Optimization in short local supply chains

Sharing of deliveries between producers in local food logistic

Adrien CALLICO, Pierre DESPORT, Caroline PRODHON, Jean-Charles BILLAUT **ROADFF 2024**

Summary

- 1. Context
- 2. Problem modelisation
- 3. Results
- 4. Perspectives

Context

Short food supply chains

- Geographic proximity and at most one intermediary
- Growing demands for sustainable and high-quality products
- Supported by government initiatives
- Diversity of SFSC: AMAP, farmer's markets, baskets ...

- <u>Objective:</u> to promote a sustainable and resilient food system
- <u>Challenges:</u> coordination, quality assurance, greenhouse gas emissions...

OR & SFSC

- Location of platforms/warehouses
- Inventory management, demand forecasting
- Delivery planning and organization

Vehicle Routing Problem (VRP)

Existing works on delivery planning <u>and</u> SFSC

PhDs:

- M. Ogier (2013) "Contributions to digital supply chain: design of short and local supply chains and decentralized planning"
- W. Gu (2019) "Multiple commodities routing problems with applications in the local fresh food supply chain"

ROADEF

- Bayir et al. (2022) "Multi-Depot Vehicle Routing Problem with Branch-and-Cut: An application in Short Food Supply Chains"

Sharing deliveries VRP ≠ Collaborative VRP

- VRP with delivery sharing focuses on optimizing routes by <u>sharing the</u> goods to be delivered
- Collaborative VRP focuses on optimizing routes by <u>exchanging the</u> <u>requests</u> to be fulfilled.

Problem definition

Hypotheses (VRP)

- Each customer has a demand at all or some of the producers
- Delivery slots in "half-day" intervals: a customer can have one or several available slots and can be visited multiple times
- One vehicle per producer with limited capacity
- Maximum one tour per producer per "half-day"

- A delivers 10 kg to 1 and 15 kg to 2 on Tuesday morning.
- B delivers 15 kg to 1 on Wednesday afternoon

Hypotheses (sharing deliveries)

A producer p can go to another producer q to:

- Drop off goods for a customer c that producer q will visit.
- Pick up goods from producer q for the customer c that producer p will visit.

If a producer q receives goods from a producer p, they must deliver it themselves.

A producer has a maximum number of partners.

 A picks up goods of B for client 1 and delivers 1 (10kg + 15kg) and 2 (15kg) on Wednesday morning

Before / after sharing deliveries : example

Problem modelisation

Objective function

- Sum of distances travelled by producers (Min)

Alternately:

- Customer satisfaction (Max)
- Number of working days then total distance traveled (Min)
- ..

Classic decision variables of the VRP

 $x_{pij}^d=1$ If node j is visited directly after i by producer p during the half-day d, 0 otherwise $y_{pc}^d=1$ If producer p visits client c during the half-day d, 0 otherwise $t_{pi}^d\geq 0$ Arrival time of producer p at node i during half-day d $q_{pi}^d\in [0,Q]$ Load level of producer p just before node i during half-day d

Decision variables specific to delivery sharing

```
z_{pq}^d=1 If producer p visits producer q during the half-day d, 0 otherwise Z_{pq}=1 If producers p and q are partners, 0 otherwise w_{pqc}^{dd'}=1 If p visits q during half-day d, and q visits q during half-day d' (d \leq d') w'_{pqc}^{dd'}=1 If q visits p during half-day d, and q visits q during half-day d' (d \leq d')
```

Classic constraints of the VRP

- Route continuity
- Demand satisfaction
- Time windows: a customer can only be visited during the periods when they are available
- The travel time of a vehicle per half-day cannot exceed the duration of an "half-day"
- Capacities: we check the loading rate at the departure of the vehicle and update it at each node visit (loading/unloading)

Specific constraints related to delivery sharing

 The goods from each producer are either transported directly, deposited at another producer, or entrusted to a producer on a visit.

$$\sum_{d \in D_c} y_{pc}^d + \sum_{\substack{d \in D, d' \in D_c \ d \leq d'}} \sum_{\substack{q \in P \ q
eq p}} w_{pqc}^{dd'} + \sum_{\substack{d \in D, d' \in D_c \ q \leq d'}} \sum_{\substack{q \in P \ q \neq p}} w' rac{dd'}{pqc} \geq 1 \, orall c \in C, orall p \in P_c$$

• Maximum number of partners

$$|Z_{pq}| \geq rac{1}{2 imes |D|} \sum_{d \in D} ig(z_{pq}^d + z_{qp}^dig) \, orall p, \, q \, \in P, \, p \,
eq q.$$

$$\sum_{\substack{q \, \in P \ p \,
eq q}} Z_{pq} \, \leq \, \operatorname{MaxPartners}_p \, \, orall p \, \in P$$

Model size

 $\text{Binary variables}: \mathcal{O}\Big(|P|^2*|C|*|D|^2\Big)$

Continuous variables : $\mathcal{O}(|P|*(|P|+|C|)*|D|)$

 $\operatorname{Constraints}: \mathcal{O}\Big(|P|^2*|C|*|D|^2\Big)$

Results

Instances generation & resolution

Instances generated according to several parameters:

- Number of clients (5, 10, 15), number of producers (5, 10) and number of half-days (10)
- Producers/clients disposition (clients in the middle, producers in the middle, random)
- Demands (high / low)
- Clients disponibilities (restrained to 2-3 days or not)
- Demands at all producers or only at certain ones

- 10 instances by configuration
- Resolutions for 0,1, ... maximum partners
- CPLEX (32 threads), time limit: 30 minutes
- CaSciModOT (computing center)

producers = 5

Parameter	# instances	# Instances solved optimally	
Demands = low	150	49 (33%)	
Demands = high	170	16 (10%)	
# clients = 5	120	45 (37,5%)	
# clients = 10	120	20 (16,6%)	
# clients = 15	80	0	
Maximum partners = 0	64	34 (53,1%)	
Maximum partners = 1	64	13 (20,3%)	
Maximum partners = 2	64	7 (10,9%)	
All configurations	320	65 (20,3%)	

Average gain vs no_sharing

Parameter	MaxPartners = 1	MaxPartners = 2	MaxPartners = 3	MaxPartners = 4
Demands = low	8.65%	11.07%	10.51%	10.28%
Demands = high	0.21%	0.08%	0.13%	0.08%
# clients = 5	8.87%	12.38%	12.29%	11.91%
# clients = 10	2.91%	2.978%	2.47%	2.33%
# clients = 15	1.09%	0.642%	0.42%	0.58%
Disponibilities = restrained	5.48%	6.79%	6.58%	6.36%
Disponibilities = all	3.86%	4.99%	4.64%	4.58%
Producers_per_client = random	5.43%	6.22%	5.91%	5.72%
Producers_per_client = all	3.73%	5.53%	5.29%	5.22%
All configurations	4.69%	5.92%	5.64%	5.50%

17

Relative gap vs. maximum number of partners

Average gain vs. maximum number of partners

demands = low, nb_clients = 5

Gain vs. Maximum Number of Partners

demands = low, nb_clients = 5

Perspectives

- Equity: prevent a producer from working more than if they were working alone (WIP)
- Develop a metaheuristic (LNS?)
- Refine the modeling of this problem by incorporating feedback from stakeholders in SFSC

Thank you for your attention

{adrien.callico, pierre.desport, jean-charles.billaut}@univ-tours.fr

caroline.prodhon@utt.fr