γ1/2(φ) at which half

of the velocity variation is found.

Case (i). Although the steady-state profiles are very well described by the SBM in this case,

the predicted dynamics of migration is much slower than that observed experimentally when φ ≲

45%. As clearly observed in Fig. 4, the departure from the experimental data increases with

decreasing φ . This shows that the proposed rheological model fails in describing the migration

flux. Interestingly, there is a fair agreement between the predictions and the observations for dense

suspensions with φ ≳ 50%. This may suggest that contacts provide the dominant contribution to

migration and that there is no need to account for any additional hydrodynamic contribution in this

dense regime.

Case (iii). When D12 = 0 is assumed in the SBM, and µ(φ) is modeled by Eq. (B3), the

predicted dynamics of migration is systematically slower than that observed experimentally. In-

terestingly, the relative variation of Γ1/2(φ) with φ shows nonetheless the same trend as the exper-

imental observation. Close to jamming, at φ = 54.5%, the predictions are in good agreement with

the experiments, which is consistent with the good match between the macroscopic and local data

for φ > 50% in Fig. 2.

Case (ii). When D12(φ) is given by the values of Tab. I which give a good match between the

predicted and the observed steady-state profiles, a remarkable agreement between the predicted

and the observed dynamics is observed as well, in the whole range of investigated volume frac-

tions. As compared to the case D12 = 0, the introduction of a diffusion coefficient simultaneously

decreases the magnitude of migration and accelerates its dynamics, in quantitative agreement with
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FIG. 6. Evolution of the velocity Vm in the middle of the gap as a function of the macroscopic strain Γ = Ωt:

experimental data (squares) and predictions of the SBM (lines) with the three sets of equations described in

the text [(i): dashed-dotted line, (ii): solid line, and (iii): dotted line]. The average volume fraction of the

studied suspension is, from left to right and from top to bottom: 10%, 14%, 20%, 23%, 30%, 40%, 45%,

50%, 54.5%. A semi-log scale is used for clarity for φ ≲ 20%.

the observations in both cases.

V. DISCUSSION AND CONCLUSIONS

In this work, we have investigated shear-induced migration for a model suspension for which

macroscopic measurements of the bulk and particle stresses can be found in the literature. We

have provided crucial testing of the SBM by comparing its predictions against both the dynamics

and the steady-state of shear-induced migration in a wide-gap Couette device.
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The SBM describes shear-induced migration by relating the migration flux to the divergence of

the normal stress of the particle phase. This modeling thus relies on having a robust macroscopic

description of the particle stress. Most of the macroscopic measurements of this particle stress,

however, may only account for the contact contribution, which prevails at large concentrations,

and may miss the hydrodynamic contribution, which is likely to be of importance for moderate

concentrations. Another problem is that these measurements are performed on uniform suspen-

sions and may thus fail to capture forces acting on the particles and involving their concentration

gradient or the gradient of the shear rate19.

If we use the simplest form of the SBM (without any diffusive gradient term), although a

particle stress consistent with the steady-state profiles can be derived, it is not possible to match

the SBM prediction with the observed dynamics as migration happens to be much faster than

predicted. However, when the particle stress in the model is matched with the particle normal

stress determined in macroscopic experiments, and when a tentative diffusive gradient term is

added to the SBM, both the magnitude of migration and its dynamics are correctly accounted for.

The main output of this work is to evidence this missing term in the usual macroscopic consti-

tutive law for the particle normal stress driving migration. At large concentrations, this term is not

so crucial as good agreement is obtained when dropped. This is consistent with the prevalence of

contacts at large concentrations. It is however crucial at moderate concentrations, where hydro-

dynamic interactions become important. Another remarkable observation is the quasi absence of

migration for semi-dilute suspensions, which is accounted for by the model with a diffusion term.

It would now be interesting to test how adding such a phenomenological diffusive term impacts

the predictions of the SBM for other flow geometries. For a Poiseuille flow, these predictions can

be easily computed. Using the same parameters as those found in the present paper, we show

in Appendix E that it might reconcile the SBM predictions and the experimental results. Indeed,

adding a diffusive gradient to the SBM, with the same D12 values as in our experiments in the

Couette cell, provides a better agreement with the experiments of Snook, Butler, and Guazzelli 27

than when the standard SBM, with D12 = 0, is considered. The case of shear-induced resuspension

is more complex to analyze as the fluid mechanics problem is 2D. It would deserve a thorough

analysis with the help of simulations in a Couette cell. We hypothesize that, in this problem, shear-

induced migration in the radial direction might be inhibited due to a diffusion term ∼ η f γ̇φD23
∂φ

∂ z

related to the vertical concentration gradient (see Eq. A7), which would explain the absence of

radial migration in the experiments of d’Ambrosio, Blanc, and Lemaire 35 .
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Appendix A: Suspension balance model (SBM)

The Suspension Balance Model (SBM) has been developed to model macroscopic spatial vari-

ation of the particle volume fraction φ due to particle migration in dispersions of rigid neutrally

buoyant particles submitted to shearing flows at low Reynolds number17–20. The equations of mo-

tion are deduced from a two-phase approach of the particulate system in which the particles and

the fluid are considered as interpenetrating continua. There is a large literature around the ways of

averaging the balances of mass and momentum at any point of the suspension48,49. The resulting

averaged equations can be written by considering either the two phases (fluid and particles) or one

phase (fluid or particles) and the bulk suspension. For viscous suspensions (and thus in the SBM),

considering bulk and particle phase equations happens to be more convenient.

The averaged balance equations for the bulk suspension (i.e., the particles and fluid mixture)

are

∇ ·U = 0, (A1)

∇ ·Σ+ρg = 0, (A2)

where U = φup + (1 − φ)uf is the volume-averaged velocity of the suspension and up and uf

the local mean particle and fluid velocities, respectively. The density of the suspension is ρ =

φρp +(1− φ)ρf where ρp and ρf are the particle and fluid density, respectively. The bulk aver-

age suspension stress is noted Σ. It is worth mentioning that the contribution to Σ due to the

presence of the particles (often called the Batchelor stress15) contains (i) a hydrodynamic part (hy-

drodynamic stresslet and higher multipoles) and (ii) a non-hydrodynamic part linked to the direct

interparticle or contact forces (Irving-Kirkwood stress)19,20.

The averaged particle mass conservation equation yields

∂φ

∂ t
+∇ · (φup) = 0, (A3)

which, using the incompressibility of the bulk suspension (Eq. (A1)), can be rewritten

∂φ

∂ t
+U ·∇φ =−∇ ·φ(up −U), (A4)

which exhibits the migration flux φ(up −U).

The averaging process performed on the particle phase gives a particle momentum equation of

the form

∇ ·σp +n⟨fh⟩p
drag +(ρp −ρf)φ g = 0. (A5)
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where σp comprises hydrodynamic and contact (or interparticle force) contributions. This later

contact stress involved in σp is identical to that included in Σ. The hydrodynamic part involved in

σp is more difficult to grasp, as it comes from the non-drag part of the interphase hydrodynamic

force and differs from the hydrodynamic part of the particle contribution to Σ19,20. The drag part

of the interphase force, n⟨fh⟩p
drag, can be written for spherical particles of diameter d as

n⟨fh⟩p
drag =−18ηf

d2
φ

f (φ)
(up −U), (A6)

with the empirical hindered settling function f (φ) = (1−φ)n (with n ≃ 5 at low Reynolds num-

bers) proposed by Richardson and Zaki 50 . The non-drag part of the interphase force, n⟨fh⟩p
non−drag,

is related to forces acting on the particles and involving their concentration gradient or the gradient

of the shear rate and can be written in the phenomenological form19

n⟨fh⟩p
non−drag i

=−ηfφ γ̇Di j
∂φ

∂x j
+ηfφBi jkl

∂ 2ul

∂x j∂xk
. (A7)

This non-drag portion can be also written as the divergence of a hydrodynamic stress20 and is

consequently included in σp in Eq. (A5).

For neutrally buoyant particles, ρ = ρp = ρf, the momentum equation (A5) together with the

expression for the drag (Eq. (A6)) provide the migration flux

φ(up −u) =
d2 f (φ)

18ηf
∇ ·σp. (A8)

Particle migration is driven by the divergence of the normal component of the particle phase stress.

As mentioned in Sec. I, there are experimental measurements of the normal stress of the particle

phase, but it is unclear whether they are able to capture thoroughly the hydrodynamic and con-

tact portions. These measurements, mostly done behind a grid, probably grab only the contact

contribution. The proposed expressions for the normal viscosity may then miss the hydrodynamic

component and may be only valid at large φ for which contact interactions prevail. In addition,

these rheology experiments performed for uniform suspensions in a steady state are unlikely to

apprehend forces acting on the particles involving gradients such as given by the phenomenolog-

ical expression (A7). It may thus be necessary to add terms of that type to the usual rheological

constitutive laws of Morris and Boulay 18 or of Boyer, Guazzelli, and Pouliquen 32 .

In the cylindrical Couette geometry, when using the phenomenological expressions (3) and (5)

introduced in Sec. I, the migration equation given by Eqs. (A4) and (A8) becomes

∂φ

∂ t
=

d2

18
∂

r∂ r

[
r(1−φ)n ∂ηnγ̇

∂ r

]
, (A9)
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in the absence of any additional forces such as the phenomenological forces of Eq. (A7); this is the

most common migration equation found in the literature18. When a force due to a concentration

gradient of the form of the first term of Eq. (A7) is included, the migration equation becomes

∂φ

∂ t
=

d2

18
∂

r∂ r

[
r(1−φ)n

(
∂ηnγ̇

∂ r
+D12γ̇φ

∂φ

∂ r

)]
, (A10)

where D12 is a dimensionless diffusion coefficient; Eq. (A9) is recovered with D12 = 0. The shear

rate γ̇ is obtained by solving the suspension momentum equation across the Couette gap:

d
dr

(r2
ηsγ̇) = 0, (A11)

which gives

ηsγ̇ =−Ω

r2

[∫ Ro

Ri

dr/ηsr3
]−1

, (A12)

where Ω is the rotational speed of the inner cylinder. Moreover, the cross-stream migration flux

has to be null at the inner and outer boundary, i.e., at r = Ri and r = Ro.

In dimensionless form (using Ri as the length scale and ω−1 as the timescale), Eq. (A10)

becomes
∂φ

∂ t̂
=

d2

18R2
i

∂

r̂∂ r̂

[
r̂(1−φ)n

(
∂ηn ˆ̇γ

∂ r̂
+D12 ˆ̇γφ

∂φ

∂ r̂

)]
, (A13)

with the dimensionless shear rate ˆ̇γ given by

ηs ˆ̇γ =− 1
r̂2

[∫ Ro/Ri

1
dr̂/ηsr̂3

]−1

. (A14)

To solve these equations, we need to choose rheological laws for ηs and ηn. In this paper, we have

tested three cases, as described in Sec. IV:

(i) ηs(φ) and µ(φ) given by Eqs. (13) and (14), as derived from the steady-state profiles in

Sec. III A 2, with no diffusion term, i.e., D12 = 0 in Eq. (A10).

(ii) Eq. (B3) for µ(φ) and Eq. (13) for ηs(φ) (this set of equations is a slightly modified form of

the Boyer, Guazzelli, and Pouliquen 32 model). Eq. (B3) is consistent with direct measure-

ments of the particle stresses for our suspensions (see Sec. II A, Fig. 7) and a priori accounts

for contact forces only. D12(φ) is here set as a free parameter, which a priori depends on φ ,

to account for possible hydrodynamic forces.

(iii) The same model is used as in (ii), but with the usual assumption D12 = 0 in the SBM for

comparison.
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FIG. 7. Macroscopic measurements from the literature by Dbouk, Lobry, and Lemaire 30 , Garland

et al. 31 , Boyer, Guazzelli, and Pouliquen 32 , Tapia, Pouliquen, and Guazzelli 34 , Boyer, Pouliquen, and

Guazzelli 37 (see legend). (a) Dimensionless viscosity ηs, and (b) friction coefficient µ as a function of

volume fraction φ . The lines are the rheological laws – Eqs. (B1), (B2) and (B3) – of Boyer, Guazzelli, and

Pouliquen 32 .

In the three cases, the exponent of the Richardson-Zaki correlation is taken to be n = 5. The

steady-state volume fraction profile φ(r) for (i) and (iii) is easily computed as

ηn(φ(r))
ηs(φ(r))

=
1

µ(φ(r))
= Ar2, (A15)

where the proportionality factor A is obtained by ensuring mass conservation. There is no analyt-

ical solution for the dynamics of φ . The equations are thus solved numerically with an ordinary

differential equation solver.

Appendix B: Macroscopic data from the literature

Macroscopic data from the literature on systems similar to ours (described in Sec. II A) are

displayed in Fig. 7. Altogether, they provide a full macroscopic characterization of our system

in the whole range of volume fraction, from the semi-dilute regime to the dense regime. All the

viscosity data collapse quite well, whereas there is some scatter on the friction coefficient data.

This points to the specific difficulty of performing particle normal stress measurements; it might

be due to the differences in the geometries that are used and in the way particle stress is obtained

as mentioned in Sec. I.
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Boyer, Guazzelli, and Pouliquen 32 have proposed the following functions to describe the rhe-

ology of these suspensions:

ηs(φ) = 1+(5/2)φ(1−φ/φj)
−1 +µ

c(φ)(φ/φj)
2(1−φ/φj)

−2 (B1)

ηn(φ) = (φ/φj)
2(1−φ/φj)

−2 (B2)

µ(φ) =
ηs(φ)

ηn(φ)
= µ

c(φ)+(5/2)φj(φ/φj)
−1(1−φ/φj)+(φ/φj)

−2(1−φ/φj)
2 (B3)

with φj = 0.585, µc(φ) = µ1+(µ2−µ1)/[1+ I0φ 2(φj−φ)−2] and µ1 = 0.32,µ2 = 0.7, I0 = 0.005.

These expressions yield a fair fit to all the viscosity data, as well as to the friction coefficient

measured by Boyer, Guazzelli, and Pouliquen 32 and Dbouk, Lobry, and Lemaire 30 .

It should be noted that suspensions prepared with PEG show only very weak shear thinning7,30,32,37,

which makes the analysis of the data easier. This contrasts with suspensions of PS particles in sili-

cone oil where strong shear thinning is observed6,7, which implies to use a shear-stress-dependent

φj in the modeling. In this last case, shear thinning is consistent with the observed decrease of the

interparticle friction coefficient with the normal force6,7 in the relevant range of normal forces. In

PEG, the interparticle friction coefficient does not vary significantly with the normal force7. In

our study, we can finally consider φj as a constant. This is confirmed by our experiments, where

we have observed that changing the overall shear rate by up to two orders of magnitude does not

affect the observed behavior.

Appendix C: Detailed analysis of the behavior of a 40% suspension

In this appendix, we detail the results obtained for a 40% volume fraction suspension. We show

how the step by step analysis of the data is performed to extract information on the volume frac-

tion dependence of the suspension viscosity and friction coefficient, and to compare the observed

dynamics of migration with the SBM. Similar analysis has been performed for all studied volume

fractions.

In Fig. 8, we plot the initial and steady-state velocity and volume fraction profiles. Initially,

the loaded suspension is homogeneous. Consistently, the initial velocity profile is well fitted to a

Newtonian velocity profile. The steady-state volume fraction profile shows strong shear-induced

migration from the inner cylinder to the outer cylinder, the volume fraction varying from 36%

close to the inner cylinder to 42% close to the outer cylinder.

From the steady-state velocity profiles, the steady-state shear rate profile can be computed.
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FIG. 8. Initial (empty circles) and steady (squares) velocity (a) and concentration (b) profiles for a 40%

suspension. The full line in (a) is the theoretical velocity profile for a homogeneous Newtonian fluid. The

lines in (b) are the predictions of the SBM with the three sets of equations described in Sec. IV [(i): dashed-

dotted line, (ii): solid line, and (iii): dotted line].

FIG. 9. Local variation of the viscosity (a) and of the friction coefficient (b) as a function of the local volume

fraction for a 40% suspension.

When it is combined with the steady-state volume fraction profile, as detailed in Sec. II B, the

relative variation of the viscosity with volume fraction can be derived as ηs(φ(r))/ηs(φ(R1)) =

(R2
1/r2)× (γ̇(r)/γ̇(R1)), which is plotted in Fig. 9a. In this plot, the reference viscosity ηs(φ(R1))

is taken to be that at a 40% volume fraction. It is observed that the viscosity varies by a factor of

order 2 from 36% to 42%, which is consistent with the observations of the literature (Fig. 7).
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FIG. 10. Evolution of the velocity (a) and concentration (b) profiles as a function of the macroscopic strain

Γ = Ωt (see legend) for a 40% suspension. The concentration profiles are computed here from the velocity

profiles, as described in the text.

From the steady-state volume fraction profiles, as detailed in Sec. II B, in the absence of a

diffusion term of hydrodynamic origin in the migration equation (A10) of the SBM, the variation

of the friction coefficient with volume fraction can be derived as µ(φ(r))/µ(φ(R1)) = R2
1/r2,

which is plotted in Fig. 9b. In this plot, the reference friction coefficient µ(φ(R1)) is taken to be

that at a 40% volume fraction. It is observed to decrease by a factor of order 2.5 from 36% to 42%,

which is much higher than the factor 1.4 observed in the literature (see Fig. 7). This is commented

in the main text.

As explained in Sec. II B, these relative variations of the viscosity and of the friction coefficient

can be converted into quantitative data, provided their value at a given volume fraction is known.

We now turn to the examination of the migration dynamics. In Fig. 10a we plot the velocity

profiles as a function of the macroscopic strain. It is observed that the velocity profiles are more

and more curved, and that a steady-state is reached after a strain of order 7000. The progressive

curvature of the velocity profiles is the signature of the increase of the ratio between the velocity

gradient close to the inner cylinder and that close to the outer cylinder. Initially, on the homo-

geneous material, this ratio is the same as the stress ratio, R2
o/R2

i (Eq. (8)); for inhomogeneous

material, this ratio is increased by a factor ηs(φ(Ro))/ηs(φ(Ri)) (Eq. (10)). The curvature of V (r)

is thus the signature of the progressive shear-induced migration from the inner cylinder to the outer

cylinder. Accordingly, the maximal velocity variation within the gap of the geometry is observed
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FIG. 11. Evolution of the velocity Vm in the middle of the gap as a function of the macroscopic strain Γ=Ωt

for a 40% suspension: experimental data (squares) and predictions of the SBM (lines) with the three sets of

equations described in Sec. IV [(i): dashed-dotted line, (ii): solid line, and (iii): dotted line].

close to the middle of the gap. The velocity evolution with strain at this position is plotted in

Fig. 11. It clearly illustrates migration and shows that migration stops after a strain of order 7000.

The evolution of the velocity as a function of strain can be compared to the prediction of the SBM,

which is done in detail in Sec. IV (these predictions are shown in Fig. 11).

These velocity profiles are sufficient to study the dynamics of migration and to test the SBM.

However, it may seem interesting to examine the volume-fraction-profile time evolution. Once the

local viscosity evolution with volume fraction has been computed from steady-state profiles, the

analysis can be reversed on the transient velocity profiles: from each profile, a shear rate profile

can be extracted, and then the relative variation of the viscosity within the gap can be computed.

Then, inverting the ηs(φ) function gives access to the volume fraction profiles in time. In the

absence of information on the torque, this problem does not have a unique solution, since only

relative variations are known. However, a unique volume fraction profile is finally obtained by

guaranteeing mass conservation. The result of this analysis is displayed in Fig. 10b.

To show better the migration dynamics and to compare it to existing models, it is convenient

to plot the local volume fraction evolution with the macroscopic strain at several positions. These

evolutions, close to the inner cylinder, close to the outer cylinder, and in the middle of the gap,

are shown in Fig. 12, together with the predictions of the SBM with the three sets of equations

described in Sec. IV. The same conclusions are reached as when studying the SBM prediction

29



FIG. 12. Evolution of the local volume fraction as a function of the macroscopic strain Γ = Ωt for a 40%

suspension, at various dimensionless radial positions r/Ri in the gap of the Couette geometry: experimental

data (symbols) and predictions of the SBM (lines) with the three sets of equations described in Sec. IV [(i):

dashed-dotted line, (ii): solid line, and (iii): dotted line]. Data are taken at r/Ri = 1.07 (black lines and

squares), r/Ri = 1.35 (red lines and circles) and r/Ri = 1.6 (blue lines and triangles); we recall that the

outer wall location is Ro/Ri = 1.7. The local concentrations are computed here from the velocity profiles,

as described in the text.

for the steady-state volume fraction profile and the evolution of the velocity vs. strain: model

(i), based on a local estimate of µ(φ), provides a good match with the magnitude of migration,

but its dynamics is too slow; with model (iii), based on the macroscopic µ(φ), the magnitude of

the predicted migration is too high and its dynamics is too slow; good agreement with both the

magnitude and the dynamics of migration is finally obtained with model (ii), which accounts for

an additional diffusive term in the SBM.

It should be noted that volume fraction profiles inferred from velocity profiles are more noisy

than the velocity profiles since they are based on their derivative; in particular, at low volume

fraction, volume fraction changes are hardly detectable, whereas velocity variations are clearly

observed. In the rest of the paper, this analysis in terms of local volume fraction evolution is thus

not shown as it cannot be performed systematically; we focus on the velocity profiles evolution,

which provides all the required information to analyze the migration dynamics.
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FIG. 13. Initial volume fraction profile (after loading) of a 56% suspension in a wide gap Couette geometry

of inner radius 4.1 cm and outer radius 6 cm, slightly different from that used in the rest of the paper.

Appendix D: Initial state of a 56% suspension

In Fig. 13, we plot the volume fraction profile after loading a 56% suspension in a wide-gap

Couette geometry (of inner radius 4.1 cm and outer radius 6 cm, slightly different from that used

in the rest of the paper). Loading consists in pouring the material in the cup (outer cylinder), and

in inserting the bob (inner cylinder) in the cup.

We observe that the loaded material is inhomogeneous: there is an accumulation of particles in

the middle of the gap. It is likely due to the fact that the insertion of the bob induces a shear flow

in the annular channel between the bob and the cup walls, the vertical direction being the flow

direction, and the radial direction the velocity gradient direction. In such configuration, the shear

rate during the loading is maximal near both walls, leading to shear-induced migration towards the

middle of the gap. From the geometry dimensions, the shear strain experienced by the suspension

during the loading can be estimated as being of order ten. The fact that migration happens for

such low strain is consistent with the value Γ1/2 = 100 found for φ = 54.5% in Sec. III B and with

the dynamics of migration being dramatically faster with increasing particle volume fraction at

the approach of jamming. It shows the difficulty in studying highly concentrated suspensions and

in obtaining reliable results on such materials. To avoid migration during loading, a possibility

would be to use a wide-gap vane-in-cup geometry; however, other difficulties arise with these

geometries, since (i) flow is actually 2D in this geometry, and (ii) there is particle depletion near

the vane blades51.
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FIG. 14. Steady-state volume fraction profiles in a pipe geometry for (a) a 10% and (b) a 20% suspension.

Squares: experimental results of Snook, Butler, and Guazzelli 27 . Dashed line, SBM prediction for D12 = 0.

Full line, SBM prediction for the D12 values found in the present paper (D12 = 10 for φ = 10% and D12 = 15

for φ = 15%). The bar and the vertical dotted lines indicate the particle size.

Appendix E: Predictions for a Poiseuille flow

We have solved the SBM for a Poiseuille flow, as described in Ref. 27, with an additional con-

centration gradient term. More precisely, we have used the model (ii) described in Sec. IV, which

accounts quantitatively for both the dynamics and the steady state of migration in the Couette cell.

We recall that it consists of Eq. (B3) for µ(φ) and Eq. (13) for ηs(φ), together with D12 ̸= 0 in

Eq. (A7) to account for a possible term of hydrodynamic origin in the stress driving migration.

In Fig. 14, we present the steady-state volume fraction profiles observed experimentally by

Snook, Butler, and Guazzelli 27 for a 10% and a 20% suspension. These experiments have been

performed on a suspension of PMMA particles of diameter a = 1.05 mm in a water/ZnCl2/Triton

X-100 mixture, in a pipe of radius R = 8.25 mm. The observations are compared to the predictions

of the SBM in the case D12 = 0 (standard SBM), as well as in the cases D12 = 10 for φ = 10%

and D12 = 15 for φ = 20% (as found here for the Couette flow).

A remarkable result of Ref. 27 is the limited migration as compared to that predicted by the

standard SBM for a 20% suspension. In particular, the concentration is found to increase up to

40% only in the central region whereas the model predicts that it should reach φj (Fig. 14b). By

contrast with the SBM with D12 = 0, the SBM with D12 = 15 provides a good agreement with the

experimental data for radial positions r/R in the pipe 1 < r/R < 0.15. Since the particle diameter
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is a = 0.13R, it can then be hypothesized that the volume fraction saturation at φ ≃ 35% in the

central region 0.15< r/R is a finite size effect which cannot be captured by a continuum modeling.

Indeed, although the SBM with D12 = 15 still predicts that φ should theoretically reach φj at the

center, the size of the region where φ = φj is predicted to be narrower than the particle size in

the experiment, which does not make sense. The volume fraction predicted at a distance of one

particle diameter from the center is actually 38%, which is in fair agreement with the value found

in the experiment in the central region.

Another remarkable results from Ref. 27 is the absence of any significant migration for a 10%

suspension, which is reminiscent of our results in the Couette cell. As observed in Fig. 14a, the

model with D12 = 10 (as found here) predicts significant migration in a very narrow region in the

pipe center, of size much lower than the particle diameter; e.g., a volume fraction larger than 20%

is predicted only for 0.09 > r/R, that is for radial positions smaller than one particle diameter. By

contrast, the model with D12 = 0 predicts that φ > 20% for any position in the range 0.2 > r/R,

which would in principle lead to observable migration. Therefore, again, the model with a diffusive

term is found to be consistent with the observations.

These first results are promising. In order to make a strong conclusion, the experiments now

have to be conducted in a pipe with the same system as in the Couette cell (PS particles in PEG),

with an in-depth investigation of the migration dynamics.
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