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Abstract

Online Continual Learning (CL) solves the problem of
learning the ever-emerging new classification tasks from a
continuous data stream. Unlike its offline counterpart, in
online CL, the training data can only be seen once. Most
existing online CL research regards catastrophic forgetting
(i.e., model stability) as almost the only challenge. In this
paper, we argue that the model’s capability to acquire new
knowledge (i.e., model plasticity) is another challenge in
online CL. While replay-based strategies have been shown
to be effective in alleviating catastrophic forgetting, there is
a notable gap in research attention toward improving model
plasticity. To this end, we propose Collaborative Continual
Learning (CCL), a collaborative learning based strategy to
improve the model’s capability in acquiring new concepts.
Additionally, we introduce Distillation Chain (DC), a col-
laborative learning scheme to boost the training of the mod-
els. We adapted CCL-DC to existing representative online
CL works. Extensive experiments demonstrate that even if
the learners are well-trained with state-of-the-art online CL
methods, our strategy can still improve model plasticity dra-
matically, and thereby improve the overall performance by
a large margin. The source code of our work is available at
https://github.com/maorong-wang/CCL-DC.

1. Introduction
Continual Learning (CL) [10, 13, 32, 44] aims to learn a
sequence of tasks incrementally and encourage the neural
network to gain more performance on the tasks at hand,
without forgetting heretofore learned knowledge. CL can
be done in two different manners [4, 44]: offline continual
learning and online continual learning. In offline CL, the
learner can have infinite access to all the training data of
the current task it trains on and may go through the data
for any epoch. Contrary to offline CL, in online CL, the
training data for each task also comes continually in a data
stream, and the learner can only see the training data once.
Apart from the learning manner, there are also three dif-
ferent CL scenarios [23, 29, 42]: Task-incremental Learn-

ing (TIL), Domain-incremental Learning (DIL), and Class-
incremental learning (CIL). In this paper, we focus on the
CIL setting in online CL.

Various online CL methods [6, 7, 19, 20, 31, 35, 45] have
been proposed to help the models learn continually on one-
epoch data stream, with alleviated forgetting. Among them,
replay-based methods have shown remarkable success, and
current state-of-the-art methods rely heavily on memory re-
play to mitigate catastrophic forgetting [17, 30]. However,
while most existing online CL research almost only focuses
on improving model stability (i.e., alleviating catastrophic
forgetting) in pursuit of better overall accuracy, the impor-
tance of model plasticity (i.e., the capability to acquire new
knowledge) is greatly overlooked. While in offline CL it is
possible to gain high plasticity by iterating several epochs
on the current task before proceeding to the subsequent task,
the plasticity in online CL can be more difficult to acquire
because the training data can only be seen once. As shown
in Fig. 1, compared to learning without memory replay, the
replay-based methods implicitly alleviate the low plasticity
issue to some extent. Also, it is possible to improve the plas-
ticity with multiple updates trick on incoming samples [3].
However, the combination of memory replay and multiple
updates does not bridge the existing plasticity gap between
online and offline CL, and multiple updates trick will also
lead to higher catastrophic forgetting. Overall, the plasticity
gap hinders the performance of online CL methods.

In this paper, we claim that plasticity is especially cru-
cial and challenging to acquires in online CL, even more
so than in offline CL. Thus, we shed light on how model
plasticity and stability will impact the overall performance,
we propose a quantitative link between plasticity, stability,
and final accuracy, showing that the plasticity gap between
offline and online must be reduced to improve overall per-
formances.

Guided by the quantitative relationship, we focus our-
selves on the former-overlooked plasticity perspective. In-
spired by the ability of collaborative learning to accelerate
the convergence in non-continual scenarios [5], we incor-
porated collaborative learning in online CL and observed
a similar phenomenon. To this end, we propose Collab-
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Figure 1. The plasticity (learning accuracy) and stability (relative
forgetting, our metric proposed in Sec. 3) comparison of ER under
different settings on CIFAR-100. For experiments with memory
replay, the size of the memory buffer is set to 2,000. We can wit-
ness a plasticity gap between offline CL and online CL, even with
memory replay and multiple update trick (memory iteration > 1).

orative Continual Learning with Distillation Chain (CCL-
DC), a collaborative learning scheme that can be adapted to
existing online CL methods. CCL-DC comprises two key
components: Collaborative Continual Learning (CCL) and
Distillation Chain (DC).

CCL involves two peer continual learners to learn from
the data stream simultaneously in a peer teaching manner,
and it enables us to have more parallelism in optimization
and provides more maneuverability to the continual learn-
ers. To the best of our knowledge, CCL is the first to
involve collaborative learning techniques in online CL re-
search. Moreover, to fully exploit the potential of collabo-
rative learning in online CL scenarios, we proposed DC, an
entropy regularization based optimization strategy explic-
itly designed for online CL.

The main contribution of this paper can be summarized
as follows.
1. We propose a quantitative link between plasticity, stabil-

ity, and final performance. Based on this, we find that
plasticity is an important obstacle in online CL, which
was greatly overlooked in the previous research;

2. To overcome the plasticity issue, we propose CCL-DC,
a collaborative learning based strategy that can be seam-
lessly integrated into the existing methods and improve
their performance by enhancing plasticity;

3. Extensive experiments show that CCL-DC can enhance
the performance of existing methods by a large margin.

2. Related Work
Continual Learning. Continual Learning methods can
be classified into three different categories: regularization-
based methods, parameter-isolation-based methods, and
replay-based methods. Regularization-based methods [2,
8, 24, 27, 47] add extra regularization terms to balance

the old and new tasks. Parameter-isolation-based meth-
ods [1, 16, 36–38] solve the problem explicitly by dynam-
ically allocating task-specific parameters. Replay-based
methods [6, 7, 9, 14, 19, 20, 31, 35, 45] maintain a small
memory buffer that stores a few old training samples.

Among these methods, replay-based strategies have
gained huge success due to their impressive performance
and simplicity. ER [35] is the fundamental replay-based
method that leverages Cross-Entropy loss for classification
and a random replay buffer. DER++ [6] stores the logits in
the memory buffer and extends ER with the distillation of
old stored logits. ER-ACE [7] extends ER with Asymmet-
ric Cross-Entropy loss for classification to suppress the drift
of old class representations. OCM [19] leverages a replay-
based strategy by maximizing the mutual information be-
tween old and new class representations. GSA [20] solves
cross-task class discrimination with replay-based strategy
and Gradient Self Adaption. OnPro [45] uses online pro-
totype learning to address shortcut learning and alleviate
catastrophic forgetting.

These replay-based methods propose different strategies
for alleviating catastrophic forgetting and improving the
model stability. However, the importance of the model plas-
ticity is greatly neglected in their research, despite their suc-
cess in terms of final performance. In our work, these meth-
ods serve as the baselines and we adapted our strategy to
these baselines to show the efficiency of our proposed ap-
proach.

Collaborative Learning. Collaborative learning [5, 18,
39, 48, 49] orients from online knowledge distillation (KD).
Different from the conventional KD methods, online KD
trains a cohort of deep networks from scratch in a peer-
teaching manner. During the training process, the model
imitates their peers and guides the training of other models
simultaneously. DML [48] suggests peer student models
learn from each other through the logit distillation between
the probability distributions. Codistillation [5] is similar to
DML and suggests the ensemble of peer networks can fur-
ther improve the performance. More importantly, Codistil-
lation shows that online KD can help the model converge
faster on non-continual scenarios.

Despite the success of collaborative learning in non-
continual scenarios, due to the lack of focus on plasticity,
the research on collaborative learning in CL is still limited.
To the best of our knowledge, there is no existing research
using the collaborative learning technique to boost the train-
ing of online CL. Moreover, in our work, we propose DC, an
entropy regularization based optimization strategy, which is
designed to exploit the full potential of collaborative learn-
ing in online CL scenarios.



Figure 2. Overview of the proposed CCL-DC framework applied to a baseline online CL method. The proposed CCL-DC framework has
two main components. The first one is CCL, which involves two peer continual learners that simultaneously learn from the data stream in
a peer teaching manner. The second component is DC, which generates a chain of samples with varying levels of difficulty and feeds them
to models to obtain a chain of logit distribution of different confidence levels. Then, in a collaborative learning approach, DC conducts
distillation from less confident predictions to more confident predictions, to serve as a learned entropy regularization.

3. Plasticity and Stability in online CL
In this section, we revise the metric for model plasticity
and propose a novel metric for model stability. In addition,
we quantitatively derived the impact of model plasticity and
stability on the final performance.

3.1. Model Plasticity

The model plasticity measures the learner’s capability to
learn new knowledge when a new task arrives. Several dif-
ferent metrics have been proposed to measure the model
plasticity [8, 28, 34, 44]. In our work, we evaluate the model
plasticity with Learning Accuracy (LA) [34]. Formally, the
Learning Accuracy for the j-th task is defined as:

lj = ajj , (1)

where aij is the accuracy evaluated on the test set of task j
after training the network from task 1 to task i. For an over-
all metric normalized against all tasks, the averaged Learn-
ing Accuracy is written as LA = 1

T

∑T
j=1 lj , and T is the

number of tasks in total.

3.2. Model Stability

The stability measures how much the model forgets given
its current state. The most commonly used metric in previ-
ous CL research is the Forgetting Measure (FM) [8]. Intu-
itively, FM for the j-th task fmk

j reveals how much perfor-
mance the model loses on a given task j, after training on
task k, compared with its maximum performance obtained
in the past:

fmk
j = max

i∈{1,...,k−1}
(aij − akj ),∀j < k. (2)

aij T1 T2 T3 T4 T5 FMk RFk

T1 30/15 - - - - - -
T2 25/12.5 25/12.5 - - - 5/2.5 8.33/8.33

T3 20/10 20/10 20/10 - - 7.5/3.75 17.78/17.78

T4 15/7.5 15/7.5 15/7.5 15/7.5 - 10/5 28.75/28.75

T5 10/5 10/5 10/5 10/5 10/5 12.5/6.25 42/42

Table 1. Forgetting Measure (%) and Relative Forgetting (%) of
two example learners (Learner 1 in teal and Learner 2 in brown) in
a continual setting of 5 tasks with 2 classes per task. Each element
ai
j at row j and column i is the per task accuracy evaluated on the

test set of task j after training the network from task 1 to task i.

For the overall metric obtained across all tasks, FM can
be expressed as:

FM =
1

T − 1

T−1∑
j=1

fmT
j . (3)

In our work, instead of using FM as the stability metric,
we propose forgetting measure on a relative basis, which we
call Relative Forgetting (RF). Intuitively, RF measures how
much proportion of performance the model forgets. And
RF for the j-th task after training on task k, can be defined
as:

fk
j = max

i∈{1,...,k}

(
1−

akj
aij

)
,∀j ≤ k. (4)

The overall metric averaged across all tasks can be writ-
ten as:

RF =
1

T

T∑
j=1

fT
j . (5)

There are two advantages for shifting from absolute for-
getting to relative forgetting:



1. RF is more fair for methods with higher plasticity. As
shown in Table 1, two continual learners with high and
low plasticity are compared with two forgetting met-
rics. While both models have the exact same RF, the
less plastic one displays lower FM. FM definition will
favor poorly performing models even though the relative
decrease in performance is the same;

2. RF helps quantitatively derive the relationship between
the model stability and final performance.

3.3. Impact on the Overall Performance

For online CL, the model’s final average accuracy (AA) is
the most vital metric. In this subsection, we try to show
how the model plasticity and stability will impact the final
performance quantitatively.

The model’s final average accuracy can be calculated by:

AA =
1

T

T∑
j=1

aTj . (6)

With the definition of our plasticity metric (LA) and sta-
bility metric (RF), we can easily find the relationship be-
tween learning accuracy, relative forgetting, and accuracy:

aij ≥ lj × (1− f i
j), (7)

where we take the equal sign when ajj = maxi∈{1,...,j} a
i
j .

When generalizing the class-wise final accuracy aTj to the
average accuracy (AA), we need to take the dot product of
the LA vector [l1, ..., lT ] with RF vector [fT

1 , ..., fT
T ] which

is trivial. More intuitively, in practice, we can make the
approximation with:

AA ⪆ LA× (1−RF ). (8)

As indicated by Eq. 8, the lower bound of the final per-
formance is proportional to LA and 1−RF , which suggests
that both plasticity (LA) and stability (RF) play a crucial
role in the final accuracy. Our findings reveal the impor-
tance of the model plasticity which was neglected in the
past. And it can serve as a good guide for future online CL
research.

4. Proposed Method
In this section, we first justify our motivations. Then, we
introduce our proposed strategy: Collaborative Continual
Learning and Distillation Chain. Finally, we show how to
adapt our proposed strategy to the existing online CL meth-
ods and boost their plasticity.

4.1. Motivation Justification

Plasticity matters in Online CL. Online continual learn-
ers aim to continuously adapt to non-stationary data

Figure 3. Conceptual diagram of the training framework, when
distilling from an untrained network θ2 to suppress the confidence
of network θ1.

Dataset CIFAR-100

Memory Size M M=1000 M=2000 M=5000

ER 24.47±0.72 31.89±1.45 39.41±1.81

ER + Untrained Distillation 27.07±1.20 34.84±0.64 41.15±1.16

Table 2. The performance of network θ1 when distilling from un-
trained network θ2 on CIFAR-100. All numbers are average over
10 runs.

streams, efficiently acquiring new knowledge while retain-
ing previously learned information. In current online CL re-
search, most methods focus only on alleviating catastrophic
forgetting. Even for state-of-the-art methods like [19, 45],
plasticity is often a role that can be sacrificed in pursuit of
better stability. However, our finding in Sec. 3 shows that
while both plasticity and stability play important roles in
achieving decent final performance, plasticity is especially
challenging to attain in online CL. To this end, we explicitly
focus on the plasticity perspective.

The potential of collaborative learning to improve con-
vergence in non-continual scenarios [5] positions it as a
promising candidate for enhancing plasticity. With the ap-
parent lack of focus on plasticity, collaborative learning has
yet to be leveraged to boost convergence of online continual
learners. In our research, we propose to exploit collabora-
tive learning convergence properties for improving plastic-
ity. We find that similar to non-continual scenarios, collab-
orative learning strategy can boost convergence by allowing
more parallelism in the training and more maneuverability
of the continual learners.

Overconfidence hurts Online CL. In conventional su-
pervised learning, it is well established that excessive con-
fidence can harm the generalization ability. To tackle this
issue, many methods like label smoothing [41], knowledge
distillation [46], and confidence penalty [33] are proposed.

In online CL, we find a counter-intuitive, yet similar phe-



nomenon. As shown in Fig. 3, while we train network θ1

with the classification loss, we initiate another network θ2 at
the beginning of the training. During the continual training,
we stagnate the network θ2 (i.e., Kaiming initialize and stay
untrained) and train the network θ1 with both classification
loss and the distillation loss (Kullback-Leibler divergence
loss) from untrained network θ2. The experimental result
in Table 2 shows a decent performance gain compared with
independent training. The distillation from the prediction of
untrained network θ2 to network θ1 serves as a regulariza-
tion to suppress the overall confidence, and the performance
gain under this condition makes it evident that, in continual
scenarios, overconfidence will also harm the performance.

To tackle the overconfidence problem, we propose Dis-
tillation Chain (DC), an entropy regularizer to suppress the
overall confidence level.

4.2. Collaborative Continual Learning

The introduced Collaborative Continual Learning (CCL)
enables more parallelism and flexibility in training online
continual learners, and it is the key to improving the model
plasticity and the final performance. As shown in Fig. 2,
CCL involves two peer continual learners of the same ar-
chitecture and optimizer setting training in a peer-teaching
manner. In the training phase, networks are supervised with
both the ground truth label and the predictions of their peers.
In the inference phase, models can either make predictions
collaboratively with ensemble methods [5] to get a better
performance or predict independently for the sake of com-
putation efficiency. If we denote two networks in CCL as
θ1 and θ2, we formulate our loss to network θ1 as:

L1
CCL =λ1 · Lcls(θ

1(X), y)

+λ2 ·DKL(θ
1(X)/τ, θ2(X)/τ),

(9)

where (X, y) is the data-label pair, Lcls(·) is the classifica-
tion loss in the baseline method CCL adapts to, DKL(·) is
the Kullback-Leibler divergence, λ1 and λ2 are balancing
hyperparameters and τ is the temperature hyperparameter.
Note that the network θ2 should be trained with L2

CCL, re-
spectively.

4.3. Distillation Chain

To fully take advantage of CCL, we propose Distillation
Chain (DC), an entropy regularizaion based strategy explic-
itly designed for online CL. As illustrated in Fig. 2, DC
comprises two steps: (1) generating a chain of samples with
different levels of difficulty [40] using data augmentation,
and (2) distillation of logit distribution from harder samples
to easier samples in a collaborative learning way.

As shown in Table 2, we observed that overconfidence
will hurt the performance in continual training. To tackle
the problem, DC uses data augmentation strategies to gen-
erate samples with different levels of difficulty and produces

Algorithm 1 PyTorch-like pseudo-code of CCL-DC to in-
tegrate to other baselines.
# model1: student model
# model2: teacher model
# optim1: optimizer for student model
# cls: classification loss in baseline
for x, y in dataloader:

# Baseline loss
loss_baseline = criterion_baseline(model1, x, y)

# DC Augmentation
x1 = geometric_distortion(x)
x2 = RandAugment(x1, N, M)
x3 = RandAugment(x2, N, M)

# CCL-DC loss
ls, ls1, ls2, ls3 = model1(x, x1, x2, x3)
lt, lt1, lt2, lt3 = model2(x, x1, x2, x3) # no grad

loss_cls = cls(ls, y) + cls(ls1, y) + cls(ls2, y) +
cls(ls3, y)↪→

loss_ccl = kl_div(ls/t, lt/t) # temperature t
loss_dc = kl_div(ls/t, lt1/t) + kl_div(ls1/t, lt2/t) +

kl_div(ls2/t, lt3/t)↪→

loss_ours = lam1*loss_cls + lam2*(loss_ccl + loss_dc)
loss = loss_baseline + loss_ours

optim1.zero_grad()
loss.backward()
optim1.step()

logit distribution with different confidence. The distillation
from less confident predictions to more confident predic-
tions weakens the overall confidence of the network and
benefits the performance by improving the generalization
capability.

In our work, we use a geometric distortion comprised of
RandomCrop and RandomHorizontalFlip as the first step of
DC augmentation. After that, we use RandAugment [12]
for the subsequent augmentations and we involve two hy-
perparameters N and M for RandAugment. We take three
augmentation steps and distill the logit distribution from the
teacher with harder samples to the student with easier sam-
ples. We formulate our loss with DC to network θ1 as:

L1
DC =λ1

3∑
i=1

Lcls(θ
1(Xi), y)

+λ2

3∑
i=1

DKL(θ
1(Xi−1)/τ, θ

2(Xi)/τ),

(10)

where Xi is the augmentation of input sample X after i
augmentation steps.

4.4. Apply CCL-DC to online CL methods

The overall loss to network θ1 when adapting CCL-DC can
be written as:

L1 = LBaseline + L1
CCL + L1

DC , (11)

where LBaseline is the loss function of the baseline model
CCL-DC adapts to. Note that the model θ2 should be



Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER [35] 56.68±1.89 62.32±4.13 24.47±0.72 31.89±1.45 39.41±1.81 10.82±0.79 19.16±1.42 24.71±2.52 33.30±1.74

ER + Ours 66.43±2.48 74.10±1.71 33.43±1.06 44.45±1.04 53.81±1.16 16.56±1.63 29.39±1.23 37.73±0.85 43.11±1.49

DER++ [6] 58.04±2.30 64.02±1.92 25.09±1.41 32.33±2.66 38.31±2.28 8.73±1.58 17.95±2.49 19.40±3.71 34.75±2.23

DER++ + Ours 68.79±1.42 74.25±1.10 34.36±0.89 43.52±1.35 52.95±0.86 10.99±1.39 21.68±1.94 28.01±2.46 45.70±1.32

ER-ACE [7] 53.26±3.04 59.94±2.40 28.36±1.99 34.21±1.53 39.39±1.31 13.56±1.00 20.84±0.43 25.92±1.07 38.37±1.20

ER-ACE + Ours 70.08±1.38 75.56±1.14 37.20±1.15 45.14±1.00 53.92±0.48 18.32±1.49 26.22±2.01 32.23±1.70 45.15±1.94

OCM [19] 68.19±1.75 73.15±1.05 28.02±0.74 35.69±1.36 42.22±1.06 18.36±0.95 26.74±1.02 31.94±1.19 23.67±2.36

OCM + Ours 74.14±0.85 77.66±1.46 35.00±1.15 43.34±1.51 51.43±1.37 23.36±1.18 33.17±0.97 39.25±0.88 43.19±0.98

GSA [20] 60.34±1.97 66.54±2.28 27.72±1.57 35.08±1.37 41.41±1.65 12.44±1.17 19.59±1.30 25.34±1.43 41.03±0.99

GSA + Ours 68.91±1.68 75.78±1.16 35.56±1.39 44.74±1.32 55.39±1.09 16.70±1.66 28.11±1.70 37.13±1.75 44.28±1.16

OnPro [45] 70.47±2.12 74.70±1.51 27.22±0.77 33.33±0.93 41.59±1.38 14.32±1.40 21.13±2.12 26.38±2.18 38.75±1.03

OnPro + Ours 74.49±2.14 78.64±1.42 34.76±1.12 41.89±0.82 50.01±0.85 21.81±1.02 32.00±0.72 38.18±1.02 47.93±1.26

Table 3. Average Accuracy (%, higher is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER 83.13±1.60 78.15±3.60 53.77±1.51 51.53±1.66 50.79±0.71 68.15±1.47 64.99±1.22 64.44±1.45 53.95±1.51

ER + Ours 90.60±1.50 89.99±1.50 72.38±0.66 70.86±0.72 68.84±1.05 85.24±0.53 81.75±0.83 79.54±0.74 68.73±1.21

DER++ 77.14±2.96 78.00±2.16 56.13±3.75 55.33±3.26 56.32±3.44 70.01±1.83 66.87±1.30 70.28±2.42 60.65±2.97

DER++ + Ours 88.85±1.88 89.00±1.67 72.85±1.37 71.54±1.99 69.52±2.37 82.83±1.27 78.80±1.62 77.79±0.86 70.16±1.03

ER-ACE 57.66±4.16 61.59±3.35 38.53±1.61 39.95±2.00 41.56±1.44 5.60±1.45 4.83±0.78 4.92±0.95 49.82±1.05

ER-ACE + Ours 88.37±1.39 88.40±1.15 69.47±0.88 68.39±1.32 66.63±0.90 21.91±5.16 21.88±4.39 18.88±3.12 68.52±0.82

OCM 78.71±3.66 81.33±2.06 40.87±1.60 42.00±1.48 42.43±1.80 18.56±2.87 15.86±2.01 15.03±2.02 20.77±1.88

OCM + Ours 82.39±2.23 84.53±1.63 48.89±2.04 49.83±2.01 49.94±2.16 31.69±1.81 29.54±2.35 28.10±2.28 48.20±1.38

GSA 79.87±3.26 77.09±4.55 58.16±1.58 55.13±1.81 50.34±1.73 20.46±1.59 15.86±1.26 14.50±0.63 62.59±1.17

GSA + Ours 91.69±1.11 90.98±1.33 73.73±1.03 72.68±0.98 70.36±1.07 80.36±1.22 74.77±1.66 70.71±1.19 73.71±1.12

OnPro 84.23±2.00 85.60±1.56 41.34±1.63 42.59±1.65 42.92±1.00 20.84±1.47 16.73±1.27 15.82±1.04 39.60±0.86

OnPro + Ours 90.39±1.59 90.18±1.58 46.30±1.10 47.13±1.01 47.27±1.81 25.87±1.91 21.40±1.52 19.75±1.22 52.55±2.18

Table 4. Learning Accuracy (%, higher is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

trained similarly. In Algorithm 1, we provide a Pytorch-
like pseudo-code demonstrating how to incorporate CCL-
DC into a given baseline. For simplicity, we only show the
loss function for model θ1. Also, we omitted the memory
buffer in the pseudo-code. However, the training should
be consistent with the baseline, using both streaming and
memory data.

5. Experiments

5.1. Experimental Setup

Datasets. We use four image classification benchmark
datasets to evaluate the effectiveness of our method, includ-
ing CIFAR-10 [25], CIFAR-100 [25], TinyImageNet [26],
and ImageNet-100 [11, 15, 22]. More detailed information
about the dataset split and task allocation is given in the
supplementary material.

Baselines. To show the effectiveness of our strategy, we
applied CCL-DC to six typical and state-of-the-art online
CL methods, including ER [35], DER++ [6], ER-ACE [7],
OCM [19], GSA [20], and OnPro [45].

Implementation details. We use full ResNet-18 [21] (not
pre-trained) as the backbone for every method. For each
baseline method, we perform a hyperparameter search on
CIFAR-100, M=2k, and apply the hyperparameter to all of
the settings. For fair comparison, we use the same opti-
mizer and hyperparameter setting when adapting CCL-DC
to the baselines. For hyperparameters unique to CCL-DC,
we conduct another hyperparameter search as stated in the
supplementary material. We set the streaming batch size to
10 and the memory batch size to 64. We do not use the
multiple update trick as described in [3]. More detailed in-
formation about data augmentation, hyperparameter search,
and hardware environments is given in the supplementary



Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER 31.63±3.81 20.63±8.32 55.71±2.24 39.11±3.87 23.05±3.69 85.00±1.30 71.62±2.18 62.43±3.83 39.26±3.21

ER + Ours 26.74±3.99 17.58±2.71 54.34±2.22 37.67±2.16 21.98±2.59 81.13±1.93 64.79±1.32 53.18±0.99 37.78±2.18

DER++ 23.60±3.64 17.71±2.18 55.65±4.36 41.27±4.93 31.72±3.95 87.79±2.35 73.28±3.88 72.51±5.53 42.97±5.89

DER++ + Ours 22.62±3.03 16.43±3.36 53.45±1.40 39.39±2.71 23.71±3.39 87.16±1.60 73.15±2.15 64.48±3.08 35.32±2.80

ER-ACE 12.25±3.84 9.92±2.83 25.88±4.10 17.68±1.90 10.62±2.08 57.41±2.38 44.48±1.96 37.83±3.12 23.92±2.05

ER-ACE + Ours 20.62±2.26 14.32±2.58 46.78±1.91 34.19±2.40 19.01±0.94 56.56±4.16 42.20±3.94 31.13±3.52 34.43±3.60

OCM 13.05±4.37 11.00±3.11 31.16±2.69 17.90±3.73 6.85±2.25 56.66±2.53 40.59±1.55 30.80±2.29 4.55±1.60

OCM + Ours 10.75±2.52 8.45±2.63 29.65±4.00 17.02±3.01 6.16±1.35 51.58±2.81 35.58±2.54 27.24±1.60 15.33±2.28

GSA 25.02±2.83 16.56±4.02 53.42±3.12 37.29±2.60 20.50±4.33 66.87±3.31 53.42±3.84 43.44±3.81 35.44±2.42

GSA + Ours 24.96±3.27 16.59±2.09 52.29±2.06 38.76±2.41 21.36±2.36 80.08±1.97 63.85±1.78 49.73±2.10 40.46±2.54

OnPro 16.47±4.23 12.93±3.02 35.03±4.45 24.26±2.31 12.04±2.11 64.69±3.36 50.47±4.20 42.81±4.63 14.44±2.08

OnPro + Ours 17.54±4.15 12.90±2.77 27.64±3.29 17.78±1.39 8.41±2.62 56.03±2.96 38.70±1.88 29.24±1.33 15.72±3.29

Table 5. Relative Forgetting (%, lower is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

material.

5.2. Results and Analysis

Final average accuracy. Table 3 presents the results of
average accuracy (AA) at the end of the training on four
datasets. As indicated in Sec. 4, to fully take advantage
of collaborative learning, we show the results with the en-
semble of two models, with the independent model perfor-
mance available in the supplementary material. Generally,
the ensemble method provides about 1% additional accu-
racy compared to independent inference. For all datasets,
memory size M , and baseline methods, applying CCL-
DC constantly improves the performance by a large mar-
gin. Notably, even for state-of-the-art methods like GSA
and OnPro, we can still gain significant performance when
incorporating CCL-DC.

More interestingly, for almost all settings with different
memory buffer sizes M , the performance gain tends to be
a constant on a relative basis. For example, CCL-DC can
boost the performance of ER on Tiny-ImageNet from 10.82
to 16.56 when M=2k, which is a 53.0% performance gain
on a relative basis. The performance gain is 53.4% and
52.7% when M=5k and M=10k respectively. This indi-
cates that we can achieve a decent performance gain regard-
less of the memory buffer size, and it shows the scalability
of our method to different resource conditions.

Plasticity and stability metric. As mentioned in Sec. 3,
we evaluate the plasticity and stability of different continual
learners with Learning Accuracy and Relative Forgetting,
respectively. Table 4 shows the plasticity metric on four
datasets. For all settings, CCL-DC constantly improves the
model plasticity by a large margin. For model stability, as
indicated by RF in Table 5, models trained with CCL-DC
are comparable with the baselines under most cases. ER-

Method Acc. ↑ LA ↑

ER 31.89±1.45 51.53±1.66

ER + Multivew 38.18±1.46 64.02±1.12

ER + Ours (CCL only) 41.05±1.21 68.76±0.79

ER + Ours 44.45±1.04 70.86±0.72

ER-ACE 34.21±1.53 39.95±2.00

ER-ACE + Multivew 38.61±1.48 47.45±1.88

ER-ACE + Ours (CCL only) 40.90±1.08 50.91±1.63

ER-ACE + Ours 45.14±1.00 68.39±1.32

Table 6. Ablation studies on CIFAR-100 (M=2k). We report the
ensemble performance for methods incorporating CCL.

ACE is an exception as its plasticity is unexpectedly low,
especially on TinyImagenet. Also, the stability of ER-ACE
is compromised when incorporating CCL-DC. We will ex-
plain the reason for this unexpected phenomenon in the sup-
plementary material.

5.3. Ablation Studies

Effect of multiview learning. As mentioned in Sec. 4,
CCL-DC benefits from multiview learning with data aug-
mentation in DC. For fair comparison, we explore how mul-
tiview learning will impact the performance of the base-
lines. We apply the classification loss part of CCL-DC to
the baselines. Table 6 demonstrates that multiview learning
can improve both AA and LA of baselines. However, those
performance gains are still inferior to CCL-DC.

Effect of CCL. We evaluate how CCL alone can improve
the baselines. In the experiments, we remove multiview
learning and DC, and we train the continual learner pair
with the loss illustrated in Eq. 9. Table 6 shows the per-
formance gain for ER and ER-ACE. We can see that CCL
alone can provide significant gains in both final accuracy
and plasticity. Also, when combining CCL with DC, the
performance can be further improved.



Method Distillation scheme Acc. ↑ LA ↑

ER Easy to hard 40.95±0.97 60.03±0.98

ER Same difficulty 43.64±1.09 69.49±0.78

ER Hard to easy (Ours) 44.45±1.04 70.86±0.72

ER-ACE Easy to hard 38.46±1.51 39.00±1.03

ER-ACE Same difficulty 43.81±1.28 55.37±1.54

ER-ACE Hard to easy (Ours) 45.14±1.00 68.39±1.32

Table 7. Comparison of different distillation schemes in DC on
CIFAR-100 (M=2k).

Method Distillation scheme Acc. ↑ LA ↑

ER + SDC Easy to hard 35.00±1.31 56.67±0.84

ER + SDC Hard to easy 41.31±1.25 68.62±0.60

ER + CCL-DC Easy to hard 40.95±0.97 60.03±0.98

ER + CCL-DC Hard to easy (Ours) 44.45±1.04 70.86±0.72

Table 8. Final average accuracy when conducting multiview dis-
tillation within the same model on CIFAR-100 (M=2k). All values
are averaged over 10 runs.

Distillation scheme of DC. We also evaluate the effec-
tiveness of DC’s strategy of distilling from harder sam-
ples to easier samples in collaborative learning manner. As
shown in Table 7, we compared it with other distillation
strategies. The result shows that the distillation scheme of
DC constantly outperforms other schemes.

Self-Distillation Chain in an independent model. While
DC was originally designed to incorporate CCL, it is possi-
ble to conduct DC’s strategy within an independent model.
We name such a strategy as the Self-Distillation Chain
(SDC). Similar to different schemes of DC, SDC can be
implemented in two ways: distillation from easier samples
to harder samples, and distillation from harder samples to
easier samples. As shown in Table 8, both strategy gives
extra final performance and plasticity, while the latter strat-
egy benefits the performance more. Moreover, incorporat-
ing DC with CCL (i.e. Ours) further improves the accuracy.

6. Discussions
In this section, we analyze some properties of CCL-DC.

Improving plasticity. One of the important advantages
of CCL-DC is that it can improve the plasticity of con-
tinual learners. This can be evident by plasticity metrics
like LA. Moreover, we have observed that the plasticity of
CCL-DC facilitates the model to converge faster and de-
scend to a deeper loss. Figure 4 illustrates the classification
loss (cross-entropy) curve of the model. To obtain the loss
curve, we take a snapshot of the model every 10 iterations
and compute the cross-entropy over all the training samples
on the current task. We plot the curve on the logarithm scale
so that it is easy to observe that CCL-DC helps the model
descend deeper at the end of each task.

Alleviating overconfidence. To show the effect of DC in
alleviating overconfidence, we compared the confidence of

Figure 4. Classification loss curve of ER on CIFAR-100 (M=2k).
The curve is calculated on all training samples of the current task.
Since there are 10 tasks in total, the curve has 10 peaks.

Figure 5. The entropy of prediction produced by ER with and
without CCL-DC on CIFAR-100 (M=2k). Xi represents the sam-
ple after i-th augmentation in Eq. 10. The value is calculated at
the end of the training and is averaged over all training samples.

models trained with and without CCL-DC. We measure the
confidence with the entropy of predictions. Fig. 5 shows the
entropy of prediction produced by the ER (baseline) with
and without CCL-DC on CIFAR-100 (M=2k). The entropy
is calculated at the end of training and averaged across all
samples in the training set. Moreover, we also calculate
the entropy of models trained with CCL-DC, by forwarding
images of different difficulties (from X0 to X3 in Eq. 10) in
the augmentation chain. The experimental results show the
effect of DC in suppressing overall confidence.

7. Conclusion
In this paper, we highlighted the significance of plasticity
in online CL, which has been overlooked in prior research
when compared to stability. We also established the
quantitative link between plasticity, stability, and final
accuracy. The quantitative relationship shed light on the
future direction of online CL research. Based on this, we
introduced collaborative learning into online CL and pro-
posed CCL-DC, a strategy that can be seamlessly integrated
into existing online CL methods. Extensive experiments
showed the effectiveness of CCL-DC in boosting plas-
ticity and subsequently improving the final performance.



References
[1] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.

Expert gate: Lifelong learning with a network of experts. In
CVPR, 2017. 2

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,
Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.
2

[3] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-
rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In NeurIPS. 2019. 1, 6

[4] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. In NeurIPS, 2019. 1

[5] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Or-
mandi, George E Dahl, and Geoffrey E Hinton. Large scale
distributed neural network training through online distilla-
tion. arXiv preprint arXiv:1804.03235, 2018. 1, 2, 4, 5

[6] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. In NeurIPS,
2020. 1, 2, 6, 13

[7] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. New insights
on reducing abrupt representation change in online continual
learning. arXiv preprint arXiv:2104.05025, 2021. 1, 2, 6

[8] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-
than, and Philip HS Torr. Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence. In
ECCV, 2018. 2, 3

[9] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and Marc’Aurelio Ranzato. On tiny episodic memo-
ries in continual learning. arXiv preprint arXiv:1902.10486,
2019. 2

[10] Zhiyuan Chen and Bing Liu. Lifelong machine learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 12(3):1–207, 2018. 1

[11] Yubei Chen Chun-Hsiao Yeh. IN100pytorch: Pytorch im-
plementation: Training resnets on imagenet-100. https:
//github.com/danielchyeh/ImageNet-100-
Pytorch, 2022. 6, 13

[12] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPR-W, 2020. 5

[13] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
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Supplementary Material

8. Extra Experiments
Impact of the number of augmentation stages in DC.
As mentioned in Sec. 4, DC comprises three augmentation
stages, including one geometric distortion stage and two
RandAugment stages. In this ablation study, we aim to in-
vestigate how more or less augmentation stages will impact
the final performance. In this experiment, we generalize the
number of augmentation stages in CCL-DC from 0 (which
is equivalent to CCL without DC) to N . For N ≥ 1, we
apply one geometric distortion stage and N − 1 RandAug-
ment stages. As shown in Fig. 6, CCL-DC performs better
when the number of augmentation stages increases. How-
ever, the training time and memory footprint also increase
with more augmentation stages. Thus, for a trade-off, we
set the number of stages to 3 in the main paper.

T-SNE visualization. Another advantage of CCL-DC is
its ability to enhance the feature discrimination of contin-
ual learners. Fig. 10 illustrates the t-SNE visualization [43]
of the memory data’s embedding space at the end of the
training. We can see that the feature representation of
the method with CCL-DC is more discriminative compared
with the baseline.

Classification loss curve on other baselines. In Sec. 6,
we present the classification loss curve of the model during
training and illustrate how CCL-DC can assist the model in
descending deeper into the loss landscape. We present the
classification curve for the remaining baselines in Fig. 11.
With improved plasticity, for every baseline method, CCL-
DC can improve the training by descending deeper at the
end of each task.

Independent network performance. Although the en-
semble method gives extra performance at inference time,
by averaging the logit output of two networks in CCL-DC, it
also doubles the computation. In some cases, computational
efficiency becomes more crucial during inference. Contin-
ual learners trained with CCL-DC are also able to do infer-
ence independently, albeit with a slight performance drop
compared with ensemble inference. Table 10 illustrates the
accuracy achieved through independent inference. It is ev-
ident that the performance loss in independent inference,
when compared to ensemble inference, is minimal (approx-
imately 1%).

Performance with NCM classifier. Besides t-SNE, We
can evaluate the feature discrimination using the clustering

Figure 6. The performance of ER incorporating CCL-DC with
varying numbers of augmentation stages on CIFAR-100 (M=2k).
All numbers are averaged over 10 runs.

Figure 7. GradCAM++ visualization on the training set of
ImageNet-100 (M=5k). Shortcut learning exists in the baseline
methods despite making correct predictions.

methods. We remove the final FC classifier and use Nearest-
Class-Mean (NCM) classifier with intermediate representa-
tions. Table 11 demonstrates that CCL-DC can greatly en-
hance the NCM accuracy, which evidences the capability of
CCL-DC in improving feature discrimination.

GradCAM++ visualization. Shortcut learning is another
commonly observed issue that hinders the generalization
capability of continual learners [45]. In Fig. 7, we use Grad-
CAM++ on the training set of ImageNet-100 (M=5k) at the
end of the training of ER and GSA. Although both ER and
GSA make correct predictions, we observed that they fo-
cus on irrelevant objects, which indicates a tendency toward
shortcut learning. Also, we can see that by integrating CCL-
DC, the shortcut learning can be greatly alleviated.



Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER + Ours (Ind.) 65.66±2.35 73.37±1.70 32.97±1.06 43.58±1.05 52.96±1.16 16.32±1.58 28.68±1.20 37.14±0.93 41.82±1.54

ER + Ours (Ens.) 66.43±2.48 74.10±1.71 33.43±1.06 44.45±1.04 53.81±1.16 16.56±1.63 29.39±1.23 37.73±0.85 43.11±1.49

DER++ + Ours (Ind.) 68.15±1.40 73.56±1.12 33.81±0.90 42.79±1.38 52.04±0.81 11.11±1.53 21.47±1.93 27.37±2.64 44.22±1.25

DER++ + Ours (Ens.) 68.79±1.42 74.25±1.10 34.36±0.89 43.52±1.35 52.95±0.86 10.99±1.39 21.68±1.94 28.01±2.46 45.70±1.32

ER-ACE + Ours (Ind.) 69.35±1.24 74.86±1.06 36.34±1.08 44.15±1.05 52.94±0.44 17.99±1.56 25.69±2.00 31.69±1.69 43.92±1.71

ER-ACE + Ours (Ens.) 70.08±1.38 75.56±1.14 37.20±1.15 45.14±1.00 53.92±0.48 18.32±1.49 26.22±2.01 32.23±1.70 45.15±1.94

OCM + Ours (Ind.) 73.00±0.88 76.66±1.38 34.02±1.22 42.39±1.36 50.19±1.36 22.53±1.28 32.16±0.96 38.02±0.94 41.71±1.07

OCM + Ours (Ens.) 74.14±0.85 77.66±1.46 35.00±1.15 43.34±1.51 51.43±1.37 23.36±1.18 33.17±0.97 39.25±0.88 43.19±0.98

GSA + Ours (Ind.) 68.10±1.58 74.78±1.27 35.14±1.40 43.84±1.34 54.29±1.10 16.53±1.62 27.57±1.61 36.12±1.59 43.27±1.05

GSA + Ours (Ens.) 68.91±1.68 75.78±1.16 35.56±1.39 44.74±1.32 55.39±1.09 16.70±1.66 28.11±1.70 37.13±1.75 44.28±1.16

OnPro + Ours (Ind.) 73.65±2.16 77.84±1.33 34.20±1.12 41.18±0.83 49.18±0.81 21.22±1.05 31.13±0.71 37.30±0.93 46.84±1.33

OnPro + Ours (Ens.) 74.49±2.14 78.64±1.42 34.76±1.12 41.89±0.82 50.01±0.85 21.81±1.02 32.00±0.72 38.18±1.02 47.93±1.26

Table 9. Comparison of the final average accuracy achieved through independent inference and the use of the ensemble method on four
benchmark datasets with difference memory buffer size M . All values are averages of 10 runs.

Dataset CIFAR10 CIFAR100 Tiny-ImageNet ImageNet-100

Memory Size M 500 1000 1000 2000 5000 2000 5000 10000 5000

ER 33.16±3.50 20.94±6.79 32.65±1.78 22.20±2.26 13.29±1.98 58.38±1.69 46.87±1.60 40.77±2.45 23.38±2.10

ER + Ours 30.22±3.75 19.85±2.55 43.28±1.67 29.35±1.50 16.88±1.99 69.56±1.54 53.13±0.85 42.63±0.80 28.48±1.50

DER++ 24.21±2.75 18.42±1.84 34.49±4.39 25.55±3.26 20.01±2.88 62.03±2.83 51.57±4.60 49.51±3.04 28.77±4.10

DER++ + Ours 25.08±2.88 18.47±3.12 42.76±1.31 31.13±2.41 18.45±2.89 72.59±1.29 57.71±1.80 50.31±2.34 27.22±2.17

ER-ACE 12.72±3.56 10.66±2.48 12.67±1.62 9.11±0.78 5.92±1.09 19.12±0.63 17.14±0.67 15.59±1.24 14.11±1.19

ER-ACE + Ours 22.86±2.23 16.07±2.38 35.85±1.12 25.84±1.96 14.21±0.85 24.10±2.00 19.14±1.91 15.14±1.60 26.02±2.33

OCM 13.68±4.25 11.63±2.62 14.99±1.55 9.16±1.75 3.76±1.16 26.12±1.63 19.74±1.30 15.92±1.47 3.25±0.90

OCM + Ours 11.59±2.24 9.18±2.03 16.69±2.36 10.07±1.37 3.99±0.78 26.16±1.90 19.99±1.96 15.56±1.06 8.91±1.18

GSA 25.45±2.86 16.42±3.59 33.97±2.55 22.74±1.83 12.31±2.35 27.23±2.01 23.61±2.26 20.58±2.09 24.53±1.59

GSA + Ours 28.47±3.08 19.00±2.08 42.41±1.44 31.09±1.86 16.77±1.87 64.86±1.19 48.23±1.28 35.79±1.46 32.77±2.07

OnPro 17.94±3.69 14.20±2.60 16.76±2.47 12.42±1.39 6.72±0.94 28.01±1.59 23.52±1.75 20.32±1.70 7.59±1.17

OnPro + Ours 19.89±4.01 14.62±2.75 28.93±2.19 20.23±1.03 10.55±1.89 28.21±1.58 20.86±1.13 16.17±0.63 9.90±1.93

Table 10. Forgetting Measure (%, lower is better) on four benchmark datasets with difference memory buffer size M , with and without our
proposed CCL-DC scheme. The result of our method is given by the ensemble of two peer models. All values are averages of 10 runs.

Method NCM Acc. ↑ Logit Acc. ↑

ER 36.56±0.60 31.89±1.45

ER + Ours 44.76±0.55 44.45±1.04

ER-ACE 34.91±1.02 34.21±1.53

ER-ACE + Ours 45.62±1.04 45.14±1.00

OnPro 34.32±0.95 33.33±0.93

OnPro + Ours 42.82±0.67 41.89±0.82

Table 11. Final average accuracy on CIFAR-100 (M=2k), with and
without NCM classifier.

9. Counterintuitive performance of ER-ACE

As shown in Table 4, ER-ACE suffers from counterintuitive
performance on plasticity, especially when the task number
is large (e.g., TinyImageNet experiments). This is because
ER-ACE employs Asymmetric Cross-Entropy loss (ACE)
during the training of batch images. ACE manually masks

out the old classes for batch image training, which reduces
the feature drift of old classes and enhances ER-ACE’s sta-
bility, as stated in the original paper. However, ACE cuts
the gradient for old classes in classification loss, which lim-
its the optimizer’s maneuverability in the final classifica-
tion layer. This loss of maneuverability is significant when
there are many tasks involved, and thus we may observe
the LA close to 0 in the later stages of training. Despite
the low plasticity, ER-ACE has a good overall performance
because: (1) Memory replay partially compensates for this
loss in terms of plasticity (Learner can still learn from sam-
ples in the memory buffer), and (2) ER-ACE has higher sta-
bility. Additionally, we witness a major stability drop in
ER-ACE when incorporating CCL-DC. As indicated in the
Algorithm 1, although we also use ACE in the classification
loss of DC, we do not perform masking in the distillation
loss. The distillation between probability distributions of



peer models retrieves some plasticity, but it also leads to
extra feature drift, which hurts the stability to some extent.

10. Experiment Details

Dataset As mentioned in Sec. 5, we use four datasets
to evaluate the effectiveness of our method. The original
datasets are split into several tasks of disjoint classes. The
detailed information about dataset split and task allocation
is as follows:
CIFAR-10 [25] has 10 classes with 50,000 training samples
and 10,000 test samples. Images are sized at 32×32. In our
experiments, it is split into five non-overlapping tasks with
two classes per task.
CIFAR-100 [25] has 100 classes with 50,000 training sam-
ples and 10,000 test samples. The images are 32 × 32 in
size. It is split into 10 disjoint tasks with 10 classes per
task.
TinyImageNet [26] has 200 classes with 100,000 train-
ing samples and 10,000 test samples. Images are sized at
64× 64. It is split into 100 non-overlapping tasks with two
classes per task.
ImageNet-100 [22] is the subset of ImageNet-1k [15] con-
taining 100 classes. We follow [11] for the class selection.
The images are 224× 224 in size. It is split into 10 disjoint
tasks with 10 classes per task.

Task Sequence. In online CL, some work uses a fixed
task sequence throughout all runs to evaluate the perfor-
mance, for the sake of fair comparison. However, we found
that the evaluation heavily depends on the task order. For
fair comparison, we randomize the allocation of classes to
tasks and the sequence of tasks using 10 fixed random seeds
(for 10 runs in our experiments). This ensures our evalua-
tion result is not biased to task difficulty.

Data augmentation for baseline methods. Data aug-
mentation has been demonstrated to be successful in im-
proving the performance of online CL [6, 19, 35]. How-
ever, methods benefit differently from different augmenta-
tion intensities, and some methods may gain more perfor-
mance with simple augmentations instead of complicated
ones. Thus, to achieve optimal performance for compar-
ison, we involve two different augmentation strategies for
baseline methods:
1. Partial augmentation strategy. The partial augmen-
tation is a strategy with weak augmentation. It comprises
random cropping with p=0.5, followed by random horizon-
tal flip with p=0.5.
2. Full augmentation strategy. The full strategy is a su-
perset of the partial strategy. It consists of random cropping,
horizontal flipping, color jitter, and random grayscale. The

(a) Performance when M = 15 (b) Performance when N = 3

Figure 8. The impact of N and M in RandAugment on the per-
formance for ER + Ours on CIFAR-100 (M=2k). As shown in the
figure, the best performance is achieved with N = 3 and M = 15.
All numbers are averaged over 10 runs.

(a) Performance when λ2 = 2 (b) Performance when λ1 = 0.5

Figure 9. The impact of λ1 and λ2 on the performance for ER
+ Ours on CIFAR-100 (M=2k). As shown in the figure, the best
performance is achieved with λ1 = 0.5 and λ2 = 2. All numbers
are averaged over 10 runs.

parameter of color jitter is set to (0.4, 0.4, 0.4, 0.1) with
p=0.8, while the probability of random grayscale is 0.2.

For fair comparison, the models trained with CCL-DC
also employ the same data augmentation strategy in the
baseline loss part, as illustrated in Algorithm 1.

Hyperparameter search for baselines. For hyperparam-
eters in the baseline methods, as indicated in Sec. 5, we per-
form a hyperparameter search on CIFAR-100 (M=2k) for
the baseline methods. Table 12 shows the exhaustive list
of the grid search. Note that we used the hyperparameters
from the original OCM paper to reduce the hyperparame-
ter search space due to computational constraints. For fair
comparison, after finding the optimal hyperparameters for
the baseline methods, we apply the same hyperparameters
when incorporating CCL-DC.

Hyperparameter search for CCL-DC. CCL-DC also
has four unique hyperparameters, including N , M in Ran-
dAugment of DC, and λ1, λ2 in Eq. 9 and Eq. 10.

In CCL-DC, we use RandAugment to generate sam-
ples with different difficulty. Thus, two additional hyper-
parameters in RandAugment (N and M ) are involved in
CCL-DC. Since the transformation intensity (N and M ) is
highly related to the dataset instead of the baseline method,



We conduct a hyperparameter search for every dataset
with ER + CCL-DC and apply the same hyperparameter
across all baseline methods when incorporating CCL-DC.
We searched in 4 settings of N and 7 settings of M (i.e.,
N = {1, 2, 3, 4} and M = {5, 7, 9, 11, 13, 15, 17}). With
our grid search, we find that (N = 3,M = 15) is the best
for CIFAR-10 and CIFAR-100. (N = 1,M = 11) achieves
the best results on Tiny-ImageNet and (N = 3,M = 11) is
the best for ImageNet-100. We also visualize some of the
experimental results on CIFAR-100, as shown in Fig. 8.

CCL-DC also comprises two hyperparameters λ1 and λ2

in Eq. 9 and Eq. 10. Similar to the hyperparameter search
strategy we do for baseline hyperparameters, for each base-
line method with CCL-DC, we initiate another hyperparam-
eter search for λ1 and λ2 on CIFAR-100 (M=2k) and apply
the hyperparameter to all of the settings. We searched from
λ1, λ2 = {0.25, 0.5, 1, 2, 4, 8}. We visualize some experi-
mental results in Fig 9.

Hardware and Computation. All the experiments in our
work are conducted on NVIDIA A100 GPUs. Fig. 12 shows
the training time for each method with and without CCL-
DC on CIFAR-100 (M=5k).



(a) ER (b) ER + Ours (c) DER++ (d) DER++ + Ours

(e) ER-ACE (f) ER-ACE + Ours (g) OCM (h) OCM + Ours

(i) GSA (j) GSA + Ours (k) OnPro (l) OnPro + Ours

Figure 10. T-SNE visualization of memory data at the end of training on CIFAR-100 (M=2k).

Figure 11. Classification loss curve on CIFAR-100 (M=2k). The curve is calculated on all training samples of the current task. Since there
are 10 tasks in total, the curve has 10 peaks.



Method HP Values

ER

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

DER++

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]
alpha [0.1, 0.2, 0.5, 1.0]
beta [0.5, 1.0]

ER-ACE

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

OCM

optimizer [AdamW]
lr [0.001]

weight decay [1e-4]
aug. strat. [partial, full]

GSA

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

OnPro

optimizer [SGD, AdamW]
lr [0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]

weight decay [0, 1e-4]
momentum (for SGD) [0, 0.9]

aug. strat. [partial, full]

Table 12. Exhaustive list of hyperparameters searched on CIFAR-100 (M=2k).

Figure 12. Training time of each method on CIFAR-100 (M=2k).
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