
HAL Id: hal-04509632
https://hal.science/hal-04509632v1

Preprint submitted on 18 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reproducible Mapping of Tabular Data into Semantic
Knowledge Graphs with OntoWeaver and BioCypher

Johann Dreo, Claire Laudy, Sebastian Lobentanzer, Marko Baric, Ekaterina
Gaydukova, Benno Schwikowski

To cite this version:
Johann Dreo, Claire Laudy, Sebastian Lobentanzer, Marko Baric, Ekaterina Gaydukova, et al.. Repro-
ducible Mapping of Tabular Data into Semantic Knowledge Graphs with OntoWeaver and BioCypher.
2024. �hal-04509632�

https://hal.science/hal-04509632v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Reproducible Mapping of Tabular Data into Seman-
tic Knowledge Graphs with OntoWeaver and Bio-
Cypher
Johann Dreo1, Claire Laudy2, Sebastian Lobentanzer3, Marko 1

johann.dreo@pasteur.fr Com-
putational Systems Biomedicine Lab.,
Computational Biology Dept., Bioin-
formatics and Biostatistics Hub., In-
stitut Pasteur, Université Paris Cité,
Paris, France
2

claire.laudy@thalesgroup.
com Thales, Palaiseau, France
3

sebastian.lobentanzer@
gmail.com Institute for Compu-
tational Biomedicine, Heidelberg
University, Faculty of Medicine
and Heidelberg University Hospital,
Heidelberg, Germany

Baric4, Ekaterina Gaydukova5, Benno Schwikowski6

4

marko.baric@pasteur.fr Com-
putational Systems Biomedicine Lab.,
Computational Biology Dept., Institut
Pasteur, Université Paris Cité, Paris,
France
5

ekaterina.gaydukova@
pasteur.fr Computational
Systems Biomedicine Lab., Computa-
tional Biology Dept., Institut Pasteur,
Université Paris Cité, Paris, France
6

benno.schwikowski@pasteur.
fr Computational Systems
Biomedicine Lab., Computational
Biology Dept., Institut Pasteur,
Université Paris Cité, Paris, France

March 18, 2024

Large-scale high-level information fusion and data integration is a press-
ing need in several scientific domains. Recently, the biomedical commu-
nity established BioCypher, a tool to help create large Semantic Knowl-
edge Graphs (SKGs) in a simple and reproducible way. In this article,
we introduce OntoWeaver, a companion tool to BioCypher that allows
to easily extract tabular data into SKGs by using a simple declarative
mapping. The use of OntoWeaver and BioCypher is demonstrated in
two different use cases: cancer database integration and invasive species
monitoring. We believe that OntoWeaver and BioCypher, both free and
open-source software, can help several scientific communities working
on SKGs and high-level information fusion problems.

The work presented in this paper
was partly funded by two European
projects. DECIDER is funded by the
European Union under Horizon 2020
programme under grant agreement No
965193. ILIAD is funded under Hori-
zon 2020 program under grant agree-
ment No 101037643.

Introduction

Among scientific domains, the biomedical field operates on the largest
scale [1]. This has led the biomedical community to curate scientific in-
formation in publicly available databases, each specialized on its specific
subject, making it the ideal use case for information fusion problems at
scale.

To use these fragmented resources, researchers need to integrate them
into machine-readable databases with standardized representations. This
has led the biomedical community to use knowledge graphs and ontolo-
gies as primary tools of integration. Recently, however, efforts have
been made to scale up the process of producing such semantic knowl-
edge graphs (SKG) with the objective of having a findable, accessible,
interoperable, and reusable (FAIR) framework [2] for producing biomed-
ical SKGs tailored to the task at hand.

BioCypher [3] is such a framework that simplifies the automated in- https://biocypher.org/
stantiation of SKGs through a combination of procedural “adapters’’
(which gather the data to integrate) and declarative “schema configu-
rations’’ (which map the data types to an ontology). BioCypher allows
the assembly of several ontologies into a single one by tailing in any sub-
part of a hierarchy of types into another one. By abstracting the SKG
build process as a combination of modular input adapters, which can
be aligned with schemas, BioCypher allows the building of SKGs made
up of overlapping primary resources. It also supports several output

https://orcid.org/0000-0003-2727-9569
mailto:johann.dreo@pasteur.fr
https://orcid.org/0009-0009-3039-3224
mailto:claire.laudy@thalesgroup.com
mailto:claire.laudy@thalesgroup.com
https://orcid.org/0000-0003-3399-6695
mailto:sebastian.lobentanzer@gmail.com
mailto:sebastian.lobentanzer@gmail.com
https://orcid.org/0009-0007-8179-2896
mailto:marko.baric@pasteur.fr
https://orcid.org/0000-0001-9025-1214
mailto:ekaterina.gaydukova@pasteur.fr
mailto:ekaterina.gaydukova@pasteur.fr
https://orcid.org/0000-0001-5127-5619
mailto:benno.schwikowski@pasteur.fr
mailto:benno.schwikowski@pasteur.fr
https://biocypher.org/

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 2

backends, allowing the creation of SKGs in various existing database
formats/engines.

With BioCypher, adapters take the form of scripts that gather and
prepare data as sets of nodes and edges tagged with their respective
types. The task of implementing an adapter thus requires advanced
programming skills, which may hinder the adoption of those tools by
practitioners. Allowing adapters to be small programs makes sense for
tasks where accessing the input data is difficult or where the targeted
data structure is complex. However, most of the tasks we encounter in
common use cases involve simple tabular data.

We thus introduce OntoWeaver, a software allowing the automated https://github.com/oncodash/
ontoweavercreation of BioCypher adapters by declaring a simple mapping from

tabular to graph data. We believe that OntoWeaver and BioCypher
can help several scientific communities working on SKGs and high-level
information fusion problems.

This article shows the general idea and setup of OntoWeaver in Sec-
tion , goes into more details of its main features in Section , then intro-
duces two use cases demonstrating its use in Section , before concluding
in Section .

Method

Note on Vocabularies

Translational research using SKGs is at the confluence of several research
domains, each of which has its own vocabulary. Different domains often
use similar terminology to describe unrelated concepts. For instance,
terms used to describe ontologies differ from those used to describe SKGs
or databases. However, in our case, some concepts are compatible, in
the sense that we can (and want to) map one to another.

Table 1 describes the vocabularies used in OntoWeaver, and in this
article, each row represents terms which we consider to be synonyms in
our context.

Section goes into more detail about the synonym keywords used in
the OntoWeaver declarations.

Mapping Declaration

The main feature of OntoWeaver is the transformation of tabular data
into a graph. In the most simple setting, the input table is a collection
of entries, each row representing a subject to be transformed into a node
in the output graph. Each item in this row can also be transformed into
a node, associated with an edge to the node representing the entry. All
created nodes and edges are tagged with a type defined by the meaning
of the column, or the meaning of the entry itself. Figure 1 shows such

https://github.com/oncodash/ontoweaver
https://github.com/oncodash/ontoweaver

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 3

Ontologies Knowledge Graphs Databases

Class Node type
Tag

Data Type

Class name Label Data

[Data] Property
Attribute
Property

Field
Relation Class

Object property
Association

Edge type
Link type

Instance Node Entry
Row

Range (of property) Source
Domain (of property) Target
Argument (of relation) Node

Table 1: Terms used as synonyms in
this article and OntoWeaver.

a simple mapping, and section goes into detail about how to configure
more complex mappings.

phenotype of case
↓

╭───────────────────╮
│ ╔════╪════╗
│ ║ patient ║
│ ╠════╪════╣

╭──────────┴──────────╮ ║╭───┴───╮║
│phenotypic feature:0 │ ║│case:A │║
╰─────────────────────╯ ║╰───────╯║

╠═════════╣
╭─────────────────────╮ ║╭───────╮║
│phenotypic feature:1 │ ║│case:B │║
╰──────────┬──────────╯ ║╰───┬───╯║

│ ╚════╪════╝
╰───────────────────╯

Figure 1: Example of a mapping from
a table (drawn with double lines) of
two entries represented as two rows and
described in one column to an SKG
(drawn with single lines) of four nodes
and two edges. The rows about pa-
tients represent the subject of this SKG
and are mapped to nodes of type “case”
(synonym for “patient” in the Biolink
ontology [4]), while the “patient” col-
umn is mapped to nodes of type “case”
and linked from “phenotypic feature”
node with edge “phenotype of case”.

This type of mapping can be described as a simple declaration, from
the name of the column to a type of node and a type of edge. The
example given in Figure 1 can thus be described by two declarations:
“the subject is a phenotype” and “elements in the column are patients,
linked from the subject via a specific association”. This can be described
with a markup language, as shown in Figure 2.

1 subject: phenotypic feature
2 columns: # Introduces the l i s t of columns .
3 patient: # This i s a column name.
4 to_object: case
5 via_relation: phenotype of case

Figure 2: Example of an OntoWeaver
declaration of a mapping written in the
YAML markup language, implement-
ing the diagram shown in Figure 1.

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 4

Implementation

OntoWeaver is implemented as a Python module. It relies on the Pan-
das [5] module to load a wide range of table formats.

It provides a simple layer of abstraction on top of BioCypher, which
remains responsible for doing the ontology alignment, supporting sev-
eral graph database backends, and allowing reproducible & configurable
builds.

Under the hood, OntoWeaver relies on meta-programming, as it cre-
ates Python classes while parsing the mapping configuration. This allows
a trained programmer to manipulate and create adapters at a low level,
using the Python language itself as a basis. The UML diagram of a
simplified view on the main classes of OntoWeaver is shown in Figure 3.

ontoweaver.types

Element
+id
+label
+allowed
exported property names

+properties

+__init__(id,properties={},allowed=[],label)
+as_tuple()
Exports to BioCypher's format

Node
+as_tuple()

Edge
+id_source
+id_target

+source_type()
+target_type()
+as_tuple()

Adapter
+nodes
+edges
+node_types
+node_fields
+edge_types
+edge_fields

+make_node()
+make_edge()

PandasAdapter
+__init__(dataframe,row_type:Node,
 type_of:dict[str, Edge],
 properties_of)
+source_type(row)
+source_id(i,row)
+properties(row,type)
+run()
+end()
+configure(conf={},module=ontoweaver.types)
parses the mapping

Case

Case to phenotype
+source_type(): Case
+target_type(): Phenotype

Phenotype

Figure 3: UML diagram showing the
main classes of OntoWeaver (simplified
for readability). The Node and Edge
classes are the superclass of any node or
edge type created on the fly by a Pan-
dasAdapter while parsing the YAML
mapping.

Since OntoWeaver uses the Python type system, it inherits the con-
sistency checks provided by the language. For instance, checking consis-
tency across a type’s hierarchy is straightforward. OntoWeaver uses this
ability to allow for the activation or deactivation of subtrees of types at
runtime. In this way, the user can configure which part of the input data
to extract each time they rebuild their SKG. Additionally, OntoWeaver
can validate the source and target types of an edge against their node
counterparts.

Features

OntoWeaver facilitates the integration of data into SKGs by targeting
the ubiquitous tabular format, bridging the gap between the fields pro-

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 5

ducing data and the fields consuming them. Using an existing mapping
on new data is straightforward, and creating a new mapping can be done
by any practitioner who understands the input data and the targeted
ontologies, even with very little knowledge of programming.

OntoWeaver essentially creates a BioCypher adapter from the de-
scription of a mapping. As such, its core input is a dictionary that takes
the form of a YAML file. This configuration file indicates:

• to which (node) type to map each line of the table,

• to which (node) type to map columns of the table,

• with which (edge) types to map relationships between nodes.

Vocabularies

Because several communities are gathered around SKGs, several terms
can be used (more or less) interchangeably (see Section).

OntoWeaver reflects this by providing several alternatives to name
the different keywords it uses, thus allowing for the usage of one’s fa-
vorite vocabulary to write down the mapping configurations, as shown
in Table 2.

Ontologies Knowledge Graphs Databases

subject source
row

entry
line

from_subject from_source FIXME
from_node

to_object to_target
to_node N/A

via_predicate
via_relation via_edge N/A

to_property to_property
FIXME: to_attribute

N/A N/A columns
fields

Table 2: Keywords that can be used
by OntoWeaver interchangeably. Each
line indicates a feature, each column an
alternative (set of) name(s).

The meaning of those keywords is described in the following sections.

Common Mapping

The simplest configuration is to map lines and columns to node types
and add an edge from the “line” node to each of the corresponding
“column” nodes, as shown in Figure 1. This is achieved by indicating
the node type of the subject (representing each entry), the node type of

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 6

each column (with to_object), and the edge type (via_relation) linking
the two, as shown in Figures 2 and 4.

1 source: phenotypic feature
2 fields:
3 patient:
4 to_node: case
5 via_edge: phenotype of case

Figure 4: Example of an OntoWeaver
declaration of a mapping written in the
YAML markup language, implement-
ing the diagram shown in Figure 1 in
the same way as Figure 2, but with al-
ternative keywords.

Relations Between Columns

Some columns of a table may not hold data about the entry itself but
refer to complementary information that is linked to another column.
In that case, the related graph should show an edge between the nodes
extracted from two columns, and not add an additional edge from the
node created for the entry/subject (see Figure 5).

╔════════════════════╦════════════════════╗
║ disease ║ treatment ║
╠════════════════════╬════════════════════╣
║ case to disease ║ disease to drug ║
║ association ║ association ║

╭──────────╮║ ↓ ╭───────────╮║ ↓ ╭───────────╮║
│patient:A ├╫───────┤ disease:X ├╫───────┤ drug:D1 │║
╰──────────╯║ ╰───────────╯║ ╰───────────╯║

╠════════════════════╬════════════════════╣
╭──────────╮║ ↓ ╭───────────╮║ ↓ ╭───────────╮║
│patient:B ├╫───────┤ disease:Y ├╫───────┤ drug:D2 │║
╰──────────╯║ ╰───────────╯║ ╰───────────╯║

╚════════════════════╩════════════════════╝

Figure 5: Example of a mapping show-
ing edges added between nodes ex-
tracted from two columns. Nodes ex-
tracted from the column “disease” are
associated with the nodes extracted
from the column “treatment” through
an edge of type “disease to drug asso-
ciation”.

OntoWeaver provides the keyword from_node (or from_subject) to
indicate this case, as shown in Figure 6.

1 subject: patient
2 columns:
3 disease:
4 to_object: disease
5 via_relation: case to disease association
6 treatment:
7 from_subject: disease # Edge from this node type. . .:
8 to_object: treatment # . . . to this node type .
9 via_relation: disease to drug association

Figure 6: Example of an OntoWeaver
declaration for linking nodes extracted
from two columns, implementing the
diagram shown in Figure 5.

Properties

In OntoWeaver, a property is any atomic piece of data that can be at-
tached to the node but that is not a type tag. The keyword to_property
allows mapping a column to a property of a node type. However, proper-
ties can be attached to many node types at once. For instance, properties
are the classical way to attach references (e.g. version, original publica-
tion, etc.) to nodes and edges. Thus, the keyword to_property expects
a list of node types after the name of the property (see Figure 7).

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 7

1 source: patient
2 columns:
3 disease:
4 to_object: disease
5 via_relation: case to disease association
6 sequence variant:
7 to_object: variant
8 via_relation: patient has variant
9 pubmed_ID:

10 to_property:
11 reference: # Name of the property .
12 - disease # Node types to attach
13 - variant # the property to.

Figure 7: Example of an OntoWeaver
declaration for a property. Here, the
“pubmed_ID” column is mapped as
a property attached to both “disease”
and “variant” nodes.

Transformers

OntoWeaver allows for the manipulation of the content of a cell before
passing it as a set of nodes and edges using transformers (also called
generators).

For instance, it is possible to split the content of a cell into several
parts and create a separate node for each part, using the split trans-
former, as shown in Figures 8 and 9.

patient has variant variant to drug
↓ ↓

╭───────────╮ ╭─────────────────────╮
│ ╔═════╪═══╪══╦══════════════════╪═══════╗
│ ║ variant │ ║ treatments │ ║
│ ╠═════╪═══╪══╬══════════════════╪═══════╣
│ ║ │ │ ║ │ ║
│ ║ │ │ ║ variant to drug │ ║

╭─────┴────╮║╭────┴───┴─╮║ ↓ ╭───────╮ ╭─┴─────╮ ║
│patient:1 │║│variant:A ├╫─────┤drug:X │; │drug:Y │ ║
╰──────────╯║╰──────────╯║ ╰┬──────╯ ╰───────╯ ║

╠════════════╬══════╪═══════════════════╣
╭──────────╮║╭──────────╮║ ╭│ ╮ ╭───────╮ ║
│patient:2 │║│variant:B ├╫──────╯drug:X ; │drug:Z │ ║
╰─────┬────╯║╰────┬───┬─╯║ ╰ ╯ ╰─┬─────╯ ║

│ ╚═════╪═══╪══╩══════════════════╪═══════╝
╰───────────╯ ╰─────────────────────╯

Figure 8: Example of a mapping show-
ing a single column (“treatments”) be-
ing split as several (“drug”) nodes.

1 subject: patient
2 columns:
3 variant:
4 to_object: variant
5 via_relation: patient has variant
6 treatments:
7 into_transformer:
8 split: # Name of the transformer to use .
9 separator: ";" # Parameter passed .

10 # Apply a generic mapping on each part:
11 from_object: variant
12 to_object: drug
13 via_relation: variant to drug

Figure 9: Example of usage of the split
transformer, implementing the diagram
shown in Figure 8.

The implementation of transformers is straightforward and only re-
quires the implementation of a class inherited from EdgeGenerator, with
two functions that return lists of nodes and edges (see Figure 10). Ta-
ble data parsing, loading, and import of the parameters passed in the
mapping configuration (e.g. separator in Figure 9) are handled auto-
matically.

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 8

1 class split(base.EdgeGenerator):
2 def nodes(self):
3 # ‘ separator ’ i s added automatically
4 # to the ‘ se l f ’ instance .
5 for i in self.id.split(self.separator):
6 yield self.make_node(id = i)
7
8 def edges(self):
9 for i in self.id_target.split(self.separator):

10 yield self.make_edge(id_target = i)

Figure 10: Python code for the split
transformer. The functions nodes and
edges are called after the table data
are parsed and loaded as the follow-
ing member variables: id, id_source,
id_target. The member variable sep-
arator is available because it has been
defined as a parameter in the YAML
mapping (see Figure 9).

User-defined Adapters and Dynamic Type Selection

OntoWeaver’s main entry point for the user is an object of the class
“PandasAdapter”. But a user may create their own class, for instance,
to provide a different way to disable the extraction of some node types
at runtime.

Figure 11 shows an example of a new adapter that allows the passing
of any node or edge types or property names that the user would like
to see enabled. But if the user does not pass anything, then all the
available types and properties are enabled.

1 class MYADAPTER(ontoweaver.tabular.PandasAdapter):
2 def __init__(self,
3 df : pd.DataFrame,
4 config : dict,
5 node_types : Optional[Iterable[Node]] = None,
6 node_props: Optional[list[str]] = None,
7 edge_types : Optional[Iterable[Edge]] = None,
8 edge_props: Optional[list[str]] = None,
9):

10 # All created classes go into the ‘ types ’ module .
11 from . import types
12 mapping = self.configure(config, types)
13
14 # I f ”None” i s passed (the default) ,
15 # then do not f i l t e r anything
16 # and just extract a l l available types .
17 if not node_types:
18 node_types = types.all.nodes()
19 if not node_fields:
20 node_fields = types.all.node_fields()
21 if not edge_types:
22 edge_types = types.all.edges()
23 if not edge_fields:
24 edge_fields = types.all.edge_fields()
25
26 super().__init__(
27 df,
28 *mapping,
29 node_types,
30 node_fields,
31 edge_types,
32 edge_fields,
33)

Figure 11: Example of user-defined
adapter, which allows to enable a sub-
set or all of node/edge types and prop-
erties. The types.all module is provided
by OntoWeaver as a way to have access
to all automatically defined types.

Because OntoWeaver uses Python’s metaprogramming for type dec-
laration, it is also possible to declare user-defined classes that will be
reused at the mapping declaration stage. For that purpose, it is suffi-
cient to declare subclasses of Node or Edge, possibly without additional
code, as shown in Figure 12.

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 9

1 class variant(ontoweaver.Node):
2 @staticmethod
3 def fields(): # = properties .
4 return ["timestamp", "version"]
5
6 # Simple subtypes :
7 class amplification(variant):
8 # Properties are automatically
9 # gathered from parent class .

10 pass
11 class loss(variant):
12 pass
13
14 class MYADAPTER(ontoweaver.tabular.PandasAdapter):
15 # [. . .]
16 def source_type(self, row):
17 from . import types
18 # Type can vary depending on some column value :
19 if row["alteration"].lower() == "amplification":
20 return types.amplification
21 elif row["alteration"].lower() == "loss":
22 return types.loss
23 else:
24 return types.variant

Figure 12: Example of user-defined
node types, and of an adapter having
a dynamic source node type.

User-defined Functions

As a low-level API, OntoWeaver provides a way to implement complex
functions that are called at certain key steps of its processing.

For example, if the user needs to change the type of the subject node
depending on the value of a column, they can overload the source_type
function of their adapter, as shown in Figure 12.

Illustration

To show the ease of use and adaptability to any business domain of
OntoWeaver and BioCypher, we illustrate their use in two use cases. The
first is a biomedical case that targets the integration of cancer databases,
and the second deals with the monitoring of invasive species. Both use
cases presented here are simplified for the sake of readability.

Cancer Database Integration

The aim is to extract, from curated biomedical databases, a semantic
graph of interaction involving alteration of genes, drugs, and other ge-
nomics objects of interest. The domain ontology that we use for this
illustration is Biolink [6] which provides an information model of biolog-
ical entities such as genes, diseases, phenotypes, pathways, individuals,
and substances, together with a model of their potential associations.
Here we demonstrate the integration of two databases containing this
type of information: the Cancer Genome Interpreter (CGI, [7]) and
OncoKB [8], [9] databases. The complete application is part of the On-
codashKB project [10]. The data shown in this article is produced by
random sampling of the original data.

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 10

In tables 3 and 4 we show a few examples of simplified data from
the CGI and OncoKB databases, respectively. Each row in these tables
represents a genetic sequence variant that can be associated with the
patient, gene details (existing in both databases), as well as additional
information specific to each database.

Patient Gene Transcript Oncogenic Summary
patient_1 NRG1 ENST00000523534 non-oncogenic
patient_2 IRF4 ENST00000380956 non-oncogenic
patient_3 NOTCH1 ENST00000651671 oncogenic

Table 3: Example data from CGI
database

ID Patient Hugo Symbol Treatments PubMed Citation
0 patient_1 NRG1 Palbociclib PM_1
1 patient_2 IRF4 Tazemetostat PM_2
2 patient_3 NRG1 Olaparib PM_3

Table 4: Example data from OncoKB
database

1 subject: variant
2 columns:
3 patient:
4 to_object: patient
5 via_relation: patient_has_variant
6 gene:
7 to_object: gene_hugo
8 via_relation: variant_in_gene
9 transcript:

10 from_subject: gene_hugo
11 to_object: transcript
12 via_relation: transcript_to_gene_relationship
13 oncogenic_summary:
14 to_object: disease
15 via_relation: variant_to_disease

Figure 13: OntoWeaver mapping file
for CGI database

The OntoWeaver mapping files for the CGI and OncoKB databases
are shown in Figures 13 and 14. Figure 15 represents a simplified version
of the Biolink ontology that was used for this example.

By leveraging Biocypher output adapters, we can export and visu-
alize the integrated data in the Neo4j graph database. The graph on https://neo4j.com
Figure 16 shows the integrated information from both CGI and OncoKB
databases, associated with the sequence variants from both databases.

Invasive Species Monitoring

The second illustrative use case deals with the monitoring of invasive
species in the Mediterranean Sea. The collected data is made of reports
of jellyfish sightings, achieved through the Meduzot [11] citizen science
app. In order to study the contexts of occurrences and the monitoring
of jellyfish, the data gathered is processed and injected into a knowledge
graph, on which further processes such as frequent pattern mining are
done.

https://neo4j.com

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 11

1 subject: variant
2 columns:
3 patient:
4 to_object: patient
5 via_relation: patient_has_variant
6 hugoSymbol:
7 to_object: gene_hugo
8 via_relation: variant_in_gene
9 treatments:

10 to_object: drug
11 via_relation: variant_affected_by_drug
12 citationPubMed:
13 from_subject: drug
14 to_object: publication
15 via_relation: treatment_has_citation

Figure 14: OntoWeaver mapping file
for OncoKB database

entity
├── association
│ ├── patient has variant
│ ├── transcript to gene relationship
│ ├── variant affected by drug
│ ├── treatment has citation
│ ├── variant to disease association
│ └── variant to gene association
└── named thing

├── disease
├── gene
├── patient = case
├── sequence variant
├── drug
├── transcript
└── publication

Figure 15: Subset of the Biolink ontol-
ogy used for data integration from CGI
and Oncokb databases.

In this example, we show how to create an SKG from one database,
using two combined ontologies to model different aspects of the domain.
The first ontology models the specific monitoring domain, whilst the
second one, the URREF ontology [12], models the level of accuracy
attached to observations made by citizens.

User_ID ObsID datetime_ori Location_20_Zones_ID Species Gold_User
A 1091 2023-07-03 18:08:00 Habonim Beach Nature Reserve Rhopilema nomadica 0
B 6 2023-01-02 17:10:00 Habonim Beach Nature Reserve Rhopilema nomadica 1
B 7 2023-01-03 08:06:00 Beit Yanai Unknown 1

Table 5: Example of jellyfish observa-
tionsIn Table 5 we show a few examples of our dataset. Each line de-

scribes an observation made by one of the Meduzot users of jellyfish on
the Israeli coast. Figures 17 and 18 represent the parts of the two ontolo-
gies that we use for our simple illustration. The OntoWeaver mapping
script is shown in Figure 19 and the BioCypher configuration is shown
in Figure 20.

The OntoWeaver mapping defines that each line of the dataset is
a node of type jellyfishobservation, linked to a namedzone node (whose
value is provided by the Location_20_Zone_ID column) through a has-
forlocation relation. The observation node is also linked to a node of type
user, through a reportedby relation. All these node types are classes de-

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 12

VariantAffectedByDrug

VariantAffectedByDrug

VariantAffectedByDrug

TreatmentHasCitation

TreatmentHasCitation

TreatmentHasCitation

TranscriptToGeneRelationship

TranscriptToGeneRelationship

TranscriptToGeneRelationship

PatientHasVariant

PatientHasVariant

PatientHasVariant

Var
ia

nt
To

D
is
ea

se
Ass

oc
ia
tio

n

VariantToD
iseaseAssociation

VariantToD
iseaseA

ssociation

VariantToG
eneAssociation

VariantToGeneAssociation

VariantToGeneAssociation

Varia
ntToGeneAssociatio

n

non-oncogenic:…

oncogenic:dise…

NRG1:gene_hu…

IRF4:gene_hugo

NOTCH1:gene…

PM_1:publication

PM_2:publication

PM_3:publication

0:variant

1:variant

2:variant

patient_1:patient

patient_2:patient

patient_3:patient

Palbociclib:drug

Tazemetostat:d…

Olaparib:drug

ENST0000052…

ENST0000038…

ENST0000065…

Figure 16: Visualization of integrated
data from CGI and OncoKB databases.
From left to right: red nodes represent
patients, each of whom is connected to
sequence variants, represented by green
nodes. Each variant is further asso-
ciated with a drug (purple), a gene
(dark green), and an oncogenic sum-
mary (blue). If a type in the database
is associated with multiple variants, it
is integrated as a single node with var-
ious associations in the graph. Such
is the case of the NRG1 gene, and
the non-oncogenic summary. Drugs
are further associated with the corre-
sponding PubMed citations (pink), and
genes with their corresponding tran-
scripts (beige).

thing
├─ entity
│ ├─ observation
│ │ ╰─ jellyfishobservation
│ ├─ actor
│ │ ╰─ user
│ ╰─ location
│ ╰─ namedzone
╰─ relation

├─ hasforlocation
╰─ reportedby
┆
╰╌ observationaccurate (added with BioCypher)

Figure 17: Subset of the domain spe-
cific ontology developed in the ILIAD
project.

thing
╰─ evaluationcriterion

╰─ quality
╰─ accuracy

Figure 18: Subset of the URREF on-
tology

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 13

1 subject: jellyfishobservation
2 columns:
3 Location_20_Zones_ID:
4 to_object: namedzone
5 via_relation: hasforlocation
6 User_ID:
7 to_object: user
8 via_relation: reportedby
9 Gold_User:

10 to_object: accuracy
11 via_relation: observationaccurate

Figure 19: OntoWeaver mapping for
the invasive species monitoring use
case, showing how columns of the ta-
bles are mapped to typed node and
edges.

1 biocypher:
2 head_ontology:
3 url: illiad.ttl
4 root_node: Thing
5
6 tail_ontologies:
7 urref:
8 url: URREF.ttl
9 head_join_node: entity

10 tail_join_node: EvaluationCriterion

Figure 20: BioCypher configuration
for the invasive species monitoring use
case, showing how ontologies are as-
sembled.

fined in the first “ILIAD” ontology.
Each observation is also linked to a level of accuracy. This level

depends on the level of expertise of the app user that provides the ob-
servation. Some citizens have been trained to recognize and report the
presence of jellyfish. These users are called ”Gold Users” by the marine
biologists, and their status is recorded in the data file in the Gold_User
column. The domain ontology does not provide means to describe the
quality of the data stored in the dataset. Therefore, we use the URREF
ontology to map the accuracy of each observation. Furthermore, no rela-
tion existed in the ILIAD ontology to capture this relation between the
fact that a user was trained and the quality of their observation. The
relation observationaccurate, depicted with a dotted line in Figure 17
does not exists in any ontology, but was added manually through the
BioCypher schema configuration, as shown on Figure 21.

The resulting SKG is shown on Figure 22.

Conclusion

OntoWeaver and BioCypher are software tools that enable mapping a
tabular database into a Semantic Knowledge Graph (SKG), according
to a model of the application domain expressed through one or more
ontologies. The only required configuration is a declarative mapping,
describing how to extract data cells as typed nodes and edges in the
SKG. The creation of the SKG is thus reproducible and can be rerun
every time the database changes.

Our approach improves on the use of BioCypher alone, since On-
toWeaver allows users with few programming skills to write a mapping.
It actually creates a BioCypher “adapter’’ on-the-fly, so that BioCypher
can assemble the required ontologies, check their consistencies, and send

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 14

1 jellyfishobservation:
2 represented_as: node
3 label_in_input: jellyfishobservation
4 namedzone:
5 represented_as: node
6 label_in_input: namedzone
7 hasforlocation:
8 represented_as: edge
9 label_in_input: hasforlocation

10 source: observation
11 target: location
12 user:
13 represented_as: node
14 label_in_input: user
15 reportedby:
16 represented_as: edge
17 label_in_input: reportedby
18 source: observation
19 target: user
20 accuracy:
21 represented_as: node
22 label_in_input: accuracy
23 observationaccurate:
24 is_a: relation # Manual insertion in the ontology .
25 represented_as: edge
26 label_in_input: observationaccurate
27 source: jellyfishobservation
28 target: evaluationcriterion

Figure 21: BioCypher schema for the
invasive species monitoring use case,
showing how types are handled. The
type observationaccurate is manually
added as a subtype of relation.

Hasforlocation

ReportedbyObservationaccurate

Hasforlocation Reportedby

Observationaccurate

Hasforlocation

Reporte
dby

Observationaccurate

A:user

B:user
Habonim Beach

Nature
Reserve:nam…

Beit
Yanai:namedz…

0:accura…

1:accura…

0:jellyfis…

1:jellyfis…

2:jellyfis…

Figure 22: Visualisation of a sample of
the Meduzot dataset, mapped to two
ontologies. Each entry of the dataset
is mapped to an observation (green
nodes), associated with the user report-
ing it (brown) and its location (red). A
level of accuracy (blue), is associated
with each observation.

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 15

the SKG to any of its supported graph database engines.
Furthermore, in a data fusion perspective, OntoWeaver and Bio-

Cypher allow to declare several mappings for several tables, and then
to run them sequentially in a single pass, effectively creating a single,
integrated, SKG.

BioCypher and OntoWeaver are agnostic of the specific data domain.
To demonstrate their adaptability, we presented two very different use
cases: cancer database integration and invasive species monitoring.

Both BioCypher and OntoWeaver are available as free and open-
source software. See https://biocypher.org and

https://github.com/oncodash/
ontoweaver

References

[1] M. Ginda, B. W. Herr, and K. Börner, Introducing the open
biomedical map of science, in Frontiers Media SA, Oct. 2023,
vol. 8. doi: 10.3389%2Ffrma.2023.1274793.

[2] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, et al., “The
fair guiding principles for scientific data management and stew-
ardship,” Scientific data, vol. 3, no. 1, pp. 1–9, 2016.

[3] S. Lobentanzer, P. Aloy, J. Baumbach, et al., “Democratizing
knowledge representation with biocypher,” Nature Biotechnology,
pp. 1–4, 2023.

[4] D. R. Unni, S. A. Moxon, M. Bada, et al., “Biolink model: A
universal schema for knowledge graphs in clinical, biomedical, and
translational science,” Clinical and translational science, vol. 15,
no. 8, pp. 1848–1855, 2022.

[5] W. McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, S. van der
Walt and J. Millman, Eds., 2010, pp. 56–61. doi: 10.25080/
Majora-92bf1922-00a.

[6] D. R. Unni, S. A. T. Moxon, M. Bada, et al., “Biolink model: A
universal schema for knowledge graphs in clinical, biomedical, and
translational science,” Clinical and Translational Science, vol. 15,
no. 8, pp. 1848–1855, 2022. doi: https://doi.org/10.1111/
cts.13302. eprint: https://ascpt.onlinelibrary.wiley.
com/doi/pdf/10.1111/cts.13302.

[7] D. Tamborero, C. Rubio-Perez, J. Deu-Pons, et al., “Cancer genome
interpreter annotates the biological and clinical relevance of tumor
alterations,” Genome medicine, vol. 10, pp. 1–8, 2018.

[8] D. Chakravarty, J. Gao, S. Phillips, et al., “Oncokb: A precision
oncology knowledge base,” JCO precision oncology, vol. 1, pp. 1–
16, 2017.

https://biocypher.org
https://github.com/oncodash/ontoweaver
https://github.com/oncodash/ontoweaver
https://doi.org/10.3389%2Ffrma.2023.1274793
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/https://doi.org/10.1111/cts.13302
https://doi.org/https://doi.org/10.1111/cts.13302
https://ascpt.onlinelibrary.wiley.com/doi/pdf/10.1111/cts.13302
https://ascpt.onlinelibrary.wiley.com/doi/pdf/10.1111/cts.13302

reproducible mapping of tabular data into semantic knowledge graphs with ontoweaver
and biocypher 16

[9] S. P. Suehnholz, M. H. Nissan, H. Zhang, et al., “Quantifying
the expanding landscape of clinical actionability for patients with
cancer,” Cancer Discovery, vol. 14, no. 1, pp. 49–65, 2024.

[10] J. Dreo, S. Lobentanzer, E. Gaydukova, et al., “High-level biomed-
ical data integration in a semantic knowledge graph with onco-
dashkb for finding personalized actionable drugs in ovarian can-
cer,” in Cancer Genomics, Multiomics and Computational Biology
conference, European Association for Cancer Research, to appear.

[11] D. Edelist, Ø. Knutsen, I. Ellingsen, et al., “Tracking jellyfish
swarm origins using a combined oceanographic-genetic-citizen sci-
ence approach,” in Frontiers in Marine Science, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:
248268498.

[12] P. Costa, K. Laskey, E. Blasch, and A.-L. Jousselme, “Towards
unbiased evaluation of uncertainty reasoning: The urref ontology,”
Jan. 2012, pp. 2301–2308, isbn: 978-1-4673-0417-7.

https://api.semanticscholar.org/CorpusID:248268498
https://api.semanticscholar.org/CorpusID:248268498

	Introduction
	Method
	Features
	Illustration
	Conclusion

