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Chapter 1

Introduction

This textbook is a brief introduction to Metamodeling, also known as Surrogate modeling, with a
focus on Gaussian process modeling and its application to prediction, optimization, inversion and
uncertainty quantification. We have chosen to present a synthesis of selected notions, rather than
being exhaustive or providing full developments. Some of these developments will be addressed
during the class, most often in the form of exercises. Other exercises aim at giving skills for prob-
lem solving. For complements, we provide a short list of reference books or journal publications,
that can serve as entry points in the literature.

Figure 1.1: Illustration of metamodeling.
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6 CHAPTER 1. INTRODUCTION

Figure 1.1 illustrates the principle of metamodeling for an industrial application. In this case
study, the aim is to investigate the safety of a future model of vehicle. We have at our disposal
a numerical model based on physical equations, noted fsim. With this model, we can virtually
investigate the safety of new prototypes, depending on several input variables. However, in many
real problems, a single run of fsim is time consuming, and the computational budget is limited. In
particular, we cannot answer questions directly on fsim, such as:

• to find the minimum of fsim (optimization)

• to find the values of inputs such that fsim is below some threshold (inversion)

• to quantify the influence of the inputs on the safety variable (sensitivity analysis)

A solution is to build a fast model, called metamodel or surrogate model, on which we can rely to
solve the questions above. In optimization, the couple (numerical model, metamodel) is used in
a sequential strategy. The metamodel is used to choose the new runs (design of experiments) of
fsim, hopefully in promising areas or in unvisited ones. Then the new runs can be used to update
the metamodel and improve its accuracy for the next step.

A metamodel can be any statistical model. We will focus here on Gaussian processes, which has
several appealing features. It can be built with few data and gives a measure of uncertainty in
unvisited area. Furthermore, it is parameterized by two functions and in particular a kernel, which
provides a lot of flexibility and allows to incorporate expert or physical information.

Applications of metamodeling include the analysis of time-consuming numerical models (computer
experiments) as well as the tuning and explicability of machine learning algorithms. Some refer-
ence books: Fang et al. (2005); Rasmussen and Williams (2006); Santner et al. (2018).

Finally, I would like to conclude this brief introduction by special thanks to M. Binois, Y. Deville
and N. Durrande for several nice illustrations presented in this textbook.



Chapter 2

Gaussian processes

Let (Ω,F ,P) be a probability space on which all the (real-valued) random variables will be defined.
We denote by L2(P) the Hilbert space of square integrable random variables (defined on Ω).

2.1 Random processes

Definition. For a given set X, a random process (RP) is a family of random variables Y (x) :
Ω→ R, indexed by x ∈ X. We will denote Y := (Y (x))x∈X.
Historically, the word stochastic process refers to temporal RP (X ⊆ R), whereas the word random
field is often used for spatial RP (X ⊆ Rp, with p ≥ 2). Notice however that X is not limited to a
subset of Rp but can be a discrete set, a set of trees, manifolds, sets, probability distributions, etc.

Trajectory, realization or sample path. Let Y be a RP. For a fixed w ∈ Ω, a trajectory or
realization or sample path of Y is the function x 7→ Y (x)(w).

Second-order random process, mean, kernel. We say that Y is a second-order RP when
all the random variables Y (x) belong to L2(P). By Cauchy-Schwartz inequality, this implies that
first moments (expectation) as well as second moments (covariances) are well-defined. We call:

• mean function or simply mean of Y the function x ∈ X 7→ E(Y (x)).

• covariance function or kernel the function (x, x′) ∈ X× X 7→ Cov(Y (x), Y (x′)).

Similarly, the variance of Y denotes the function x ∈ X 7→ k(x, x) = Var(Y (x)).
Warning. The mean of Y is a deterministic function, whose value at x is the integral over all
realizations of Y (x): E(Y (x)) =

´
Ω
Y (x)(w)dP(w). This has nothing to do with the random

variable
´
X Y (x)dµ(x), for some measure µ on X, which is even not always defined.

Stationarity. Let X be a vector space and let Y be a second-order RP on X.

• Y is strongly stationary if for all locations x1, . . . , xn ∈ X, the law of (Y (x1+h), . . . , Y (xn+h))
does not depend on h.

7



8 CHAPTER 2. GAUSSIAN PROCESSES

• Y is weakly stationary if for all locations x1, . . . , xn ∈ X, the first two moments of the law of
(Y (x1 + h), . . . , Y (xn + h)) do not depend on h. This is equivalent to say that the mean of
Y is constant, and the kernel of Y depends only on the difference between locations:

E(Y (x)) = m, k(x, x′) = c(x− x′)
with m = E(Y (x0)) (for some x0 ∈ X) and c(h) = k(x, x− h).

Regularity. When X ⊆ Rd, we may ask whether the sample paths of a given RP are continuous
or q times differentiable. This is a difficult question, relying on probability theory. Several results
can be found e.g. in Cramér and Leadbetter (2013). The main message is that the regularity of
the kernel (x, y) 7→ k(x, y) (resp. h 7→ c(h)) on the diagonal x = y (resp. at 0 if the process is
stationary) can ensure regularity of the associated RP.
To make things more concrete, let us fix d = 1. A weaker but convenient concept is the regularity in
quadratic mean (q.m.). We say that Y is continuous in q.m. at x0 ∈ X if E([Y (x)− Y (x0)]

2)→ 0
when x → x0. Then Y is continuous in q.m. at x0 if and only if k is continuous at (x0, x0).
Similarly, Y is differentiable at x0 in q.m. if there exists a r.v. denoted Y ′(x0) such that

E

([
Y (x)−Y (x0)

x−x0
− Y ′(x0)

]2)
→ 0 when x → x0. It turns out that if the cross-derivative ∂2k

∂x∂y

exists and is finite at (x0, x0), then Y is differentiable at x0 in q.m.
Using such criteria, it can be shown that the Matérn kernels presented in Table 3.1 associated to
the Student spectral densities tν are q times differentiable in q.m. if and only if ν > q (Rasmussen
and Williams (2006), §4.2). However, regularity in q.m. does not imply the regularity of the
sample paths. The existing sufficient conditions demand a higher degree of differentiability of k.

2.2 Gaussian processes

Definition. A random process Y defined on X is a Gaussian process (GP) if for all locations
x1, . . . , xn ∈ X (n ≥ 1), the random vector (Y (x1), . . . , Y (xn)) is a Gaussian vector. By definition
of Gaussian vectors, the law of such random vectors is fully characterized by the mean m and the
kernel k of Y . We will denote Y ∼ GP (m, k).

Direct consequences. Let Y be a GP. Then the properties of Gaussian vectors imply the
following results:

• the notions of strong stationarity and weak stationarity coincide. Thus, we can omit ‘strong’
or ‘weak’, and simply speak of stationary GP.

• independence between Y (x) and Y (x′) corresponds to a zero in the covariance matrix of
(Y (x), Y (x′)). Similarly, conditional independence corresponds to zeros in precision matrices.
This latter property is exploited in Gaussian Markov random fields.

• a GP is stable by linear mapping: formally, if Y is a GP, and L is a linear mapping operating
on the sample paths of Y , then LY is a GP. This includes the case of linear differential
operators. Examples and developments follow.

• a GP conditional on interpolation constraints Y (xi) = yi, i = 1, . . . , n is still a GP. This is
the basis of Gaussian process regression, developed in Section 4. By stability of GPs under
linearity, this property is true for linear constraints (and not only interpolation ones).
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Gaussian processes and linear operations If Y ∼ GP (0, k) and L is a linear function acting
on the sample paths1 of Y , then LY ∼ GP (0, kL) where kL(s, t) = LsLtk(s, t). Here, the notation
Ls (resp. Lt) means that we apply L on the function s 7→ k(s, t) (resp. t 7→ k(s, t)).

The fact that LY is Gaussian can be proved by the linear combination property: since L is linear,
a linear combination from LY can be rewritten as a linear combination from Y . The expression
of kL comes, formally, from the bilinearity of covariance (with slight abuses of notations):

Cov(LY (s), LY (t)) = Lt(Cov(LY (s), Y (t)) = LsLtCov(Y (s), Y (t))

An example of application is given by differential operators. In the 1-dimensional case, we have,
formally that, if Y is a GP, then (Y ′(x))x∈X is a GP, with kernel 2:

kY ′(s, t) = Cov
(
∂Y (s)

∂s
,
∂Y (t)

∂t

)
=

∂

∂t
Cov

(
∂Y (s)

∂s
, Y (t)

)
=

∂

∂s

∂

∂t
Cov(Y (s), Y (t)) =

∂2k

∂s∂t
(s, t)

Simulation of a GP. A simulation of Y ∼ GP (m, k) is possible on a set of discrete locations
X = {x1, . . . , xn}. Indeed, then the law of (Y (x1), . . . , Y (xn))

⊤ is N (m(X), k(X,X)) where

• m(X) is the vector of size n whose component i is equal to m(xi)

• k(X,X) is the matrix of size n whose coefficient (i, j) is equal to k(xi, xj)

Obtaining a realization of Y at X, it is thus equivalent to simulating from N (m(X), k(X,X)).

1To be rigorous, one has to take care of the definition of LY . An example is given in the exercises.
2When k is regular enough, it is indeed possible to give a sense to Y ′(x) and justify the whole computation. A

proper justification is out of the scope of this textbook.
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Figure 2.1: Five sample paths of a Gaussian process on X = [−2, 2] with an increasing mean
(dotted line) and a Matérn kernel.
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Figure 2.2: Realizations of a Gaussian process on X = [0, 1]2 with a kernel of the form k(x, x′; ℓ) =
k1(x1, x

′
1; 2ℓ)k2(x2, x

′
2; ℓ) where k1 is a one-dimensional Matérn kernel and ℓ is a parameter.
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Figure 2.3: Two realizations of a 2D Brownian motion Y (x) =
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)
, whose components Y1, Y2

are independent, centered, non-stationary GPs on X = R+ with kernel k(x, x′) = min(x, x′).



2.3. EXERCISES 11

2.3 Exercises

Exercise 2.1 (Building a GP with invariance properties) Let Y0 ∼ GP (0, k0) on R. De-
fine

Y (x) := Y0(x)− Y0(−x)
Check that Y has odd sample paths. Prove that Y is a GP by considering a linear combination
extracted from Y . Check that Y is centered and compute its kernel in function of k0.
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Figure 2.4: Illustration about Exercice 2.1. Left: simulated sample paths of Y when Y0 is a
GP with a Matérn 5/2 kernel (see Table 3.1). Right: simulated sample paths of Y , subject to
interpolation constraints (see Chapter 4).

Exercise 2.2 (Paving the way for GP regression with derivatives) In this exercise we con-
sider only formal computations We assume that the mathematical objects involving derivatives can
be defined properly and that the corresponding operations can be justified.

Let Y be a centered GP on R with kernel k. Consider Z =

 Y (x)
Y (x1)
Y ′(x1)

, with x, x1 ∈ R. Explain

briefly why Z is a centered Gaussian vector and compute its covariance matrix.

Exercise 2.3 (An example of physics-informed GP) Let us consider the heat equation

∂u

∂t
(x, t)− α∂

2u

∂x2
(x, t) = 0

with initial condition u(x, 0) = ϕ(x), with α > 0. Denoting S(x, t) = (4παt)−1/2 exp
(
− x2

4αt

)
, one

can show by applying the Fourier transform to the equation that, under suitable conditions, the
solution on R2 is:

u(x, t) =

ˆ
R
S(x− y, t)ϕ(y)dy. (2.1)
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We now consider that the initial function ϕ is unknown. As a prior information, we assume
that (ϕ(x))x∈R is a centered Gaussian process with kernel kϕ. What can you say of the mapping
L : ϕ 7→

´
R S(x − y, t)ϕ(y)dy? Then explain briefly why (u(x, t))(x,t)∈R2, given by Equation (2.1),

should be a Gaussian process on R2. Compute formally its mean and its kernel in function of kϕ
and S (assuming that all the integrals are well-defined).
Remark. The advantage of using the Gaussian process regression rather than the solution of the
heat equation is not clear in general, since the computation of the kernel seems more complicate
than the solution itself (Equation 2.1). Fortunately, for some kϕ, the kernel ku is given explicitly,
which gives a clear advantage to GP regression. For instance, when kϕ(y, y

′) = exp
(
−1

2
(y−y′)2

θ2

)
is

the square exponential kernel, then ku has the form :

ku

((
x
t

)
,

(
x′

t′

))
=

σ2
u√

2π
√
θ2 + 2α(t+ t′)

exp

(
−1

2

(x− x′)2

θ2 + 2α(t+ t′)

)
.



Chapter 3

Kernels and reproducing kernel Hilbert
spaces

3.1 Kernels

A kernel was defined as the covariance function of a random process, and thus quantifies the
"proximity" between the output values Y (x1), Y (x2) at two locations x1, x2. Mathematically,
kernels extend the notion of positive semi-definite (psd) matrices to the continuous setting, and
are equivalent to psd functions, as defined now.

Positive semi-definite functions. A function k : X × X → R is said to be positive semi-
definite (psd) if for all finite set X = {x1, . . . , xn}, the matrix k(X,X) = (k(xi, xj))1≤i,j≤n is psd.
Equivalently, for all n ≥ 1, all x1, . . . , xn ∈ X, and all α1, . . . , αn ∈ R, k is psd if and only if:∑

i,j

αiαjk(xi, xj) ≥ 0

Similarly the notion of (strict) positive definiteness can be defined, and is connected to the notion
of Tchebychev systems (Karlin and Studden, 1966) and Haar spaces (Wendland, 2004). However,
it is often preferred to add a small noise to the data. Then the associated covariance matrices are
k(X,X)+τ 2In, with τ > 0 (see the next chapter), which are invertible even if k(X,X) is only psd.

Kernels, covariance functions and psd functions. An important result is that the notions
of covariance function and psd functions coincide: if k is the covariance of a (second-order) random
process, then k is a psd function. Conversely, if k is a psd, we can build a second-order centered
RP with covariance k; moreover there is a unique1 centered GP with kernel k. Thus, the word
kernel will denote either a covariance function or a psd function.

All kernels are scalar products in a feature space. If k is a kernel, then there exists a
Hilbert space (H, ⟨., .⟩), called feature space in machine learning, and a function Φ : X→ H, often
called kernel embedding in this context, such that k(x, x′) = ⟨Φ(x),Φ(x′)⟩ for all x, x′ ∈ X.

1There exist several centered GPs with kernel k: for instance, if Y ∼ GP (0, k), then −Y ∼ GP (0, k). But all
of them have the same law since their law depends on the expectation, here the null function, and the covariance
function, here k. Unicity must be understood in this sense, i.e. with a common unique law.

13



14 CHAPTER 3. KERNELS AND REPRODUCING KERNEL HILBERT SPACES

Indeed, we can choose for H the Hilbert space L2(P) and Φ(x) = Z(x), where Z is a centered
RP with kernel k. Note that the representation is not unique: we can also use for H the RKHS
associated to k, and Φ(x) = k(x, .) (see Section 3.2).
This shows that, up to a mapping all kernels are scalar products. The scalar product kernel is
thus the prototype of kernels. However, this representation is not useful to provide a new kernel
because it involves the kernel itself! In machine learning, this property is known as "kernel trick",
since it allows creating non-linear methods with linear ones thanks to a mapping Φ that does not
need to be explicit: only the kernel k is required.

General operations on kernels. Here are operations on kernels, valid for all set X.

• If k is a kernel, then σ2k is a kernel for all σ ∈ R.

• (Stability by sum) If k1, k2 are two kernels on X2, then k1 + k2 is a kernel. Similarly if k1, k2
are kernels on (X1)

2, (X2)
2 respectively, the tensor sum2 k1 ⊕ k2 is a kernel on (X1 × X2)

2.

• (Stability by product) If k1, k2 are two kernels on X2, then k1k2 is a kernel. Similarly, if k1, k2
are kernels on (X1)

2, (X2)
2 respectively, the tensor product k1⊗ k2 is a kernel on (X1×X2)

2.

• (warping or embedding) If k is a kernel on X2, and f : U→ X is a function, then kf (u, u′) :=
k(f(u), f(u′)) is a kernel on U2.

Comments. We see that the set of kernels is a convex cone, stable by multiplication. The tensor
product operation is widely used to define kernels on d-dimensional spaces from 1-dimensional
kernels. Notice that the warping property is valid for any function f (in particular f may be non
bijective). This property is very useful to transport a kernel defined on a known space to a target
space, or to deal with non-stationarities.

We now provide other properties, valid for some set X.

Mercer representation of kernels. It is well known that a real psd matrix admits a spectral
(or eigen) decomposition. This result can be extended to psd functions at the price of additional
assumptions. It is known as Mercer representation. For instance (Steinwart and Christmann,
2008, p. 150), assume that X is a compact metric space, and k is continuous on X × X. Let ν
be a finite measure supported by X. Then there exists a Hilbert basis (ϕn)n≥0 of L2(X, ν) = {f :
X → R, s.t.

´
T
f(x)2dν(x) < +∞} (eigenfunctions) and a sequence of non-negative real numbers

(λn)n≥0 (eigenvalues) tending to zero, with λ0 ≥ λ1 ≥ ..., such that

k(x, x′) =
∑
n≥0

λnϕn(x)ϕn(x
′)

where the convergence is uniform on X × X. The ϕ′
ns are eigenfunctions of the Hilbert-Schmidt

operator defined on L2(X, ν) by

Tf(x) =

ˆ
T

k(x, x′)f(x′)dν(x′)

and thus verify Tϕn(x) = λnϕn(x) for all n ≥ 0.

2The tensor sum is k1 ⊕ k2

((
x1

x2

)
,

(
x′
1

x′
2

))
= k1(x1, x

′
1) + k2(x2, x

′
2). Similar definition for the product.
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Radial kernels on Hilbert spaces. If X = H is a Hilbert space, with norm ∥.∥, then the
function

k(x, x′) = F (∥x− x′∥) (3.1)

is a kernel if and only if there exists a Borel measure3 on R+ such that F (t) =
´
R e

−ut2dν(u)
(Schoenberg, 1938). In addition, k is a (strict) pd function iif we add the condition: ν ̸= δ0
(Bachoc et al., 2020). Such kernels are called radial kernels. Here are some explicit examples:

Kernel name Expression of F (t)
Squared exponential exp(−t2)
Power-exponential exp(−ts) with s ∈ (0, 2]
Multiquadric (c2 + t2)−β with β > 0, c > 0

Kernels of stationary GPs on Rd (Bochner’s theorem). The kernel of a real-valued sta-
tionary GP on Rd is the Fourier transform of a probability distribution

k(x, x′) =

ˆ
Rd

cos(2π⟨x− x′, t⟩)dµ(t) (3.2)

where ⟨., .⟩ is the usual scalar product on Rd (see e.g. Wendland, 2004). The probability measure
µ is called spectral measure. Bochner’s theorem thus provides a characterization of stationary
GPs, parameterized by their spectral measure. Choosing a spectral measure can lead to explicit
expressions of kernels. Examples of 1-dimensional kernels built this way are given in Table 3.1.

Kernel name Kernel form Spectral measure
cosine cos(2πh) Dirac δ1
sinc sin(πh)

πh
Uniform

Squared exponential k(h) = exp
(
−1

2
h2

ℓ2

)
Gaussian

Exponential exp
(
− |h|

ℓ

)
Student t1/2

Matérn 3/2
(
1 +
√
3 |h|

ℓ

)
exp

(
−
√
3 |h|

ℓ

)
Student t3/2

Matérn 5/2
(
1 +
√
5 |h|

ℓ
+ 5

3
h2

ℓ2

)
exp

(
−
√
5 |h|

ℓ

)
Student t5/2

Table 3.1: Examples of kernels of 1-dimensional stationary GPs on X = R. Here h = x− x′.

More on kernels. Theory on psd functions can be found in the books of Wendland (2004) and
Berg et al. (1984). Complementary developments, in a machine learning perspective, are presented
in (Rasmussen and Williams, 2006).

3.2 RKHS

RKHS have been developed in the fifty’s in the seminal work of Aronszajn (1950). We refer to
(Berlinet and Thomas-Agnan, 2004) for a recent presentation.

3The requirement to be a Borel measure is that for any compact K we have ν(K) < +∞.
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Definition. A reproducing kernel Hilbert space (RKHS) is a Hilbert space of real-valued func-
tions4 H defined on a set X, for which evaluations h 7→ h(x) are continuous, for all x in X.
By Riesz theorem, there exists a unique kx ∈ H such that for all x in X:

⟨h, kx⟩ = h(x) (reproducing property)

Now define the function k : X × X → R by k(x, y) = ky(x) and denote k(x, .) : y 7→ k(x, y).
Replacing h by ky in the equality above, we obtain

k(x, y) = ⟨ky, kx⟩ = ⟨k(y, .), k(x, .)⟩

The word reproducing means that the value of k(x, y) (resp. f(x)) is obtained as a scaler product
from itself by using the functions k(x, .) and k(y, .) (resp. k(x, .) and f).

Equivalence between kernels and RKHS (Moore-Aronszajn theorem). One can check
that the function k defined above is psd. Thus, if H is a RKHS, we obtain a kernel, called
reproducing kernel. Conversely, if k is a kernel, one can construct a unique RKHS Hk with
reproducing kernel k. This RKHS is given by

Hk = span(k(x, .), x ∈ X)

with inner product defined on the k(x, .)’s by ⟨k(x, .), k(y, .)⟩ := k(x, y), and extended to Hk by
linearity and continuity. The rigorous proof constitutes the Moore-Aronszajn theorem.
In summary, there is an equivalence between RKHS and kernels.

Equivalence between RKHS and random processes (Loève isometry). RKHS and ran-
dom processes are strongly connected by the so-called Loève representation theorem. As Hk is
spanned by the k(x, .), the idea is to consider L̄(Z) = span(Z(t), t ∈ X), for a centered second
order random process Z = (Z(x))x∈X with covariance function k. As a closed subspace of L2(P),
L̄(Z) is a Hilbert space. Furthermore, ⟨k(x, .), k(y, .)⟩ = k(x, y) = ⟨Z(x), Z(y)⟩, and it results
that L̄(Z) is isometric to Hk through the map defined on the k(x, .)’s by

ϕ :
Hk → L̄(Z)
k(x, .) 7→ Z(x)

(3.3)

and extended by linearity and continuity. This important result serves as a dictionary to translate
a functional problem into a probabilistic one, and vice-versa.

Examples. Finite-dimensional Hilbert spaces are all RKHS. Furthermore, if (φn)
N
n=1 is an or-

thonormal basis of H, then its kernel is written k(x, x′) =
∑N

n=1 φn(x)φn(x
′) for all x, x′ in X.

Infinite dimensional RKHS may contain functions with a minimal regularity. When X = Rd, the
Sobolev space Hm(X) (with its usual norm) is a RKHS if and only if m > d/2. In particular, for
d = 1, we see that H1(R), H2(R), . . . are RKHS. Furthermore, if X is a bounded interval, L2(X)
is not a RKHS. A list of explicit kernels of Sobolev spaces with various norms, is given at the end
of (Berlinet and Thomas-Agnan, 2004). Conversely, Matérn kernels correspond to Sobolev spaces
with specific norms, see Durrande et al. (2016).

4 We focus here on real-valued functions, but the theory is similar for complex-valued ones.
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3.3 Exercises

Exercise 3.1 (A covariance function is a psd function) Prove that if k is a covariance func-
tion of a random process, then k is a psd function.

Exercise 3.2 (General operations on kernels) Prove the results of the paragraph General op-
erations on kernels. Furthermore, let Y, Y1, Y2 be centered GPs associated to k, k1, k2 respectively.
We can assume that Y1 and Y2 are independent. Find a centered random process Z corresponding
to the target kernel (sum of kernels, product of kernels, warped kernel), built in function of (some
of) Y, Y1, Y2. Is Z a GP? Summarize your findings in the table below.

kernel associated RP is this RP a GP?
σ2k

k1 + k2
k1k2
kf

Exercise 3.3 (Bochner’s theorem, direct sense) Using that for all u in R, cos(u) = Re (eiu),
prove that the function (x, x′) 7→ cos(2π⟨x−x′, t⟩) is psd. Deduce that k defined by (3.2) is a kernel.

Exercise 3.4 (The squared exponential kernel on a Hilbert space) Here we propose a sim-
ple proof that if (H, ⟨., .⟩) is a Hilbert space, then k(x, x′) = e−∥x−x′∥2 is a kernel, with ∥x∥2 = ⟨x, x⟩.

1. Show that k(x, x′) has the form k(x, x′) = g(x)g(x′)e2⟨x,x
′⟩

2. Show that (x, x′) 7→ g(x)g(x′) is a kernel (for any function g).

3. Show that if k0 is a kernel, then ek0 is a kernel. (Hint: Use the series expansion of exp)

4. Conclude.

Exercise 3.5 (A kernel on sets of Rd) Let X the set of Lebesgue measurable sets A of Rd. For
A ∈ X, denote by Vol(A) =

´
1A(x)dx its volume. Let H = L2(Rd) be the Hilbert space of square

integrable functions on Rd with its usual scalar product ⟨f, g⟩ =
´
Rd f(x)g(x)dx. Prove (in two

lines!) that
k(A,B) = e−∥1A−1B∥2

is a kernel on X × X. Check that k(A,B) = e−Vol(A△B), where A△ B = (A ∪ B)\(A ∩ B) is the
symmetric difference of A,B. For an example of application, see Fellmann et al. (2023).

Exercise 3.6 (Kernels of finite-dimensional RKHS) Let H be a finite dimensional Hilbert
space with an orthonormal basis (φn)

N
n=1. Prove that H is a RKHS with kernel given by k(x, x′) =∑N

n=1 φn(x)φn(x
′) for all x, x′ in X.

Now consider a (general) basis of functions (ψn)
N
n=1, with Gram matrix G = (⟨ψi, ψj⟩)1≤i,j≤n.

Deduce from the orthornormal case that k(x, x′) = ψ⊤G−1ψ, with ψ = (ψ1, . . . , ψn)
⊤.
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Exercise 3.7 (An example of Sobolev-type RKHS) Consider the anchored Sobolev space:

H1
0 (0, 1) = {h ∈ L2(0, 1), h(0) = 0 and h′ ∈ L2(0, 1)}

with norm ∥h∥2 =
´ 1
0
h′2(x)dx. Here the derivative is defined in the weak sense: h admits a weak

derivative if there exists a function noted h′ such that for all C∞ compactly supported function
g (test function) we have

´ 1

0
h(x)g′(x)dx = −

´ 1
0
h′(x)g(x)dx. Furthermore, recall that in one

dimension, the elements of Sobolev spaces are absolutely continuous functions, thus verify

h(x) = h(0) +

ˆ x

0

h′(y)dy

Compare this property with the reproducing property of a RKHS, and deduce that H1
0 (0, 1) is a

RKHS with kernel k(x, x′) = min(x, x′). What is the associated Gaussian process?



Chapter 4

Gaussian process regression

In this section, we have a set of observations y1, . . . , yn at associated locations x1, . . . , xn in some
space X, coming from an unknown function fsim. The question is to build a function (metamodel)
f that interpolates the data, i.e. f(xi) = yi (i = 1, . . . , n), or at least approximates the data, if
the observations are noisy. Among the numerous existing techniques, we focus on the Gaussian
process regression, which has two main advantages in the metamodeling context. Firstly, it is
a probabilistic method, which allows quantifying uncertainty in unvisited area. Secondly, it is
parameterized by two functions (mean and kernel), which gives a lot of flexibility and allows
incorporating expert and physical knowledge.
The roots of GP regression are geostatistics, with the work of Krige (1951), further developed
by Matheron (1963), in dimension 2 or 3. Its extension to higher dimensions has been done at
the end of the 80’s, motivated by questions arisen in analyzing big computer codes (Sacks et al.,
1989). Interestingly, GP regression can be interpreted as a functional approximation problem in
RKHS. Knowing the three facets of GP regression is useful. For instance, the Universal Kriging
variance formula coming from geostatistics maybe a good tradeoff for uncertainty quantification,
as it partially accounts for parameter uncertainty without requiring a time-consuming Bayesian
inference technique. And the RKHS approach may be the most convenient way to perform GP
regression when fsim is a non-linear partial differential equation.

4.1 The Gaussian process approach

The idea of GP regression is to assume that the unknown function fsim is a sample path of a
Gaussian process Y ∼ GP (m, k). The approximation that we want to build is then obtained by
conditioning on the observations Y (xi) = yi, i = 1, . . . , n. Using the properties of Gaussian vectors,
this conditional process is still a GP, with closed-form expressions. We know distinguish two cases.

Noise-free observations. The conditional process Y (x) knowing Y (xi) = yi (i = 1, . . . , n) is a
GP with mean mc and kernel kc, given by:

mc(x) = m(x) + k(x,X)k(X,X)−1(y −m(X)) (4.1)
kc(x, x

′) = k(x, x′)− k(x,X)k(X,X)−1k(X, x′) (4.2)

where y = (y1, . . . , yn)
⊤,m(X) = (m(x1), . . . ,m(xn))

⊤, k(x,X) = (k(x1, x), . . . , k(xn, x)), k(X, x) =
k(x,X)⊤ and k(X,X) = (k(xi, xj))1≤i,j≤n.

19
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Figure 4.1: Gaussian process of Figure 2.2 conditional on {Y (xi) = yi, i = 1, . . . , n} for
n = 5 points. Left: simulations. Right: mean mc(x) and 95% prediction intervals[
mc(x)± 1.96

√
kc(x, x)

]
.

As expected, one can check that mc interpolates the data: mc(xi) = yi, and the uncertainty
is zero at design points: kc(xi, xi) = 0; notice that we also have: kc(xi, x) = 0 for all x ∈ X.
Furthermore, we inherit properties from Gaussian vector conditioning: mc is affine with respect to
the observations y, and kc does not depend on them.

Noisy observations. When the observations are noisy, we can write

yi = Y (xi) + ϵi

Let us further assume that the ϵi’s are N (0, τ 2i ), mutually independent, and independent of Y . The
prediction is then a filtering problem: to predict the underlying value Y (x) conditional on noisy
observations y1, . . . , yn. Then, the conditional process Y (x) knowing Y (xi) + ϵi = yi (i = 1, . . . , n)
is a GP with mean mc and kernel kc, given by:

mc(x) = m(x) + k(x,X) [k(X,X) + ∆]−1 (y −m(X)) (4.3)
kc(x, x

′) = k(x, x′)− k(x,X) [k(X,X) + ∆]−1 k(X, x′) (4.4)

where ∆ is the diagonal matrix with ∆i,i = τ 2i (i = 1, . . . , n). In other words, the formula are
similar to the noise-free case, the only difference being that k(X,X) is replaced by k(X,X) + ∆.
Notice however thatmc is no more interpolating the data, and the uncertainty at observed locations
is not zero, due to the presence of noise.
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4.2 The geostatistical approach: Kriging

Simple Kriging. Let Y be a centered1 second-order random process. In geostatistics, the pre-
diction of Y (x) knowing Y (x1), . . . , Y (xn) is computed by the Best Linear Unbiased Predictor
(BLUP). We look for a predictor defined linearly on the observations at locations x1, . . . , xn

Ŷ (x) := w0(x) + w1(x)Y (x1) + · · ·+ wn(x)Y (xn)

where w(x) := (w0(x), . . . , wn(x)) ∈ Rn+1. The aim is to find w(x) that minimizes MSE :=

E
[(
Y (x)− Ŷ (x)

)2]
, subject to E

[
Ŷ (x)

]
= E[Y (x)]. This interpolation method is called Kriging,

in the honor of Daniel Krige, who used this technique to predict the gold content in mines.
By definition we recognize that the BLUP is equal to the orthogonal projection of Y (x) onto
span{1, Y (x1) , . . . , Y (xn)}, or equivalently to the linear conditional expectation

Ŷ (x) = EL [Y (x)|Y (x1) , . . . , Y (xn)]

Now, for Gaussian vectors, the (non-linear) regression coincides with the linear one. Thus, we get
exactly the same formula than for GPR, called simple Kriging formula:

mSK(x) = E [Y (x)| {Y (xi) = yi, i = 1, . . . , n}] = mc(x) (4.5)
s2SK(x) = Var [Y (x)| {Y (xi) = yi, i = 1, . . . , n}] = kc(x, x) (4.6)

Here mSK(x) is equal to Ŷ (x) when Y (xi) is fixed to yi, and s2SK(x) is equal to the value of MSE(x)
at the optimum of w(x).
Thus, the geostatistical framework gives a natural extension of GP regression in a non-Gaussian
setting. However, then the interpretation is in term of best linear predictor, and the conditional
law of Y (x)| {Y (xi) = yi, i = 1, . . . , n} is known only through its first two moments.

Ordinary and Universal Kriging. In simple Kriging, the parameters of Y are assumed to be
known. In Universal Kriging, we assume that Y (x) has a mean of the form m(x) = f(x)⊤β, where
f(x) is a vector of known functions, and β is a vector of unknown parameters. Then, it can be
shown (Cressie, 1992) that the BLUP has the same form as for Simple Kriging, up to centering
by f(x)⊤β̂, where β̂ is the general least square (GLS) estimate of β, β̂ = (F⊤K−1F )−1F⊤y (with
K = k(X,X)). The Kriging variance is greater than SK variance. They are given by:

mUK(x) = f(x)⊤β̂ + k(x,X)k(X,X)−1(y − f(x)⊤β̂) (4.7)
s2UK(x) = s2SK(x) + (f(x)⊤ − k(x,X)K−1F )⊤(F⊤K−1F )−1(f(x)⊤ − k(x,X)K−1F ) (4.8)

The expressions of mUK(x) and s2UK(x) are called Universal Kriging (UK) formulas. When the
mean function is constant, m(x) = β ∈ R, they are called Ordinary Kriging (OK) formulas.
The UK formulas have a Bayesian interpretation, detailed in Section 4.4. They may be preferred
to SK formulas for uncertainty quantification, as they account for trend parameters uncertainty.

1The approach is immediately adapted to the case where Y has a known mean, by considering Y (x)−E(Y (x)).
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4.3 The functional approach: approximation in RKHS.

The Gaussian process regression can be reinterpreted as an approximation problem in RKHS.
Given a kernel k, letH be the corresponding RKHS. Then, GPR for noise-free observations actually
corresponds to the problem

min
h∈H
∥h∥H, s.t. yi = h(xi), i = 1, . . . , n (4.9)

where x1, . . . , xn are a set of observations, and y1, . . . , yn the corresponding response values.

Reduction to finite dimension (representer theorem) It happens that, becauseH is chosen
as a RKHS, this infinite dimensional optimization problem collapses to finite dimension. Indeed, let
F be the finite dimensional subspace ofH spanned by k(x1, .), . . . , k(xn, .). Using the decomposition
H = F + F⊥, we can write h = f + g with f ∈ F and g ∈ F⊥. Now, applying the reproducing
property leads to g(xi) = ⟨g, k(xi, .)⟩ = 0. Thus, the interpolation constraint depends only on f .
Furthermore,

∥h∥2H = ∥f∥2H + ∥g∥2H
The optimization problem is then separable and can be done independently along f and g, which
implies g = 0. Finally, the optimum is obtained for h = f ∈ F . This strong result is an example
of the representer theorem (Kimeldorf and Wahba, 1970).

Resolution of the problem. Link with splines and GP regression. Now, as h ∈ F , we
can write h(x) = k(x,X)α, where k(x,X) = (k(x1, x), . . . , k(xn, x)) and α = (α1, . . . , αn)

⊤ ∈ Rn.
Denoting K = (k(xi, xj))1≤i,j≤n, we obtain that the interpolation constraints are written

k(X,X)α = y

where y = (y1, . . . , yn)
⊤. Assuming that k(X,X) is invertible, this leads to a unique value of

α = k(X,X)−1y, which in turns gives a unique solution of the minimization problem (4.9) :

h⋆(x) = k(x,X)k(X,X)−1y

This expression corresponds to the formula for interpolation splines, and is also equal to the
conditional expectation in GP regression, in the probabilistic framework.

Approximation error. As we have seen, the conditional expectation in GP regression corre-
sponds to the interpolation spline in RKHS. Furthermore, the conditional variance kc(x, x) provides
a control of the approximation error. Indeed, for all x ∈ X and all h ∈ H, we have:

|h(x)− h⋆(x)| ≤ ∥h∥ × kc(x, x)1/2

In this inequality, the upper bound separates the effect of the function h and the location x, which
is typical with RKHS. In this context, the ‘x’ part of the upper bound, i.e. kc(x, x)1/2, is called
power function. We refer to Exercise 4.6 for more details.
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The case of noisy observations GP regression for noisy observations can also be rewritten
as an optimization problem in RKHS. It is equivalent to the penalized least squares problem (see
Exercise 4.5):

min
h∈H

Jλ(h), with Jλ(h) =
∑

1≤i≤n

(yi − h(xi))2 + λ ∥h∥2H (4.10)

The parameter λ is a positive real number, interpreted as a regularization parameter.

4.4 Hyperparameters inference

In applications, we consider GPs with a linear trend, which can be written in the form

Y (x) = m(x) + Z(x)

where:

• m(x) = β1f1(x) + · · ·+ βpfp(x) is a linear trend (the fi’s are known functions)

• Z is a centered GP with kernel k(x, y; Θ).

Here β and Θ are vectors of unknown parameters, often called hyperparameters. We now describe
two standard ways to estimate these hyperparameters.

Maximum likelihood. Maximum likelihood estimation (MLE) consists in finding the parame-
ters that maximize the density of probability at observations. Here, the law of (Y (x1) , . . . , Y (xn))
is N (Fβ; k(X,X; Θ)), where X = {x1, . . . , xn} and F is the n × p matrix whose row i contains
f1(xi), . . . , fp(xi). The pdf value at observations y = (y1, . . . , yn)

⊤ is written:

L(y; β,Θ) =
1

(2π)n/2|k(X,X; Θ)|1/2
exp

(
−1

2
(y − Fβ)⊤k(X,X; Θ)−1(y − Fβ)

)
Thus β,Θ are estimated by maximizing L(y; β,Θ). Contrarily to linear regression, this (non-
convex) optimization problem has not an explicit solution, and must be solved numerically2.

Bayesian inference. Link with Universal Kriging. In Bayesian statistics, the parameters
θ = (β,Θ) themselves are assumed to be random, with a prior distribution. Bayesian inference
consists in computing the whole posterior distribution of θ conditional on the observations. When
the prior admits a density fθ (with respect to the Lebesgue measure), applying the Bayes rules
shows that the posterior admits the density

fθ |(Y (x1),...,Y (xn))=y (t) =
1

C
L(y; t) fθ(t)

where C =
´
L(y; t) fθ(t)dt is a normalizing constant. If a single number is wanted as an estimation

of θ, the mode of the posterior distribution can be computed by maximizing L(y; t)fθ(t) over t.
This is similar to MLE, but here the likelihood is weighted by the prior density. Samples from the

2In practice, the log-likelihood is maximized. If a local optimizer is used (e.g. gradient descent), several starting
points must be used (multistart) as several local maxima may exist.
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posterior distribution can be obtained with Markov chain Monte Carlo techniques, at the cost of
a (maybe high) computational cost.

For some particular choices of priors, one recovers the formulas of Universal Kriging. More precisely,
if we assume that the kernel parameters Θ are known (Dirac prior), and the trend parameters
are multinormal with β ∼ N (µ, λk(X,X; Θ)), then the mean (resp. variance) of the posterior
distribution tend to the Kriging mean (resp. UK variance) when λ→ +∞ (Helbert et al., 2008).

Cross-validation. The two previous techniques depend on the validity of the assumptions of the
model, typically that it is a GP with the given mean and covariance structure. Cross-validation
(CV) may give better results in presence of model misspecification. An example of cross-validation
criterion is the leave-one-out criterion, written

LOO(β,Θ) =
n∑

i=1

(ŷ−i(xi)− yi)2 (4.11)

where ŷ−i(.) is the kriging mean computed without the observation yi. Denoting by X−i the
set of observations without the ith one, the covariance matrix k(X−i, X−i; Θ) can be computed
from the full covariance matrix k(X,X; Θ) in an economic way, with so-called update formulas.
The drawback of the LOO criterion (4.11) is that it does not account for the dependence of the
conditional GPs Ŷ−i for different i. A corrected version has been proposed in (Ginsbourger and
Schärer, 2023), as well as an extension to k-fold CV. It is shown that if the model is well specified,
then the corrected CV criterion is equivalent to MLE.

4.5 Model validation.

The validity of GP models can be investigated by testing whether the vector of observations
(y1, . . . , yn) is drawn from a multivariate normal distribution. One possibility is to consider the
leave-one-out predictions (see the previous paragraph “cross-validation”), which follow a Normal
distribution:

Y (xi)|{Y (xj) = yj,∀j ̸= i} ∼ N
(
mc,−i(xi), s

2
c,−i(xi)

)
where mc,−i (resp sc,−i) is the Kriging mean (resp. standard deviation) when removing the obser-
vation yi. This implies that the standardized LOO residuals

yi −mc,−i(xi)

sc,−i(xi)

are drawn from a N (0, 1) distribution, which can be checked with usual graphical diagnostics (such
as a qqplot). However, this is an approximate diagnostic, that assumes that the hyperparameters
are known, and that does not account for the correlation structure of the LOO residuals. The
modified version mentioned in the previous paragraph can be used to obtain a correct diagnostic.
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We conclude by a brief illustration on a 2-dimensional Branin function, defined on [0, 1]2 by

f(x1, x2) =

[
x′2 −

5

4π2
(x′1)

2 +
5

π
x′1 − 6

]2
+ 10

(
1− 1

8π

)
cos(x′1) + 10 (4.12)

with x′1 = 15x1 − 5 and x′2 = 15x2. This function is a toy case for optimization, as iI has three
global minima, approximately equal to x(1) = (0.1238946, 0.8166644), x(2) = (0.5427730, 0.15) and
x(3) = (0.9616520, 0.15). We will use it in the next chapter as well.

Branin

 5 

 5  5 

 5 

 10 

 10  10
 

 15 
 15 

 15
 

 20 

 20 

 25 

 25 

 30 

 30 

 35 

 35 

 40 

 40 

 45 

 45 

 50 

 50 

 55 

 55 

 60 

 60 

 65 

 65 

 70 

 70 

 75 

 75 

 80 

 80 

 85 

 85 

 90 

 90 

 95 

 95 

 100 

 105 

 105  110 

 115 

 115 

 120 

 120 

 125 
 130 

 135 

 140 

 140 

 145 

 150 

 160 

 160  170 
 175 

 185 

 190 

 210 

 215 
 270 

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

Kriging mean

 0 

 0 

 5 

 5 

 10 

 10 

 15 

 15  20 

 25 

 30 

 35 

 40 

 45 

 45 

 50 

 50 

 55 

 55 

 60 

 60
 

 60 

 65 

 65 

 70 

 70 

 75 

 75 

 80 

 85 

 85 

 90 

 90 

 95 

 95 

 100 

 100 

 105 

 110 

 115 

 115 

 120 

 120 

 125 

 130 

 135 

 140 
 14

0 

 145 

 150 

 15
5 

 160 
 170 

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

Kriging s.d.

 1 
 1 

 1 
 1 

 1 
 1 

 1 
 1 

 1 

 1 

 1 
 1 

 1  1.5 

 1.
5 

 1.5  2 

 2 

 2 

 2 

 2 

 2 

 2 

 2 

 2 

 2 

 2 

 2 

 2.5 

 2.5 

 2.
5 

 2.5 

 2.
5 

 2.5 

 3 

 3  3 

 3 

 3 

 3 

 3 

 3.5 

 3.
5 

 3.5 

 4 

 4 

 4 

 4 
 4 

 4.
5 

 4.5 

 4.5 

 5 

 5 

 5 

 5 

 5.5 

 5.
5 

 5.5 

 6 

 6 

 6 

 6 

 6 

 6.5 

 6.
5 

 6.5 

 6.5 

 6.5 

 6.5 

 7 

 7 

 7 

 7 

 7 

 7.5 

 7.5 

 7.5 

 7.
5 

 7.5 

 8 

 8 

 8 

 8 

 8 

 8 

 8.
5 

 8.
5 

 8.5 

 9 

 9  9 

 9 

 9.5  9.5 

 10 

 10
 

 10
 

 10.5 

 10.5 

 10.5 

 11  11
 

 11 

 11 

 11.5 

 12 

 12 

 12
 

 12.5 

 13 

 13.5 

 14.5 

 15 

 16.5 

 21.5 

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

Figure 4.2: Prediction by GP regression (or Kriging) for the Branin function, based on a 16-point
Latin hypercube maximin design: conditional mean mc (middle) and standard deviation sc (right).
hyperparameters estimation has been done by MLE.
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4.6 Exercises

Exercise 4.1 (GP regression formulas) Let us consider the setting and notations of GP re-
gression in the noise-free case.

1. Let V = Y (x) and W = (Y (x1) , . . . , Y (xn)). Show that the vector U = (V,W ) is Gaussian.
Express its mean and covariance matrix in function of m, k and X. Apply formulas (7.2)
and (7.3) to obtain the expression of mc(x) and kc(x, x) in Equations (4.1) and (4.2).

2. Prove, using the definition of mc, kc, that mc(xi) = yi and kc(xi, x) = 0 for all i = 1, . . . , n
and all x ∈ X. Prove it in a second way, with Equations (4.1) and (4.2).

3. Give a 95% prediction interval of Y (x) knowing Y (xi) = yi (i = 1, . . . , n).

4. Explain how to adapt Question 1 to get kc(x, x
′) when x′ ̸= x. Do the computations.

5. Finally prove that the conditional process Y knowing Y (x1) , . . . , Y (xn) is a GP.

Exercise 4.2 (GP regression formulas, noisy case) Let us consider the case of GP regres-
sion for noisy observations. Mimicking the previous exercise, prove formulas (4.3) and (4.4).

Exercise 4.3 (GP regression with derivatives) Based on the results of Exercise 2.2, deduce
the expression below for the kriging mean and kriging variance accounting for derivatives, i.e. the
distribution of Y (x) knowing that Y ′(x1) = d1:

E[Y (x)|Y ′(x1) = d1] = d1
∂k

∂s
(x1, x)/

∂2k

∂s∂t
(x1, x1)

Var[Y (x)|Y ′(x1) = d1] = k(x, x)− ∂k

∂s
(x1, x)

2/
∂2k

∂s∂t
(x1, x1)

Write the formula when we know both that Y (x1) = y1 and Y ′(x1) = d1.
For an illustration, compare Figure 4.5 with Figure 4.4.

Exercise 4.4 (Corrected LOO criterion) Let Y ∼ GP (0, k). For n = 2 points, define the
LOO residuals as the random variables

E−1 = Y (x1)− E[Y (x1)|Y (x2)], E−2 = Y (x2)− E[Y (x2)|Y (x1)]

Give the expression of E−1 in function of k and Y (x1), Y (x2). Similarly, compute E−2. Show
that (E−1, E−2) is a Gaussian vector, and show that E−1 and E−2 are negatively correlated. How
can you define standardized residuals S1, S2 such that S1, S2 and standard N (0, 1) and independent?
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Exercise 4.5 (GP regression with noisy observations and RKHS) By mimicking the proof
of Section 4.3, prove that the conditional expectation in GP regression with noisy observations
(Equation 4.3, with m = 0) is the solution of Problem (4.10).

Exercise 4.6 (Approximation error) For a general set X, we consider design points x1, . . . , xn ∈
X. Let k be a kernel on X × X and the associated RKHS H. In a metamodeling context, let us
assume that our costly function (e.g. a computer code) is some function h ∈ H. Then denote by
h⋆ the Kriging mean,

h⋆(x) = k(x,X)k(X,X)−1y

where k(x,X) = (k(x, x1), . . . , k(x, xn)) is a 1× n vector, k(X,X) = (k(xi, xj))1≤i,j≤n is a matrix
of size n and y = (h(x1), . . . , h(xn))

⊤ is a n× 1 vector.
The aim of the exercise is to obtain a bound of the approximation error |h(x)− h⋆(x)|.

1. By inspecting the Kriging mean formula, show that h⋆(x) =
∑n

i=1wih(xi). Give the expres-
sion of the (row) vector w⊤ = (w1, . . . , wn).

2. Using the RKHS properties, prove that for all x ∈ X,

|h(x)− h⋆(x)| ≤ ∥h∥H × C(x)

with C(x) = ∥k(x, .)−
∑n

i=1wik(xi, .)∥H.

Let Z be a centered GP with kernel k. We recall that

E(Z(x)|{Z(xi), i = 1 . . . , n}) = k(x,X)k(X,X)−1Z(X) =
n∑

i=1

wiZ(xi)

Denote by ϕ the Loeve isometry (see Chapter 3, Equation 3.3) between H and
L̄(Z) = span(Z(x), x ∈ X).

3. Explain why the image by ϕ of k(x, .)−
∑n

i=1wik(xi, .) is equal to

Z(x)− E(Z(x)|{Z(xi), i = 1 . . . , n})

and deduce (without computation) that

C(x) =
√
kc(x, x)

where kc(x, x) = Var(Z(x)− E(Z(x)|{Z(xi), i = 1 . . . , n}) is the Kriging variance.
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Chapter 5

Design of computer experiments

We aim at studying a costly-to-evaluate function fsim, typically a simulator or a machine learning
algorithm, based on a dataset. Contrarily to other contexts, we can create this dataset, equivalently
design the experiments (DoE), by choosing the locations where to evaluate fsim.
There is a rich theory of design of experiments when the observations are obtained from a linear
model (see e.g. Fedorov, 2013). But we consider here a different framework: we assume that
fsim is a complex function (possibly non linear), and that the experimental noise is negligible
(yi = fsim(xi)). As this often corresponds to experiments obtained by a (deterministic) computer
model, one uses the word design of computer experiments.
There are two main classes of strategies: static and dynamic or adaptive. The static strategy
creates an initial DoE; without specific goal or model information, this leads to space-filling DoEs.
The adaptive strategy sequentially adds the design points proposed by a GP-based criterion, on
which the numerical model fsim is evaluated. It is driven by a specific objective, such as: model
accuracy, optimization, inversion.

5.1 Space-filling designs

Why space-filling designs and (un)desirable properties. Recall that we assume that fsim

is possibly non-linear and the observations are noise-free. Then, several features are desirable.

• (space-fillingness) As no information on the form of fsim is available, the aim is to cover the
domain or fill the space as most as possible, for exploration purpose.

• (no replication) As the experimental noise is negligible, it is not relevant to evaluate fsim

several times at the same design point. Thus, one should avoid replicating experiments.

• (stability by projection) In the frequent case where fsim : Rd → R actually depends on
m < d variables or linear combinations of variables, one should expect that the DoE preserves
the two previous features (space-fillingness and absence of replications) by projection onto
marginal or oblique subspaces. We report to Exercise 5.1 for illustrations of this fact.

An obvious candidate for satisfying all these constraints is the uniform design, obtained by sampling
independently the design points from the uniform distribution on X. However, for a limited number
of points, a uniform design can fill poorly the space and generate clusters (see e.g. Figure 5.2, left
panel). There are better alternatives, some of them are presented below.

29



30 CHAPTER 5. DESIGN OF COMPUTER EXPERIMENTS

Maximin and minimax designs. Let X = {x1, . . . , xn} be a DoE in X. There are two famous
geometric criteria to quantify how well the design points fill the space. They are based on a
distance in X, typically the Euclidean distance.
The maximin-distance criterion is the minimal distance between the design points:

ΦMm(X) = min
1≤i<j≤n

∥xi − xj∥

A design that maximizes this distance is called maximin. Actually, when X is convex, finding a
maximin design is equivalent to a sphere-packing problem, i.e. finding a set of non-overlapping
spheres contained in X with a maximal radius (Pronzato, 2017).
A dual criterion is the minimax-distance criterion, equal to the largest distance between a point
x ∈ X and the DoE:

ΦmM(X) = max
x∈X

min
i=1,...,n

∥x− xi∥

The DoEs that minimize this criterion are called minimax. By definition of ΦmM(X), the union
of spheres centered at xi with radius ΦmM(X) cover X; thus finding a minimax design is a sphere
covering problem, i.e. finding a set of spheres that cover X with a minimal radius. Furthermore,
they are connected to GP prediction. Indeed, for many isotropic kernels, i.e. such that k(x, x′)
depends on ∥x− x′∥, the kriging variance at x obtained with X, denoted kc(x, x;X), verifies:

sup
x∈X

kc(x, x;X) ≤ S(ΦmM(X))

where S is an increasing function (Schaback, 1995). Thus minimax DoEs will tend to reduce the
global uncertainty of the GP prediction.
Compared to maximin DoEs, minimax DoEs are harder to compute, as they involve all the domain
points, and not only design points. Nevertheless, the two criteria are connected by inequalities,
that justify the common practice of computing only maximin DoEs. An illustration of maximin
and minimax designs is given in Figure 5.1. We can see that both designs fill well the space, but
also exhibit alignements that will give replicates in projection. To avoid this drawback, they are
often computed among the class of Latin hypercube DoEs (see the dedicated section below).

Figure 5.1: Examples of maximin (middle panel) and minimax (right panel) designs in X = [0, 1]2.
Left panel: same than middle, with an extended boundary, showing the equivalence between the
maximin and sphere packing problems. Source : Pronzato (2017).
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Low discrepancy sequences. The discrepancy is a statistical quantity measuring the departure
of the empirical distribution of the design points to the uniform distribution. Let X = {x1, . . . , xn}
be a DoE in X = [0, 1]d and let λ be the Lebesgue measure on X. The discrepancy of X with
respect to a family of sets R of X is defined by

D(X,R) = sup
R∈R

∣∣∣∣Card(i ∈ {1, . . . , n} s.t. xi ∈ R)
n

− λ(R)
∣∣∣∣

There are various choices for R, for which the discrepancy can be computed in closed form.
For instance, the standard discrepancy D(X) is associated to the family of all hyperrectangles
R =

∏n
i=1[ai, bi] with 0 ≤ ai < bi ≤ 1 (i = 1, . . . , n). whereas the star discrepancy D⋆(X) only

considers the hyperrectangles fixed at the origin: R =
∏n

i=1[0, bi].

An important theoretical result (Koksma-Hlakwa theorem) is that the star discrepancy gives a
control of the quadrature error. Indeed, for a large class of functions f , we have the inequality∣∣∣∣∣ 1n

n∑
i=1

f(xi)−
ˆ
X
f(x)dx

∣∣∣∣∣ ≤ V (f)D⋆(X)

where V (f), equal to the Hardy-Krause total variation of f , does not depend on X. Similar in-
equalities hold when f belongs to a RKHS.

Thus, a DoE with a small discrepancy will guarantee a good approximation of
´
X f uniformly on

f . The class of low discrepancy sequences (LDS), used in Quasi Monte Carlo integration, gathers
DoE for which there exists constants c, s > 0 such that for all n ≥ 1,

D(X) ≤ c
(log n)s

n

In statistical words, this means that the convergence rate of the mean 1
n

∑n
i=1 f(xi) to the expec-

tation
´
X f(x)dx is faster than the rate n−1/2 of a simple Monte Carlo procedure. Notice, however,

that the bounding constant c behaves poorly with the dimension.
The construction of LDS relies on number theory. The simplest one, the 1D Van der Corput se-
quence, uses a ‘mirror’ decomposition of integers in base 2. If i =

∑
j≥1 bj2

j−1 with bj ∈ [0, 1], the
ithth point of the sequence is xi =

∑
j≥1 bj2

−j where the same bj are used for negative exponents of
2. The Halton sequence extends this procedure in d dimensions by using the first d prime numbers
as a number basis for each coordinate, i.e. base 2 for xi,1, base 3 for xi,2, base 5 for xi,3 etc. Other
famous LDS are Faure sequences and Sobol sequences.

The main drawback of LDS for design of experiment is that they behave poorly in projection,
especially in the last coordinates, although they behave better than a uniform design in dimension
d. This effect is striking for Halton and Faure sequences (see e.g. Figure 5.8, right panel), and
moderate for Sobol sequences, which explain that Sobol sequences are more often used.
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Figure 5.2: Examples of 2D space-filling designs. From left to right: Uniform design, Halton
sequence, Sobol sequence.

Latin hypercube designs. For simplicity, first consider the 2-dimensional case. A n-point Latin
hypercube design (LHD) on X = [0, 1]2 is a random design such that there is exactly one point
per row and exactly one point per column. Here, the rows and columns are defined by the par-
tition of [0, 1] in n strata of same length : [0, 1] = I1∪· · ·∪In, with Ii = [(i−1)/n, i/n], i = 1, . . . , n.

It can be built with one permutation s1 of {1, . . . , n}, by defining the initial points (i, s1(i)),
i = 1, . . . , n. Then these points are transformed to random real numbers in intervals of length 1 by
removing (U1,i, U2,i), where U1,1, U2,1, . . . , U1,n, U2,n are i.i.d. uniform on [0, 1]. Finally, a division

by n maps the points to [0, 1]. The LHD is thus formed by the points
(
i− U1,i

n
,
s1(i)− U2,i

n

)
,

i = 1, . . . , n. An illustration is given in Figure 5.3. This definition is immediately extended to
d-dimensions by considering d−1 permutations s1, . . . , sd−1 of {1, . . . , n}. The corresponding LHD

is the set of points
(
i− U1,i

n
,
s1(i)− U2,i

n
, . . . ,

sd−1(i)− Ud,i

n

)
, i = 1, . . . , n. By construction, the

number of possible LHDs is equal to (n!)d−1.

The construction of LHDs is based on the idea of stratified sampling, in order to improve the
uniformity of designs with a fixed size. Indeed, in stratified sampling, the proportion of points
that belong to some interval is forced to equal the theoretical one, which is the case for the marginal
sets {xj ∈ Ii} for a fixed Ii: #{j s.t. xj ∈ Ii} = P(xj ∈ Ii) = 1/n. This improvement can be
assessed for quadrature problems: if a multivariate function1 g : X→ R is monotonic with respect
to all its arguments, if x1, . . . , xn are the points of a LHD, and if u1, . . . , un are the points of
a random uniform design (Monte Carlo sampling), then approximating

´
X g(x)dx by the sample

mean is more precise with a LHD (Mckay et al., 2000, Section 2):

Var

(
1

n

n∑
i=1

g(xi)

)
≤ Var

(
1

n

n∑
i=1

g(ui)

)
.

The monotonicity assumption can be relaxed asymptotically: for large n the result is valid, and
1As an example, in our context, g can be fsim if the aim is to evaluate a mean value, or g = 1fsim<T for some

threshold T if the aim is to evaluate a probability of failure.
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Figure 5.3: Examples of 5-point LHDs. Left: a random LHD, associated to the permutation
(5, 2, 4, 3, 1). Right: an approximate maximin LHD.

the variance reduction depends on the extent to which g is additive (Stein, 1987).

However, for a metamodeling purpose, choosing a LHD at random is generally not enough. Indeed,
depending on the permutations used, its points do not always have good space-filling properties.
To avoid this drawback, one can search for a specific LHD that optimizes a space-filling criterion.
For instance, a maximin LHD is a design which has the largest maximin value among the class
of LHDs. An illustration is provided in Figure 5.3, where we can see that the points of the
approximate maximin LHD are well spread out in X.

Stability by projection and radial scanning statistic. As sketched in the introduction of
the section, a good space-filling DoE should preserve its properties by projection onto marginal or
oblique subspaces. The radial scanning statistic (RSS) has been built to evaluate a DoE in this
respect for a hypercubic domain X (Roustant et al., 2010). The RSS automatically detects the de-
partures from uniformity by projections onto 2D or 3D subspaces. It is based on two mathematical
results. First, the law of the projection of a uniform random vector onto a straight line is known (a
very old result, due to Lagrange in the 18th century). Second, there are powerful uniformity tests
to detect clusters, that appear in projection in presence of alignments; one of them is associated
to the Greenwood statistics. A combination of these ideas gives the RSS.

Let us illustrate how we can use the RSS with the 8D Sobol (low discrepancy) sequence, shown
in Figure 5.4. For a given pair (or triplet) of dimensions, the RSS is computed on the projected
points, for all straight lines. The worst case is then considered (largest RSS value among pairs of
dimensions), here the plane (x2, x7). For that plane, the RSS values are represented as a polar curve
(middle panel). The circle corresponds to the value of the statistic associated to a 5% confidence
level: a value out of the circle thus indicates a departure from the assumption that the DoE is
drawn from a uniform distribution. This is the case for the angle −π/4, and to a lesser extent +π/4
(middle panel). The projection onto the worst straight line (angle −π/4) is represented, where
we can see that many points overlap in projection. This will be a problem is fsim is a function of
x2 − x7 (see Exercise 5.1). Here a solution is to perturbate the Sobol sequence by adding a small
noise (scrambling).
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Figure 5.4: The defects of a 8D Sobol sequence, detected by the RSS. Left: projection onto the
worst 2D space (x2, x7). Middle: RSS curve. Right: Projected points for the worst angle.

Variations and other designs. The DoEs presented above can be easily adapted when the
input variables X1, . . . , Xd are independent but follow a non-uniform distribution µ = ⊗d

j=1µj.
Indeed, as the image of Xi by its cdf is uniformly distributed, a space-filling DoE with respect to
µ is obtained by applying the reverse (quantile) transformation to a space-filling DoE.
The literature on space-filling DoEs is incredibly vast, and we can cite, among other families of
DoEs: orthogonal arrays (extensions of LHD for projection onto 2D or higher marginal spaces),
lattices (other kinds of LDS), maximum entropy designs, point processes (such as Strauss or
determinantal processes), RKHS-based designs (see Exercise 5.3). We refer to the book of Fang
et al. (2005) or to the review of Pronzato and Müller (2012) for more examples and details. We
also refer to the R packages DiceDesign (Dupuy et al., 2015) and randtoolbox (Christophe and
Petr, 2023) for software.

5.2 Gaussian process based adaptive designs

Adaptive designs for optimization: Bayesian optimization

Bayesian optimization denotes adaptive designs based on GP metamodels. There are three main
ingredients: a numerical model fsim, a GP metamodel, and an easy-to-compute criterion2.

Illustration with the expected improvement criterion. Denote by z+ := max(z, 0), the
positive part of z. Then, the improvement, in a minimization perspective, is defined as I(z) =
(fmin − z)+, which counts positively what is below the current minimum fmin = min(y1, . . . , yn).
Finally, given Y ∼ GP(m, k), the expected improvement (EI) criterion is defined as the mean of
improvements over sample paths of the conditional GP:

EI(x) = E [I(Y (x))| {Y (xi) = yi, i = 1, . . . , n}]

2this criterion is often called infill or acquisition criterion.
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Notice that although Y (x) is unknown at an unvisited site x, the conditional law of Y (x) is known.
This allows computing the criterion in closed form (Exercise 5.2):

EI(x) = sk(x)(z0Φ(z0) + ϕ(z0)) (5.1)

Here, z0 =
fmin −mc(x)

sc(x)
, ϕ,Φ are respectively the pdf and the cdf of the N (0, 1) distribution, and

mc, sc are resp. the mean and standard deviation of Y conditional on {Y (xi) = yi, i = 1, . . . , n}.

This leads to the so-called Efficient Global Optimization (EGO) adaptive design, presented in
Algorithm 1 and illustrated in Figure 5.5. There are two nice features of EGO. First, it achieves a
tradeoff between exploration of unvisited area and exploitation around a local minimum. Secondly,
as claimed in its name, it is indeed a global optimization algorithm: under a slight condition on
the kernel k, it generates a dense sequence of points (Vazquez and Bect, 2010).

Algorithm 1 EGO algorithm
Require: An initial DoE X = {x1, . . . , xn}, and the corresponding observations Y = {y1, . . . , yn}.
1: while Computational budget not consumed do
2: Estimate a GP regression metamodel with DoE X and observations Y
3: Maximize the associated EI criterion: x⋆ ← argmaxxEI(x)
4: Evaluate the numerical model fsim at x⋆: y⋆ = fsim(x

⋆)
5: Update the DoE and the set of observations: X ← X ∪ {x⋆}, Y ← Y ∪ {y⋆}
6: end while
7: return The minimum of Y , and the associated design point.
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Figure 5.5: Illustration of the EGO algorithm (Bayesian optimization). Left panel: starting from
4 initial points obtained from fsim (e.g. an automotive simulator), a GP metamodel is estimated
(top), and the EI criterion computed (bottom). The location where EI is maximum gives a new
point where to evaluate fsim. Middle panel: with this new observation, the metamodel is then
updated (top), and the EI recomputed (bottom). Right panel: output at iteration 3.

Variations, other criterions, and software. This version of EGO is for noise-free obser-
vations. One can adapt it to noisy observations, leading for instance to the Expected Quantile
Improvement criterion. Furthermore, EGO is a one-step ahead strategy, providing only one single
point per iteration. One can adapt its definition to provide a batch of points per iteration. In
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addition to the EI criterion, Bayesian optimization can be defined with many other criteria, such
as: the Approximate Knowledge Gradient, the Augmented Expected Improvement, the Expected
Augmented Lagrangian Improvement, the Expected Feasible Improvement, etc.
Notice also that Bayesian Optimization has been adapted for constrained optimization and multi-
objective optimization.
A way to discover the numerous existing possibilities is through software, such as the R packages
DiceOptim (Picheny et al., 2021), GPareto (Binois and Picheny, 2019) and the Python toolkit
Trieste (Berkeley et al., 2023), which contain both references to the literature and examples.

Adaptive designs for inversion

The word inversion stands for three close objectives. Indeed, for a given target T , it aims at
estimating either:

• a level set : L = {x ∈ X, such that fsim(x) = T},

• or an excursion set : E = {x ∈ X, such that fsim(x) ≤ T},

• or a probability of failure, pf = PX ({x ∈ X, such that fsim(x) ≤ T}), where PX is a probabil-
ity distribution on X.

As for Bayesian optimization, adaptive strategies rely on a Gaussian metamodel Y and a calcu-
lable criterion. For inversion, famous ones are SUR strategies, where SUR stands for Stepwise
Uncertainty Reduction. The idea is to choose the next design point to reduce the most a measure
of uncertainty. For illustration, for excursion sets, one can define a random variable representing
the uncertainty as the conditional variance of 1Y (u)≤T , integrated over all the domain:

Hn(x1, . . . , xn) =

ˆ
X
Var

[
1Y (u)≤T |Y (x1) , . . . , Y (xn)

]
µ(du)

where µ is some probability distribution on X (e.g. the Lebesgue measure when X is a subset of
Rd). Notice that the variance term can be computed in closed form. Indeed, the indicator variable
1Y (u)≤T follows a Bernoulli distribution with parameter

pn(u) = P(Y (u) ≤ T |Y (x1) , . . . , Y (xn)) = Φ

(
T −Mc(u)

Sc(u)

)
(5.2)

where Φ is the cdf of the standard Normal distribution, and Mc(u) (resp. Sc(u)) is the conditional
mean (resp. standard deviation) of Y (u) conditional on Y (x1), . . . , Y (xn). Thus,

Hn(x1, . . . , xn) =

ˆ
X
pn(u)(1− pn(u))PX(du)

Then, for a new design point x, the one-step ahead SUR criterion is defined as

Jn(x) = E(Hn+1(x1, . . . , xn, x)| {Y (xi) = yi, i = 1, . . . , n})

In this expression, the expectation is done with respect to Y (x), which is unknown. It can be
computed, at least numerically, because the (conditional) law of Y (x) is known. Then the next
point xn+1 can be chosen in order to minimize Jn(x):

xn+1 ∈ argmin
x∈X

Jn(x)
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At each step, the function pn, called probability of excursion function can be visualized, and allows
to classify the points u corresponding to the two regions Y (u) ≤ T and Y (u) > T . More precisely,
the three quantities of interest defined at the beginning of the section can be estimated by

• L̂ = {x ∈ X, such that pn(x) = 1/2},

• Ê = {x ∈ X, such that pn(x) ≥ 1/2},

• p̂f =
´
X pn(u)PX(du).

In theory, SUR strategies are connected to the theory of martingales, which allows to derive
(under some conditions) that the uncertainty measure Hn tends to zero almost surely when n
tends to infinity. Furthermore, it turns out that several algorithms of Bayesian optimization, and
in particular the EGO method, can be viewed as SUR strategies.
For more details and examples, we refer to the journal paper (Bect et al., 2019) and to the piece
of software KrigInv (Chevalier et al., 2022) with its documentation (Chevalier et al., 2014).

Illustration

We conclude by a brief illustration on a 2-dimensional Branin function, defined by (4.12).
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Figure 5.6: Results of the EGO method for the Branin function, from (Roustant et al., 2012). Left:
sequence of points obtained by 10 iterations of EGO (red numbered points). Right: contours of
the EI criterion for the last model. Triangles represent an initial optimal Latin hypercube design.
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Figure 5.7: Example of adaptive design for inversion, from the preprint of (Chevalier et al., 2014).
Left: excursion set of the Branin function for the target T = 80. Right: estimated excursion
probability function pn after 10 iterations of SUR criterion. New evaluated points are represented
by circles, added sequentially to the initial points (triangles).
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5.3 Exercises

Exercise 5.1 (Projections and loss of information) Figure 5.8 shows two examples of 16-
point space-filling DoEs in dimension 2 and 8 respectively, proposed for the metamodeling of fsim.
However, these DoEs have serious drawbacks!

1. Case of a marginal subspace. Assume that fsim : [0, 1]2 → R only depends on one variable
(say x1), meaning that the other one are inactive. Consider the grid (also called full factorial
design) of Figure 5.8. Explain why 75% of the information will be lost with this DoE! What
other kind of DoE can be recommended to avoid this phenomenon?

2. Case of an oblique subspace. Explain why the 8D low discrepancy sequence of Figure 5.8 is
not a good DoE: for what form of functions fsim this DoE will be inappropriate? If in addition
fsim has the form fsim(x) = g(x7 − x8) for some function g, what percentage of information
will be lost with this DoE? What tool can be used to evaluate the quality of DoEs with respect
to projections onto oblique subspaces?
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Figure 5.8: Examples of 16-point DoEs. Left: a grid in 2 dimensions. Right: projection onto the
plane (x7, x8) of a 8-dimensional Faure low discrepancy sequence.

Exercise 5.2 (EI expression) Derive the closed-form expression (5.1) of the EI criterion.

Exercise 5.3 (Space-filling designs with RKHS) A design X can be viewed as a discrete
measure PX =

∑n
i=1

1
n
δxi

, and we aim at quantifying the distance to the uniform measure P .
This can be done with kernel embedding (kernel trick), by first mapping the probability measures
into a RKHS:

P 7→ µP :=

ˆ
X
k(x, .)dP (x)

PX 7→ µPX
:=

ˆ
X
k(x, .)dPX(x) =

1

n

n∑
i=1

k(xi, .)
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In the expressions above, k is a kernel verifying
´
X

√
k(x, x)dP (x) < +∞. Let H be the associated

RKHS. The distance between P and PX is then measured by the distance between µP and µPX
in

H, which is called Maximum Mean Discrepancy (MMD):

MMD(P, PX) := ∥µP − µPX
∥H

1. Check that µP is well-defined.

2. Prove that the integration error is controlled by the MMD: for all f ∈ H,∣∣∣∣∣ 1n
n∑

i=1

f(xi)−
ˆ
X
f(x)dP (x)

∣∣∣∣∣ ≤ ∥f∥H MMD(P, PX)

3. Prove the formula

MMD(P, PX)
2 =

1

n2

n∑
i,j=1

k(xi, xj)−
2

n

n∑
i=1

ˆ
X
k(xi, x)dP (x) +

ˆ
X2

k(x, y)dP (x)dP (y)

4. Explain how to construct a DoE that minimize MMD(P, PX) in practice.

Notice that we can choose any probability measure for P . This gives a method to sample points in
a non-hypercubic domain, see e.g. Mak and Joseph (2018).



Chapter 6

Global sensitivity analysis

Consider a numerical model f : x ∈ X = [0, 1]d → R. Sensitivity analysis aims at quantifying the
influence of the input variables x1, . . . , xd on the values of f . A local answer to this question is given
by the partial derivatives ∂g

∂xi
. Global sensitivity analysis (GSA) gives a global answer where the

variables vary in the whole input domain X. A different framework is considered, by assuming that
the input variables are random. Thus GSA aims at quantifying the influence of the input random
variables X1, . . . , Xd which explain the variation of random variable f(X) = f(X1, . . . , Xd).
The simplest way to measure this variation is Var(f(X)) and this chapter will focus on it. Sim-
ilarly, we will consider the simplest case where the input variables are independent. In this basic
framework, we will be able to answer the following questions:

• Screening : what are the variables Xi that have no influence on f(X) ?

• Uncertainty quantification: what is the influence of Xi on Var(f(X))?

For a more general presentation, we refer to (Iooss, 2011) and the recent book (Da Veiga et al.,
2021) in which several extensions are addressed: metamodel error (section 4.2.5), dependent inputs,
goal-oriented sensitivity analysis, to cite a few.

6.1 Variance-based global sensitivity analysis

Let X = (X1, . . . , Xd) be a vector of independent input variables with distribution µ1⊗· · ·⊗µd, and
f : ∆ ⊆ Rd → R is such that f(X) ∈ L2(µ). We will use the set notation: if I = {i1, . . . , im} with
i1 < · · · < im, then XI = (Xi1 , . . . , Xim). We will denote X−I when we remove the components
i ∈ I from the vector X (thus X−1 = (X2, . . . , Xd)). Moreover, by convention, E[.|X∅] = E[.].

The Sobol-Hoeffding decomposition. The main result for variance-based sensitivity analysis
is the Sobol-Hoeffding decomposition (Hoeffding, 1948; Efron and Stein, 1981; Sobol, 1993). It
states that there exists a unique expansion of f of the form

f(X) = f0 +
d∑

i=1

fi(Xi) +
∑

1≤i<j≤d

fi,j(Xi, Xj) + · · ·+ f1,...,d(X1, . . . , Xd)

41
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such that E[fI(XI)|XJ ] = 0 for all I ⊆ {1, . . . , d} and all J ⊊ I. Furthermore:

f0 = E[f(X)]

fi(Xi) = E[f(X)|Xi]− f0
fI(XI) = E[f(X)|XI ]−

∑
J⊊I

fJ(XJ) (recursion formula)

=
∑
J⊆I

(−1)|I|−|J |E[f(X)|XJ ] (inclusion-exclusion formula)

The terms depending on only one variable, fi(Xi), are called main effects. Those depending on
two variables, fi,j(Xi, Xj), are called second-order interactions. More generally those depending
on k variables fI(XI) where Card(I) = k are the interactions of order k.
We refer to Exercise 6.1 for a proof in 2D, and to Efron and Stein (1981) for the general case.
An elegant other proof is given in Kuo et al. (2010), for a larger class of decompositions, obtained
with commuting projections P1, . . . , Pd. Here the projections are orthogonal and given by:

Pj(f)(x) =

ˆ
f(x)dµj(xj) = E[f(X)|X−j = x−j]

The form of the decomposition is then simply obtained by expansion:

Id = (P1 + (Id − P1)) . . . (Pd + (Id − Pd))

=
∑

I⊆{1,...,d}

∏
j /∈I

Pj

∏
k∈I

(I − Pk)︸ ︷︷ ︸
ΠI

and we have fI = ΠI(f). The non-overlapping condition is written here Pi(fI) = 0 for all i ∈ I.

Variance decomposition (ANOVA) and Sobol indices. The non-overlapping condition

E[fI(XI)|XJ ] = 0 for all J ⊊ I

avoids one term to be considered as a more complex one. It implies that all the terms fI(XI) are
orthogonal (see Exercise 6.1), leading to the variance decomposition:

D := Var(f(X)) =
∑

I⊆{1,...,d}

Var(fI(XI))

Thus, we can quantify the influence of the variable Xi by the proportion of variance explained by
fi(Xi). This analysis is called ANOVA, for ANalysis Of VAriance. This ratio is called Sobol index:

Si =
Var(fi(Xi))

Var(f(X))
∈ [0, 1]

This definition can be extended to XI . Denoting DI = Var(fI(XI)), we have SI = DI/D. Obi-
ously,

∑
I SI = 1.
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For screening purpose (i.e. detection of inactive variables), one can use the total Sobol index

Dtot
i =

∑
J⊇{i}

DJ , Stot
i =

Dtot
i

D

Indeed if Stot
i = 0 this implies that Var(XI) = 0 if I contains i. Under mild conditions1, this

implies that fI(XI) = 0 if I contains i, thus Xi does not appear at all in the decomposition of
f(X), meaning that Xi is inactive.

6.2 Illustration on an example in hydrology

We consider a simplified numerical model simulating flooding events, presented in (Iooss, 2011).
The model has 8 input random variables, viewed as random variables, assumed independent, whose
probability distributions are given (from a previous analysis):

• X1 = Q, Maximal annual flowrate (m3/s), Gumbel G(1013, 558) truncated on [500, 3000]

• X2 = Ks, Strickler coefficient, Normal N (30, 82) truncated on [15,+∞[

• X3 = Zv, River downstream level (m), Triangular T (49, 51)

• X4 = Zm, River upstream level (m), Triangular T (54, 56)

• X5 = Hd, Dyke height (m), Uniform U [7, 9]

• X6 = Cb, Bank level (m), Triangular T (55, 56)

• X7 = L, River stretch (m), Triangular T (4990, 5010)

• X8 = B, River width (m), Triangular T (295, 305)

Figure 6.1: A simplified model of a river (Iooss, 2011).

1For instance if f is continuous on ∆ = [0, 1]d and for all i, the support of µi contains [0, 1]
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We consider two variables of interest. First, the maximal annual overflow S (in meters), obtained
from simplified hydro-dynamical equations of Saint-Venant:

S =

 Q

BKs

√
Zm−Zv

L

0.6

+ Zv −Hd − Cb . (6.1)

Secondly, the cost (in million euros) of the damage on the dyke Y , depending on S, written as:

C = 1S>0 +
[
0.2 + 0.8

(
1− exp− 1000

S4

)]
1S≤0 +

1

20
(Hd1Hd>8 + 81Hd≤8) , (6.2)

where 1A(x) is the indicator function which is equal to 1 for x ∈ A and 0 otherwise.

The results of a global sensitivity analysis for the cost function C are presented in Figure 6.3 and
Figure 6.2, either with an unlimited budget (N = 10 000) or with few runs (n = 80), using a
GP metamodel. Notice that for more complicate hydrological models, the budget will be limited
and the construction of a metamodel will be necessary. The built the GP model, the design of
experiments was obtained from a Sobol sequence on [0, 1]8 on which a quantile transformation
was applied coordinatewise. We see that, the metamodel gives a good approximation of the main
effects, recovers the most influential variables and assesses their influence on the damage cost.
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Figure 6.2: Estimation of the main effects of the Cost function. Solid blue lines: with the numerical
model and a large budget of N = 10 000 runs. Dashed green lines: with the mean of a GP
metamodel built with a small budget of n = 80 runs.
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Figure 6.3: Estimated Sobol indices and total Sobol indices for the Cost function.
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6.3 Exercises

In the following, we assume that X1, . . . , Xd are independent random variables with probability
measures ν1, . . . , νd. We denote: X = (X1, . . . , Xd), ν = ν1 ⊗ · · · ⊗ νd the probability measure of
X and ∆ = ∆1 × · · · ×∆d, the integration domain.

Exercise 6.1 (ANOVA decomposition in dimension 2) Here d = 2. Let f be in L2(ν). We
want to prove that there exists a unique decomposition

f(X1, X2) = f0 + f1(X1) + f2(X2) + f1,2(X1, X2)

such that E(fI(XI)|XJ) = 0 for all J ⊊ I, i.e. E(fi(Xi)) = E(f1,2(X1, X2)|Xi) = 0 for i = 1, 2.

1. Prove that necessarily, we must have:

• f0 = E(f(X))

• fi(Xi) = E(f(X)|Xi)− f0 (for i = 1, 2)
• f1,2(X1, X2) = E(f(X)|X1, X2)− f1(X1)− f2(X2)− f0

Conversely, check that these terms give the ANOVA decomposition.

2. Prove that the recursion formula for f1,2 can be rewritten as a sum of conditional expectations
with alternate signs:

f1,2(X1, X2) = E(f(X)|X1, X2)− E(f(X)|X1)− E(f(X)|X2) + E(f(X))

3. Prove that all the terms are orthogonal: E[fI(XI)fI′(XI′)] = 0 if I ̸= I ′.

4. Consider f(X1, X2) = X1, and let ν1 be such that X1 is centered. Observe that we have the
two possible decompositions:

f(X1, X2) = 0 +X1 + 0 + 0 = 0 + 0 + 0 +X1

What’s wrong? What is the intuition of the condition “E(fI(XI)|XJ) = 0 for all J ⊊ I”?

Exercise 6.2 (Additive functions - 1st order polynomials & SRCs) Consider an additive
function:

f(x) = β0 + g1(x1) + · · ·+ gd(xd)

where the gi(Xi)’s are centered (with respect to the measure νi) and square-integrable.

1. What should be the ANOVA decomposition of f? Prove it and compute all Sobol indices.

2. Deduce from 1 the ANOVA decomposition of a first order polynomial:

f(x) = β0 + β1x1 + · · ·+ βdxd

and all Sobol indices. The results can be expressed in function of m(1)
i = E(Xi). Deduce

that the Sobol indices of a 1st order polynomial are equal to the squared SRCs used in linear
regression, defined by β2

i Var(Xi)/Var(Y ) where Y is the response of interest.
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Figure 6.4: Main effects of Ishigami function: Theoretical (straight line) and estimated (bold line)

Exercise 6.3 (A 3D test-function) The Ishigami function is defined over ∆ := [−π; π]3 by:

f(x) = sin(x1) + Asin2(x2) +Bx43sin(x1)

with A = 7 and B = 0.1.

1. Compute the ANOVA decomposition and Sobol indices when µ is uniform over ∆ (use a =
1/2, b = π4/5.)

2. (Computer lab) Estimate the main effects by using simulations of the inputs. Plot them on
the same figure and compare with the theoretical ones. Same question with the 2-dimensional
projection over (x1, x3) and the second order interaction f1,3(x1, x3).

Exercise 6.4 (Polynomial chaos) Polynomial chaos is defined as a tensor basis of orthonormal
polynomials. It is very famous in sensitivity analysis since, once the function of interest has been
decomposed on that basis, the Sobol indices are directly obtained as sums of squared coefficients.
Now let us go into details.

Let f be in L2(ν) with ν = ⊗d
i=1νi. For each probability distribution νi (i = 1, . . . , d), denote:

Pi,0(xi) = 1, Pi,1(xi), . . . Pi,ℓ(xi), . . .

a set of orthonormal polynomials in L2(νi) (of degree 0, 1, 2, . . . , ℓ, . . . ). Then the polynomial chaos
indexed by the multi-index ℓ = (ℓ1, . . . , ℓd) is the tensor:

Pℓ(x) =
d∏

i=1

Pi,ℓi(xi).

We denote by I = Nd the set of all multi-indices.

1. For two multi-indices ℓ, ℓ′, compute E(Pℓ(X)Pℓ′(X)). Deduce that the Pℓ’s are orthonormal
in L2(ν). We admit that they form a Hilbert basis of L2(ν).
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2. Deduce that
f(x) =

∑
ℓ∈I

cℓPℓ(x)

with cℓ = ⟨f, Pℓ⟩. Express the total variance D in function of the cℓ.

3. Compute E(Pℓ(X)|X1).

4. Deduce that the first main effect of f is obtained by choosing the tensors that involve only
X1, defined by the subset I1 = {ℓ ∈ I s.t. ℓ1 ≥ 1, ℓ2 = · · · = ℓd = 0}. Show that the Sobol
index S1 is simply equal to the sum of squared coefficients of these terms: S1 =

∑
ℓ∈I1 c

2
ℓ .

5. Similarly, compute E(Pℓ(X)|X−1) = E(Pℓ(X)|X2, . . . , Xd).
Show that the first total effect of f is obtained by choosing the tensors that involve at least
X1, defined by I tot

1 = {ℓ ∈ I s.t. ℓ1 ≥ 1}. Show that Stot
1 =

∑
ℓ∈Itot

1
c2ℓ .

Exercise 6.5 (Numerical computation of Sobol indices by pick-freeze formulas.) Prove
that the Sobol index of X1 is given by:

S1 = Cov(f(X1, X−1), f(X1, Z−1)),

where Z−1 is an independent copy of X−1 (same distribution and independent of the Xi’s). Hint:
Conditionally on X1, what can you say of f(X1, X−1) and f(X1, Z−1)? Deduce that:

S1 =

ˆ
∆×∆−1

f(x1, x2, . . . , xd)f(x1, z2, . . . , zd)dν(x)dν−1(z−1)− (µ0)
2

where µ0 =
´
∆
f(x)dx is the overall mean. Explain how to compute numerically S1. Justify the

word “pick-and-freeze”.
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Reminder on Gaussian vectors

Definition. X := (X1, . . . , Xd)
⊤ is a Gaussian vector iff it is the affine transformation of inde-

pendent standard Normal random variables: there exists a vector µ ∈ Rd, a d×m matrix A and
a vector ε = (ε1, . . . , εm)

⊤ where ε1, . . . , εm are independent N (0, 1) random variables, such that

X = µ+ Aε

The mean ofX is equal to µ, and its covariance matrix is Cov(X) := E
[
(X − µ)(X − µ)⊤

]
= AA⊤.

If Γ := Cov(X) is invertible, X is called non degenerated. In all the cases, we denote X ∼ N (µ,Γ).

Density function of the multivariate normal distribution. If X ∼ N (µ,Γ) is a Gaussian
vector in Rd with Γ invertible, then X admits the density function

fX(x) =
1

(2π)d/2|Γ|1/2
exp

(
−1

2
(x− µ)⊤Γ−1(x− µ)

)
where |Γ| = det(Γ). This comes directly from the definition, using the theorem of change of
variables. The level sets of the density function (the sets of x ∈ Rd such that fX(x) = y, for a
given y) are ellipsoids centered at µ, whose axis are given by the eigenvectors of Γ.

The linear combination property. X := (X1, . . . , Xd)
⊤ is a Gaussian vector iff all linear

combination of its components follow a (one-dimensional) Normal distribution:

∀t1, . . . , td ∈ R, t1X1 + · · ·+ tdXd follows a Normal distribution

This is a practical way to show that X is a Gaussian vector.
Warning. It is necessary but not sufficient that X1, . . . , Xd are normally distributed.

Stability by linear mapping. A linear mapping of a Gaussian vector is a Gaussian vector.
More precisely, if X ∼ N (µ,Γ) is Gaussian vector on Rd, and L : Rd → Rd′ is a d × d′ matrix,
then LX is a Gaussian vector on Rd′ with LX ∼ N (Lµ,LΓL⊤).

Simulation from a multivariate normal distribution. Consider a multivariate normal dis-
tribution N (µ,Γ) on Rd and let L be a square matrix of size d such that LL⊤ = Γ. An algorithm
to obtain a realization from N (µ,Γ) is:
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1. Draw ε1, . . . , εd independently from N (0, 1)

2. Compute X = µ+ Lε

Notice that Γ may be non invertible. In practice, L can be chosen as:

• the square root of Γ, i.e. the unique symmetric matrix R such that R2 = Γ, obtained from
the eigendecomposition of Γ = Pdiag(λ1, . . . , λd)P⊤ as R = Pdiag(λ1/21 , . . . , λ

1/2
d )P⊤ (where

P is an orthogonal matrix: PP⊤ = P⊤P = Id)

• if Γ is invertible, we can use the Cholesky decomposition of Γ: then, L is the unique lower
triangular matrix such that LL⊤ = Γ. It may happen that Γ is numerically non invertible
(very small eigenvalues). Then one may inflate the diagonal by a small positive value τ 2 > 0
and consider Γ + τ 2Id instead of Γ.

Non-correlation and independence. In general, independence only implies non-correlation.
For a Gaussian vector, non-correlation is equivalent to independence: if X = (X1, . . . , Xd) is a
Gaussian vector, then Xi and Xj are independent if and only if Cov(Xi, Xj) = 0 (for all i, j).
This is because the probability distribution of X only depends on the mean and the covariances
of its components.

Linear and non-linear regression. Let Y,X1, . . . , Xd be square integrable random variables,
and X = (X1, . . . , Xd)

⊤. Define:

• E(Y |X1, . . . , Xd), the non-linear regression of Y on X1, . . . Xd, as the best approximation
of Y by functions of X1, . . . , Xd in the L2 sense. It is the orthogonal projection of Y onto
L2(X1, . . . , Xd), the Hilbert space of square integrable random variables: E(Y |X1, . . . , Xd) =
h(X) where h(X) is such that E([Y − h(X)]2) is minimal.

• EL(Y |X1, . . . , Xd), the linear regression of Y on X1, . . . Xd, as the best approximation of Y
by linear combinations of 1, X1, . . . , Xd in the L2 sense. It is the orthogonal projection of
Y onto the vector space spanned by 1, X1, . . . , Xd: EL(Y |X1, . . . , Xd) = β0 + β⊤X where
β0 ∈ R and β ∈ Rd are such that E([Y − (β0 + β⊤X)]2) is minimal.

In general, the two notions do not coincide: the non-linear regression is not an affine function. But
it is true for Gaussian vectors:

if (Y,X1, . . . , Xd) is a Gaussian vector, then E(Y |X1, . . . , Xd) = EL(Y |X1, . . . , Xd).

Conditioning of Gaussian vectors. Following the last proposition, we have the following more
precise result. Let U = (V,W ) ∼ N (µ,Γ) be a Gaussian vector on Rd, where V,W are subvectors
of dimension dV , dW respectively. Write µ = (µV , µW )⊤ with µV = E(V ), µW = E(W ) and

Γ =

[
ΓV ΓV,W

ΓW,V ΓW

]
(7.1)



51

−2 0 2 4

0
2

4
6

8

x1

x 2

Figure 7.1: Illustration of the conditioning of Gaussian vectors on a simulated sample.

where the diagonal blocks are covariance matrices of subvectors (e.g. ΓV = Cov(V )), and off-
diagonal blocks are cross-covariance matrices (e.g. ΓV,W = Cov(V,W ) := E[(V −µV )(W −µW )⊤]).
Then V |W = w is a Gaussian vector on RdW with mean and covariance matrix given by

E(V |W = w) = µV + ΓV,WΓ−1
W (w − µW ) (7.2)

Cov(V |W = w) = ΓV − ΓV,WΓ−1
W ΓW,V (7.3)

We note two important points:

• E(V |W = w) is affine with respect to w (it coincides with EL(V |W = w)).

• Cov(V |W = w) does not depend on w.

Precision matrix and conditional independence. Let X ∼ N (µ,Γ) be a Gaussian vector
on Rd. Define the precision matrix as the inverse of the covariance matrix. Then the zeros in
off-diagonal parts of the precision matrix correspond to conditional independence:

(Γ−1)i,j = 0⇔ Xi and Xj are independent conditional on {Xk, k /∈ {i, j}}

This is connected with the formula of the inverse of a block diagonal matrix, which has the form

Γ−1 =

[
S−1 ∗
∗ ∗

]
where S is the Schur complement of ΓY in Γ, equal precisely to Cov(Y |Z = z), using the notations
of Equation (7.1). Without loss of generality, we can assume that i = 1, j = 2. The result is then
obtained by choosing Y = (X1, X2)

⊤ and Z the vector containing the other components.
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