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Abstract. Nowadays, Computational Fluid Dynamics (CFD) is a fundamental tool for
industrial design. However, the computational cost of doing such simulations is expensive
and can be detrimental for real-world use cases where many simulations are necessary,
such as the task of shape optimization. Recently, Deep Learning (DL) has achieved a sig-
nificant leap in a wide spectrum of applications and became a good candidate for physical
systems, opening perspectives to CFD. To circumvent the computational bottleneck of
CFD, DL models have been used to learn on Euclidean data, and more recently, on non-
Euclidean data such as graphs and manifolds, allowing much faster and more efficient
surrogate models. Nevertheless, DL presents the intrinsic limitation of extrapolating
out of training data distribution. In this study, we present a pioneer work to increase
the generalization capabilities of Deep Learning by incorporating the physical gradients
(derivatives of the outputs w.r.t. the inputs) to the models. Our strategy has shown
good results towards a better generalization of DL networks and our methodological/
theoretical study is corroborated with empirical validation.

1 INTRODUCTION

In the context of computationally expensive CFD simulations, the progress of Deep
Learning (DL) has made possible the analysis of data and proposed new approaches on
how to handle fluid dynamics’ problems [1, 2]. Therefore, using DL can significantly help
to speed up the solution of numerical simulations with reasonable precision [3].

Moreover, since Deep Learning models are statistical, it is well known that the more
data is available, the better models are. Nevertheless, the data is generated from costly
processes, and new ways to improve generalization performance with the same amount
of examples remain an open problem with several research directions. One possibility,
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that is analyzed in this work, would be to supervise the network not only with the fluid
dynamics but also its gradients. A similar procedure was applied in a financial context,
called Differential Machine Learning (DML)[4].

The concept behind it is to use the gradients of the target labels w.r.t.the input data
( ∂y

i

∂xi , where xi is the input and yi the output) during training. It was proven that, in
regression problems, this can largely improve performance results and allow accurate
functions to be learned from small datasets, decreasing also the need for regularization
techniques. The model’s gradient used during supervision is the same computed by AD
[5] by the Deep Learning framework for backpropagation. In this way, the gradient loss
is also backpropagated, making the model twice differentiated.

To determine the derivatives of the fluid dynamics system the adjoint method can be
used, allowing to compute the gradient of a specific function w.r.t. to its parameters when
this function is constrained by a PDE. This method presents itself as a fast and efficient
alternative, regardless of the quantity parameters. Hence, it is commonly used in the
CFD industry for shape optimization.

Our work leverages the gradient data computed by the adjoint method in order to
improve the generalization performance of currently used surrogate models in industry and
academia. To summarize, our contributions are as follows: we propose improvements to
Differential Machine Learning that can be applied in any complex or simpler cases; we also
propose Difflow: a framework that can drastically reduce errors on unseen data, mitigating
the need to acquire/generate extra CFD simulations. To the best of our knowledge, this
is the first application of Differential Machine Learning in fluid dynamics.

Although efficient surrogate models have been developed to tackle physics problems,
a standard benchmarking dataset is not available. The data becomes even scarcer when
also the adjoint gradient is required.

Therefore, we develop our own dataset but based on previous papers. A reliable, high-
fidelity dataset constituting these conditions was developed by Bonnet et al. [6] and will
serve as a reference for the primal equations (does not include the adjoint). The 2D
airfoils presented are in the steady-state subsonic regime, while the incompressible flow
presents a turbulent behavior and is modeled by the RANS equations with k − ω SST
turbulence.

2 Methodology

2.1 Learning scheme

In Differential Machine Learning the derivative ( ∂ȳi
∂xi

) is not passed as target value, but
computed from the predictions (ȳi) with AD and used to add an extra penalization term
to the loss function, the difference to the actual differential labels: ∂ȳi

∂xi
− ∂yi

∂xi
. This term

has the form:

LG =
1

N

γ

|| ∂ŷ
∂x̂
||2b

N∑
i=1

(
∂yi
∂xi

− ∂ŷi
∂x̂i

)2 (1)
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The hyper-parameter γ is important to weight the loss of the gradient with the loss of
the original labels. The final loss takes the following shape:

Loss = LB + LG (2)

Where LB is the baseline loss. When scaling the input and output, however, the ground
truth gradient will no longer correspond to the one from the model. For the cases where
the adjoint can achieve extreme values, the design space of the target and the differential
labels is no longer the same. We propose then a new parameter α:

LG = f(α
∂y

∂x
,
∂ŷ

∂x
) (3)

The α parameter can be optimized along with the network or beforehand. We encoun-
tered better results with the second option.

2.2 Dataset and baseline

The continuous adjoint method of the K−ωSST model was chosen to generate the 2D
NACA dataset. Most of the primal simulation parameters were inspired by [6]. The lift
was selected as target, because its sensitivity presented a more informative distribution
for the NACA wings than the drag.

In terms of design space, the main dataset was developed using 4-digits NACA wings. It
included only shape variation, and thus, the freestream velocity U and AoA are maintained
constant.

The target to predict, in its turn, is the lift force per point, as predicting surface
variables instead of the total performance metric helps the network to better represent
the function.

The entry data should describe the surface of the wing. Normally this is represented
by a Point Cloud, where the coordinates x and y can be used to describe the geometry.
In addition, as NACA wings present a sharp shape at the edges, its description can be
improved by using also the normals (nx, ny) to the 2D surface. In this way, the features
have 4 dimensions.

To represent this unstructured geometric data, PointNet [7] was chosen for being a
simple and widely used architecture for benchmarking in computer vision.

2.3 Gradient processing framework

The continuous adjoint gradient is unstable and presents outliers on the trailing edge,
where the shape is sharper. In addition, the difference in design space from the target
and its derivatives makes the training/optimization process a challenge for the network.
To allow the correct learning procedure, a processing framework was built for the adjoint.

Removing the adjoint by coordinate (trailing edge) during training produced convinc-
ing results, despite not being entirely reproducible to datasets containing other shapes.
Adapted scaling and normalization techniques were also applied to the input and the
output, during and before training.
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3 Experiments

Figure 1: Comparison between DML and the baseline for the
NACA dataset, with different shapes in test and train. Green
and red annotations represent the p-value of the hypothesis
that models are the same.

The performance of the devel-
oped framework is compared with
the baselines, which do not con-
sider the differential labels. An
interesting piece of information to
extract is how both methods com-
pare when different amounts of
data are available for train. As re-
sults presented an important vari-
ation depending on the seed, the
test set remained constant while
the train set was sampled and run
multiple times with different ini-
tialization weights.

The regularization effects were
stronger when certain shapes pat-

terns were selected for training and the rest for evaluation (Fig. 1).

4 Conclusion

Using the gradient generated by the adjoint method proved to be an efficient method
to improve the generalization performance of Deep Learning models for CFD.

In this work, we proposed improvements to Differential Machine Learning and leveraged
it to use in fluid dynamics and graph models, achieving good results even when a high-
quality gradient is not available. The developed framework, Difflow, allows, in some cases,
the use of half the original quantity of data to achieve similar performances.
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