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Dynamic variable step size LMS adaptation algorithms—Application to
adaptive feedforward noise attenuation*

Tudor-Bogdan Airimitoaiea, Bernard Vaub, Dariusz Bismorc, Gabriel Buched, and Ioan Doré Landaud

Abstract— The paper explores in detail the use of dynamic
adaptation gain/step size (DAG) for improving the adaptation
transient performance of variable step-size LMS (VS-LMS)
adaptation algorithms. A generic form for the implementation
of the DAG within the VS-LMS algorithms is provided. Criteria
for the selection of the coefficients of the DAG filter which is
required to be a strictly positive real transfer operator are given.
The potential of the VS-LMS adaptation algorithms using a
DAG is then illustrated by experimental results obtained on a
relevant adaptive active noise attenuation system.

I. INTRODUCTION

The modern development of adaptation techniques in
automatic control and signal processing started at the end
of the fifties and beginning of the sixties (20th century). The
paper [25] introduced a gradient-based adaption algorithm in
the discrete-time, later named the least mean squares (LMS).
While the choice of the adaptation gain/step size for assuring
the stability of the system was an open problem, interesting
applications in the field of signal processing have been done.
The paper [24] gives an account of the applications of the
LMS algorithm up to 1975.

In automatic control, the first attempt to synthesize adap-
tation algorithms has been probably the paper [23], where
a continuous-time formulation of a gradient type algorithm
has been proposed. Unfortunately, dealing with feedback
control systems to which a non-linear/time-varying loop (the
adaptation loop) is added, raised crucial stability issues. The
problem of the choice of the adaptation gain (step size)
assuring the stability of the full system is fundamental. Dis-
crete time adaptation algorithms assuring global asymptotic
stability for any values of the adaptation gain were available
since 1971 ([12], [13], [17]). The concepts of ”a priori” and
”a posteriori” adaptation error emerged as key points for
understanding the stability issues in the discrete-time context.
These algorithms, derived from stability considerations, can
be interpreted in the scalar case as gradient type algorithms
trying to minimize a quadratic criterion in terms of the ”a
posteriori” prediction error ([10], [11]).
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The signal processing community has concentrated its
efforts in developing variable step size/adaptation gain al-
gorithms in a scalar context (more exactly using a diagonal
matrix adaptation gain) in order to improve the performance
of the LMS algorithm. An exhaustive account of the various
variable step-size LMS (VS-LMS) algorithms is provided
by [5], where a unified presentation is done as well as an
extensive comparison of the algorithms. It turns out that the
adaptation algorithms developed in control from a stability
point of view can also be interpreted as ”variable step size”
LMS algorithms.

In using adaptive/learning recursive algorithms there is an
important problem to be addressed: the compromise between
alertness (with respect to environment changes—like plant
or disturbance characteristics) and stationary performances
when using a constant value for the adaptation gain/step size.
Accelerating the adaptation transient without augmenting
the value of the adaptation gain/step size is a challenging
problem.

Recently, the concept of dynamic adaptation gain (DAG)
has been introduced in [14], [16], [18] as means to accelerate
significantly the adaptation transients without modifying the
steady state (asymptotic) properties of an algorithm for a
given adaptation gain/step size. The correcting term in the
adaptation algorithm is first filtered before its use for the
estimation of a new parameter value. With an appropriate
choice of the parameters of this filter, which should be
characterized by a strictly positive real (SPR) transfer func-
tion, a significant improvement of the adaptation transient
is obtained. The design of this filter is well understood and
design tools are available.

The main objective of this paper is to show that the
DAG introduced in the context of stability based adaptation
algorithms can be successfully applied to VS-LMS adap-
tation algorithms leading to similar significant acceleration
of the adaptation transients. This will be illustrated by real-
time experiments on an adaptive feedforward attenuator (a
silencer).

II. INTRODUCING THE DAG-VS-LMS ALGORITHMS

The VS-LMS (variable step size least mean squares)
algorithms are very popular in the field of signal processing
and the field of active vibration and noise control. There is
a strong similarity with some of the algorithms used in the
adaptive control and recursive system identification. The VS-
LMS algorithms (which are improvements of the original
LMS algorithm) will be briefly reviewed in order to add
the dynamic adaptation gain/step size introduced in [14].



Fig. 1. Least mean squares (LMS) adaptive filtering problem.

The aim of the LMS parameter adaptation/learning algorithm
(PALA) is to drive the parameters of an adjustable model
in order to minimize a quadratic criterion in terms of the
prediction error (difference between real data and the output
of the model used for prediction).

The basic block diagram illustrating the LMS algorithm’s
operation is shown in Fig. 1. The adaptive filter W (q−1) is
fed with the input sequence d(t). The output of the filter,
z(t), is compared with the desired signal, x(t), to compute
the error signal e(t). The LMS algorithm adjusts the weights
of the W (q−1) filter to minimize the error.

Consider that the desired signal can be described by:

x(t) = θTϕ(t), (1)

where the parameter vector and the measurement vector are
denoted by

θT = [w0, w1, . . . , wnW
] , and (2)

ϕT (t) = [d(t), d(t− 1), . . . , d(t− nW )] , (3)

respectively. The adjustable prediction model of the adaptive
filter will be described by:

ẑ◦(t) = θ̂T (t− 1)ϕ(t), (4)

where ẑ◦(t) is termed the a priori predicted output depending
upon the values of the estimated parameter vector θ at instant
t− 1:

θ̂T (t− 1) = [ŵ0(t− 1), ŵ1(t− 1), . . . , ŵnW
(t− 1)] . (5)

It is very useful to consider also the a posteriori predicted
output computed on the basis of the new estimated parameter
vector at t, θ̂(t), which will be available somewhere between
t and t+ 1. The a posteriori predicted output will be given
by:

ẑ(t) = θ̂T (t)ϕ(t) (6)

One defines an a priori prediction error as:

e◦(t) = x(t)− ẑ◦(t) = [θ − θ̂(t− 1)]Tϕ(t) (7)

and an a posteriori prediction error as:

e(t) = x(t)− ẑ(t) = [θ − θ̂(t)]Tϕ(t). (8)

The VS-LMS algorithms update the filter taps according to
the formula (see [24]):

θ̂(t) = θ̂(t− 1) + µ(t)ϕ(t)e◦(t), (9)

where µ(t) is the variable step-size parameter. In the standard
form of the LMS algorithm, the step-size has a constant
value µ(t) = µ. Large values of µ allow for fast adaptation,
but also give large excess mean square error (EMSE, see
[5]). Too large step-sizes may lead to the loss of stability
(see [9] for a discussion). On the other hand, too small
step-sizes give slow convergence, which in many practical
applications is not desirable. A variable step-size µ(t) can
provide a compromise. The first VS-LMS algorithm was
the Normalized LMS (NLMS) algorithm proposed in 1967
independently by [3], [20], which uses the following equation
for the step-size:

µ(t) =
µ

δ + ϕ(t)Tϕ(t)
, (10)

where δ is a very small scalar value used in order to avoid
division by zero (typically of the order of 10−16). 1

In adaptive control, where the stability of the full adaptive
control system is considered as a fundamental issue, VS-
LMS algorithms have been developed from a stability point
of view. However, when scalar type adaptation gain is used
(i.e. diagonal matrix adaptation gain), these algorithms can
be interpreted as gradient type algorithms for the mini-
mization of a quadratic error in terms of the a posteriori
prediction error defined in (8). See [9] for details. See
also [18] for a derivation of this type of algorithm and its
application to active noise control. This algorithm will be
termed PLMS (to distinguish it with respect to the LMS and
the other VS-LMS which are using the a priori prediction
error). The algorithm has the form:

θ̂(t) = θ̂(t− 1) + µϕ(t)e(t) (11)

= θ̂(t− 1) + µ(t)ϕ(t)e◦(t), (12)

where:

µ(t) =
µ

1 + µϕ(t)Tϕ(t)
, (13)

See Appendix I for a direct derivation of the algorithm.
When using the dynamic adaptation gain/learning rate

(DAG) equation (9) of the VS-LMS algorithms will take the
form:

θ̂(t) = θ̂(t− 1) +
C(q−1)

D′(q−1)
[µ(t)ϕ(t)e◦(n)] (14)

where2 C(q−1)
D′(q−1) is termed the “dynamic adaptation

gain/learning rate” (DAG) and has the form:

HDAG(q
−1) =

C(q−1)

D′(q−1)
=

1 + c1q
−1 + . . .+ cnC

q−nC

1− d′1q
−1 − . . .− d′nD′ q

−nD′

(15)

1The case of NLMS using larger values of δ (for example δ = 1) is
discussed in [7].

2The complex variable z−1 will be used for characterizing the system’s
behaviour in the frequency domain and the delay operator q−1 will be used
for describing the system’s behavior in the time domain.



The effective implementation of the algorithm given in (14)
leads to:

θ̂(t) = d1θ̂(t− 1) + d2θ̂(t− 2) + . . .+ dnD
θ̂(t− nD)

+ µ(t)ϕ(t)e◦(t) + c1µ(t− 1)ϕ(t− 1)e◦(t− 1)+

+ . . .+ cnC
µ(t− nC)ϕ(t− nC)e

◦(t− nC) (16)

where (nD = nD′ + 1):

di = (d′i − d′i−1) ; i = 1, ...nD; d′0 = −1, d′nD
= 0 (17)

To implement the algorithm, one needs a computable expres-
sion for e◦(n). This is obtained by computing ẑ◦(n) in (7)
as:

ẑ◦(t) = θ̂T0 (t− 1)ϕ(t), (18)

where

θ̂T0 (t−1) = d1θ̂(t−1)+d2θ̂(t−2)+ . . .+dnD
θ̂(t−nD)

+ c1µ(t− 1)ϕ(t− 1)e◦(t− 1)+

+ . . .+ cnC
µ(t− nC)ϕ(t− nC)e

◦(t− nC). (19)

A. Relations with other algorithms

Many algorithms have been proposed for accelerating the
speed of convergence of the adaptation algorithms derived
using the ”gradient rule”. The algorithm of (14) is termed
ARIMA (Autoregressive with Integrator Moving Average).
As discussed in [16, Section 8], a number of well known
algorithms are particular cases of the ARIMA algorithm.
The various algorithms described in the literature are of
MAI form or ARI form. The MAI form includes “Integral+
Proportional” algorithm [9], [1] (c1 ̸= 0, ci = 0,∀ i > 1,
d′i = 0,∀ i > 0), “Averaged gradient” (ci, i = 1, 2, ..., d′i =
0,∀ i > 0) [22], [21]. The ARI form includes “Conjugate
gradient” and “Nesterov” algorithms [19], [6] (ci = 0, i =
1, 2, .., d′1 ̸= 0, d′i = 0, i > 1) as well as the “Momentum
back propagation” algorithm [8] which corresponds to the
conjugate gradient plus a normalization of µ by (1−d′1)

3. A
particular form of the ARIMA algorithms termed “ARIMA2”
(c1, c2, ci = 0,∀ i > 2, d′1 ̸= 0, d′i = 0,∀ i > 1) will be
studied subsequently and evaluated experimentally.4

III. DESIGN OF THE DYNAMIC ADAPTATION
GAIN/LEARNING RATE

A. Performance issues

The dynamic adaptation gain/learning rate will introduce
a phase distortion on the gradient depending upon the
frequency. Assume that the algorithms should operate for
all frequencies in the range: 0 to 0.5fs (fs is the sampling
frequency). Assume that the gradient of the criterion to be
minimized contains a single frequency. In order to minimize
the criterion, the phase distortion introduced by the dynamic
adaptation gain/learning rate should be less than 90◦ at

3There are very few indications how to choose the various weights in the
above mentioned algorithms.

4The algorithms mentioned above can be viewed as particular cases of
the ARIMA2 algorithm.

all the frequencies. In other terms, the transfer function
C(z−1)
D′(z−1) should be strictly positive real (SPR) (see [9] for
a detailed definition). In order that a transfer function be
strictly positive real, it must first have its zeros and poles
inside the unit circle. One has the following property:

Lemma 3.1: Assume that the polynomials C(z−1) and
D′(z−1) have all their zeros inside the unit circle, then:

I =

∫ π

0

log

(∣∣∣∣ C(e−iω)

D′(e−iω)

∣∣∣∣)dω = 0. (20)

The proof relies on the Cauchy Integral formula (see [16]).
This result allows to conclude that the average gain over

the frequency range 0 to 0.5fs is 0 dB, i.e. on the average
this filter will not modify the adaptation gain/step size. It
is just a frequency weighting of the adaptation gain/step
size. To be more specific, Figure 2 shows the frequency
characteristics of various DAG’s that will be subsequently
used in the experimental section (the VS-LMS algorithm
corresponds to the axis 0 dB). It can be observed first
that the phase is within the range ±90◦, i.e. they are SPR.
Then one can observe that effectively the average gain over
the frequency range 0 to 0.5fs (fs = 2500 Hz) is 0 dB.
Now examining the magnitude, one observes that all are
low pass filters amplifying low frequencies. This means
that if the frequency content of the gradient is in the low
frequency range, the effective adaptation gain/learning rate
will be larger than µ, which should have a positive effect
upon the adaptation/learning transient. In particular, the DAG
which has a larger gain in low frequencies (ARIMA2) should
provide the best performance (which is indeed the case—see
Section IV).

Fig. 2. Frequency characteristics of DAGs used in the experimental section
(see also Table I).

Since we need to have a DAG which is SPR, we will
provide subsequently the tools for design of a SPR DAG. We
will consider the case of the ARIMA2 algorithm introduced
in [14]. The DAG in this case will have the form:

HDAG =
C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2

1− d′1q
−1

(21)



A criterion for the selection of c1, c2 and d′1 in order that
the DAG be SPR is given below.

Lemma 3.2: The conditions assuring that HDAG(z) =
1+c1z

−1+c2z
−2

1−d
′
1z

−1
is strictly positive real (SPR) are:

• for c2 ≤ 0, c1 must be such that

−1− c2 < c1 < 1 + c2

• for c2 ≥ 0

– if the following condition is satisfied

2(d
′

1 − c2) <
√

2(c2 − c22)(1− d
′2
1 ) < 2(d

′

1 + c2)

the maximum bound on c1 is given by

c1 < d
′

1 − 3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 )

otherwise the maximum bound on c1 is given by
c1 < 1 + c2

– if the following condition is satisfied

2(d
′

1−c2) < −
√
2(c2 − c22)(1− d

′2
1 ) < 2(d

′

1+c2)

the minimum bound on c1 is given by

c1 > d
′

1 − 3d
′

1c2 −
√
2(c2 − c22)(1− d

′2
1 )

otherwise the minimum bound on c1 is given by
c1 > −1− c2

The proof of this result is given in [16].
From the conditions of Lemma 3.2, closed contours in

the plane c2 − c1 can be defined for the different values
of d′1 allowing to select c1 and c2 for a given value of d′1
such that the DAG be SPR. Note that a necessary condition
for the selection of the parameters c1, c2, d

′
1 is that both

the denominator and the numerator of the HDAG should be
asymptotically stable.

B. Stability issues

If one wants to use VS-LMS algorithms with large values
of the adaptation gain µ, the stability analysis of the resulting
scheme using a dynamic adaptation gain is an important
issue. For the case of the PLMS algorthm, this analysis has
been carried in detail (see [16], [18]). We will just indicate
the main result subsequently. Equation (14) can be expressed
also as:

(1− q−1)θ̂(t+ 1) = +
C(q−1)

D′(q−1)
[µ(t)ϕ(t)e◦(t+ 1)]

leading to:

θ̂(t+ 1) = HPAA(q
−1)[µϕ(t)e(t+ 1)], (22)

where e(t+1) = e◦(t+1)(1+µϕT (t)ϕ(t))−1 and HPAA =
(1 − q−1)−1HDAG is a MIMO diagonal transfer operator
having identical terms. All the diagonal terms are described
by:

Hii
PAA(q

−1) =
1 + c1q

−1 + . . .+ cnC
q−nC

(1− q−1)(1− d′1q
−1 − . . .− d′nD′ q

−n′
D )

=
C(q−1)

(1− q−1)D′(q−1)
=

C(q−1)

D(q−1)
. (23)

The relation between the coefficients of polynomials D and
D′ is given in (17).

One has the following result:
Theorem 3.3: For the system described by Equations (1)

through (8) using the PLMS algorithm of (14) and (15) one
has limt→∞ e(t+ 1) = 0 for any positive adaptation gain µ
and any initial conditions θ(0), e(0), if Hii

PAA(z
−1) given in

(23) is a PR transfer function with a pole at z = 1.
The proof is given in [16].
The adaptive/learning system considered in the Theo-

rem 3.3 leads to an equivalent feedback representation where
the equivalent feedforward path is a constant positive gain
and the equivalent feedback path features the HPAA (see
[14]). However, in many cases the equivalent feedforward
path will be a transfer operator. In such situations in addition
to the PR condition upon the HPAA, there will be an
additional SPR condition upon the transfer operator char-
acterizing the equivalent feedforward path.

For small values of the adaptation gains/learning rates, the
passivity/stability condition can be relaxed using averaging
[4]. In this case, the most important is that the Hii

PAA is PR
in the frequency region of operation (mainly defined by the
spectrum of the input signals to the systems).

It is interesting to see intersections of the contours assuring
the SPR of the Hii

DAG with the contours assuring that Hii
PAA

is PR. Such an intersection is shown in Fig.3 for the case of
the HDAG given in (21). From this figure one can conclude
that not all the SPR HDAG will lead to a PR HPAA. In
such cases, the performance is improved for low adaptation
gains, but one can not guarantee asymptotic stability for large
values of the adaptation gain. Fig. 3 shows also that there
is a region where despite that HPAA is PR, HDAG is not
SPR. For such configurations, large adaptation gains can be
used but the adaptation transient is slower than for the basic
gradient algorithm.

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

'

Fig. 3. Intersection in the plane c1 − c2 of the contour HPAA = PR
with the contour HDAG = SPR for d′1 = 0.5.



IV. EXPERIMENTAL RESULTS

The objective of his section is to show that the dynamic
adaptation gain can be implemented on various VS-LMS
algorithms and this will lead to a significant acceleration
of the adaptation transient. Specifically for this paper the
LMS, NLMS and PLMS algorithms have been implemented
and tested experimentally on an active noise control test-
bench (adaptive feedforward noise attenuation). Figure 4
shows the view of the test-bench used for experiments.
Detailed description can be found in [16]. The speakers
and the microphones were connected to a target computer
with the Simulink Real-Time®. A second computer is used
for development and operation with Matlab/Simulink. The
sampling frequency was fs = 2500 Hz.

Fig. 4. Duct active noise control test-bench .

The models of the various paths in Figure 4 are character-
ized by the presence of many pairs of very low damped poles
and zeros. These models have been identified experimentally.
The orders of the various identified models are: nG = 33,
nM = 27 and nD = 27.

The objective is to attenuate an incoming unknown broad-
band noise disturbance. The corresponding block diagram
for the adaptive feedforward noise compensation using FIR
Youla-Kucera (FIR-YK) parametrization of the feedforward
compensator (introduced in [15] for active vibration control
and in [2] for active noise control) is shown in Figure 5.

Global primary path

Positive feedback coupling 

Measurement of the

image of the disturbance

Secondary

path

    Residual

 noise

measurement

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward compensator

Fig. 5. Feedforward AVC with FIR-YK adaptive feedforward compensator.

The adjustable filter Q̂ has the FIR structure:

Q̂(q−1) = q̂0 + q̂1q
−1 + ...+ q̂nQ

q−nQ (24)

and the parameters q̂i will be adapted in order to minimize
the residual noise. The algorithm can be summarized as
follows. One defines:

θT = [q0, q1, q2, . . . , qnQ
] (25)

θ̂T = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (26)

ϕT (t) = [v(t+ 1), v(t), . . . , v(t− nQ + 1)] (27)

where:

v(t+1) = BM ŷ(t+1)−AM û(t+1) = B∗
M ŷ(t)−AM û(t+1)

(28)
One defines also the regressor vector (a filtered observation
vector) as:

ϕf (t) = L(q−1)ϕ(t) = [vf (t+1), vf (t), . . . , vf (t−nQ+1)]
(29)

where
vf (t+ 1) = L(q−1)v(t+ 1) (30)

Using R0 = 0 and S0 = 1, the poles of the internal
positive closed loop are defined by AM and they will remain
unchanged. The filter used in (30) becomes L = Ĝ and the
associated linear transfer operator appearing in the equivalent
feedforward path is

H(q−1) =
G(q−1)

Ĝ(q−1)
(31)

(the algorithm uses an approximate gradient). The transfer
function associated to H(q−1) should be SPR in order to
assure asymptotic stability in the case of perfect matching.
This is a very mild condition as long as a good experimental
identification of the models is done.

The VS-LMS algorithms which were used are of the form
given in (9) where e◦(n) is given by (7) with z◦ given in
(18), where θ̂ is given by (26) and ϕ is replaced by ϕf given
in (29)5. The adjustable filter Q̂ had 60 parameters.

The values of the adaptation gain µ for the three algo-
rithms were tuned such that in the absence of the DAG, the
performance was close for the three algorithms. A specificity
of this application is also the low value of the average of
ϕ(n)Tϕ(n) (<< 1). This means that the LMS and PLMS
show a very close behavior for a given µ and that the
adaptation gain µ for the NLMS should be much lower in
order to get similar performances. The choices of µ are 0.2
for LMS, 0.0002 for NLMS and 0.22 for the PLMS.

A broad-band disturbance 70–170 Hz was used as an
unknown disturbance acting on the system. The steady state
and transient attenuation6 were evaluated for the various
values of the parameters c1, c2 and d′1 given in Table I.

5In signal processing literature when using a filtering of the regressor,
the algorithms are termed FU-VSLMS.

6The attenuation is defined as the ratio between the variance of the
residual noise in the absence of the control and the variance of the
residual noise in the presence of the adaptive feedforward compensation.
The variance is evaluated over an horizon of 3 seconds.



TABLE I
PARAMETERS OF ARIMA2 DYNAMIC ADAPTATION GAIN.

Algorithm HPAA–PR HDAG–SPR c1 c2 d′1
Integral (gradient) Y Y 0 0 0

Conj.Gr/Nest.. N Y 0 0 0.9
I+P+D N Y 1.4 0.5 0

I+P Y Y 0.99 0 0
ARIMA 2 N Y 0.99 0 0.9

The system was operated in open-loop during the first 15 s.
Figure 6 shows the time response of the system as well as the
evolution of the global attenuation when using the standard
NLMS algorithm (top) and when the ARIMA2 DAG is
incorporated (bottom) with c1 = 0.99, c2 = 0, d′1 = 0.9
(last row of Table I). One observes a significant acceleration
of the adaptation transient. The acceleration obtained is
equivalent to that obtained with an adaptation gain 25 times
higher using the standard NLMS algorithms. Similar results
were obtained for the LMS and the PLMS algorithms.

Fig. 6. Time evolution of the residual noise using the standard NLMS
adaptation algorithm (top) and using the NLMS + ARIMA2 algorithm
(bottom), for µ = 0.0002.

Figures 7, 8, and 9 give the time evolution of the atten-
uation for the LMS, NLMS and PLMS algorithms and for
the various DAG given in Table I. As one can observe, the
effect of the DAG is similar for the three algorithms.

V. CONCLUSION

The paper emphasizes the potential of the dynamic adapta-
tion/step size (DAG) for improving the adaptation transients
of VS-LMS adaptation algorithms. The main point is that
the DAG should be characterized by a strictly positive real
(SPR) transfer function if we would like to operate correctly
for any frequency in the range 0 to 0.5 of the sampling
frequency. Experimental results on a relevant adaptive active

Fig. 7. Time evolution of the global attenuation for the LMS algorithm
with various DAGs, using µ = 0.2.

Fig. 8. Time evolution of the global attenuation for the NLMS algorithm
with various DAGs, using µ = 0.0002.

Fig. 9. Time evolution of the global attenuation for the PLMS algorithm
with various DAGs, using µ = 0.22.

noise control system have illustrated the feasibility and the
performance improvement achieved using a DAG on VS-



LMS adaptation algorithms.

APPENDIX I
DERIVATION OF THE PLMS ALGORITHM

The objective is to minimize the criterion:

min
θ̂(t)

J(t) = E{[e(t)2]} (32)

In order to apply the gradient rule one has to estimate the
gradient of the criterion with respect to θ(n).

▽θJ(t) = 2E

{
∂e(t)

∂θ̂(t)
· e(t)

}
(33)

but from (8) it results that

∂e(t)

∂θ̂(t)
= −ϕ(t) (34)

and one obtains the algorithm:

θ̂(t) = θ̂(t− 1) + µE{ϕ(t)e(t)} (35)

E{ϕ(t)e(t)} can be approximated by

E{ϕ(t)e(t)} =
1

N

N−1∑
i=0

ϕ(t− i)e(t− i) (36)

and taking N = 1, the algorithm of (35) becomes7:

θ̂(t) = θ̂(t− 1) + µϕ(t)e(t); µ > 0 (37)

We have to give now an implementable expression of this
algorithm. Observe that (8) can be re-written as (using (37))

e(t) = [θ − θ̂(t)]Tϕ(t) = e◦ − µϕ(t)Tϕ(t)e(t) (38)

yielding

e(t) =
e◦

1 + µϕ(t)Tϕ(t)
(39)

and the adaptation algorithm takes the form given in (12)
and (13).
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Automatique. Paris: Hermès, 1988.

[11] ——, System Identification and Control Design: Using P.I.M.+ Soft-
ware, ser. Information and System Sciences Series. Prentice Hall,
1990.

[12] I. D. Landau, “Synthesis of hyperstable discrete model reference
adaptive systems,” in Fifth Asilomar Conference on Circuits and
Systems, Asilomar, California, USA, Nov. 1971.

[13] ——, “Design of discrete model reference adaptive systems using
the positivity concept,” in Proceedings 3rd IFAC Symp. on Sensitivity,
Adaptivity and Optimality, Ischia, Italy, June 1973, pp. 307–314.

[14] I. D. Landau and T.-B. Airimitoaie, “Does a general structure exist
for adaptation/learning algorithms?” in CDC 2022 - 61st IEEE
Conference on Decision and Control, Cancun, Mexico, Dec. 2022.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-03738223

[15] I. D. Landau, T.-B. Airimitoaie, and M. Alma, “A Youla–Kučera
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