Computing an $\varepsilon$-net of a closed hyperbolic surface - Archive ouverte HAL Access content directly
Conference Papers Year : 2024

Computing an $\varepsilon$-net of a closed hyperbolic surface

Abstract

An $\varepsilon$-net of a metric space $X$ is a set of points $P$ of $X$ such that the balls of radius $\varepsilon$ centered at points of $P$ cover $X$, and two distinct points of $P$ are at least $\varepsilon$ apart. We present an algorithm to compute an $\varepsilon$-net of a closed hyperbolic surface and analyze its complexity.
Fichier principal
Vignette du fichier
eurocg.pdf (672.9 Ko) Télécharger le fichier
Vignette du fichier
cylindre.png (11.83 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image

Dates and versions

hal-04509616 , version 1 (18-03-2024)

Identifiers

  • HAL Id : hal-04509616 , version 1

Cite

Vincent Despré, Camille Lanuel, Monique Teillaud. Computing an $\varepsilon$-net of a closed hyperbolic surface. EuroCG'24 - 40th European Workshop on Computational Geometry, Mar 2024, Ioannina, Greece. ⟨hal-04509616⟩
40 View
5 Download

Share

Gmail Facebook X LinkedIn More