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SCIENTIFIC COMMENTARY 

A machine learning approach for gene prioritisation in 

Parkinson’s disease 

This scientific commentary refers to ‘Machine learning nominates the inositol pathway 

and novel genes in Parkinson’s disease’ by Yu et al. 

(https://doi.org/10.1093/brain/awad345). 

Recent genome-wide association studies (GWAS) have identified 90 independent risk 

variants for idiopathic Parkinson's disease at 78 loci scattered across the genome.
1
 Each of 

these variants individually confers a low risk of developing Parkinson’s disease, rendering the 

disease polygenic. Single-nucleotide polymorphisms (SNPs) may be pathogenic through their 

effects on the protein, due to the disruption of normal protein function, or via effects on gene 

expression.
2
 By tracing variants back to genes and then to pathways, we should be able to 

identify the genetic basis of biological susceptibilities and improve our understanding of the 

underlying mechanisms. However, it is difficult to prove the causality of variants in disease 

due to linkage disequilibrium, the systematic association of alleles at different loci on the 

same chromosome
3
; indeed, significant SNPs identified in GWAS may be genuinely causal or 

merely correlated with causal SNPs within loci. The presence within the newly identified 

GWAS loci of genes with well-established causal roles in monogenic Parkinson's disease is of 

particular interest. In this issue of Brain, Yu and colleagues
4
 propose two hypotheses: firstly, 

that these genes mediate causality at the loci within which they are found; and secondly, that 

this causality can be determined using genomic information, potentially enabling the 

discovery of causal genes at other loci.  

The objective of the study was to prioritise the genes at each locus according to how likely 

they are to be involved in Parkinson’s disease, using a new machine learning approach. The 
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authors first defined 78 loci based on the 90 independent risk variants previously described
1
, 

including all protein-coding genes within 1 Mb of the risk variants. They excluded SNPs 

identified as non-causal by ‘echolocatoR’,
5
 and then created a classification model from the 

remaining SNPs.
6
 The training task was the classification of seven well-established 

Parkinson’s disease genes (GBA1, LRRK2, SNCA, GCH1, MAPT, TMEM175, VPS13C; 

positively labelled) relative to 205 other genes at the same loci which were thus unlikely to be 

driving the association with Parkinson’s disease (negative labelling). 

The features tested were 1) distance from the top-ranking SNPs, 2) the predicted 

consequences of variants for protein structure and function according to the bioinformatics 

tools ‘Variant Effect Predictor’ (VEP) and Polyphen-2; 3) molecular quantitative trait loci 

(QTL), including expression QTL (eQTL) and splicing QTL (sQTL); and 4) gene expression 

in different tissues and cell types. The authors used SHAP values
7
 to identify the features of 

the model making the largest contributions to prediction.
7
 They found that the following 

features were the most useful for predicting causality: distance from the top-ranked 

Parkinson’s disease-associated SNP in the locus to the transcription start site or start of the 

gene; the severity of the consequences of the variant predicted by VEP; and mRNA levels 

within specific dopaminergic neuron subtypes. Epigenetic features were not found to have 

significant predictive value. Once trained, the model was used to prioritise genes not seen 

during the training phase within new loci. The model identified 76 genes at 78 loci, two of 

which (MAPT and TOX3) were identified twice in neighbouring loci (Fig. 1). 

In addition to missense variants of GBA1, LRRK2 and GCH1, which are known to 

contribute to Parkinson’s disease, the authors identified missense SNPs that contributed to the 

scores of two candidate genes, SPNS1 and MLX (p.L512M, rs7140 and p.Q139R, rs665268, 

respectively) prioritised by the model within loci with possible functional consequences. 

Interestingly, both of the SNPs identified are also eQTLs/sQTLs for SPNS1 and MLX in 
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several Parkinson’s disease-relevant tissues in the Genotype-Tissue Expression (GTEx) 

database. The authors investigated the potential consequences of these variants by performing 

in silico structural analyses of the proteins encoded by these genes. SPNS1 encodes a 

lysophospholipid transporter with several alternative isoforms. The p.L512M variant is found 

in an unstructured region of the C-terminus of one of the isoforms of this membrane-bound 

protein. It is located in the lumen of the lysosome, but the effect of this variant on SPNS1 is 

unknown. MLX encodes a Max-like protein X from a family of transcription factors involved 

in energy metabolism that interact with other related proteins, such as the MAD family of 

transcriptional repressors and the MONDO family of transcriptional activators. The p.Q139R 

variant may affect the dimerization of MLX with its transcriptional repressors or activators. 

This variant has been suggested to increase oxidative stress and to suppress autophagy in 

immune cells and has been shown to be associated with Takayasu's arteritis.  

Yu and co-workers performed gene set enrichment analysis to identify the specific 

pathways and mechanisms via which the genes they identified could be involved in 

Parkinson’s disease. Enrichment was found for eight gene ontology (GO) biological processes 

and eight GO cellular components, after correction for the false discovery rate. The authors 

focused on two novel pathways among the GO biological processes found to display 

significant enrichment: inositol phosphate biosynthesis and polyol biosynthesis. Importantly, 

inositol is associated with four candidate genes: ITPKB, IP6K2, PPIP5K2, and INPP5F. The 

authors investigated the association between these putative novel Parkinson’s disease 

pathways and Parkinson’s disease status by calculating pathway-specific polygenic risk scores 

(PRS) with PRSet.
8
 We assume that the authors used 14,207 Parkinson’s disease cases and 

12,981 controls from six cohorts, all of European ancestry, after excluding one cohort (the 

Vance cohort) from the meta-analysis due to significant heterogeneity. In three analyses of 

PRS, heterogeneity remained significant, making it necessary to consider a random effects 
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model. The associations detected were significant, but neither of the two new pathways 

identified was a strong risk factor, with odds ratios of 1.15 for inositol phosphate biosynthesis 

and 1.20 for polyol biosynthesis. These associations remained significant even after the 

exclusion of the top-ranking genes identified in the analysis.  

In their analysis of single-cell RNA data for dopaminergic neurons from two datasets, the 

authors detected differential expression for many genes, including, in particular, INPP5F, 

which is involved in the inositol pathway. By contrast, no significant differential expression 

was observed in the bulk RNAseq analysis. Finally, the authors performed meta-analyses of 

rare variants in genes identified by their model, based on whole-exome sequencing data for 

3,202 patients with Parkinson’s disease, 6,284 proxy patients and 143,884 controls from two 

cohorts. They identified rare variants significantly associated with idiopathic Parkinson’s 

disease in genes implicated in the monogenic form of the disease (GBA1, LRRK2 and GCH1), 

and in two new genes, KCNIP3 and LSM7. Rare variant burden tests also revealed an 

association of the polyol/inositol biosynthetic pathways with Parkinson’s disease.  

The machine learning model used in this study has several limitations. First, the authors 

assumed that the behaviour of features depends on specific loci, an assumption that could lead 

to bias. Outliers at these loci could mask significant signals or give undue weight to irrelevant 

traits. Secondly, the assumption during training that all genes identified at each locus are 

negative, bar the seven well-established genes, could lead to underperformance of the model, 

particularly if this negative status is not demonstrated. Another possible approach would 

involve assuming that other genes have an indeterminate status, thereby bringing the task into 

the domain of semi-supervised learning.
9
 The use of an advanced approach, such as XGBoost, 

on a dataset for only 212 genes, seven of which are positive, is audacious. It might be more 

prudent, as a first approach, to use simpler models, evaluate their performance, and then 

compare the results obtained with those of more complex and harder-to-optimise algorithms, 
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to mitigate the risk of overfitting. In addition, the size of the dataset and the lack of a 

designated test set greatly increase the probability of overfitting due to feature selection and 

hyperparameter tuning being performed on the same set. The number of features retained in 

the model, 78, also seems quite high, given the risk of overfitting. A more stringent feature 

selection step would further improve the model. The SHAP analysis provides information 

about the model, but it should be borne in mind that its relevance depends on the performance 

of the underlying model.  

In terms of validation, comparison with the other six pathways identified by analysis of 

GO biological processes might provide a better understanding of the importance of the 

inositol phosphate and polyol biosynthetic pathways. For the analysis of PRS pathways, a 

comparison with the global PRS and the other PRS pathways would make it possible to 

weight the pathways studied. The persistence of heterogeneity in the meta-analysis of PRS 

may necessitate the elimination of additional cohorts, but the odds ratios appeared low for 

both random- and fixed-effects models.  

In conclusion, 83% of the top-ranking genes identified by Yu and co-workers were the 

closest genes in terms of distance from the top-ranking SNPs in the GWAS already identified 

by simple proximity annotation. The method used is innovative and could be improved by 

taking into account the points discussed above. The involvement of the inositol phosphate and 

polyol biosynthetic processes in Parkinson’s disease should be confirmed by further analysis, 

particularly in populations of non-European ancestry, and by functional analysis. The authors 

also identified missense SNPs in SPNS1 and MLX and obtained significant burden test results 

for variants of the KCNIP3 and LSM7 genes, for which further functional investigation would 

be valuable, to shed light on their role in Parkinson’s disease. 

Aymeric Lanore
1,2

, Aymeric Basset
1
, Suzanne Lesage

1 
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Figure legend 

Figure 1 Schematic representation of the machine-learning analysis and results. The 

authors applied a classification model to prioritise genes most likely to be involved in 

Parkinson’s disease within loci identified in recent GWAS, based on features such as distance 

from the top-ranking SNPs, variant consequences, molecular QTL, and gene expression. They 

identified 76 genes in 78 loci with the trained model, with MAPT and TOX3 identified twice. 

The authors then explored the genes identified, demonstrating differential expression of many 

in single-cell RNA data from dopaminergic neurons. In addition, they detected missense 

SNPs in SPNS1 and MLX with potential consequences for protein function, identified 
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previously unknown rare variants of KCNIP3 and LSM7, and obtained evidence suggesting 

involvement of the inositol phosphate and polyol biosynthetic pathways in Parkinson’s 

disease. 

GWAS, genome-wide association study; QTL, quantitative trait loci; RNAseq, RNA 

sequencing; scRNA, single-cell RNA; SNPs, single-nucleotide polymorphisms  
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