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Myopathologic trajectory in Duchenne 
muscular dystrophy (DMD) reveals lack 
of regeneration due to senescence in satellite 
cells
Nastasia Cardone1†, Valentina Taglietti1†, Serena Baratto2, Kaouthar Kefi1, Baptiste Periou1,3, Ciryl Gitiaux4,5, 
Christine Barnerias5, Peggy Lafuste1, France Leturcq Pharm6, Juliette Nectoux Pharm6, Chiara Panicucci2, 
Isabelle Desguerre5, Claudio Bruno2,7, François‑Jerome Authier1,3, Chiara Fiorillo7,8, Frederic Relaix1*† and 
Edoardo Malfatti1,3*† 

Abstract 

Duchenne muscular dystrophy (DMD) is a devastating X‑linked muscular disease, caused by mutations in the DMD 
gene encoding Dystrophin and affecting 1:5000 boys worldwide. Lack of Dystrophin leads to progressive muscle 
wasting and degeneration resulting in cardiorespiratory failure. Despite the absence of a definitive cure, innova‑
tive therapeutic avenues are emerging. Myopathologic studies are important to further understand the biological 
mechanisms of the disease and to identify histopathologic benchmarks for clinical evaluations. We conducted a myo‑
pathologic analysis on twenty‑four muscle biopsies from DMD patients, with particular emphasis on regeneration, 
fibro‑adipogenic progenitors and muscle stem cells behavior. We describe an increase in content of fibro‑adipogenic 
progenitors, central orchestrators of fibrotic progression and lipid deposition, concurrently with a decline in muscle 
regenerative capacity. This regenerative impairment strongly correlates with compromised activation and expansion 
of muscle stem cells. Furthermore, our study uncovers an early acquisition of a senescence phenotype by DMD‑
afflicted muscle stem cells. Here we describe the myopathologic trajectory intrinsic to DMD and establish muscle 
stem cell senescence as a pivotal readout for future therapeutic interventions.
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Introduction
Duchenne muscular dystrophy (DMD, OMIM#310,200) 
is a rare, devastating X-linked disease affecting approxi-
mately 1:5000 boys. DMD is caused by out-of-frame 
mutations in the DMD gene that abolish the production 
of Dystrophin protein [10]. In contrast, in-frame muta-
tions of the DMD gene lead to the synthesis of a partially 
truncated and functional protein which is associated with 
a milder phenotype known as Becker Muscular Dystro-
phy [18]. DMD boys are diagnosed at around three years 
of age since they present with stereotyped walking and 
motor difficulties [3, 23]. Corticosteroids therapy has def-
initely modified the progression of the disease, improving 
muscle strength, delaying the loss of ambulation and the 
decline in respiratory and cardiac functions [35]. Never-
theless, there is no treatment at present for DMD patients 
who currently exhibit a median lifespan of up to 25 years 
[6]. Currently, genetic investigations serve as the primary 
diagnostic modality for DMD, impeding the accessibility 
of muscle biopsy specimens essential for comprehensive 
myopathologic analyses [4, 13, 45]. Nevertheless, muscle 
biopsies retain their significance not only in detecting 
cryptic variants but also for RNA and protein investiga-
tions. Moreover, they play a crucial role in clinical trials, 
enabling the monitoring of muscular responses to inno-
vative therapeutic strategies like gene therapies. [16, 21, 
24, 25]. To date there are only a few studies, performed 
in relatively small series of DMD patients, that tracked 
the myopathologic trajectory of DMD [1, 8, 29]. Further-
more, new cellular components have emerged as crucial 
in the trajectory of DMD advancement, including mus-
cle stem cells (MuSCs) and fibro-adipogenic progenitors 
(FAPs) [9, 11, 30, 32, 38–40, 42]. Indeed, DMD is caused 
by the lack of Dystrophin, an essential cytoskeletal com-
ponent of muscle fibers. The absence of Dystrophin not 
only causes myofiber fragility but also triggers cycles of 
muscle degeneration and regeneration with eventual loss 
of muscle repair and replacement of the muscle tissue by 
fibrosis and adipocyte infiltration [7, 44]. The ability of 
muscle to regenerate relies on muscle stem cells, which 
activate and proliferate into committed myoblasts after 
muscle damage, and eventually differentiate into newly 
generated myofibers, or maintain the stem cell pool by 
self-renewing [30, 41]. Muscle stem cell functions in 
regeneration are tightly regulated by fibro-adipogenic 
progenitors (FAPs) that are also the main source of fibro-
sis and fatty replacement in diseased muscles [20, 33, 
43]. Interestingly, compromised tissue regeneration by 
MuSCs and high extra-cellular matrix protein produc-
tion by FAPs are hallmarks of DMD [9, 11, 38–40]. None-
theless, how these two cell populations operate within 
distinct stages of DMD human tissues remains poorly 
understood and tracking their features holds promise as 

innovative markers for tracking the progression of the 
disease. Here we analyzed a cohort of twenty-four muscle 
biopsies from genetically confirmed DMD boys and com-
pared them to twenty-seven histologically normal type 
and age matched muscles. We yield valuable insights into 
myopathologic disease trajectory describing fiber dam-
age, inflammation, fibrosis, fat deposition and mecha-
nisms responsible for defective muscle repair, which may 
serve as valuable readout in future research that seeks to 
evaluate the efficacy of any therapeutic interventions on 
muscle tissue.

Materials and methods
Patients
We analyzed twenty-four open muscle biopsies from 
DMD boys. Age at muscle biopsy, biopsied muscle and 
genetics are reported in Table  1. Twenty-seven age-
matched muscle biopsies reported as histologically 
normal by three certified histopathologists (EM, CF, 
and FJA) were used as controls (Table  2). We classified 
patients into five groups according to the age at muscle 
biopsy: 1–2 years (y), 3–4 y, 5–6 y, 7–8 y and more than 
9 y. All the data presented in this study are in accordance 
with this classification. Dystrophin protein expression 
was assessed in all muscle biopsies and controls and con-
firmed absence of dystrophin in DMD patients.

Morphological studies
The muscles were freshly frozen in isopentane cooled 
with liquid nitrogen and conserved at -80  °C before the 
sectioning with the cryostat Leica CM3050S (Leica Bio-
systems) at 7 μm of thickness on Super Frost Plus slides 
(Thermo scientific, 10,149,870) as previously described 
[22]. The samples were stained using 0.1% Mayers hema-
toxylin (Sigma Aldrich) for a duration of 10 min, followed 
by immersion in 0.5% eosin (Sigma Aldrich). The sections 
were subsequently rinsed in distilled water and sequen-
tially washed in 50%, 70%, 95%, and finally 100% ethanol. 
Afterward, they were incubated in xylene and mounted 
using Eurokitt. To stain sections with Picro Sirius red 
solution (Sigma Aldrich) the frozen tissue sections were 
rinsed with distilled water and incubated in Picro Sirius 
red solution for 25 min. Subsequently, the samples were 
washed with distilled water and dehydrated in 100% 
ethanol for 30  s before being mounted using Eurokitt. 
Digital photographs of each biopsy were obtained with 
a Zeiss AxioCam HRc linked to a Zeiss Axioplan Bright 
Field Microscope and processed with the Axio Vision 
4.4 software (Zeiss, Germany). Histopathologic index, 
necrotic fibers and hypercontracted fibers were counted 
using Visilog image analysis software. The counting was 
done by applying a grid on the whole section and the 
events were counted only on the intersections. All the 



Page 3 of 11Cardone et al. Acta Neuropathologica Communications          (2023) 11:167  

intersections represent the total number of events in 
the section. The histopathologic index was counted with 
a formula where the percentage of all the pathogenic 
events occurring in the muscles was divided by the total 
numbers of counted events [5]. The necrotic and hyper-
contracted fibers were normalized on the number of total 
events. The total fibrotic area (perimysial and endomy-
sial) was measured with a macro-script that runs in an 
open access platform and was designed to quantify the 
percentage of the stained area in the field.

Immunofluorescence studies
For immunofluorescence studies, the muscles were sec-
tioned at 7  μm, permeabilized with Triton 0.5% and 
blocked in 10% BSA for 30  min at room temperature. 
Blocking was followed by an overnight incubation with 
primary antibodies at 4  °C. The following primary anti-
bodies were used: DYS2 (Leica), PDGFRα (Invitrogen, 
PA5-16,571), Embryonic myosin heavy chain (eMHC) 
as a marker of newly regenerated myofibers [34] (Santa 
Cruz Biotechnology, sc-53091), Laminin (Sigma-Aldrich, 
L9393) and CD45 (BD biosciences, 555,843). Alexa fluo 

secondary antibodies were incubated for 45 min at room 
temperature after repetitive washes. For the analysis of 
MuSCs, slides were defrosted for approximately 20  min 
at room temperature, rehydrated for 5  min in PBS 1X 
and then fixed with 4% PFA in PBS 1X for 10  min at 
4 °C. After washes in PBS 1X, slides were placed in cold 
Acetone:Methanol (1:1) solution for 6 min at − 20 °C and 
then incubated with 10% BSA blocking solution for 1 h. 
Primary antibodies were added to 1% BSA and incubated 
over-night at 4 °C. The following primary antibodies were 
used: Pax7 (Santa Cruz Biotechnology, sc-81648), Ki67 
(Abcam, sp6 ab16667), P16 (Abcam, Ab108349), γH2AX 
(Abcam, ab11174) and P21 (Thermofisher, bs-10129R). 
After repetitive washes, slides were incubated with Alexa 
fluor secondary antibodies for 45 min at room tempera-
ture. Laminin staining was performed after the secondary 
antibody incubation, for 1 h at 37 °C using a conjugated 
antibody (NB300-144AF647). The number of Pax7 posi-
tive cells and double positive cells by colocalization with 
Pax7 were counted in at least ten acquisitions per sample 
and normalized to the total number of fibers. For Bodipy 
staining of lipid droplets [37], slides were defrosted for 

Table 1 Data of DMD patients

Del Deletion; Dup Duplication; Ex Exon; Q Quadriceps; D Deltoid; Do Dorsal; nr Not reported

Patient Age at muscle biopsy 
(years)

Muscle DMD mutation CK levels Steroid 
treatment at 
muscle biopsy

P 1 1 Q del 51–54 49,450 No

P 2 1 Q del 48–52 20,538 No

P 3 2 Q del 48–54 11,681 No

P 4 2 Q del 20–44 28,206 No

P 5 3 Q ex.68; c.9953_9954del, p.Glu3318ValfsTer15 18,767 No

P 6 3 Q dup 50 14,768 No

P 7 4 Q del 44 28,830 No

P 8 4 D del 45–50 12,000 No

P 9 5 D del 48–50 nr No

P 10 5 D dup 12–16 15,900 No

P 11 5 Q del 49–50 10,386 No

P 12 5 Q del 46–47 21,458 No

P 13 6 Q del 12–16 26,430 NO

P 14 6 Q del 44 29,660 NO

P 15 7 Q del 10–43 14,286 No

P 16 8 D ex.25; c.3427C > 7, p.Gln1143* 9400 No

P 17 8 D dup2 7395 No

P 18 8 Q del 49–52 7392 No

P 19 9 Q ex.15; c.1753del, p.Ile585PhefsTer22 15,196 No

P 20 15 Do del 18–34 nr Nr

P 21 15 Do del 10–11 nr Nr

P 22 17 Do dup 10–17 nr Nr

P 23 17 Do dup 49 nr Nr

P 24 18 Do ex.35; c.4996C > T, p.(Arg1666Ter) nr Nr
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20 min, hydrated in PBS 1X for 5 min, permeabilized in 
0.5% Triton and then blocked in 10% BSA. After repeti-
tive washes in PBS 1X, the slides were incubated with the 
primary antibody anti-Laminin 1:400 (Sigma-Aldrich, 
L9393) for 1  h at 37  °C. After washes, the slides were 
incubated with the secondary antibody 1:500 for 45 min 
at 37  °C and with Bodipy 1:500 (Invitrogen, D3922). All 
the slides were mounted with fluorescence mounting 
medium (Dako) after the counterstaining of the nuclei 
with Hoechst (Sigma-Aldrich, B2261).

Statistical analysis
Data are presented as mean ± SEM and statistical analy-
sis were performed using Mann–Whitney tests. Results 
were considered statistically significant at p value ≤ 0.05*. 
GraphPad Prism 9.0 was used to generate graphs and for 
statistical analysis.

Results
DMD biopsies showed fiber size variation, and a pro-
gressive loss of muscle structure and integrity (Fig.  1a) 
with a higher histopathologic index compared to con-
trols (Fig. 1b). A notable and gradual rise in the number 
of fibers exhibiting internalized nuclei and necrosis was 
observed with advancing age (Fig.  1c and d). Concur-
rently, the prevalence of hypercontracted fibers in DMD 
samples diminished with the progression of the disease 
(Fig.  1e). From one year of age the number of CD45 
inflammatory cells was elevated in DMD muscles com-
pared to the controls with a peak at 7–8 years, followed 
by a drastic decrease in those DMD patients older than 
9  years (Fig.  1f and g). Interestingly, these myopatho-
logic findings were consistent regardless of which mus-
cle was biopsied. This first phenotypic analysis revealed 
the trajectories during the DMD progression of typical 
hallmarks of the disease such as nuclear internalizations, 
necrotic and hyper-contracted fibers, and inflammation.

Muscle substitution and Fibroadipogenic progenitors 
(FAPs)
Sirius red staining showed a higher fibrosis in DMD 
muscles at all the time points (Fig. 2a and b) with sta-
tistically significant differences starting at 3–4  years 
of age. Fibrotic accumulation remained high without 
significant evolution in our DMD cohort. From 1 year 
old, the presence of adipocytes within the muscle was 
elevated, compared to control muscles (Fig.  2c). In 
addition, increasing levels of fatty replacement have 
been identified alongside the progression of the dis-
ease (Fig. 2c). Both fibrosis and fat infiltration are due 
to fibro-adipogenic progenitor differentiation into 
fibroblasts or adipocytes [43], thus we quantified the 
number of FAPs marked by the expression of PDGFRα 
[42]. At all the examined time points, there was an 
elevated presence of PDGFRα-positive cells within 

Table 2 Data of Ctr patients

D Deltoid; Q Quadricep; Do Dorsal

Age (years) Sex Muscle

C1 1 M D

C2 1 M D

C3 1 F Q

C4 1 M Q

C5 1 M Q

C6 1 F Q

C8 2 F Q

C7 3 M D

C9 3 M D

C10 4 F Q

C11 5 M D

C12 5 M D

C13 5 F Q

C14 5 F Q

C15 5 M D

C16 6 M Q

C17 7 M Q

C18 7 M D

C19 7 M D

C20 8 M D

C21 8 M D

C22 9 F Q

C23 9 F D

C24 14 M Q

C25 15 M Do

C26 15 F Do

C27 17 M Do

(See figure on next page.)
Fig. 1 Characterization of DMD muscle phenotype. a Hematoxylin & Eosin (H&E) staining of Control (Ctr) and DMD muscles at different time points. 
Blue arrows represent necrotic fibers. Black stars represent hypercontracted fibers (scale bar = 50 μm). b Histopathologic index calculated on H&E 
stainings of Ctr and DMD biopsies at different time points. c Quantification of necrotic fibers of Ctr and DMD muscle from H&E. d Quantification 
of fibers with internalized nuclei on DMD and control biopsies at different time points. e Quantification of hypercontracted fibers on DMD and Ctr 
biopsies. f Representative immunofluorescence for CD45 (red), Laminin (green) in Ctr and DMD quadriceps at 7 years. Nuclei are counterstained 
with DAPI (blue) (scale bar = 20 μm). g) Quantification of inflammatory cells CD45‑positive per  mm2 in DMD and Ctr biopsies at different time 
points. Pvalues were calculated by Mann–Whitney tests comparing control and DMD groups within the same age range
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Fig. 1 (See legend on previous page.)
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DMD muscles when compared to the control group. 
Moreover, no progressive increases were observed over 
time, consistent with the fibrotic levels observed in 
DMD muscles (Fig. 2d and e), suggesting a correlation 
between number of FAPs and fibrotic deposition.

Impaired regeneration and satellite cells senescence 
acquisition with DMD progression
eMHC immunostaining showed that the extent of muscle 
regeneration diminishes over time, exhibiting a dramatic 
loss by 9 years with no detected newly formed myofibers 

Fig. 2 Muscle substitution and increased number of FAPs. a Sirius red staining on Control (Ctr) and DMD biopsies at different time points (scale 
bar = 50 μm). b Quantification of the fibrotic red‑stained area in Ctr and DMD muscles on the total surface of the section  (mm2). c Quantification 
of fat‑tissue infiltration (Bodipy stained area on  mm2) in Ctr and DMD biopsies at different time points. d Representative immunofluorescence 
for PDGFRα‑positive cells (red) and Laminin (green) in Ctr and DMD quadriceps at 1 year. Nuclei were counterstained with DAPI (blue) (scale 
bar = 20 μm). e Quantification of the number of PDGFRα‑positive cells on  mm2 in Ctr and DMD biopsies at different time points. P‑values were 
calculated by Mann–Whitney tests comparing control and DMD groups within the same age range
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(Fig.  3a and b). The DMD del52 rat model, recently 
described by us [39], shows similar findings, as well as a 
smaller cohort of DMD muscle biopsies from younger 

patients. Muscle regeneration relies on muscle stem cell 
differentiation and self-renewal. We therefore quantified 
the total number of MuSCs to investigate whether these 

Fig. 3 Lack of regeneration and acquisition of a SCs senescent phenotype in Duchenne muscles. a Co‑immunostaining of regenerative fiber, 
eMHC‑positive (green) and Laminin (red) of Ctr and DMD muscles at different time points. Scale bar = 20 μm. b Quantification of the number 
of regenerative fibers, normalised on the total amount of fibers. A t‑test was performed between 1–2 years and > 9 years old DMD groups. c 
Representative co‑immunofluorescence of Pax7, Ki67 and Laminin in Ctr Quadriceps (Quadri, 7 years), DMD (Quadri 6 years) and in DMD dorsal 
muscles (Dorsal, 18 years). Yellow arrows point MuSCs (Pax7+). Nuclei are counterstained with DAPI (blue) (scale bar = 20 μm). d Quantification 
of the total number of Pax7+ cells on the total amount of fibers in DMD and control muscles at different time points. e Quantification of the number 
of active MuSCs (Pax7‑Ki67 double positive) on the total number of MuSCs in DMD and Ctr muscles at different age. f Quantification of Pax7‑P16 
double positive MuSCs. g Quantification of Pax7‑γH2AX double positive MuSCs. P‑values were calculated by Mann–Whitney tests comparing 
control and DMD groups within the same age range
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cells are lost during DMD progression (Fig. 3c). MuSCs 
were recognized by the expression of Pax7, while to eval-
uate MuSC activation we used Ki67 as a marker of cell 
proliferation. We showed that the number of MuSCs 
was increased in DMD biopsies in reference to the con-
trol samples at all ages based on the quantification of 
the number of Pax7-positive cells (Fig.  3d), suggesting 
that the MuSCs pool is preserved. Moreover, from 1 to 
8 years old, around 10–15% of Pax7-positive MuSCs were 
cycling, being positive for Ki67. However, after 9  years 
old, the vast majority of MuSCs were no longer prolif-
erating (Fig.  3e), correlating with the absence of newly 
regenerated myofibers, suggesting the establishment 
of quiescence of the muscle stem cell pool (Fig. 3a). We 
additionally assessed the proportion of senescent MuSCs 
through the identification of senescence markers, includ-
ing P16, γH2AX and P21 [19]. Our observations revealed 
an increased number of MuSCs expressing these senes-
cence markers in DMD muscles compared to controls. By 
quantifying Pax7-positive cells expressing P16 or γH2AX, 
we detected a high number of MuSCs expressing these 
two senescent markers in biopsies from 1–2  years old 
DMD patients (Fig. 3f and g). Interestingly, the percent-
age of MuSCs expressing P16 (Fig. 3f ) is increasing with 
the age progression in DMD samples while the percent-
age of MuSCs expressing P21 (Additional file 1: Fig. S2) 
or γH2AX (Fig. 3g) remained consistently high over time.

Discussion
Myopathology has been essential for the diagnosis and 
for the understanding of the pathophysiological mecha-
nisms of DMD. Myopathologic markers are currently 
used as readouts for multiple therapies [2, 26]. In this 
study, we analyzed skeletal muscle biopsy samples from 
a cohort of DMD and control patients with the aim 
to delineate the DMD myopathologic trajectory with 
patients age. We categorized DMD and control samples 
based on age at muscle biopsy since we observed no nota-
ble correlations between the different histopathologic 
markers examined and the age at first symptoms, geno-
type or serum Creatine Kinase. Our analysis confirmed 
that the number of hypercontracted fibers is higher in 
DMD samples compared to controls and decreases with 
the age of the patients, while necrotic and fibers with 
internalized nuclei are increasing. This is in accordance 
with previous studies reporting a progressive increase 
of nuclear internalizations and necrotic fibers associ-
ated with a decreased presence of hyper-contracted fib-
ers at older ages [9, 29]. Despite the increasing number 
of necrotic fibers observed with the progression of DMD, 
the presence of inflammatory cells, identified by CD45, 
is marked only until the ages of 7–8, and then sharply 
diminishes at later stages. This observation supports the 

idea that the inflammatory response plays a crucial role 
in DMD pathogenesis at early stages of the disease and 
that anti-inflammatory treatment may be more effective 
in young patients [31]. In parallel to tissue inflammation, 
DMD muscle display fatty deposition and fibrosis [17]. 
We previously demonstrated that fibrosis is the major 
muscle modification correlating with poor motor out-
come in DMD patients [9]. The current study supports 
the higher abundance of fibrosis within DMD muscles, 
that become statistically significant by 3–4  years of age 
compared to control. The elevated fibrotic build-up 
in DMD muscles did not show statistical significance 
at 1–2  years, although the level of fibrosis is reaching 
around 30% of the muscle area in DMD biopsies, sug-
gesting an important fibrotic deposit already at this stage 
of the disease. This is in line with another study that has 
shown early-stage fibrosis in DMD samples linked to 
intrauterine muscle degeneration [29]. Further studies 
including a higher number of muscle biopsies at perina-
tal age are needed to elucidate the age of appearance of 
fibrosis in DMD samples. Interestingly fibrosis did not 
increase with the age in DMD muscles. This result is in 
accordance with a previous study from Desguerre et  al. 
[9], showing the absence of a correlation between age at 
biopsy and fibrosis. On the other side, Peverelli et al. [29] 
reported a peak of amount of connective tissue at the age 
of 6–7 years, determining this time period as crucial for 
the fibrotic degeneration and loss of regeneration. The 
absence of an increased fibrotic deposition by 7 years in 
our cohort of DMD patients can be explained by differ-
ences in muscle type, sample number, and methods for 
fibrosis quantification. Indeed, we analyzed fibrosis by 
quantifying Sirius red area, reflecting collagen deposi-
tion, while in the study by Peverelli et al. [29] the fibrosis 
was assessed by color substraction from hematoxylin and 
eosin stainings.

Although it is important to consider that the disease 
progression can vary between individuals, the lack of 
higher fibrotic deposition with age may be due to tissue 
adaptation to the chronic injury. Also, being fibrosis a 
response to inflammation and to the attempts at muscle 
repair, the plateau in fibrosis may be linked to the lower 
presence of inflammatory cells or loss of muscle regener-
ation observed in DMD. Conversely, fat tissue accumula-
tion in DMD muscles is increasing progressively with age, 
as previously demonstrated [49]. In accordance with this 
finding, the utilization of qMRI to assess fat replacement 
is an outcome measure used in clinical trials to deter-
mine disease progression [14, 47, 48]. Our results dem-
onstrate that the accumulation of fat tissue in dystrophic 
muscle continues to increase after the age of ten thus 
being a more reliable prognostic marker than fibrosis and 
a potential therapeutic target. The main actors of muscle 



Page 9 of 11Cardone et al. Acta Neuropathologica Communications          (2023) 11:167  

substitution are muscle mesenchymal progenitors, also 
known as FAPs [42, 43]. These cells have been associated 
with the pathogenesis of Duchenne in the animal mod-
els of the disease, contributing to both fibrosis substitu-
tion and fat tissue accumulation [28, 36, 39, 43]. From 
our data, the number of FAPs is proportional to fibrotic 
levels confirming their primary commitment into fibro-
genic differentiation. Because fat deposition is increasing 
over time, we can speculate that the adipogenic potential 
of FAPs is only occurring at the latest stage of the disease. 
FAPs also influences muscle tissue regeneration [20, 33]. 
The ability of the muscle to regenerate relies on muscle 
stem cells, which after muscle tissue damage, activate and 
proliferate to create a pool of myoblasts, which eventu-
ally differentiate into newly generated myofibers [30, 41]. 
Previous studies and our study on the DMD rat model 
del52 showed impaired muscle regeneration [38, 40]. To 
elucidate the extent of muscle regeneration in our cohort, 
we quantified the number of regenerating myofibers over 
time, reporting a dramatic and sustained decrease of 
newly formed fibers from 7  years old onward. Different 
hypotheses have been proposed to explain the loss of the 
regeneration potential in DMD, such as impaired cellular 
divisions or telomere shortening [11, 12, 32, 46]. Strik-
ingly, we showed a preserved pool of MuSCs in DMD 
muscles marked by an important loss of cellular activa-
tion, suggesting that MuSCs are maintained in DMD 
muscles, but they lose their proliferation capacity, essen-
tial to form a pool of myoblasts committed to the gen-
eration of new myofibers. Recently, it has been proposed 
that loss of muscle repair in DMD is associated with the 
acquisition of a senescent phenotype of DMD MuSCs [27, 
38, 40]. Senescence is a cellular stress response character-
ized by a stable cell-cycle arrest, resistance to apoptosis 
and a robust senescence-associated secretory phenotype 
(SASP) [15]. This acquired condition observed in DMD 
MuSCs may explain the loss of muscle regeneration with 
the maintenance of MuSC number and prove that MuSC 
senescence can be a relevant therapeutic target to pro-
mote tissue repair. Indeed, the entry into senescence of 
certain subsets of muscle stem cells not only decreases 
the pool of available proliferative myoblasts, but also 
imparts a state of inflammation that resembles the det-
rimental effects of inflammation through the secretion of 
SASP [27]. In line with that, the clearance of senescent 
MuSCs has been proved to ameliorate the regenerative 
potential in animal model of DMD [27, 38]. Also, phar-
macological prevention of DMD MuSC senescence entry 
improves muscle regeneration [40]. These recent findings 
together with our longitudinal study of MuSC senescence 
in twenty-four DMD muscle biopsies further support the 
clinical significance of preventing senescence in DMD 
muscle stem cells. We confirmed that DMD MuSCs 

acquire an early senescent phenotype, using three differ-
ent markers of cellular senescence in vivo (P16, γH2AX 
and P21). While γH2AX and P21 expression levels are 
constantly maintained in DMD muscle stem cells across 
different ages, the number of P16-positive MuSCs is 
increasing with the disease progression. We, thus, pro-
pose P16 as a useful biomarker to analyze muscle repair 
loss and MuSC senescence in DMD muscles. In sum-
mary, our work has an important descriptive relevance 
in characterizing the typical hallmarks of DMD, as fiber 
damage, fibrosis, fatty deposition and inflammation, as 
well as novel features of the disease like FAP accumula-
tion, loss of muscle regeneration and MuSC senescence 
in a cohort of DMD patients ranging from 1 to 18 years 
of age.

Conclusions
This study has assembled one of the largest cohorts of 
muscle biopsies of DMD patients, which are currently 
extremely rare because DMD diagnosis is based primarily 
on genetics. Our analyses allowed to get valuable insights 
into the myopathologic trajectory of DMD hallmarks and 
muscle regeneration impairment with concurrent senes-
cence entry of muscle stem cells alongside with accumu-
lation of fibro-adipogenic progenitors in relation with 
fibrosis and fat accumulation. These findings hold a high 
relevance for pharmacological trials that employ muscle 
biopsy modifications as outcome measures.
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