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Abstract 

The interpretation of on-sites inspections of austenitic or bimetallic welds is particularly difficult due to their 

internal structures. Indeed, skewing and splitting of the ultrasonic beam caused by inhomogeneity and anisotropy 

of the material may occur. This paper describes a ray-based model for simulating the ultrasonic wave 

propagation in such structures. The formalism based on dynamic ray tracing system in Cartesian coordinates 

along a known ray consists in solving eikonal and transport equations. The ray trajectories are obtained through 

the resolution of a system of linear ordinary differential equations of the first order, whereas the computation of 

ray amplitude requires solving the so-called paraxial ray tracing system. This method can be applied using a 

smooth cartography of the weld material properties obtained thanks to image processing techniques. In this case, 

the orientation of grains at each point of the weld is extracted by interpolation from the cartography. We present 

here simulation results using this method and comparison to finite element and experimental results. 
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1.  Introduction 
 

In the nuclear industry, ultrasonic Non Destructive Testing (NDT) techniques are used to 

control welded joints of the primary circuit of Pressurized Water Reactor (PWR). Those 

techniques allow the detection, the localisation and the characterization of defects located 

inside or in the vicinity of bimetallic welds. Because of their polycrystalline structure, some 

disturbances of the beam such as splitting and skewing [1, 2] can be observed during on-site 

inspections. Various simulation tools are developed to help understanding the inspection 

results such as finite element models [3, 4] or ray tracing models [5]. In the CIVA software, a 

semi-analytic propagation model based on ray theory [6] may be applied on a piecewise 

description of a weld. The weld being described as a set of several homogeneous domains 

with a given crystallographic orientation, the ray propagate along a constant direction of 

energy for a given slowness vector, and the transmitted and refracted coefficients are 

evaluated at each interface. In this paper, we present a generalisation of this model that takes 

into account a continuously varying description of the grain orientation in the weld. 

 

2.  Context: Ultrasonic simulation of wave propagation in welds 

 
A bimetallic weld located in the primary circuit of nuclear power plants is composed of a 

ferritic steel and a stainless steel. Its internal organization depends on many parameters such 

as the shade of steel, the diameter of the electrode, the velocity and the process of the 

welding. Because of its heterogeneous and anisotropic nature, the inspections are difficult to 

understand. Figure 1 shows the beam splitting and skewing due to the complexity of the weld 

structure. These representations of the wave fields and wave fronts have been obtained from 

through transmission experiments. The emitter was a L60° wedge probe, with a 12.7 mm 
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diameter at 2 MHz fixed on the weld. The 2D scanning in reception was performed using a 

6.7 mm diameter probe associated to a plexiglass cone to improve the spatial resolution. 
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Figure 1: Experimental set-up and results: (a) Macrograph of the weld, (b) Longitudinal and transverse wave 

amplitudes on the back wall, (c) Longitudinal and transverse wave front at an increment position. 

 

The Dynamic Ray Tracing model (DRT) usually applied in Geophysics [7] has been 

implemented in order to predict the propagation of ultrasonic waves in such a structure. To 

perform the simulation, the geometry of the weld, the elasticity constants and the attenuation 

of the materials and the orientation of the grain at any position in the weld are required. As 

the DRT relies on a high frequency approximation, it has to be applied on a continuously 

varying description of the grain orientation in the weld. This may be obtained either in a 

closed-form [5] or thanks to an image processing technique presented in a previous work [8] 

as shown in figure 2. 

 

(a) (b) (c)
 

Figure 2: Smooth description of the crystallographic orientation of a weld: (a) Closed-form expression proposed 

by Ogilvy [5] for a V-shaped weld, (b) Macrograph of a bimetallic weld, (c) Continuously varying description 

obtained by applying an image processing technique [8] on the macrograph. 

 

The paraxial ray theory is based on the solving of two equations: the eikonal equation (1) and 

the transport equation (2). The first one computes the ray-paths and travel-time when the 

second one evaluates the amplitude of the ray during the propagation. The eikonal equation 

represents a non-linear partial differential equation of the first order for the travel-time T(x): 
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It describes the propagation of the wave front T(x) of the considered wave and depends on the 

phase velocity c(x) of this wave. 

The transport equation represents a linear partial differential equation of the first order in 

scalar A(x) the amplitude function: 
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It is solved along a ray Ω and describes the conservation of the energy inside the ray tube. 

 

3.  Dynamic Ray Tracing Model for smooth description of weld 
 

3.1 Ray theory 

The DRT model allows the propagation of ultrasonic waves in anisotropic and 

inhomogeneous media. By deriving the eikonal equation (1), a differential ray tracing system 

(3) called the axial ray system is expressed. This system is composed of two coupled ordinary 

differential equations describing the variations of the position and the slowness with respect 

to the travel time: 
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where aijkl are the elasticity constants of the medium at position xi normalized by the density 

ρ. pi represents the components of the slowness vector, gj
(m)

 are the eigenvectors of the 

Christoffel tensor corresponding to the polarization vector and Vi
e(m)

 is the energy velocity for 

a mode m. The solution of system (3) gives the ray trajectories in the weld. 

The amplitude of the propagating rays is evaluated by solving the transport equation (2) in 

inhomogeneous and anisotropic media. By deriving the axial ray system with respect to initial 

parameter γ, a system of linear ordinary differential equations of the first order for the 

paraxial quantities Qi
(x)

 and Pi
(x)

 is obtained (4): 
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The parameter γ represent any parameter of the ray Ω. It can be chosen for example as the 

take-off angle between the axial and the paraxial rays. 

This system called paraxial ray system is expressed with parameter Gm representing the 

normalized eigenvalues of the Christoffel tensor written as Gm = aijkl pj pl gi
(m)

gk
(m)

. Three 

eigenvalues are evaluated, associated to three eigenvectors gi
(m)

 for the three propagating 

plane waves in the medium.  

The axial and paraxial ray systems are solved simultaneously by using numerical techniques 

(cf. Figure 4) such as the Euler method applied in this case.  

 



 
Figure 4: Iterative solving of a ray system. 

 

The expression (4) represents the paraxial ray tracing system in a Cartesian regular 

coordinates system xi where the indexes i and j are equal to 1, 2 or 3. In this system, the 

paraxial ray tracing system consists in six linear ordinary differential equations. It can be 

written in a wave front orthonormal coordinates system yi where the indexes M and N take 

values 1 or 2 [7], such as: 
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In the wave front coordinates system, the origin moves along the central ray with the 

propagating wave front. The y3-axis is oriented along slowness vector p at the origin point, 

and axes y1 and y2 are in the plane tangent to the wave front at the origin point and are 

mutually perpendicular. Expressing the paraxial quantities in the wave front orthonormal 

coordinates system, allows decreasing the number of linear ordinary differential equations 

from six to four, simplifying its resolution. 

A paraxial ray is thus mathematically written as a vector composed of four  paraxial quantities 

Q1, Q2 , P1 and P2 [7]. Q1 and Q2 are the spatial deviation of the paraxial ray from the axial 

ray and P1 and P2 represent the slowness deviation of the paraxial ray from the axial one as 

shown in figure 5. 

 

 
Figure 5: Representation of the paraxial quantities describing a paraxial ray of a tube. 

 

As expressed in expression (5), the paraxial quantities Qi and Pi at iteration (r+1) are written 

in function of the same quantities evaluated at the previous iteration (r) through a 4x4 

propagation matrix. Then, the paraxial quantities at the last iteration are expressed in function 

of those at the first iteration through a propagation matrix showing the complete propagation: 

 





































































)0(

)0(

2221

1211

)0(

)0(

)0()1()1()()1(

)1(

.......

N

N

N

N
rrr

M

r
M

P

Q

P

Q
LLLL

P

Q

tottot

tottot  (6) 

 

As represented in figure 6, the evolution of the ray tube is followed. The matrices AMN, BMN, 

CMN and DMN
 
of the propagation matrix are re-evaluated at each time step. Then this 

propagation matrix is updated and the position and slowness vectors are computed from the 

axial ray system. 

 

 

 
 

Figure 7: Representation of the evolution of a ray tube and its paraxial quantities Qi and Pi during the 

propagation. 

 

Finally, the geometrical spreading  expressing the evolution of a tube of rays between a 

source point and a receiver point is evaluated in 3D using the following expression. 

 (7) 

 

3.2 Application to a simplified description of the weld 

 

The validation of the model has been made for V-weld with grain orientation described by a 

closed-form expression (9) proposed by Ogilvy [5]: 

 























.0),
)(

)tan(
arctan(

,0),
)tan(

arctan(

xfor
x

zDT

xfor
x

zDT









  (9) 

 

Parameters T and α are linked to the geometry of the weld and D and η express the evolution 

of the orientation of the grain in the weld. As shown in figure 8, the ray trajectories have been 

validated against the results of Connolly’s PhD thesis [10]. In this example, the parameters of 

the V-weld are: D = 2mm, α = 21.80°, T = 1 and η = 1. 
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Figure 8: (a) Description of the parameters of the analytical law proposed by Ogilvy [5], (b) Superposition of the 

ray trajectories obtained by Connolly (oo) and with the dynamic ray tracing model (--). 

 

The ray trajectories evaluated thanks to the axial ray system have been validated with the 

literature. In order to evaluate the computation of the ray amplitudes via the paraxial ray 

system, we intend to evaluate the computation made for the wave field for this simplified 

description of a V-shaped weld. The results obtained with a hybrid finite element code [9] and 

the DRT are shown in figure 9.  
 

Hybrid Finite Element Code Dynamic Ray Tracing

-- Hybrid Finite Element Code

-- Dynamic Ray Tracing

 
Figure 9: Maximum particle velocity for a weld described by a closed-form expression (Figure 8). Comparison 

of the results obtained with a 2D hybrid finite element code and a dynamic ray tracing model in 2D. 

 

A good agreement of the computed wave field is observed between the two models for a 

simplified description of a V-weld. The two systems have been validated for this kind of 

smooth description of the weld. The next step is to evaluate the model for a realistic 

description of a weld. 

 

3.3 Application to a realistic description of the weld 

 

In a previous work [8], an image processing technique applied on a macrograph has been 

exposed in order to obtain a continuously varying description of the grain orientation in a 

weld. The description is then used as an input data of the numerical models. We have 

compared this computed wave field for the weld presented in figure 2. Results are shown in 

figure 10. 
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Figure 10: Maximum particle velocity in 2D  for a weld described by a cartography of the orientation (Figure 2). 

Comparison of the results from a hybrid finite element code and a dynamic ray tracing model. 

 

In the simulation, we have only evaluated the propagation of the longitudinal wave in the 

weld. As for a simplified description of the weld, a good agreement between both computed 

wave fields obtained with the hybrid finite element code and the dynamic ray tracing model is 

observed. 

 

4.  Conclusions and perspectives 
 

A paraxial ray tracing model has been developed in order to evaluate the ultrasonic 

propagation in anisotropic and inhomogeneous media. This model is applied on a 

continuously varying description of the weld. Firstly, it has been validated for a V-shaped 

weld described with a closed-form expression. The ray trajectories have been successfully 

compared to the literature. The longitudinal wave field evaluated from these trajectories has 

been validated with results obtained with a hybrid finite element code. Secondly, the dynamic 

ray tracing has been applied on a V-shaped weld described with a continuously varying 

description of the orientations of the grain. A good agreement has been observed between the 

longitudinal wave field computed with the ray-based model and the hybrid finite element 

code. 

We are currently working on numerical validations of the transverse wave propagation by 

comparing results obtained with these two models. Furthermore, comparisons between 

simulations made with the dynamic ray tracing model and experimental results are in progress 

in order to validate completely the model in 3D. Then, we intend to improve the computation 

time and the numerical precision by using higher-order numerical methods such as the 

common fourth-order Runge-Kutta method. 
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