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Abstract. Stream processing applications are becoming increasingly
complex, requiring parallel and adaptable architectures under real-time
constraints. Currently, selecting appropriate computing platforms for
these applications is done manually through prototyping and benchmark-
ing. To simplify this selection process, Dataflow (DF) modeling has been
utilized to identify opportunities for parallelism. This approach utilizes
the Algorithm Architecture “Adequation” (AAA) methodology to make
efficient decisions at compile-time by considering data movement and
scheduling needs in stream processing environments.
This paper presents a new architecture named “Scratchy”, that is spe-
cially designed for stream processing applications. Scratchy is a multi-
RISC-V architecture that features software-managed communication us-
ing scratchpad memories and customizable interconnect topologies. The
architecture supports different topology options and is demonstrated us-
ing a 3-core Scratchy. The capabilities of the architecture are presented
through a design space exploration that focuses on optimizing the topol-
ogy for specific applications. It also highlights the low resource overhead
of the architecture and quick synthesis time on an Intel MAX10.

Keywords: Dataflow Models of Computation · Streaming Applications
· Hardware Architecture · Scratchpad Memories · System-On-Chip.

1 Introduction

Edge computing brings proximity to cloud services, offering reduced latency,
improved performance, and contextual awareness for pattern recognition and
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analysis and wearable devices [11]. Typically, edge devices process in-order data
streams near their source with limited storage and computation.

DF Models of Computation (MoCs) provide semantics for modeling, ana-
lyzing, and optimizing embedded software for stream processing applications.
These MoC define data dependencies between self-contained processing tasks
called actors. Near-sensor streaming applications present complex control paths
and require specialized tools and methodologies [1]. Achieving real-time per-
formance in stream processing applications often requires leveraging application
concurrency of multicore systems. The Symmetric Shared Memory Multipro-
cessor (SMP) multicore architecture facilitates the transition from sequential to
parallel programs. It consists of multiple identical cores that are interconnected
to a shared main memory via a Network on Chip (NoC), a bus, or a crossbar.
These systems achieve speedups by dividing the application workload into con-
current tasks across multiple cores. However, the SMP architectures are built
as Uniform Memory Access (UMA) machines where all data are supposed to be
accessible with the same latency from all Processing Element (PE) of the System-
on-a-Chip (SoC) and therefore do not easily exploit the coarse-grain application
datapath. This explains the mainstream limitation of SMP to 16 cores.

This work aims to exploit the streaming nature of many applications for de-
signing systems. In DF-described applications, synchronization costs arise from
the granularity of data sharing. Multicore architectures, while beneficial of task-
level parallelism, can restrain scalability due to increased thread synchroniza-
tion [7]. Despite various mapping and scheduling solutions, hardware aspects
have received less attention [14, 7]. Hence, there is a need to develop adaptable
architectures to improve the performance of streaming applications [9].

This paper introduces Scratchy, a multicore architecture designed for stream-
ing applications. Scratchy favors RISC-V cores because of their open-source na-
ture. One can create their cores from the basic ISA and easily integrate them
into the LiteX tool. Scratchy utilizes Scratchpad Memories (SPMs) to ensure cus-
tomizable inter-PE communication. A software library implements a queue defi-
nition and performs communication control at the software level to ensure inter-
PE consistency. The paper also demonstrates Scratchy’s capabilities through a
Design Space Exploration (DSE) test case that aims to select the best Scratchy
topology for two test applications described using Synchronous DataFlow (SDF).

The paper is structured as follows. Section 2 provides the background and
state of the art. Section 3 presents an overview of the architecture. Section 4
describes the experimental setup of DSE, while Section 5 shows the results and
a discussion. Finally, Section 6 concludes the article by discussing future work.

2 Background and State Of The Art

High-performance embedded devices are crucial for edge and near-sensor com-
puting, particularly for complex arithmetic calculations. Numerous multi-ARM
solutions are currently available, such as the NVIDIA Jetson series, ASUS Tin-
ker Board, and Kalray many-core DPU systems. However, selecting the right
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architecture for a specific application requires careful evaluation, which can be
a complex task, and demands a significant investment of development time, and
remains mostly manual. We propose an easy-to-generate, reconfigurable, and
extensible architecture to address this challenge.
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Fig. 1. Components of Scratchy
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In computer architecture research, several frameworks are available for devel-
oping configurable SoCs. One such framework is OpenPiton [5], created to design,
simulate, emulate, and build many-core cache-coherent and NoC based architec-
tures. These architectures can span many computing subfields and run Linux [4].
Another Linux-capable architecture is BlackParrot, designed to be the default
open-source, cache-coherent RV64GC multicore [20]. ESP [22] is another research
platform that enables heterogeneous multicore soc designs using RISC-V. It is
structured as a heterogeneous tile grid connected by a NoC. Other architectures,
such as HERO [12], combine a Linux-capable host with a programmable many-
core accelerator (PMCA). The first version uses an ARM Cortex-A multi-core
processor host, while the second version has a LLVM-based heterogeneous com-
piler that supports OpenMP-coded applications. Another noteworthy research
project in hardware design is the Chipyard SoC generation framework [2]. It
combines various agile hardware design projects and is mainly based on the
Rocket Chip, a chisel-based SoC generator [3]. Chipyard offers tools for devel-
oping target software workloads and simplifying hardware implementation with
DF modeling.efforts [19, 16, 13, 18]. Furthermore, DF can be combined with AAA
methodology [18], allowing developers to express various forms of concurrency
and exploit data and task parallelism. A notable feature of a static or quasistatic
DF model is that it operates on a predetermined data path, making cache-based
architectures less suitable for DF-modeled applications [8]. In the context of DF,
the data is accessed only once, and the caching mechanism is not used. Moreover,
using SPM for shared resources, communication can be defined and managed at
the software level, resulting in lightweight communication. Communication can
be customized to improve performance, and SPM can separate shared resource
storage. This reduces contention overhead that is caused by synchronization and
shared resource access.
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This article proposes a class of architecture with three main components, as
illustrated in Figure 1, called Scratchy to provide an architecture tailored to the
needs of stream processing applications modeled by DF MoCs. Scratchy enables
inter-PE interconnection customization. The infrastructure enables multicore
research by generating both the architecture and the multicore code.

3 Overview of the Scratchy architecture

This section introduces Scratchy, an adaptable architecture for streaming appli-
cations modeled with DF MoC.

3.1 Architecture Components

Scratchy architecture is built using the LiteX [10] framework, which assists in
creating FPGA cores/SoCs. It comprises three main components (PE, SPM, and
bus) as shown in Figure 1 :

SPM : Connected to a unique bus and designed as double-port [6, 21], each
SPM stores data accessible by connected PEs. This setup supports zero-copy or
First In, First Out (FIFO) queue-driven communication.

PE : A PEs are bus-centered cores that can include several IP components,
as illustrated in Figure 2. Each PE has its local ROM and RAM memories for the
bootloader and user code storage. They feature an interrupt controller, timer,
UART for debugging and code loading, and Memory Mapped Input/Outputss
(MMIOs) for peripheral hardware control.

Bus interconnect : A bus interconnects one or multiple PEs and a SPM.
It allows connections and facilitates shared access to the SPM through master
and slave interfaces. A round-robin arbiter schedules conflicting accesses.

3.2 Scratchy Infrastructure

This section outlines the RTL implementation and software support for Scratchy.
RTL Implementation : The Scratchy Register Transfer Level (RTL) im-

plementation relies on the Migen library 5, a Python-based Florida Hardware
Design Language (FHDL) [15] that simplifies the design and simulation of dig-
ital systems by using combinatorial and synchronous statements instead of the
traditional event-driven paradigm. Scratchy is based on LiteX and includes a
generator that takes a Scratchy Configuration (SC) file in JSON syntax as input.
This file stores the system-level description of the computing platform, including
cores, SPMs, and interconnects. The generator then produces synthesizable code
for a selected FPGA target.

Scratchy Multicore Compilation Infrastructure: The multicore code
for Scratchy is generated from a hierarchical SDF description using the PREESM
framework [19]. PREESM provides deadlock-free multicore code generation and

5 https://m-labs.hk/gateware/migen/
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simulation. The communication library provided by PREESM has been cus-
tomized to support bare-metal targets. The Scratchy architecture generation
and multicore compilation process is depicted in Figure 3.
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Middleware and Inter-PE Communication: The Scratchy infrastructure
utilizes the LiteX SoC composer for software stack management, including boot-
loader loading and application launching. Key components include Compiler-rt6

for low-level code generation, particularly for floating-point arithmetic on cores
without an FPU, and Picolibc7, which offers an API of the C library optimized
for small embedded systems. Picolibc combines the Newlib8 and AVR Libc9

code, utilizing the Meson build system to compile across various platforms.
Scratchy features a minimalist communication library for inter-core commu-

nication and synchronization. This includes:
Barrier Mechanism : A custom barrier mechanism using coherent SPM

accesses, employing a Centralized Barrier algorithm [17] to manage system ini-
tiation and iteration completion.

Semaphore Mechanism: Semaphores for concurrent management of shared
memory resources, using mutexes for critical section protection. This mechanism
ensures the integrity of the FIFO queue during the send and receive operations
between processes.

Shared data structures, such as message queues and synchronization vari-
ables, are strategically placed in shared SPM sections. This arrangement, devoid
of software-driven caching, ensures memory consistency and simplifies commu-
nication and synchronization. The communication library, depicted in Figure 4,

6 https://compiler-rt.llvm.org/
7 https://keithp.com/picolibc/
8 https://sourceware.org/newlib/
9 https://www.nongnu.org/avr-libc/
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efficiently handles multicore synchronization without an OS scheduler, facilitat-
ing FIFO communication in DF computing.

4 Experimental Setup
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Two evaluation applications, modeled with the SDF MoC, are developed and
each actor is benchmarked to compute its average execution time. To obtain the
average time, we profile the actor execution time individually through a loop of
a hundred iterations. Two canonical forms are generally present in a dataflow
graph, and the two forms of graphs have been chosen for the application mod-
eling. The first form is a sequence that shows pipeline parallelism. The second
graph represents a fork/join topology, highlighting task and pipeline parallelism.
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The first form is a sequence with which we can show pipeline parallelism. The
second graph presents a fork/join topology, highlighting task and pipeline par-
allelism. Each actor represents a distinct operation on arrays of a predefined
size. Actor A initializes an array by assigning values that increase linearly, then
updates the initial value based on factorial calculations. Actor B performs a sub-
traction operation on its second data point, while Actor C cubes its third value.
Actor D reverses vector elements, and Actor E amplifies data by doubling each
value. Actor F uniquely adds the data point’s position to its value, and Actor G
restricts values within a byte range using a modulus operation; meanwhile, Ac-
tor H and Actor J square and double specific data points in the dataset. Lastly,
Actor I performs operations between two successive data in the vector.

Scratchy configurations with up to 3 cores are deployed to study whether
these configurations offer nondegenerate alternatives for executing parallel work-
loads with varied resource/performance trade-offs. By nondegenerate alterna-
tives, we mean that the solution on the Pareto front has a unique set of objec-
tive values. The architecture generator is configured to produce five Scratchy
topologies, each embedding 1 to 3 PEs (Figure 5). The architectural topologies
are chosen to illustrate the interconnect customization property. From all sce-
narios, the type of PE can be selected between FemtoRV10 and FireV11 cores
to assess the impact of core heterogeneity. The two tiny cores are open-source,
resource-efficient, and integrated into the LiteX project. Both cores are clocked
at 50 MHz, as is the rest of the platform. The average read and write speeds for
accessing a buffer of 128 Bytes are measured at respectively 0.57 Byte/cycle and
0.59 Byte/cycle on the FireV core, and 0.42 Byte/cycle and 0.42 Byte/cycle on
the FemtoRV core.

We experiment with the class of Scratchy architectures on an Intel DE10-
Lite board with a MAX10 FPGA embedding 204 kBytes of internal BRAM
memory. PEs, each consisting of a core and allocated memory for code storage
and execution, is allocated a minimum of 32 KBytes of ROM for the bootloader
and 24 KBytes of SRAM. The SRAM is divided into 8 KBytes for the bootloader
data section and 16 KBytes for user code.

The experiments show that the FireV core can execute all types of actors
faster than the FemtoRV core, except for actor J (Figure 6).We measure the
SRAM access speed to evaluate memory read and write speeds of two processors.
This is done by writing a uniform data pattern for sequential memory access and
calculating the speed in bytes per second by comparing the elapsed time to the
memory range.

Using the PREESM multicore scheduling tool, applications are scheduled for
execution on 1 to 3 cores using a list scheduling heuristic. Inter-PE communi-
cations are performed through SPMs as described in section 3.2, and intra-PE
communications employ temporary buffer storage. For application 1 built as a
pipeline of actors, Cycles Per Graph Iteration (CPGI) is enhanced by exploiting
pipelining when multiple cores are available. For Application 2, scheduling can

10 https://github.com/BrunoLevy/learn-fpga/tree/master/FemtoRV
11 https://github.com/sylefeb/Silice/tree/master/projects/fire-v
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only exploit task parallelism or mixed pipeline and task parallelism. In addition,
we also pipeline the execution for a three-core Scratchy with Actors A and B on
Pa, Actors I and J on Pc, and the rest on Pb. In the employed example, delays
are introduced after Actor B and before Actor I to force pipelining. In these
simulations, Gantt charts are displayed for two delay configurations. Computa-
tion times and communication times are considered. A metric called CPGI is
introduced, which measures the cycles required for one iteration of a graph. One
may note that this SDF graph iteration includes delay-induced parallelism and
thus exploits both pipelining and task parallelism. In the Design Space Explo-
ration (DSE), selecting the optimal Scratchy architecture for each application is
considered a resource/latency trade-off. In other words, the optimum is gener-
ally defined by a Pareto front consisting of multiple Scratchy configurations that
provide non-dominated latency/throughput performance.
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Fig. 7. CPGI vs. logic elements for each Scratchy topology on Application 1.

5 Results and Discussion

In the results, Fi denotes a FireV core and Fe a FemtoRV core. The minimum
logic resources required for implementing a one-PE system can be observed by
examining the configuration resources A 1. The results of the synthesis show that
the FireV processor uses more resources than the FemtoRV processor by approx-
imately 26%, and the most resource intensive architecture has been synthesized
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in less than 5 minutes. The difference between the two cores is also reflected in
the execution speed of the application actors. Analyzing the resources required
for the five generated architectures reveals that the resource overhead for busses,
arbiters, and memory control is very small w.r.t. PE resources, demonstrating
Scratchy’s lightweight communication nature. The interconnection overhead is
approximately 2% for a two-core Scratchy and 20% for a three-core Scratchy.
Thus, the transition from a one-core system to a two-core and three-core system
results in doubling and then tripling resources with a non-negligible communi-
cation overhead. The overhead introduced by the interconnection of the cores
helps determine the resources required to build a Scratchy architecture based
on the configuration with one PE and the number of PE in the configuration.
A much lower overhead also appears when creating custom communication with
multiple buses. For a three-core architecture (A 3, A 3 a, A 3 b), the additional
hardware cost of interconnecting the additional SPM is less than 2% for homo-
geneous cases (3 FireV cores or 3 FemtoRV cores) compared to A 3. This result
motivates custom interconnection following the needs of the applications and
system constraints.

Scratchy makes constructing advanced Design Space Exploration (DSE) pro-
cesses possible, as shown in Figure 7. Results demonstrate that the A 3 a setup,
which utilizes a specialized communication approach with homogeneous FireV
processors, outperforms the other configurations considering cycles per graph
iteration (CPGI). The results also show that the 6 configurations are nonde-
generate, appearing on the Pareto front when considering logic elements versus
CPGI. The A 3 configuration closely follows the A 3 a best CPGI setup in per-
formance. Although their execution times are identical, they differ in the time
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taken for communications. Total communication times across all cores decrease
by tens of cycles for the FireV configuration and by nearly a hundred cycles for
the FemtorV configuration. The communication time is the sum of the polling,
synchronization, and copy time. Synchronization time indicates the time spent
managing the synchronization elements of the FIFO semaphores.

Scratchy DSE (DSE across the design space of possible Scratchy configura-
tions) also demonstrates considering the graph topology and the properties of
the workload when choosing a platform.

The results on Application 1 show that the configurations A 2 FiFe and A 2
FeFi have similar two-core architectures but different actor mappings. One helps
to shorten the heaviest workload, while the other does the opposite, shorten-
ing the lightest workload, increasing waiting times, and reducing performance.
A similar analysis applies to three-core architectures, where choosing a hetero-
geneous set-up does not offer benefits compared to the homogeneous FemtoRV
case. In summary, DSE reveals that for the SDF graph shapes of Application
1, having a heterogeneous structure does not provide benefits and is not the
best solution in a Scratchy architecture. A more effective approach is to use the
highest-performance cores in a homogeneous configuration. A 2 with homoge-
neous FireV cores provides a good compromise between resources and CPGI.

The study results on Application 2 presented in Figure 8 show that gains
from employing multiple cores are more limited. Indeed, graph scheduling does
not adapt well to available resources, exploiting less parallelism than is available.
A single-core system can outperform other multicore configurations. However,
when graph execution is pipelined, better results are obtained. This is particu-
larly true for homogeneous A 2 with FireV cores. As in the previous case with
Application 1, we can also observe that customizing communications reduces
communication times, which impacts the CPGI. Figure 8 shows the difference in
CPGI between the homogeneous A 3 and A 3 b architectures. As execution times
are the same, the difference is in communication times. Similarly to Application
2, we note that we have a difference in the order of hundreds of cycles for the
two-core configurations ∼ 200 cycles for FireV and ∼ 300 cycles for FemtoRV).
Times are shorter when communication is customized.

In conclusion, the experiments on the two example applications and the re-
source analysis show that the customizable Scratchy framework with its soft-
ware support is capable of providing for a unique application a large set of
potential platforms with nondegenerate performance in a CPGI versus Logic El-
ements (LEs) Pareto plane. The efficiency of Scratchy depends on the ability to
utilize cores and, therefore, on placement/scheduling decisions, the workloads of
actors, and application dependencies.

6 Conclusion

In this paper, a new class of architectures called Scratchy is introduced. Scratchy
architectures are easily generated and designed explicitly for SDF-modeled appli-
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cations. It allows the creation of various architectural topologies, with software
support, including middleware and inter-PE communication libraries.

The paper demonstrates the features and utility of Scratchy by generating
five architecture topologies with 1 to 3 PEs on an embedded Intel MAX10 FPGA,
considering two representative application graph forms. The results show that
Scratchy can generate a set of Pareto-optimal architectures when considering
the Cycles Per Graph Iteration (CPGI) versus logic resources.

In future work, we will scale the number of cores on complex application
topologies, optimize graph cuts for pipelining execution, and customize resources
to improve the efficiency and sustainability of Scratchy architectures.
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