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Watier, Chatou, 78401, France

Abstract

Deep learning has been employed to identify flow characteristics from Com-
putational Fluid Dynamics (CFD) databases to assist the researcher to better
understand the flow field, to optimize the geometry design and to select the
correct CFD configuration for corresponding flow characteristics. Convolu-
tional Neural Network (CNN) is one of the most popular algorithms used to
extract and identify flow features. However its use, without any additional
flow field interpolation, is limited to the simple domain geometry and regu-
lar meshes which limits its application to real industrial cases where complex
geometry and irregular meshes are usually used. Aiming at the aforemen-
tioned problems, we present a Graph Neural Network (GNN) based model
with U-Net architecture to identify the vortex in CFD results on unstruc-
tured meshes. The graph generation and graph hierarchy construction using
algebraic multigrid method from CFD meshes are introduced. A vortex auto-
labeling method is proposed to label vortex regions in 2D CFD meshes. We
precise our approach by firstly optimizing the input set on CNNs, then bench-
marking current GNN kernels against CNN model and evaluating the perfor-
mances of GNN kernels in terms of classification accuracy, training efficiency
and identified vortex morphology. Finally, we demonstrate the adaptability
of our approach to unstructured meshes and generality to unseen cases with
different turbulence models at different Reynolds numbers.

Keywords: Computational Fluid Dynamics (CFD); Vortex identification;
Convolutional Neural Network (CNN); Graph Neural Network (GNN);
Unstructured mesh.
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1. Introduction

Vortex identification is of important interest to understand fluid flow char-
acteristics. Deterministic vortex identification methods based on the phys-
ical properties of the flow field such as the Q-criterion [1], the ∆-criterion
[2], and the λ2-criterion [3], provide efficient solutions but with many false
positives and false negatives as highlighted in [4]. Moreover, these meth-
ods require careful selection of appropriate thresholds to obtain valid results.
Other methods based on the topological properties of the flow field such as
Instantaneous Vorticity Deviation (IVD) [5] are more accurate but computa-
tionally expensive. Machine learning methods for vortex identification were
introduced recently as an alternative to the existing methods and overcome
their shortcomings. It is well known that machine learning methods are good
at finding the complex non-linear function between the input and the output
if a large amount of data is available. And once trained properly they have
better generality than a single criterion to flow cases with different condi-
tions and geometries. However, the current applications of machine learning
algorithms on vortex detection are limited to regular mesh and simple flow
cases.

Recently, many deep learning algorithms have been employed to identify
the flow characteristics in CFD databases. The most successful ones are
CNNs [6, 7, 8, 9, 10, 11, 12, 13, 14]. CNN can effectively learn the local
features by implicitly embedding the learned translational-invariant features
in the sequence of the learnable parameters in convolution kernels. Different
CNN architectures were designed to identify the vortexes, including Eddy-
Net [15], R-CNN [12], Vortex-Net [9], Vortex-U-Net [16], Vortex-Seg-Net [17]
and U-Net CNN [11]. However, the design of the rectangular-like convolution
kernel limits the CNNs to only accept the data stored on Cartesian grid
which constrains its generality to the data stored on unstructured meshes
widely used in the industrial CFD cases. Therefore, most of the current
applications of CNNs on detecting flow phenomena are limited to simple flow
cases. When dealing with the unstructured meshes and complex geometries,
either the mesh deformation [12, 14, 16] or data interpolation [7] is used
which inevitably introduces numerical errors.

Compared with CNNs, GNNs taking the data stored on graphs G(V , E) as
input can naturally adapt to the unstructured meshes used in the real indus-
trial CFD cases to reflect the complex geometries. A graph G(V , E) is formed
by a set of nodes V connected by a set of edges E . The data can be stored on
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the edges, nodes or both. Many GNN kernel functions are proposed to gather
neighbor information to the center node. One popular type is the isotropic
kernel functions such as graph convolutional network (GCN)[18], GraphSage
[19]. The isotropic aggregation functions treat the features from different
neighbors equally and fail to take into account the spatial distribution of the
neighbors. Another type of GNN kernels is anisotropic and distinguishes the
edges by assigning each edge an importance. There are many anisotropic
kernels using different mechanisms, like attention mechanism [20] or edge
gates [21]. However, the above-mentioned kernels are designed to perform
regression or classification on networks where there are no Euclidean coor-
dinates, such as social networks, citation networks and biological networks,
and only the connections between nodes are important. On the contrary,
the coordinates of the nodes or the relative positions of the neighbors to the
central nodes are very important on identifying flow characteristics in CFD
results which reside on meshes. Therefore, these algorithms are unsuitable
to identify the flow phenomena with a certain spatial structure such as the
vortex on the CFD meshes.

Inspired by the effectiveness of CNN learning local features in the im-
ages, many researchers tried to generalize CNN paradigms to irregular grids
which fall into geometric deep learning domain [22, 23]. Masci et al. [24, 25]
designed geodesic convolutional neural networks to extract invariant shape
features on Riemannian manifolds by constructing the convolution kernel on
a local geodesic system of polar coordinates. Boscaini et al. [26] general-
ized convolutions to non-Euclidean domains by constructing a set of oriented
anisotropic heat diffusion kernels whose shape, orientation and scale can be
varied by the trainable parameters and achieved state-of-the-art results on
learning correspondences between deformable shapes. Monti et al. [27] de-
signed a MoNet algorithm which can learn the edge importance according
to the pseudo-coordinates of the two connected nodes using the Gaussian
Mixture Model (GMM) as the kernel. GMM learns the mean vector and
standard deviation of the edge vector pointing from a central node to neigh-
bor nodes. Therefore, GMM assigns an importance to each edge according to
the relative position of the connected neighbor nodes with respect to a center
node. Fey et al. [28] proposed a spline-based convolutional neural network
(SplineCNN), a generalization of traditional CNN convolution kernel by us-
ing B-spline basis functions parameterized by trainable weights which learns
on unstructured and geometric input. To the best of our knowledge, GMM
and SplineCNN are the two GNN kernels the most equivalent counterparts
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of the convolution kernel in traditional CNNs.
In this paper, we propose a GNN framework which can precisely iden-

tify the vortex in CFD results as the traditional CNN does but accepts
unstructured meshes. The proposed GNN model uses U-Net architecture
which utilizes the graph hierarchy generated from AMG method embedded
in code saturne, an open-source, finite volume method (FVM) based CFD
software developed by Electricité de France (EDF), to accelerate the training
and improve the classification performance. We detail how both the graphs
and graph hierarchy are generated from CFD meshes and propose a vortex
auto-labeling method based on biased random walking algorithm to generate
dataset. We show both advantages and disadvantages of two GNN kernels,
GMM and SplineCNN, the two most equivalent counterparts of the convolu-
tion kernel in traditional CNN.

The rest of this paper is organized as follows. The relevant convolution
kernels, including traditional CNN, GMM, SplineCNN and GCN, are intro-
duced in Section 2. The model architecture, the graph generation details
and the algebraic multigrid coarsening method to generate a graph hierarchy
for GNN based models are introduced in Section 3. The dataset generation
details including CFD case simulation, ground-truth labeling and input sets
for machine learning models are introduced in 4. The results of a series of
trainings, including training details, evaluation of input sets and GNN ker-
nels, GNNs’ adaptability to unstructured meshes and generality analysis are
shown in Section 5. Finally, a conclusion is made at the end.

2. Related work

During the last several years, CNNs using the convolution to extract the
feature embedded have achieved great success in computer vision. Convo-
lution is a specialized type of linear operation used for feature extraction,
where a small array of numbers, called a kernel, is applied across the input.
An element-wise product between each element of the kernel and the input
is calculated at each location of the tensor and summed to obtain the out-
put value in the corresponding position of the output [29]. A typical CNN
model normally stacks multiple convolutional layers which use the following
equation to update the hidden features from one layer f l to the next:

f l+1(i, j) = σ
(
Θl · (f l ⋆ g)l)(i, j) + bl

)
, (1)
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where (f ⋆ g) represents the convolution kernel, Θ ∈ RCl×Cl+1 represents
the trainable mapping hidden features between two consecutive layers and
have the dimension of Cl × Cl+1, C the channel number, b ∈ RCl+1 the bias
trainable, σ the non-linear activation function.

While the traditional CNN kernel is only suitable for structured data, like
images and data on a cartesian mesh, many researchers have tried to extend
its efficiency and accuracy to graph domain including GMM, SplineCNN,
GCN and so on. In this section, we introduce the details of these different
convolution kernels.
Traditional CNN. In traditional CNN, the convolution between the kernel
of the size H ×W and the input data located at point (i, j) in the receptive
field or image can be expressed as follows:

(f ⋆ g)(i, j) =
H∑

h=1

W∑
w=1

f(i+ h, j + w) · gh,w, (2)

where g is a rectangular trainable kernel with dimension of H × W . As
shown in this equation, each neighbor pixel always times the element at the
same position in the convolution kernel according to their position relative to
the center pixel which enables CNNs to know where the information comes
from. And the values in the learned kernels represent the importance of the
information from the corresponding directions. Therefore the convolution
kernel in traditional CNNs associating the direction with the importance of
each gathered features is the key to its success.
GMM. Monti et al. [27] extended the traditional CNN convolution to graph
by using Gaussian Mixture Model. GMM kernel gathers the hidden features
from neighbors to center node with the following equation:

(f ⋆ g)(i) =
1

K

K∑
k=1

1

|N (i)|
∑

j∈N (i)

f(j) · gk(eij), (3)

where hyperparameter K represents the number of directions learned in the
kernel, |N (i)| the degree of node i, the edge eij pointing from central node i
to neighbor node j:

eij = [xj, yj]
T − [xi, yi]

T , (4)

and gk(eij) the alignment between the edge eij and the k-th direction µk in
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the kernel:

gk(eij) = exp

[
−(eij − µk)

T (eij − µk)

2σk

]
, k ∈ [1, 2, ..., K] , (5)

where two trainables µk and σk represent the k-th learned direction in the
kernel and its variance, respectively. The better the edge eij and the learned
direction µk aligned, the higher gk(eij).
SplineCNN. Fey et al. [28] generalized the traditional CNN convolution
kernel to interpolate the edge importance from fixed positions to desired
positions using B-spline basis functions with the following equation:

(f ⋆ g)(i) =
1

|N (i)|
∑

j∈N (i)

f(j) ·
∑
k∈K

Bk(eij) · gk, (6)

where K is the Cartesian product of the B-spline bases:

K = N1
k1,p
× ...×ND

kD,p, k = (K1, ..., KD), (7)

k represents the number of control points on each dimension of the D−
dimensional kernel, and gk is the trainables and the control points as well
associated with the corresponding product Bk(e) of the basis functions in K:

Bk(e) = ΠD
d=1N

d
kd,p

(ed). (8)

The k-th B-spline basis function of degree p, written as Nk,p(e
d), is defined

recursively as follows:

Nk,0(e
d) =

{
1, if uk ≤ e < uk+1.
0, otherwise.

(9)

Nk,p(e
d) =

e− uk

uk+p − uk

Nk,p−1(e
d) +

uk+p+1 − ed

uk+p+1 − uk

Nk+1,p−1(e
d). (10)

where uk is the knot vector and ed is the edge coordinate on d-th dimension.
Different from those used in [28], multiple knots are used at the ends of x

and y directions to force the interpolated surface to converge to the control
points at the ends. Three example convolution kernel surfaces are visualised
in Fig. 1.
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Figure 1: Examples of the convolution kernels for B-spline basis degrees p = 2 with control
points number K1 = K2 = 3, 4 and 5, from left to right. The orange points connected
by orange wireframe represent the randomly sampled control points. The curves on the
yz-plane and xz-plane represent basis functions for each control point on corresponding
direction.

GCN. A GCN [18] kernel gathers information from all neighbors N (i) to
the center node i with the following equation:

(f ⋆ g)(i) =
1√

|N (i)||N (j)|

∑
j∈N (i)

f(j) · gj (11)

where g is aN (i) unit vector. GCN kernel is an isotropic kernel and permuta-
tion invariant which means the information from all the neighbors is equal no
matter in what sequence or from which direction it comes. Therefore, a bad
performance of GCN on feature extraction is anticipated. However it shows
us where the low bound of the classification performance of a GNN-based
algorithm can be, thus GCN kernel is also included in the comparison.

3. Architecture and graphs

3.1. Architecture

A 4-depth and 8-layer U-Net architecture, as shown in Fig. 2, is adopted
to evaluate all convolution kernels. It consists of a leading contract part, a
trailing expansive part, the skip-connections among the corresponding con-
tract and expansive parts, and a bottom level. The contract part has three
blocks with each of them having one convolutional layer and a following
down-sampling (average pooling) layer. In the contract part, the convolu-
tional layer doubles the channel number except that of the first depth level
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where the output channel is fixed to 8 and the input channel is varied, and
the down-sampling layer shrinks the hidden feature size from one level to the
next deeper level. Correspondingly, the expansive part also has three blocks
with each of them having one up-sampling layer and one following convo-
lutional layer. In expansive part, the up-sampling layers up-sample hidden
features from a deeper level to the shallower level, and the convolutional lay-
ers decrease the channel number by a factor of 4. Each convolutional layer is
followed by a rectified linear unit (ReLU) activation function. The successive
down-samplings of the input not only reduce the input size thus leading to
computational efficiency, but also enable the U-Net architecture to extract
local features and global features in the input since a kernel of the same size
at deeper levels can cover larger region with respect to the original flow field.
The skip-connections alleviate the vanish gradient problem in the sequen-
tially stacked deep architectures. A fully connected (FC) layer is added to
the end to map the output to the classification.

Figure 2: U-Net architecture.

3.2. Graph generation

The graphs fed to the GNNs are derived from the CFD meshes where the
cells and the vertices shared by adjacent cells in CFD meshes become the
nodes and the edges in graphs. The derived graph is a dual mesh of the CFD
mesh. The input data are stored on the nodes. To regularize the graph, the
normalized direction eij pointing from center node i to neighbor node j is
stored on the edge connecting the two nodes:
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eij =
xj − xi

||xj − xi||
(12)

where, xi and xj are the center node and neighbor node coordinates, respec-
tively. There exists one forward edge and one backward edge between two
connected nodes since every node can be a center node and a self-loop is
added to each node with the distance of 0. Therefore the bi-directed graphs
with self-loops are generated, as shown in Fig. 3.

Figure 3: Bi-directed graph superimposed on streamline background. The red arrows
connect the vortex core cells. The self-loop of each node is not show here. The white wire
frame is the CFD mesh.

3.3. Graph coarsening

On the contrary to the widely used pooling methods in CNNs thanks to
their simplicity, there is no widely-accepted sampling method for GNNs be-
cause it requires a hierarchy of graphs with different refinement levels whose
generation depends on their application domain. There are several different
methods to coarsen graphs including but not limited to: 1) spectral graph
sparsification [30], 2) algebraic multigrid (AMG) [31, 32], 3) geometric graph
coarsening and even 4) GNN-based graph coarsening [33]. In code saturne,
an algebraic multigrid method is used to coarsen the meshes to accelerate the
convergence of the linear algebraic equations Au = b. The equations resulted
from fine grid are iterated once and the residuals are restricted to right hand

9



side of the equations at the next level where a coarser grid is constructed by
aggregating the strongly coupled adjacent cells at fine levels which is decided
by the relative magnitude of the corresponding values in the coefficient ma-
trix. This process can go on and on until a maximum number of coarsening
levels is reached or a matrix is small enough to be directed solved by conju-
gate gradient iteration method. Then the converged solution is successively
prolonged from coarser levels to finer levels to correct the solution in the finer
level. AMG and U-Net architecture are both designed to separate compo-
nents of different scales in the signal in order to accelerate the calculation.
We construct the graph hierarchy based on the coefficient matrix from the
pressure correction step at this stage. In the pressure correction step, the
Poisson equation is solved:

div(∆t∇p′) = div(ρũ) (13)

where ∆t is the time step, p′ the pressure increment and ũ the velocity field
resulting from the prediction step, ρ density. For the internal node i, the
integrated form of the above equation is:∑

j∈Neigh(i)

[∆t(∇p′)fij ] · Sij =
∑

j∈Neigh(i)

ρũ · Sij (14)

where j is i’s neighbor node, fij the interface between nodes i and j, and S
the surface vector. Since the AMG method used here is aggregation-based
which uses only the information present in the system matrix A, which here
corresponds to ∆tSij. It means that the mesh coarsening depends only on the
mesh topology which can evenly coarsen the original mesh to much deeper
levels. The coarsening based on other variables will be tested in the future.
The details of the AMG algorithm are out of the scope of this paper and
the interested readers are referred to Y. Notay’s work[31]. Two example
graph hierarchies generated using AMG method from backward-facing step
(BFS) structured and unstructured meshes are shown in Fig. 4. The sizes
of images used for CNNs and graphs generated by AMG from different mesh
types are summarized in Table 1. Since CNNs only accept a rectangular
array, therefore only 240×220 mesh cells behind the step are used as input.
By contrary, the graph derived from the entire mesh is used for GNN-based
methods, thus leading to the discrepancy between the number of pixels in
images and that of nodes in graphs at level 1.
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(a) Structured mesh.

(b) Unstructured mesh.

Figure 4: Graph hierarchy generated from BFS meshes for four levels in U-Net architecture.
The first graph is generated from original mesh, the following three graphs are generated
by AMG.

Table 1: The details of images and graphs.

Level
(PixelsW×H)

Imges
(Structured)
AMG graphs

(Unstructured)
AMG graphs

Nodes Edges Nodes Edges
1 52800240×220 74400 666124 131118 1693758
2 13200120×110 24720 220002 50780 441429
3 330060×55 8231 72401 17127 196325
4 81030×27 2719 23727 5596 67212

4. Dataset

4.1. CFD case simulation

The dataset was generated with code saturne [34] which is an open-source
software developed primarily by EDF for CFD applications. It solves the
Navier-Stokes equations for 2D, 2D-axisymmetric and 3D flows, steady or
unsteady, laminar or turbulent, incompressible or weakly dilatable, isother-
mal or not, with scalar transport. It provides multiple turbulence models,
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including Reynolds-Averaged Navier-Stokes (RANS) models, Reynolds Stress
Models (RSM) and Large Eddy Simulation (LES) models, and many of spe-
cific physical modules: coal and heavy-fuel oil combustion, semi-transparent
radiative heat transfer, particle-tracking with Lagrangian modeling, Joule ef-
fect, electrics arcs, weakly compressible flows, atmospheric flows, rotor/stator
interaction for hydraulic machines.

The CFD simulation of turbulent flow over BFS [35] is simulated using
transient code saturne solver by solving Navier-Stokes equations:

∂ρ

∂t
+ div(ρu) = 0, (15)

∂ρu

∂t
+ div

(
ρu⊗ u+ PId+R

)
= 0, (16)

and Rij − ϵ turbulence model [36]:

∂Rij

∂t
+ div (ρuRij − µ∇Rij) = Pij +Gij + Φij + dij − ρϵij + S ′

ij, (17)

∂ϵ

∂t
+ div (ρuϵ− µ∇ϵ) = dϵ + Cϵ1

ϵ

k
P − ρCϵ2

ϵ2

k
+ S ′

ϵ, (18)

where, Pij, Gij,Φij, dij, ρϵij are the generation term, production-destruction
term related to gravity effects, pressure-strain term, dissipation term and
turbulent diffusion term of Rij respectively, dϵ and P turbulent diffusion
term and generation term for ϵ respectively, Sij and Sϵ additional source
terms for Rij and ϵ respectively.

The flow configuration is shown in Fig. 5. The computational domain
consists of an inlet section Li = 10h prior to the sudden expansion. The total
length in streamwise direction is Lx = 30h and the vertical height is Ly = 6h.
The mean velocity with the turbulence intensity of 5% of the mean velocity
magnitude is imposed at the inlet boundary. The Neumann condition is
imposed at the outlet boundary. The scalable wall function is applied to the
bottom wall. The upper boundary is set to symmetry boundary condition.
The Reynolds number Reh based on step height h and bulk velocity is 5100.
The total number of computational cells in x direction after the step is 240
and that in y direction is 220. Only one cell is used for z direction.
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Figure 5: Backward-facing step flow configuration.

At least twenty flow-throughs, flow time from 0s to 10s, were calculated
before outputting the result in order to make sure the flow field fully devel-
oped. Then the physical fields at 100 time steps with an interval of 0.05s,
flow time from 10s to 15s, were output and divided into training, validation
and testing cases . The dataset contains results at 100 time steps in total of
which the first 80 times steps from 10s to 14s, 10 time steps from 14s to 14.5s,
and 10 time steps from 14.5s to 15s were used as training cases, validation
cases and test cases, respectively.

4.2. Ground-truth labeling

Since the supervised training of the neural networks is adopted in our
study, a binary ground-truth label for each node indicating whether the node
is in the vortex region or not should be provided. We propose an auto-labeling
method using Depth First Search (DFS) and Biased RandomWalking (BRW)
on the directed graph derived from the velocity field, as shown in Fig. 6. The
edge in the directed graph is the shared face of adjacent cells in the mesh
whose direction is from upwind cell to downwind cell according to the velocity
field.
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Figure 6: Directed graph superimposed on streamline background. The red arrows connect
the vortex core cells. The white wire frame is the CFD mesh.

As shown in Algorithm 1, this vortex auto-labeling algorithm labels the
vortex in 2D CFD results based on the closure of the streamline in two steps:
a) locating the vortex core with DFS algorithm [37]; b) enlarging the vortex
region by BRW. For the first step, we assume that a vortex core exists among
limited adjacent cells. The DFS algorithm, as shown in Algorithm 2, is used
to traverse all the nodes on the graph and recursively search the downstream
nodes until it goes back to the beginning node within predefined steps. Once
the vortex core is located, the BRW algorithm, as shown in Algorithm 3,
enlarges the vortex region starting from the vortex core. The probability
of random walking from central node to a downstream node is proportional
to the ratio of mass flux entering the corresponding downstream node from
central node to the total mass flux exiting the central node. One walking
path either ends at the beginning node leading to the success of enlarging the
vortex region or ends at the outlet nodes leading to the failure of enlarging
vortex region. To make sure the final labeled vortexes are separate from each
another, a single enlarged vortex region shouldn’t contain multiple vortex
cores. The vortex location labeling process is terminated when the searched
vortex boundary is not changed from the last random walking. The auto-
labeling algorithms takes 292s and 122s on average to label vortexes on the
2D BFS structured and unstructured meshes, respectively. The streamline
plot and ground-truth label obtained with this method at one time instant
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from both structured and unstructured meshes are shown in Fig. 7. All
the cells in vortex zone are represented by the points over the streamline
background. It should be noted that although the vortex boundary labeled
in this method doesn’t precisely reflect the real vortex shape leading to a
noisy dataset, it has the merit of auto-labeling and can label vortex location
for massive snapshots. And we expect that the machine learning algorithm
outperforms the ground-truth label on identifying the vortex position and
shape after trained on this noisy dataset.

Algorithm 1: Vortex auto-labeling algorithm in 2D CFD cases

input : Nodes V , Mass flux {Mu,v : u ∈ V , v ∈ V}, Neighborhood
N (u) = {v ∈ V : Mu,v > 0}

output: Vortex nodes: Vvortex
1 Build weighted directed graph G = (V , E) with edge weight

eu,v =
Mu,v∑

v∈N (u)Mu,v

;

2 initialize vortex core set Vcore;
3 for each u ∈ V do
4 add DFS (G, v, 0) to Vcore;
5 end
6 create working graph Gw ← G;
7 while Gw changes do
8 for icore in Vcore do
9 randomly select a node u from icore;

10 find the loop enclosing u: Lu ←BRW (Gw, u);
11 remove the nodes enclosed by Lu from Gw;
12 end

13 end
14 return Vvortex = G.nodes()− Gw.nodes();
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Algorithm 2: Depth first search algorithm

input : Graph G, starting node v, depth count d
output: Vortex core nodes

1 d++1;
2 for w in G.adj[v] do
3 if w is unvisited and d < depth then /* Set depth to 4 for

structured mesh, 8 for unstructured mesh. */

4 if DFS (G, w, d) then
5 return list(w, DFS (G, w, d));
6 end

7 else if w is visited then
8 return w;
9 else

10 return None
11 end

12 end

Algorithm 3: Biased random walking

input : Graph G, Starting point u
output: Nodes on the loop Vpath enclosing u

1 while step < threshold do /* Threshold depends on mesh size.

*/

2 add u to path;
3 select next node v in G.adj[u] with possibility P(v) ∝ eu,v;
4 if v in Vcore then
5 return Vpath;
6 end
7 walk to next v : u← v;
8 step++1;

9 end
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(a) Structured mesh.

(b) Unstructured mesh.

Figure 7: Ground-truth label points on streamline background.

4.3. Input selection

To find out the optimal vortex indicators as the input, five input sets were
tested as summarized in Table 2. The velocity field as the baseline input set
and their normalized counterpart were tested. Their definitions are sum-
marized in Table 3. The non-dimensional Q criterion and other three non-
dimensional vortex indicators which have certain spatial distribution were
selected. As shown in Fig. 8, the turbulence intensity overlaps the vortex
region. There are characteristic lines traversing through the vortex region for
deviation from shear flow field and pressure gradient along streamline field.
The combination of input set #1 and input set #4 is also tested.

Table 2: Five input sets.

Input set Variables

1 U, V
2 Unorm, Vnorm

3 Q

4
Turbulence intensity

Deviation from shear flow
Pressure gradient along streamline

5

U, V
Turbulence intensity

Deviation from shear flow
Pressure gradient along streamline
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Table 3: Input variables

Description Formula

Normalized velocity U/||U||

Q-criterion
∥R∥2−∥S∥2
∥R∥2+∥S∥2 with R = 1

2
(∇U− (∇U)T )

and S = 1
2
(∇U+ (∇U)T )

Turbulence intensity k/ (0.5UiUi + k)

Pressure gradient
along streamline

Uk
dP
dxk

/
(√

dP
dxj

dP
dxj

UiUi + |Ul
dP
dxl
|
)

Deviation from
parallel shear flow

|UkUl
dUk

dxl
|/
(√

UnUnUi
dUi

dxj
Um

dUm

dxj
+ |UiUj

dUi

dxj
|
)

(a) Q criteria (b) Turbulence intensity.

(c) Deviation from shear flow. (d) Pressure gradient along streamline.

(e) Ground-truth label.

Figure 8: The contour plot of vortex indicators and ground-truth of the test case at
time=12.65s.
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5. Experimental study

5.1. Training details

Firstly, five CNN models are trained on the structured mesh in order to
select the optimal input set. With the selected input set, three GNN kernels
are evaluated on graphs generated by AMG method from 2D BFS structured
mesh and compared with CNN. The kernel size is set to 9 and 3×3 for GMM
and SplineCNN respectively to make the their trainables comparable to CNN
model, while GCN model has much less trainables than other models because
of its isotropic nature. We tested GCNs with trainables at the same order
as other models, however the results are not very different from the current
one. For simplicity, those tests are not included here. The trainables of
different models are summarized in Table 4. The GNN models are trained on
graphs generated from unstructured mesh to demonstrate their adaptability
to unstructured mesh. As last, in order to demonstrate the generality and
limitation of the proposed method, the GNN models are trained on BFS
structured and unstructured meshes and then applied to unseen cases at
different Reynolds numbers simulated by different turbulence models with
different meshes.

Table 4: Summary of details of different models.

No. Model Layers Kernel size Trainables

1 CNN 8 3×3 55633
2 GMM 8 9 55921
3 SplineCNN 8 3×3 55633
4 GCN 8 - 6353

All the trainings are trained for 100 epochs and repeated five times with
different random seeds to demonstrate the stability of the model. The mean
and standard deviation of the training loss and classification evaluation met-
rics are calculated. The Adam optimizer is used to minimize the binary
cross-entropy loss function. The learning rate and weight decay rate are set
to 10−3 and 10−5, respectively. The batch size is set to 5. All the GNN
models are implemented in Deep Graph Library (DGL) in Pytorch frame-
work and trained on single Intel Xeon Platinum 8260 CPU @ 2.40GHz on
the cronos cluster of EDF.

The training loss histories for CNNs with five input set and GNNs on
AMG graphs from structured mesh are shown in Fig.9. CNNs give very
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good identifications within just 10 epochs while GNNs need more epochs.
The training of all GNNs are stable except GMM which has a significant
fluctuation for validation loss.

(a) CNNs with five input sets. (b) GNNs on AMG graphs from structured mesh.

Figure 9: Training loss history. The curve and shaded region represent the mean and
standard deviation of five trainings, respectively.

5.2. Evaluation of input sets

Since the dataset is a biased one where only a small portion of points
belong to vortex region, therefore the following four classification metrics are
used to evaluate the classification performance: accuracy, precision, recall
and F1 score:

Accuracy =
TP + TN

TP + TN + FP + FN
, (19)

Precision =
TP

TP + FP
, (20)

Recall =
TP

TP + FN
, (21)

F1 =
2× Precision×Recall

Precision+Recall
, (22)

where TP, TN, FP, FN are the numbers of true positives, true negatives,
false positives and false negatives, respectively. The performances of five
input sets are evaluated in the region behind the step (x > 0) with CNN-
Unet algorithm and summarized in Table 5. The highest and lowest values of
each of four classification evaluation metrics among all input sets are labeled

20



in green and red color, respectively. It is obvious that input sets #1 and
#2 are generally better than other input sets in terms of accuracy, precision
and F1 score, while the input sets #4 has the worst performance. Input
set #2 outperforms other input sets on training time per epoch by a large
margin. Input set #3 (Q-criterion) has the highest standard deviations for
all metrics and it also needs the longest training time. Compared with input
sets #1 and #2, additional inputs in Input set #5 do not bring performance
improvement but the increased training time.

Table 5: Performance of different input sets. (Green: best value; Red: worst value.)

No. Accuracy Precision Recall F1 score Time/epoch

1 88.03±0.16 90.86±0.48 61.73±0.81 73.51±0.50 2.63±0.79s
2 88.02±0.27 91.82±0.49 60.92±0.94 73.24±0.74 1.85±0.13s
3 87.83±1.10 89.38±3.97 62.74±7.78 73.22±4.32 4.43±0.34s
4 87.53±0.31 90.42±0.86 60.03±1.23 72.15±0.89 2.42±0.27s
5 87.64±0.12 91.44±0.49 59.68±0.61 72.22±0.37 3.32±1.63s

A receiver operating characteristic (ROC) curve [38] is a graphical plot
that illustrates the diagnostic ability of a binary classifier system as its dis-
crimination threshold varies. The ROC curve is created by plotting the true
positive rate (TPR) against the false positive rate (FPR) at various threshold
settings. The ideal prediction model should yield a point in the upper left
corner or coordinate (0,1) in the ROC space, representing no false negatives
and no false positives. As shown in Fig. 10, the ROC curves of all input sets
are very close and input set #2 is slightly better than the others.

As shown in Fig. 11, although all input sets can be used to precisely
identify the vortex position, those identified with input sets #2 have the
shapes closest to the real vortexes. Since with input set #2, CNN-Unet
achieves a good performance on four classification evaluation metrics, has
the best ROC curve and best identified vortexes shape, and shortest training
time per epoch, we continue to compare different GNN-based models based
on input set #2 - normalized velocity field.
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Figure 10: Receiver operating characteristic curves of CNN-Unet with different input sets.
(The curve and shaded region represent the mean and standard deviation of five trainings
respectively.)

Figure 11: Vortexes at time=14.60s identified by CNN-Unet algorithm with different input
sets. From top to bottom: streamline, input sets from #1 to #5.
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5.3. Evaluation of GNN kernels

We evaluate the performance of three GNN-based kernels on graphs gen-
erated by AMG from structured mesh by comparing them with training No.
2 of CNN models in Table 5 with the same input set - normalized velocity
field.
Classification performance. The classification performance of four mod-
els is summarized in Table 6. GMM kernel performance is very close to
that of CNN kernel. SplineCNN kernel outperforms CNN kernel with higher
mean values of all classification evaluation metrics except for precision and
its standard deviations are smallest among four GNN kernels although higher
than CNN. Among all models, GCN model has the worst classification per-
formance, which is expected.

Regarding the computational efficiency, it should be pointed out that
GCN has disproportionately longer training time compared to its signifi-
cantly smaller trainables, which suggests that it struggles to back-propagate
the gradients since it cannot identify the features with spatial distribution.
Except GCN, CNN training time is one order lower than those of GNN-based
models. The training time of SplineCNN is the highest and 1.5 times longer
than that of GMM.

Table 6: Comparison of classification performances of GNN kernels on graphs generated
by AMG with CNN. (Among three GNN-based models: Green: best value; Red: worst
value.)

Model Accuracy Precision Recall F1 score Training time/epoch Inference time/case

CNN 88.02±0.27 91.82±0.49 60.92±0.94 73.24±0.74 1.85±0.13s 0.008s

GMM 88.13±0.14 87.95±1.41 64.81±1.69 74.59±0.65 44.14±0.11s 0.291s

SplineCNN 89.28±0.37 91.70±0.63 66.17±2.03 76.84±1.15 67.59±0.16s 0.553s

GCN 76.47±0.23 62.17±1.42 32.29±2.12 42.43±1.71 10.94±0.03s 0.097s
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(a) Identified vortex at time=14.60s. From top to
bottom: streamline, CNN, GMM, SplineCNN and
GCN.

(b) Receiver operating characteristic curves.
(The curve and shaded region represent the
mean and standard deviation of five trainings
respectively.)

Figure 12: Comparison of GNN kernels against CNN kernel.

Vortex morphology. As shown in Fig. 12a, the shapes and positions of
the vortexes identified by CNN and SplineCNN kernels are very close to
each other, both are very clear and accurate. By comparison, the vortexes’
boundary identified by GMM kernel is diffused. GCN kernel fails to identify
neither the vortex shape nor position.
ROC curve. As shown in Fig. 12b, among all models, GCN kernel has the
worst ROC and SplineCNN kernel has the ROC curve closest to the left upper
corner which means it’s classification can obtain the highest positive rate and
the lowest false positive rate. The ROC curves of CNN and SplineCNN kernel
are very close to CNN’s ROC and slightly better than that of GMM.

5.4. Adaptability to unstructured mesh

To demonstrate their adaptability to unstructured meshes, the three GNN
kernels are trained on graphs generated by AMG method from unstructured
mesh, whose edge and node information is summarized in Table 1. As shown
in Table 7, SplineCNN outperforms GMM on four classification evaluation
metrics, higher mean values and smaller standard deviations, especially for
recall and F1 score whose mean values exceed those of GMM by a consid-
erable margin. However, the better classification performance of SplineCNN
is also accompanied by considerable computational overhead, about 66.6%
higher than GMM which is a disadvantage dealing with 3D CFD cases with
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much more mesh cells in the future. Three of five GCN trainings did not
converge resulting in the Nan±Nans in the table.

Table 7: Classification performance of GNN kernels on graphs generated by AMG from
unstructured mesh. (Between GMM and SplineCNN: Green: best value; Red: worst
value.)

Kernel Accuracy Precision Recall F1 score Training time/epoch Inference time/case

GMM 92.76±0.27 81.00±1.58 67.27±3.22 73.43±1.55 104.05±0.34s 0.755s

SplineCNN 93.54±0.26 82.21±1.11 72.41±2.42 76.97±1.23 173.32±0.20s 1.530s

GCN 85.60±0.68 Nan±Nan 9.73±12.14 Nan±Nan 19.72±0.11s 0.223s

As shown in Fig. 13a, GMM well identifies the shape of the small vortexes
and fails on elongated vortexes while SplineCNN does the opposite. GCN
can neither identify the vortex shape nor the position. As shown in Fig. 13b,
the ROC curve of SplineCNN is very close to but slightly better than that
of GMM and both ROC curves of two anisotropic kernels are far better than
that of isotropic kernel - GCN.

(a) Identified vortex.
(b) Receiver operating characteristic curves.
(The curve and shaded region represent the
mean and standard deviation of five trainings
respectively.)

Figure 13: GNNs on unstructured mesh.

5.5. Generality analysis

To further evaluate the generality of the proposed approach on detecting
vortexes with respect to different meshes in terms of mesh type, mesh density
and mesh aspect ratio for structured mesh, different turbulence models and
different Reynolds numbers, the GMM-Unet and SplineCNN-Unet models
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are trained again on the dataset formed by the BFS results obtained using
both BFS structured and unstructured meshes and then tested on the three
of code saturne validation cases: lid-driven cavity flow, heat transfer in a
cooling channel with periodic ribs (RIBS)[39, 40], asymmetric plane diffuser
flow[41, 42]. The main simulation details of these cases are summarized in
Table 8. The configuration of three cases are shown in Fig. 14.
Lid-driven cavity. The lid-driven cavity flow configuration is shown in Fig.
14a. The top lid moves towards right direction and other walls are static.
The no-slip conditions are applied on the walls. The Reynolds number is
5000. The k − ω SST turbulence model was used to simulated the cavity
flow on the finest mesh which contains Nx × Ny = 300 × 300 cells. The
velocity field is then interpolated to coarser meshes of different refinement
levels from 2500 to 40000 cells of the same aspect ratio AR = 1, and two
meshes of different aspect ratios from 1 to 9 with the cell number around
2500. The aspect ratio is defined as the ratio of the cell’s length on the x
direction to its width on the y direction.
RIBS. The RIBS configuration is shown in Fig. 14b. Air flows from the left
to the right, at the atmospheric pressure and temperature. The left and right
boundaries are set to be periodic. The top and bottom walls are heated while
the two ribs are not. The Reynolds number and Prandtl number are 30000
and 0.71, respectively. The RIBS case was simulated using three turbulence
models with both structured and unstructured meshes.
Diffuser. The 2D flow inside a planar asymmetric diffuser, as shown in Fig.
14c, is simulated using k − ω SST turbulence model with fully-developed
turbulent inlet at Re = 18000 based on the bulk inlet velocity and the inlet
channel height with two types of meshes: high-Reynolds (HR) mesh and
low-Reynolds (LR) mesh.
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Table 8: Simulations details of four cases.

Case Re Turbulence model
Mesh

Type AR No. cells(Nx×Ny)

BFS 5100 Rij − ϵ SSG
Structured 3.2 74400

Unstructured - 131118

Cavity 5000 k − ω SST

Structured 1 90000300×300

Structured 1 40000200×200

Structured 1 10000100×100

Structured 1 250050×50

Structured 3 249429×86

Structured 6 250020×125

Structured 9 249914×147

RIBS 30000
k − ϵ LP

Unstructured
Structured

-
3

7735
18296

k − ω SST
Rij − ϵ SSG

Diffuser 18000 k − ω SST
HR structured 0.3 ∼ 47.7 21648328×66

LR structured 0.3 ∼ 119.8 31488328×96

(a) Lid-driven cavity. (b) RIBS.

(c) Diffuser.

Figure 14: Configurations of three cases.
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Mesh density influence. As show in Fig. 15, the vortex regions identified
by both GMM-Unet and SplineCNN-Unet in the coarsest mesh are the largest
in the coarsest mesh. The identified regions become smaller as the mesh
refinement level increases. The capability of recognizing a certain pattern
of all the pure convolution-based machine learning models is limited to the
size of effective receptive field (ERF). A trained model fails to correlate two
points separated by a distance larger than the ERF which is determined by
both the hyper-parameters of the model and the dataset. As indicated by
one typical snapshot of streamline plot in Fig. 5, for the BFS structured
mesh, 100× 40 cells are distributed in the vortex region where normally four
to five vortexes exist. Thus, a single vortex in the training dataset covers no
more than 25 cells on one specific direction. As a result, these two models
trained on this dataset can only detect the vortexes of comparable sizes in
terms of how many mesh cells they span.

Figure 15: Identifications of vortexes of GMM-Unet and SplineCNN-Unet on lid-driven
cavity meshes of different refinement levels.

Mesh aspect ratio influence. The aspect ratio of the BFS structured mesh
included in the training dataset is AR = 3.2. As a result, the two models
trained on this dataset well identified the vortexes on the mesh of AR = 3 as
shown in Fig. 16. As the aspect ratio deviates from 3.2, their identification
performances deteriorate which is more evident for SplineCNN-Unet. The
SplineCNN-Unet model successfully identified three secondary vortexes in
the corners on the mesh of AR = 1, all vortexes on the mesh of AR = 3, and
the primary vortex center on the mesh of AR = 6, but failed on the mesh
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of AR = 9. Compared to SplineCNN-Unet, the GMM-Unet model identified
more or less the same vortex region on the four meshes and thus has a better
generality to the variation of the mesh aspect ratio. However, the vortex
regions identified by the GMM-Unet model do not cover the vortex center
and have diffuse boundaries compared with the SplineCNN-Unet.
Mesh type influence. The mixture of both structured and unstructured
meshes in the dataset poses no problem to the training. As shown in Fig.
17, while the SplineCNN-Unet model better identified the vortex center and
shape on the structured mesh compared with the GMM-Unet model, but
degraded more on the unstructured mesh where it only identified the lower
half of the vortexes. The GMM-Unet model once again has better generality
to the mesh type.
Turbulence models influence. To test the sensitivity of the proposed
approach to the turbulence models, three commonly used models, k−ϵ linear
production, k − ω SST and Rij − ϵ SSG, were selected because we intend
to detect the vortexes generated by RANS turbulence models. As shown in
Fig. 17, the turbulence models have no visible influence on the identification
performance of the proposed approach. The robustness of our models to
different turbulence models is explainable since they identify the vortexes
based on the topological distribution of the velocity field which is universal
among different turbulence models.
Mesh size scaling influence. As shown in Fig. 18, the cell size along the
wall normal direction in the low-Reynolds diffuser mesh increases continu-
ously, while in high-Reynolds diffuser mesh, the cell size from the first to the
second layer perpendicular to the wall decreases abruptly. As shown in Fig.
19, both GMM-Unet and SplineCNN-Unet models can capture the vortexes
on two meshes. On the high-Reynolds mesh, the identified vortex regions by
both models are non-connected while those on the low-Reynolds mesh are
closer to the real vortex topology. Therefore the proposed approach is quite
robust to the mesh size scaling but sensitive to the abrupt scaling jump.
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Figure 16: Identifications of vortexes of GMM-Unet and SplineCNN-Unet on lid-driven
cavity meshes of different aspect ratios.

(a) Structured mesh.

(b) Unstructured mesh

Figure 17: Identifications of vortexes of GMM-Unet and SplineCNN-Unet on RIBS struc-
tured and unstructured meshes.
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(a) High-Reynolds mesh.

(b) Low-Reynolds mesh

Figure 18: Two diffuser meshes.

Figure 19: Identifications of vortexes of GMM-Unet and SplineCNN-Unet on two diffuser
meshes.

6. Conclusion

In this paper, we proposed a machine learning approach for identify-
ing vortexes in unstructured mesh-based CFD results using a Graph Neural
Network with U-Net architecture, which includes constructing graphs from
CFD meshes, the generation of a hierarchy of graphs using algebraic multi-
grid method and the labeling of the dataset with the biased random walking
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algorithm. We demonstrated that the current machine learning approach
combined with either Gaussian mixture model or SplineCNN as convolution
kernel can achieve similar identification performance to that of traditional
CNN while directly accepting embedded data on unstructured meshes. While
the SplineCNN kernels achieves better vortex identification performance on
cases similar to those included in the dataset, it degrades more significantly
than GMM on unseen cases and meshes. Compared with other influence
factors, such as different turbulence models and different Reynolds numbers,
the mesh density has the biggest influence on the vortex identification of the
GNN models. The mesh sensitivity analysis shows that the trained GNN
models can only identify vortexes of the scale similar to those included in the
dataset. It means that the region of the same vortex identified by the GNN
model shrinks in denser meshes. This problem can be partially alleviated
by including larger vortexes in the dataset but can not be fundamentally re-
solved. In the future, we will try to solve this problem by introducing other
modules to the model architecture to exploit the invariant vortex features in
much deeper graph hierarchies. The next step is to extend our approach to
3D cases and to other flow phenomena. Since we are working on graphs, this
approach is extensible to 3D case without extra effort on the GNN model
side but requires much efforts on generating a comprehensive 3D dataset.
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