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There is an ongoing debate in the scientific community regarding the nature and role of the 

mental representations involved in solving arithmetic word problems. In this study, we took 

a closer look at the interplay between mental representations, drawing production, and 

strategy choice. 

We used dual-strategy isomorphic word problems sharing the same mathematical 

structure, but differing in the entities they mentioned in their problem statement. Due to the 

non-mathematical knowledge attached to these entities, some problems were believed to 

lead to a specific (cardinal) encoding compatible with one solving strategy, whereas other 

problems were thought to foster a different (ordinal) encoding compatible with the other 

solving strategy. 

We asked 59 children and 52 adults to solve 12 of those arithmetic word problems 

and to make a diagram of each problem. We hypothesized that the diagrams of both groups 

would display prototypical features indicating either a cardinal representation or an ordinal 

representation, depending on the entities mentioned in the problem statement. Joint analysis 

of the drawing task and the problem solving task showed that the cardinal and ordinal 

features of the diagrams are linked with the hypothesized semantic properties of the 

problems and, crucially, with the choice of one solving strategy over another. We showed that 

regardless of their experience, participants’ strategy use depends on their problem 

representation, which is influenced by the non-mathematical information in the problem 

statement, as revealed in their diagrams. We discuss the relevance of drawing tasks for 

investigating mental representations and fostering mathematical development in school. 

Context effects · Drawing · Mathematical cognition · Mental models · Problem solving 
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Word problem solving is a central component of mathematics education (Verschaffel et al., 

2020). Calculating how many eggs are needed to cook an omelet or how long it takes for a 

bathtub to fill up are typical exercises designed to help children learn how to use abstract 

mathematical notions in concrete, real-life situations. But how exactly does one proceed to 

translate a series of words and sentences describing a specific situation into an algorithmic 

procedure leading to the solution? A growing line of research suggests that problems are 

encoded into a mental representation including both mathematical and non-mathematical 

information, which is then translated into a solving algorithm (Gros et al., 2020b). Thus, non-

mathematical information about the situation described in a problem statement would 

influence its mental representation, and learners’ ability to find an appropriate solving 

strategy would depend upon its semantic content (Gros et al., 2019).  

This prediction has led to a new way of investigating a foundational distinction in 

mathematics: the difference between the ordinal property of numbers (their rank in an 

ordered list) and their cardinal property (the number of elements in a set). More specifically, 

it has been shown that the mention of specific daily-life entities within a problem statement 

could be enough to lead learners to construct either an ordinal mental representation of the 

numerical situation, or a cardinal representation instead (Gamo et al., 2010; Gros et al., 2021). 

For instance, mentioning elevators moving between floors would make it more likely both 

for lay adults and mathematicians to construct an ordinal encoding underlining the order 

between the different floors. On the other hand, mentioning a collection of marbles being 

counted would lead instead to a cardinal encoding of the situation, focusing for instance on 

color sets (Gros et al., 2021). 

However, these representational differences have only been investigated through 

indirect measures, such as strategy use (Gros et al., 2021), response times (Gros et al., 2019), 

or saccadic eye movements (Gros et al., 2020a). Considering the ongoing debate regarding 

the nature of the mental representations elicited by arithmetic word problem solving 

(Bassok, 2001; Daroczy et al., 2015; Gros et al., 2020b; Gvozdic & Sander, 2020; Orrantia & 

Múñez, 2013; Thevenot, 2010; Thevenot & Barrouillet, 2015; Verschaffel et al., 2020) it seems 

crucial to gather additional evidence, probing more directly into the structure of individuals’ 
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mental representations of arithmetic word problems. In this study, we propose to investigate 

the use of drawing production as a window into the mental representations of arithmetic 

problems and to analyze their relationship with strategy choice.   

The idea that different representations are abstracted depending on the semantic content of 

a problem statement is compelling in that it provides an account of some key performance 

differences reported in the literature (e.g., Coquin-Viennot & Moreau, 2003; De Corte et al., 

1985; Gamo et al., 2010; Hudson, 1983; Martin & Bassok, 2005; Thevenot & Oakhill, 2005, 

see Gros et al., 2020b for a discussion of this argument). However, evaluating the precise 

structure of these representations necessarily requires taking an indirect route, since direct 

investigation of mental constructs is seldom possible. Over the years, cognitive scientists 

have employed a variety of techniques to study individuals' mental representations (Pearson 

& Kosslyn, 2015). Classical examples of indirect measures include reaction times (e.g., 

Shepard & Metzler, 1971), verbal reports (e.g., Ericsson & Simon, 1980), self-assessment 

questionnaires (e.g., Weinman et al., 1996), metaphors (e.g., Lakoff & Núñez, 2000), gestures 

(e.g., Fuhrman & Boroditsky, 2010), written statements (e.g., Pinnegar et al., 2011), eye 

movements (Fourtassi et al., 2017), fMRI activation patterns (Lewis-Peacock et al., 2015), 

event-related potentials (Bagnoud et al., 2018), or typicality ratings (Hebart et al., 2021), to 

name only a few. However, it can be argued that none of these metrics have the high-

dimensional complexity and richness of drawings when it comes to investigating one’s 

mental representations (Bainbridge, 2022). In this paper, we intend to show that drawing 

analysis can help us gain a deeper understanding of some crucial differences in the 

representation of arithmetic word problems. 

Drawing tasks have been regularly used in the history of psychology, notably to 

perform clinical diagnoses (Agrell & Dehlin, 1998; Makuuchi et al., 2003; Wechsler, 2009; 

Shulman, 2000; see Gainotti & Trojano, 2018, for review), or to study the affective processes 

of children and young adults (Burgess & Hartman, 1993; Silver, 2009). The visual complexity 

of diagrams has also made it possible to investigate object and scene representations through 

drawing tasks (e.g., Chamberlain & Wagemans, 2016; Freeman & Janikoun, 1972; Kosslyn et 

al., 1977; see Bainbridge et al., 2019 for a review). While some authors have raised questions 
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regarding the difficult interpretation of complex and subjective drawings in previous studies 

(Thomas & Jolley, 1998), recent years have seen a resurgence of interest in drawing-based 

research, with an increasing number of studies being conducted and a renewed recognition 

of its significance among the research community (Bainbridge et al., 2019; Bainbridge, 2022; 

Long et al., 2018).  

Overall, drawing production has shown to be a promising path to investigate the 

structure of one’s representation without resorting to explicit verbalization, especially 

among children (Bainbridge, 2022). A well-known example comes from Vosniadou and 

Brewer’s (1992) seminal study on conceptual change, in which they elicited drawings from 

3rd and 5th grade children to study the development of their mental representation of the 

earth. By asking them “can you draw a picture of the earth?” and a few follow-up questions 

such as “now draw the sky” or “show me where the moon and stars go”, they were able to 

differentiate between, for example, children adopting a “flattened sphere” earth model, 

children adopting a hollow sphere model, and children adopting a rectangular earth model. 

Several studies have since resorted to drawing tasks to study conceptual change among 

children and adults (e.g., Hobson et al., 2010; Mikkilä-Erdmann, 2012; Trundle et al., 2007; 

Ucar et al., 2011). 

When it comes to mathematics, the use of drawings has been a longstanding informal 

practice for teachers to gain insight into children’s conceptual development (Crespo & 

Kyriakides, 2007), yet a comparatively limited number of studies have been conducted using 

systematic drawing analysis (Worthington & Carruthers, 2003). Previous works have notably 

used diagram production tasks to look at the understanding of geometrical notions (e.g., De 

Bock et al., 1998, 2003; Thom & McGarvey, 2015), as well as fraction representations (e.g., 

Tunç-Pekkan, 2015; Westenskow et al., 2014; Yoshida & Shinmachi, 2002). In the field of 

mathematical problem solving, Cummins (1991) conducted one of the first studies using 

drawing tasks to investigate children’s interpretation of arithmetic word problems. In two 

experiments, she probed first-grade children’s interpretation of a series of additive word 

problems involving marbles, based on Riley et al.’s (1983) problem typology. She asked the 

participants to solve the problems and then to draw a representation of the marbles in each 

problem. Her results suggested that drawing accuracy was significantly correlated to solving 

performance. Other works have found converging evidence that drawing accuracy may 
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predict solving performance in mathematics (De Bock et al., 1998; Uesaka et al., 2010; Van 

Essen & Hamaker, 1990). 

Since this seminal work, a number of studies have resorted to drawing tasks to study 

the mental representation of mathematical problems (e.g., Bakar et al., 2016; Barrios & 

Martínez, 2014; Csíkos, Szitányi, & Kelemen, 2012; Edens & Potter, 2007, 2008; Reeve, 1996; 

Rellensmann et al., 2017). For instance, Reeve (1996) used a diagram production task to 

investigate children’s conceptual understanding of fractions. He analyzed to what extent the 

drawings of Grade 7 and 8 students conformed with relevant mathematical principles. He 

found that drawing adherence to the corresponding mathematical rules was predictive of 

their problem solving performance. In a similar perspective, Edens and Potter (2008) 

instructed 4th and 5th graders to solve an arithmetic word problem and to make a drawing to 

help them find the solution. Using a custom scale, they graded the extent to which the 

students’ drawings were schematic or pictorial. They showed that the construction of 

schematic drawings was positively correlated with solving performance, and that most 

students (79%) rendered schematic representations. In a similar perspective, other studies 

have found evidence that the degree of abstraction of an individual’s drawing is correlated 

with their problem solving performance (Hegarty & Kozhevnikov, 1999; Van Garderen and 

Montague, 2003; Rellensmann et al., 2017). It should be noted that while these previous 

studies have been able to identify a link between general drawing qualities and solvers’ 

performance in mathematical word problem solving, there appears to be a gap in the 

literature regarding the relationship between the features of a drawing, the content of a 

mental representation, and the choice of a solving strategy. The current study intends to 

tackle this question by asking participants to solve and draw problems admitting several 

distinct solving strategies.  

Indeed, additionally to drawing analysis, another promising path to study learners’ 

representation of arithmetic word problems comes from the study of strategy choice in 

problems admitting multiple solving strategies. For instance, Thevenot and Oakhill (2005, 

2006) worked on a multiple-step problem solving task in which the cognitive load was 

manipulated through the range of the problem’s values (using either 2-digit or 3-digit 
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numbers). They showed that depending on the magnitude of the values, participants used 

different solving algorithms, thus suggesting that a specific representational change had 

occurred on high-value problems. Similarly, when studying arithmetic word problems, the 

selection by the participants of one solving strategy over another can yield valuable insights 

into the constructed mental representation (De Corte et al., 1985).  

In fact, according to the SECO (Semantic Congruence) model (Gros et al., 2020b), 

strategy choice is directly dependent upon the structure of the mental representations 

constructed while attempting to solve a problem. SECO predicts that the encoding of 

arithmetic word problems is significantly influenced by the problem’s world semantics (the 

non-mathematical, daily-life knowledge evoked by the entities described in the problem 

statement). This leads individuals to construct a mental representation in working memory, 

the features of which depend not only on the mathematical information in the problem, but 

also on the non-mathematical information attached to the problem statement. SECO predicts 

that this representation dictates which solving strategy can be used by the solver. In other 

words, the non-mathematical information in the problem statement may constrain the 

problem representation and lead to one strategy being used over another. Thus, by using 

word problems admitting several distinct solving strategies, it should be possible to explore 

the structure of the underlying mental representation and to pinpoint the semantic 

constraints influencing it (Gros et al., 2020b). 

A straightforward example of this idea comes from Coquin-Viennot and Moreau’s 

(2003) study on multiplicative problems. They created word problems admitting two solving 

strategies: either a factorization algorithm (e.g., “14 × (5 + 7)”) or a more costly development 

algorithm (e.g., “14 × 5 + 14 × 7”). When the problem statement mentioned different sets of 

flowers being counted, participants tended to use the development procedure. However, 

when the problem statement also mentioned that the flowers were put in sets to form 

bouquets, a higher number of participants were able to use the factorization strategy instead. 

More recent studies have also used dual-strategy distributive problems to assess students’ 

conceptual knowledge (Scheibling-Sève et al., 2020, 2022). In their study, Scheibling-Sève et 

al. (2020) recorded which strategy 4th and 5th graders used to solve isomorphic word 

problems. Their strategy-choice analysis made it possible to explore the children’s 

conceptual knowledge about factorization, as well as the influence of semantic context in the 
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encoding of distributive word problems. Similarly, Scheibling-Sève et al. (2022) evaluated 

the efficacy of a school intervention by looking at the range of solving strategies that children 

were able to use after the intervention. This focus on solving strategies was also at the core 

of Gvozdic et al.’s (2020) study, who asked 1st graders to write down the operation they used 

to solve 1-step additive word problems. By analyzing whether children used direct 

subtraction or indirect addition, they were able to distinguish which problems were solved 

using mental simulation, and which were solved using conceptual knowledge about 

mathematical operations instead. Overall, multiple-strategy word problems thus appear as a 

promising experimental paradigm to use, together with drawing analysis, to probe the 

mental representations of adults and children alike.  

The specific representational differences that we intend to study within this paper relate to 

a fundamental dimension of mathematics: the distinction between ordinality and cardinality. 

The concepts of ordinality and cardinality refer to two ontological properties of numbers: 

ordinality pertains to their position in an ordered sequence (their rank in an ordered list), 

while cardinality relates to their count value (the number of elements within a set). This 

distinction is foundational in mathematics (Dantzig, 1945; Frege, 1980; Russell, 1919), 

particularly in the field of set theory (Dauben, 1990; Suppes, 1972), and research in cognitive 

psychology has demonstrated that it has implications beyond the realm of formal 

mathematics. 

From a developmental perspective, children’s understanding of cardinality (i.e., 

knowing that counting 1-2-3-4 means that there are 4 entities) has been investigated in 

several experimental studies suggesting that children learn to grasp the cardinal meaning of 

numbers over the first few years of life (Bermejo, 1996; Le Corre & Carey, 2007; Sarnecka & 

Lee, 2009; Wynn, 1992). This understanding is said to be a crucial step in the development 

of their mathematical cognition (Geary, 2018; Geary et al., 2018; Shusterman et al., 2016). On 

the other hand, research on the understanding of the ordinal meaning of numbers, seems to 

point towards a later development of the ability to use ordinal labels (i.e., “first”, “second”, 

“third”, and so on) around the 4th and 5th year (Fischer & Beckey, 1990; Hund et al., 2021; 

Miller, 2000, 2015). Despite receiving less attention than research on cardinality (Goffin & 
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Ansari, 2016), research on ordinality has also shown that the understanding of ordinal 

position was predictive of 5- and 6-year-olds’ arithmetic performance (Cheung & Lourenco, 

2019). 

The comparative development of these two sides of numerosity has been under 

scrutiny in recent years, with studies suggesting that the cardinal principle is acquired before 

children are able to use ordinal labels (Baccaglini-Frank et al., 2020; Colomé & Noël, 2012; 

Meyer et al., 2016; Wasner et al., 2015). Overall, these studies highlight that cardinality and 

ordinality are two crucial notions with distinct developmental trajectories, and that 

understanding how to use the cardinal and ordinal meanings of numbers is an important part 

of mathematical development. 

 However, the influence played by the distinction between cardinality and ordinality 

among older children and adults engaged in mathematical reasoning of a higher level, has 

received very little attention in the field in the past decades (Verschaffel et al., 1999; Gamo et 

al., 2010). Yet, a recent study suggested that adults’ mental representation of numerical 

situations typically fall into one of two categories, on a cardinality-ordinality continuum 

(Gros et al., 2021). We propose to further investigate this hypothesis by analyzing both 

drawing productions and strategy choice among children and adults tasked with solving 

arithmetic word problems. 

Building upon early works on the solving of ordinal problems (Verschaffel et al., 1999) as 

well as on the difference between age problems and collection problems (Gamo et al., 2010), 

it was proposed that problems sharing the same mathematical structure could lead either to 

a cardinal representation or to an ordinal representation, depending on the type of entities 

being counted (Gros et al. 2021). Due to the non-mathematical knowledge associated with 

specific entities, the simple mention of daily-life quantities could be enough to tip the scale 

in favor of one of two possible representations of the same situation (Gros et al., 2020b). For 

instance, consider the following collection problem: 

Paul has 5 red marbles. 

He also has blue marbles. 

In total, Paul has 11 marbles. 
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Jolene has as many blue marbles as Paul, and some green marbles. 

She has 2 green marbles less than Paul has red marbles. 

How many marbles does Jolene have? 

The hypothesis for this problem was that a problem statement involving counting collections 

of marbles, which have no inherent order, would highlight the cardinal nature of the numbers 

used (Gros et al., 2021). Since there is no need to arrange the marbles in a specific order, 

participants should tend to view the marbles of different colors as separate, distinct sets that 

are grouped together to be added (see Fig. 1 for a schematic description of their hypothesized 

mental representation). Thus, when solving the problem, participants should attempt to 

determine the total number of marbles Jolene has by calculating the two subsets making up 

her total marble counts. They should count the number of blue marbles she has and add it to 

the number of green marbles she has. This is done by using a three-step strategy: 11 − 5 = 6; 

5 − 2 = 3; 6 + 3 = 9 (Gros et al., 2021).  

 

 

Fig 1: Example of a hypothesized cardinal representation of the marble problem 

On the other hand, consider the following duration problem:  

Sofia traveled for 5 hours. 

Her trip started during the day. 

Sofia arrived at 11 h. 

Fred left at the same time as Sofia. 
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Fred's trip lasted 2 hours less than Sofia's. 

What time was it when Fred arrived? 

It was hypothesized that this travel problem, which has the same mathematical structure as 

the marble problem but involves duration values instead of marble counts, would lead 

participants to perceive the described situation as ordered along an axis: a timeline of events. 

This would be due to solvers' knowledge about durations causing them to perceive the 

different travel times in the problem not as parts and wholes, but as states and transitions 

along an ordered axis (see Fig. 2 for a schematic description of their hypothesized 

representation). When considering the problem from this perspective, it becomes easier to 

understand that there is no need to calculate the duration of Fred’s travel nor the hour of his 

departure. Instead, since Fred and Sofia left at the same time and Fred’s travel was 2 hours 

shorter than Sofia’s, it follows that Fred arrived 2 hours before Sofia. This ordinal 

representation thus makes it possible for participants to identify a shorter solving strategy: 

11 − 2 = 9, which is seldom used by participants when solving the marble problem (Gros et 

al., 2021). 

 

Fig 2: Example of a hypothesized ordinal representation of the travel problem 

 

Crucially, both the marble problem and the travel problem shared the same 

mathematical structure (see Fig. 3) and thus both problems could have been solved 

indifferently with both solving strategies. However, data collected among adults showed that 

participants preferentially use the 3-step strategy on cardinal problems, and the 1-step 

strategy on ordinal problems, even when explicitly asked to find the solution involving the 

shortest number of steps (Gros et al., 2021).  Thus, it was proposed that weight problems, 
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price problems, and collection problems would all emphasize the cardinal nature of numbers 

and lead to a cardinal encoding, due to these quantities usually describing unordered entities. 

On the other hand, duration problems, height problems, and number of floors problems 

(problems with an elevator going from one floor to another) would all highlight the ordinal 

property of numbers instead, due to daily-life knowledge underlining the intrinsic order of 

the entities they mention (see Gros et al., 2021, for a longer discussion regarding this choice). 

From this point onward, we will call “cardinal problems” the problems whose statement 

mentions collections, weights, or prices, and “ordinal problems” the problems whose 

statement mentions durations, heights, or elevators. 

 

 

Fig 3: Deep structure shared by both the marble problem and the duration problem 

 

Interestingly, similar results have also been observed with expert mathematicians 

who experienced more difficulty using the 1-step strategy on cardinal problems than on 

ordinal problems, even when it was the only available strategy (Gros et al., 2019). This finding 

illustrates the pervasiveness of encoding effects on one’s ability to use a specific solving 

strategy, and the high cognitive cost of switching from one mental representation to another. 

This was interpreted as evidence for the influence of non-mathematical information on the 

semantic encoding of arithmetic word problems, in line with the predictions of the SECO 

model (Gros et al., 2020b). In the present study, we propose to bring new, converging 

evidence regarding the perception of cardinality and ordinality in word problem solving, 
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while at the same time answering a key question: how do drawings relate to mental 

representations and solving strategies in the arithmetic reasoning of children and adults? 

The current study intends to build upon and contribute to several lines of research. First, we 

aim to leverage the literature on drawing analysis to propose a systematic analysis of 

cardinality and ordinality in the mental representations of arithmetic problems. Second, we 

mean to go one step further than Gros et al. (2021)’s strategy analysis by comparing children 

and adults’ strategy choices on the same task, using multiple-strategy problems involving 

cardinal and ordinal quantities. Third, and most importantly, we propose to investigate how 

the properties of the drawings relate to the hypothesized problem representations and 

predict participants’ solving strategies. By crossing information gathered from strategy 

choice with insights extracted from drawing production, we expect to get a deeper 

understanding of the semantic determinants of children and adults’ mental representations.  

In this perspective, we elected to include both lay adults and 5th grade students in our 

sample, since both populations possess a certain degree of familiarity with arithmetic word 

problem solving and additive reasoning. Despite the clear developmental difference between 

5th graders and adults, the problems presented in Gros et al. (2021) are within the realm of 

difficulty for 11-year-olds (Gamo et al., 2010), yet remain challenging to adults (Gros et al., 

2019). We asked both groups to consider a series of 12 problems and complete two tasks: 

solve the problems using as few operations as possible, and make a drawing of the problems 

that could help someone else understand and solve it. We used the exact same materials and 

instructions with children and adults to make it possible to compare both groups’ 

productions and strategies. 

 The rationale was that cardinal problems would elicit a cardinal encoding that would 

result in drawings presenting features prototypical of a cardinal representation, while also 

leading participants to preferentially use the 3-step solving strategy. On the other hand, we 

expected that ordinal problems would lead to the production of drawings with features 

highlighting the ordinality of the numerical values, as well as to a higher rate of 1-step solving 

strategies. Finally, we also made the hypothesis that independently from the mention of 
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cardinal or ordinal quantities in the problem statements, the ordinality rating of the drawings 

would significantly predict the likelihood of participants using the 1-step strategy.  

Participants. Using the BUCSS R package (v1.2.1; Anderson & Kelley, 2018), a minimum 

sample size of 45 was determined based on results from a previous study using similar 

materials (Gros et al., 2021 – Experiment 4), after correction for uncertainty and publication 

bias following Anderson, Kelley, and Maxwell’s recommendations (2017). We used a high 

level of targeted statistical power (0.95) to account for the uncertainty linked to the fact that 

previous studies only analyzed participants’ solving strategies, not their drawings’ structural 

features. Participants were recruited from two populations: a group of 59 children in 5th 

grade, recruited among several schools from the Paris region (27 girls, M = 11.00 years, SD = 

0.36), and a group of 52 adults from the Paris region (36 women, M = 26.86 years, SD = 9.72). 

All participants spoke French fluently. None had previously participated in any similar 

experiment. 

Materials and procedure. Each participant was presented with a set of 12 different problems: 

6 problems using ordinal quantities (“duration”, “height”, and “elevator” problems, see Table 

1) and 6 problems using cardinal quantities (“collection”, “price”, and “weight” problems, see 

Table 2), as defined in Gros et al. (2021). 

 

Table 1  English translation of the cardinal problems used in this study. The numerical values respected the 
following rule: z < 4 < x < y < 15. 

Quantity used Problem statement 

Weight 

A bag of pears weighs x kilograms.  
It is weighed with a whole cheese. 
In total, the weighing scale indicates y kilograms. 
The same cheese is weighed with a milk carton. 
The milk carton weighs z kilograms less than the bag of pears. 
How much does the weighing scale indicate? 
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Weight 

Tom takes a Russian dictionary weighing x kilograms.  
He also takes a Spanish dictionary.  
In total, he is carrying y kilograms of books. 
Lucy takes Tom's Spanish dictionary and a German dictionary. 
The German dictionary weighs z kilograms less than the Russian 
dictionary.  
How many kilograms is Lucy carrying now? 

Price 

In the first meal on the menu, there is a chocolate cake costing x 
euros. 
The meal also includes an omelet with mushrooms. 
In total, the first meal costs y euros. 
In the second meal on the menu, there is the same mushroom 
omelette, and an apple pie. 
The apple pie costs z euros less than chocolate cake. 
How much does the second meal cost? 

Price 

In the stationery shop, Antony wants to buy a x-euro ruler.  
He also wants a notebook. 
In total, that will cost him y euros. 
Julie wants to buy the same notebook as Antony, and an eraser. 
The eraser costs z euros less than the ruler. 
How much will Julie have to pay? 

Collection 

Paul has x red marbles. 
He also has blue marbles. 
In total, Paul has y marbles. 
Jolene has as many blue marbles as Paul, and some green marbles. 
She has z green marbles less than Paul has red marbles. 
How many marbles does Jolene have? 

Collection 

Sarah owns x goldfish. 
Her other pets are all iguanas. 
In total, she owns y pets. 
Bobby is pet-sitting Sarah's iguanas during the holidays, he puts 
them with the turtles he owns. 
Bobby owns z turtles less than Sarah owns goldfish. 
How many pets are there at Bobby's during the holidays? 

 

 

Table 2  English translation of the ordinal problems used in this study. The numerical values respected the 
following rule: z < 4 < x < y < 15. 

Quantity used Problem statement 
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Duration 

The construction of the cathedral took x years. 
Before constructing it, the plans had to be made. 
The construction of the cathedral was completed in year y. 
The construction of the castle started at the same time as the 
construction of the cathedral. 
The construction of the castle took z years less than the 
construction of the cathedral. 
When was the construction of the castle completed?  

Duration 

Sofia traveled for x hours. 
Her trip started during the day. 
Sofia arrived at y. 
Fred left at the same time as Sofia. 
Fred's trip lasted z hours less than Sofia's. 
What time was it when Fred arrived? 

Height 

Slouchy Smurf is x-centimeter tall.  
He climbs on a table.  
Now he reaches y centimeters. 
Grouchy Smurf climbs on the same table as Slouchy Smurf. 
Grouchy Smurf is z centimeters shorter than Slouchy Smurf. 
What height does Grouchy Smurf reach when he climbs on the 
table? 

Height 

Obelix's statue is x-meter tall. 
It is placed on a pedestal. 
Once on the pedestal, it reaches y meters. 
Asterix's statue is placed on the same pedestal as Obelix's. 
Asterix's statue is z meters shorter than Obelix's. 
What height does Asterix's statue reach when placed on the 
pedestal? 

Elevator 

Naomi takes the elevator and goes up x floors. 
She left from the floor where her grandparents live. 
She arrives at the y th floor. 
Her brother Derek also takes the elevator from their grandparents' 
floor. 
He goes up z floors less than Naomi. 
At what floor does Derek arrive? 

Elevator 

Karen takes the elevator and goes up x floors. 
She left from the floor where the gym is. 
She arrives at the y th floor. 
Yohan also takes the elevator from the floor where the gym is.  
He goes up z floors less than Karen. 
At what floor does Yohan arrive? 

 

Each participant was given a 13-page booklet. On the first page, detailed instructions asked 

participants to solve a series of math problems using as few operations as possible. It was 
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explained that an operation was defined by two operands, an operator, and a result (e.g., 2 + 

2 = 4), and that they needed to write down any operation they used, even if they resorted to 

mental calculation. Then, it was indicated that for each problem, they had to make a diagram 

meant to “help someone understand the problem and solve it”. We used this specific 

instruction to maximize the chances of participants’ producing informative diagrams 

depicting the mathematical relations as they understood them. Indeed, previous works have 

shown that “drawing to communicate” stimulates pragmatic inferences that help the drawer 

select the most informative pieces of information to include in the drawings (Fan et al., 2020).  

The next 12 pages of the booklets were dedicated to the 12 problems participants 

were tasked with solving. Each page was divided into 4 sections: first, the problem statement 

was presented, next to it was a "draft" space, providing participants with the freedom to work 

through the problem in their preferred manner. Below, there was a "calculations and result" 

space for recording their problem-solving strategies. Finally, the bottom half of the page was 

reserved for a "diagram" space where participants were invited to create a schematic 

drawing representing the situation described in the problem. The order of problems within 

the booklets was arranged in a pseudorandom sequence, with cardinal and ordinal problems 

alternating on each page. This sequencing was designed to enhance the likelihood of 

participants recognizing the underlying deep structure shared across all the problems. 

Additionally, two versions of the booklets were created, each with an inverse problem order, 

to control for potential primacy effects. 

Drawing scales. Participants’ diagrams were analyzed using two custom scales, designed to 

evaluate to what extent they featured either ordinal or cardinal characteristics. The scales 

were created around the idea that the hypothesized semantic encoding of the problems 

should permeate the participants’ drawings and lead to specific features occurring in 

problems sharing a similar encoding. The scales were created prior to any collection of data, 

based on the ontological properties of cardinal and ordinal representations, as defined in 

Gros et al. (2021). Each scale included 4 criteria. 

The cardinal scale included 4 items that were deemed typical features of a cardinal 

representation of the problems (see Fig. 4). Since cardinality refers to the total number of 

elements within a set, regardless of their order, we expected cardinal representations to 

include some or all of the following prototypical features: (a) presence of identifiable clusters 
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of elements, each expressing a specific value, (b) drawings of sets containing several entities, 

indicative of a group-based representation, (c) inclusion of sets within each other, to account 

for the part/whole relationships highlighted by a cardinal encoding, and (d) explicit 

correspondence between a specific entity and an assigned value. As depicted in Fig. 4, we 

proposed several examples for each of these categories in the scoring sheet, so that the raters 

in charge of scoring the drawings would be able to identify the hypothesized features without 

being informed of our hypotheses.  

 

 

Fig. 4  Cardinal drawing scale provided to the independent raters to score the drawings. 

 

Following the same procedure, the ordinal scale included 4 items involving the most 

relevant features of what we hypothesized to be a prototypically ordinal representation (see 

Fig. 5). Considering the properties of ordinality, we predicted that an ordinal representation 

would include some of the following prototypical features: (a) presence of axes on which to 

place different problem values, (b) presence of graduations quantifying the numerical 

distance between two values on an axis, (c) side by side presentation of different axes 

indicative of value comparisons, and (d) presence of intervals denoting a numerical distance 

between two other values.  
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Fig. 5  Ordinal drawing scale provided to the independent raters to score the drawings. 

 

Importantly, every item in both scales could have been used to describe any of the 

problems in the experiment. For instance, it is entirely possible to make a diagram of the 

travel problem using only the cardinal features described in the cardinal scale, and it is 

equally possible to make a diagram of the marble problem using only the features of the 

ordinal scale. Yet, we made the hypothesis that features in the cardinal scale would 

predominantly appear on problems meant to elicit a cardinal encoding, whereas features in 

the ordinal scale would predominantly appear on the ordinal scale instead.  

Double-blind scoring was performed by two independent raters who were unaware 

of the hypotheses being tested. The two drawing scales were introduced to them, and they 

were given the opportunity to ask questions about their different criteria and examples. Once 

they were confident they understood the meaning of each of the 8 items, they were asked to 

score the entirety of the diagrams produced by the participants in both groups. Thus, both 

rates scored each of the 1332 diagrams on the 8 items. After initial independent scoring, the 

two raters reached perfect agreement on 91.01% of cases. The occasional discrepancies were 

due to slight differences in the interpretation of some of the scales’ criteria. Notably, one rater 

was somehow more liberal in what constituted an interval during the initial coding. Yet, after 

discussion both agreed to a common definition. Another topic of discussion was raised when 
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one rater judged it impossible to have graduations even without an axis, while the other 

considered some diagrams to feature graduations without any drawn axis. They decided to 

settle on the latter perspective. Cohen’s Kappa coefficient for inter-rater reliability was 

calculated to determine consistency among raters based on their initial rating. The result (κ 

= .726, SE = 0.012) expressed substantial agreement between raters, according to Landis and 

Koch’s typology (1977). After discussion between themselves and without the authors, the 

raters managed to decide on common rules for ambiguous cases. They reached 100% 

agreement on their second round of scoring. Based on the raters’ final assessment of which 

criteria were met by each drawing, two scores were calculated: a cardinal drawing score, and 

an ordinal drawing score. The cardinal score (from 0 to 4) indicated how many of the 4 

cardinal criteria were met by the drawings (see Fig. 4). The ordinal score (from 0 to 4) 

indicated how many of the 4 ordinal criteria were met by the drawings (see Fig. 5). 

Strategy choice interpretation. Participants’ solving strategies were extracted from their 

self-report of the operations they had performed. A problem was considered as correctly 

solved when the correct result came with the appropriate calculations. The strategies leading 

to success were categorized either as 1-step strategy or as 3-step strategy. When the written 

operations were correct and the written solution was within +/− 1 of the correct result, this 

was deemed a calculation error and problems were still considered as correctly solved. 

When participants wrote down operations that did not provide the answer to the 

problem, or when they simply provided an erroneous answer, their response was labeled 

“Error”. Because participants were instructed to write down every operation they performed, 

and because numerical values were chosen so that they could not lead to two identical values 

being calculated using two distinct strategies (i.e. x + y ≠ z − y and so on), it was always 

possible to trace back the strategies used by participants as long as they wrote down the 

solution and at least one of the operations performed. If participants forgot to report one of 

the first two operations of the 3-step strategy (i.e., they forgot either “Part 1 − Difference = 

Part 3” or “ Whole 1 − Part 1 = Part 2”) but still reported the result of said operation and used 

it to perform the final operation of the 3-step strategy (i.e. “Part 3 + Part 2 = Whole 2”) then 

the response was labeled as a 3-step strategy. The rare cases in which the solution was given 

with no explanation were considered as incorrect (which occurred in less than 1% of the 

trials).  



Running Head: Drawings, mental representations, and solving strategies                                            21 

Diagram analysis. Both children and adults engaged with the drawing task by producing 

different diagrams displaying varied characteristics. Sample diagrams of cardinal problems 

by children and adults are attached in the supplemental materials (Fig. A). Similarly, 

examples of children and adults’ productions for ordinal problems can be seen in 

supplemental materials (Fig. B). Most diagrams included some schematic elements, as well 

as numerical values and text labels (see diagrams reported in Fig. A and Fig. B). Some 

diagrams were particularly depictive with, for instance, adults drawing each individual turtle 

at Bobby’s house (see 2nd diagram in Fig. A). Others were mostly abstract, with no illustrative 

element other than the schematic representation of the relations between the numerical 

values (see 2nd diagram in Fig. B).  

We analyzed the diagrams produced for each problem by each participant, using the 

4-point cardinal scale and the 4-point ordinal scale. Overall, there was no major surprise in 

the diagrams, and while the rules behind the rating scales had to be further specified by the 

raters to decide on ambiguous drawings, the two rating scales captured a wide variety of 

cases, each item appearing on average in 14.40% of the drawings. The two criteria that were 

most often found in the participants’ diagrams were “presence of one-to-one 

correspondences” (32.58% of the drawings) and “presence of axes” (19.97% of the 

drawings). The two least used items in the scale were “presence of embedded sets” (3.00% 

of the drawings) and “presence of intervals” (6.76% of the drawings). Fig. 6 details the mean 

cardinal and ordinal scores of the drawings depending on the type of quantity used in the 

problems, for each population. For each rating scale, we compared the scores attributed to 

participants’ drawings on cardinal and on ordinal problems.  
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Fig. 6 Children’s and adults’ mean cardinal and ordinal scores depending on the type of 
problems (problems with cardinal quantities versus problems with ordinal entities). 

Vertical bars denote 0.95 confidence intervals. *** p < .001, **  p < .01 Tukey-adjusted least 
squares means. 

 

Ordinal score analysis. Adults’ drawings of ordinal problems had a higher ordinal score on 

average (M = 1.43, SD = 1.20) than their drawings of cardinal problems (M = 0.04, SD = 0.24). 

Similarly, children’s drawings of ordinal problems were also rated higher on the ordinal scale 

on average (M = 0.55, SD = 0.93) than their drawings of cardinal problems (M = 0.07, SD = 

0.39). To evaluate the statistical significance of this difference, we used a linear mixed model 

with the ordinal score as the dependent measure. We included experimental group (children 

vs. adults) and type of problem (cardinal problem vs. ordinal problem) as fixed effects, and 

we added participants and problem statements as random effects to account for the repeated 

measures in the experimental design. As predicted, there was a significant effect of problem 

type on the ordinal score attributed to the drawings (F = 109.86, p < .001; Type III SS ANOVA). 

Pairwise comparisons using Tukey-adjusted LS-means revealed that this difference was 
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significant for children (t(13.4) = 5.19, p < .001) as well as for adults (t(14.4) = 14.64, p < 

.001). Interestingly, there was also a main effect of the group of participants (children vs. 

adults) (F = 24.58, p < .001; Type III SS ANOVA). Indeed, children’s drawings were rated lower 

on average on the ordinal scale (M = 0.31, SD = 0.76), than adults’ drawings (M = 0.73, SD = 

1.11). Finally, there was a significant interaction between the experimental group (children 

vs. adults) and the type of problems (cardinal vs. ordinal) on the ordinal score (F = 153.60, p 

< .001; Type III SS ANOVA). This interaction may be due to the fact that children’s diagrams 

tended to be less complex than adults’, which led to them scoring lower than adults on the 

ordinality score for ordinal problems, but not for cardinal problems, due to a floor effect on 

cardinal problems. 

To better understand the extent to which each of the four criteria associated with the 

ordinal scale accounted for the observed differences between cardinal and ordinal problems, 

we also looked at the role played by each item in the overall score. Fig 7 details how often 

each of the 4 items of the ordinal scale was present in a participant’s drawing. Interestingly, 

the item that was most often found on the drawings of ordinal problems was item (a) 

(presence of axes), which appeared in 58.65% of adults’ drawings of ordinal problems and in 

20.90% of children’s drawings of ordinal problems. Conversely, the least observed item was 

item (d) (presence of intervals) which was only present in 16.67% of adults’ drawings of 

ordinal problems and 5.65% of children’s drawings of the same problems.  
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Fig. 7 Rate of presence in participants’ drawings of each of the ordinal scale’s 4 criteria.  

 

We created generalized mixed models using each criterion as a binary outcome, group and 

type of problem as fixed effects, and participants as well as problem statements as random 

effects to evaluate whether each criterion appeared more frequently on ordinal than on 

cardinal problems. Results confirmed that the nature of the problems (ordinal vs cardinal) 

had a significant effect on the presence of the four ordinal criteria, be it (a) axes (Z = 8.79, p 

< .001), (b) graduations (Z = 4.33, p < .001), (c) compared axes (Z = 5.70, p < .001) or (d) 

intervals (Z = 5.91, p < .001).  

For further analysis of the presence of each cardinal criterion for the 3 cardinal 

quantities and the 3 ordinal quantities, see Fig. C in supplemental materials. The distribution 

of the four ordinal criteria were mostly stable across the three ordinal quantities, with the 

exception of the “presence of graduations” criterion, which was more often met on drawings 

of elevator problems (47.30% of cases) than on drawings of duration problems (12.61% of 

cases) or of height problems (5.41% of cases). This discrepancy may be due to the fact that 

in elevator problems, each unit (and thus each graduation) corresponds to a distinct, easy to 
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draw, entity (each floor on the building). Drawing the floors and drawing the graduations are 

relatively similar processes, so one might have helped the other, which would explain the 

high rate of graduations in diagrams of elevator problems. Apart from this criterion, there 

was no noticeably unusual pattern in the distribution of criteria across quantities. The most 

reliable criterion to assess ordinality appears to be “presence of axes”, since it appeared in 

36.94% of drawings of elevator problems, in 31.98% of durations problems and in 46.85% 

of height problems, while it was hardly present in drawings of cardinal problems (1.35% 

overall).  

 

Cardinal score analysis.  Regarding the cardinal score attributed to participants drawings, 

we had made the hypothesis that participants’ drawings would display more typically 

cardinal features on cardinal problems than on ordinal problems. Indeed, adults’ drawings of 

cardinal problems had a higher cardinal score on average (M = 1.51, SD = 1.09) than their 

drawings of ordinal problems (M = 0.37, SD = 0.52). Similarly, children’s drawings of cardinal 

problems were also rated higher on average on the cardinal scale (M = 0.64, SD = 0.89) than 

their drawings of ordinal problems (M = 0.13, SD = 0.35). We used a linear mixed model to 

evaluate the factors influencing the cardinal score, with experimental group (children vs. 

adults) and type of problem (cardinal problem vs. ordinal problem) as fixed effects, and 

participants and problem statements as random effects. As hypothesized, there was a 

significant effect of problem type on the drawings’ cardinal score (F = 46.25, p < .001; Type 

III SS ANOVA). Pairwise comparisons using Tukey-adjusted LS-means revealed that this 

difference was significant for children (t(11.8) = 4.13, p < .01) as well as for adults (t(12.3) = 

9.16, p < .001). Additionally, there was a main effect of the group of participants (children vs. 

adults) (F = 57.14, p < .001; Type III SS ANOVA). Indeed, as with the ordinal score, children’s 

drawings tended to score lower on average on the cardinal scale (M = 0.39, SD = 0.72), 

compared to adults’ productions (M = 0.94, SD = 1.03). Finally, there was a significant 

interaction between the experimental group (children vs. adults) and the type of problems 

(cardinal vs. ordinal) on the cardinal score as well (F = 74.07, p < .001; Type III SS ANOVA). 

As with the ordinal score, we attributed this interaction to the lower complexity of children’s 

drawings, impacting the cardinal score of cardinal problems more heavily than the cardinal 

score of ordinal problems, due to a floor effect on the latter. 
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 We also computed the proportion of each of the 4 criteria by problem type in 

participants’ drawings (see Fig 8). Interestingly, the role played by each criterion appeared 

to be less homogeneous than for the ordinal scale. Namely, while the “clusters” and “sets” 

criteria tended to follow a similar pattern of moderate frequency on cardinal problems 

(20.72% and 35.14%, respectively) and nil-absence on ordinal problems (0.45% and 1.50%, 

respectively), the two remaining criteria displayed a different behavior. The “embedded sets” 

criterion was only identified in a limited number of few participants’ productions. Even on 

cardinal problems, adults’ drawings displayed embedded sets in only 10.58% of cases, while 

children used them in just 1.69% of cardinal problems. This low score may be attributed to 

the fact that this criterion is dependent upon another one (there needs to be “sets” in order 

to have “embedded sets”). Finally, the “one-to-one correspondence” criterion appeared to be 

less typical of cardinal drawings than we expected. Indeed, while the criterion was met in by 

a majority of adults’ drawings of cardinal problems (69.23%), their drawings of ordinal 

problems also included this feature in 19.49% of cases, as it was sometimes used to assign 

numerical values to graduations labels.  

 

Fig. 8 Rate of presence in participants’ drawings of each of the 4 criteria on the cardinal 

scale.  
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To evaluate the impact of the type of problem on each cardinal criterion, we created 

generalized mixed models using each criterion as a binary outcome. We included type of 

problem and experimental group as fixed effects, and we used participants and problem 

statements as random effects to account for the repeated measures in the experiment. 

Results showed that, regardless of the aforementioned variations between items, each 

individual criterion in the cardinal scale was significantly more present on drawings of 

cardinal problems than on drawings of ordinal problems, be they (a) clusters of identical 

elements (Z  = 2.80, p < .01), (b) sets (Z  = 8.23, p < .001), (c) embedded sets (Z  = 3.75, p < 

.001), or (d) one-to-one correspondences (Z  = 6.26, p < .001).  

For further analysis of the presence of each ordinal criterion for the 3 cardinal 

quantities and the 3 ordinal quantities in the problems, see Fig. D in supplemental materials. 

As with the ordinal scale, the distributions of the four cardinal criteria were mostly stable 

across the three cardinal quantities, with the exception of the criterion “presence of clusters 

of identical elements”. Indeed, this criterion was often met on drawings of collection 

problems (48.65%), but more rarely on drawings of weight problems (10.81%) or of price 

problems (2.70%). This may be due to the fact that drawing each marble in the problem, for 

instance, comes more naturally than drawing each kilogram corresponding to the weight of 

a wheel of cheese. Except for this item, there was no unexpected pattern in the distribution 

of cardinal criteria across quantities. The “presence of sets” criterion, however, seemed to be 

a good measure of cardinality across all quantities, since it was present in 43.69% of 

collections problems, in 31.53% of weight problems, and in 30.18% of height problems, while 

almost never featured in drawings of ordinal problems (0.45% overall).  

Thus, adults and 5th graders alike were more likely to use ordinal features (axes, 

graduations, etc.) than cardinal features (clusters, sets, etc.) on ordinal problems, and 

conversely on cardinal problems. In sum, drawing analysis shows that in both populations, 

the mention of ordinal (resp. cardinal) quantities in the problem statements seems to result 

in representations featuring a higher number of ordinal (resp. cardinal) features. For a 

quantity-by-quantity comparison of the cardinal and ordinal scores, see Fig. E in the 

supplemental materials. 
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Strategy analysis.  Second, we had made the prediction that problems with ordinal 

quantities would facilitate the use of the 1-step strategy compared to problems with cardinal 

quantities. Across both groups, we evaluated whether participants did use the 1-step strategy 

more often on problems involving ordinal quantities than on problems involving cardinal 

quantities. Fig. 9 details the participants’ use of each strategy depending on the type of 

quantity featured in the problems.  

 

Fig. 9 Children’s and adults’ mean rate of use of the two solving strategies depending on the 
type of quantities used in the problems.  

 

We used a generalized mixed model with the use of the 1-step strategy as its binary outcome 

to evaluate the factors influencing participants’ strategies. We included the type of problem 

(cardinal vs. ordinal) and the experimental group (children vs. adults) as fixed effects, and 

we used participants and problem statements as random effects accounting for the repeated 

measures of the design. Results revealed a main effect of problem type on the rate of use of 

the 1-step strategy (Z = 4.25, p < .001), with a higher rate for ordinal problems (M = 43.99%) 

than for cardinal problems (M = 16.97%), as hypothesized. There was also a main effect of 
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the experimental group (Z = 4.57, p < .001), since adults were more likely than children to 

find the 1-step solving strategy.  

Finally, there was an interaction between problem type and experimental group (Z = 

3.75, p < .001), which suggests that 5th graders’ use of the 1-step solving strategy was more 

impacted by the cardinal versus ordinal nature of the problems than adults’. Indeed, while 

their use of the 1-step strategy was relatively high on ordinal problems (M = 38.98%) their 

performance substantially dropped on cardinal problems (M = 7.63%). LS pairwise 

comparisons computed using the Emmeans R package (v1.8.9; Lenth et al., 2018) showed 

that this difference was statistically significant (z-ratio = 7.16, p < .001). On the other hand, 

the difference between the two types of problems was less important for adults, although it 

remained significant. Indeed, their mean rate of use of the 1-step strategy was higher on 

ordinal problems (M = 49.68%) than on cardinal problems (M = 27.56%); z-ratio = 4.25, p < 

.001. Thus, our hypothesis was confirmed among both populations, despite adults 

performing better than children, especially on cardinal problems.  

In addition, we also looked at the distribution of 3-step strategies, to investigate 

whether its use was also linked to the cardinal versus ordinal nature of the problems. Using 

a generalized mixed model similar to the one for the 1-step strategy, we looked at the effects 

of problem type and experimental group on participants’ responses. Again, we found a main 

effect of problem type (Z = 3.27, p < .01), a main effect of experimental group (Z = 4.38, p < 

.001), and an interaction between the two (Z = 2.34, p < .05). Least-squares pairwise 

comparisons calculated with Emmeans (v1.8.9; Lenth et al., 2018) showed that among 

children, the 3-step strategy was more often used on cardinal problems (M = 46.03%) than 

on ordinal problems (M = 16.21%); z-ratio = 4.89, p < .001. This was also the case for adults: 

the use of the 3-step strategy was more frequent on cardinal problems (M = 62.50%) than on 

ordinal problems (42.40%); z-ratio = 3.27, p < .01. Hence, the choice of a solving strategy in 

both groups is influenced by the cardinal versus ordinal nature of the problem’s quantities. 

Finally, we also looked at participants’ preferred strategies to solve the problems 

depending on the quantities they involved. Fig G in Supplemental Materials details the rate 

of use of each strategy (as well as the rate of errors and absence of response) by adults and 

children, for the three ordinal and the three cardinal quantities. The distribution pattern 

tended to be homogeneous across cardinal problems, as well as across ordinal problems, 
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with one exception. Indeed, the height problems were the only problems where adults’ rate 

of use of the 1-step solving strategy (30.77%) appeared to be descriptively lower than 

children’s (34.76%). While this difference was not statistically significant (z-ratio = 0.61, p = 

.99), it was nevertheless surprising, as it seems to suggest that, as adults progress in their 

ability to use longer, multiple-step strategies (as evidenced by the increase in 3-step strategy 

use between 5th grade and adulthood), this progression may sometimes be detrimental to 

their ability to identify shorter, more effective solving strategies (in this case, the 1-step 

strategy). Future work on this issue may yield interesting insights into the developmental 

trajectory of strategy use and height representations. 

 

Analysis of the links between drawings and strategies.  Third, we looked at how the 

ordinality of the drawings predicted which problems would be solved using the 1-step 

strategy, independently from the cardinal versus ordinal nature of the problems themselves. 

Because the number of successes and failures varied between participants, we used a 

generalized linear mixed model with a binomial distribution to evaluate the extent to which 

the ordinal drawing score predicted participants’ propensity to successfully use the 1-step 

strategy to solve the problems. The cardinal versus ordinal nature of the drawings was used 

as a fixed effect, as was the ordinal drawing score. We used participants as a random effect, 

as well as problem statements, to account for the design’s repeated measures (each 

participant had to attempt to solve 12 problems). Analysis of the model showed that there 

was a significant effect of the ordinal score of the drawings on participants’ rate of use of the 

1-step strategy, even after accounting for the influence of the type of problem (Z = 2.34, p < 

.05). In other words, in accordance with our hypothesis, a higher ratio of ordinal features in 

the drawings predicted higher chances to use the 1-step strategy, regardless of whether 

participants were attempting to solve a cardinal or an ordinal problem. This effect was not 

present however, when using the rate of the 3-step strategy as the dependent variable of the 

model (Z = 0.71, p = .48). Interestingly, the cardinal scale showed the reverse pattern: a 

generalized mixed model revealed that the cardinality of the drawings had a main effect on 

participants’ likelihood of using the 3-step solving strategy to solve the problems (Z = 2.76, p 

< .01), but not on their propensity to use the 1-step strategy (Z = 0.31, p = .75). In other words, 
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the ordinality of the drawings predicted participants’ propensity to find the 1-step solving 

strategy, while the cardinality of the productions predicted the likelihood of participants 

using the 3-step solving strategy instead, regardless of the type of problems to be solved. 

By resorting to a drawing task coupled with a solving task, we were able to gain new insights 

into children and adults’ representation of arithmetic word problems. The drawing analysis 

allowed us to get a new, sharper look at participants’ conceptualization of cardinal and 

ordinal problems without resorting to explicit verbalization. Drawing analysis supported the 

idea that cardinal problems foster representations involving sets and unordered collections, 

whereas ordinal problems favor the construction of representations involving axes, 

graduations, and intervals. This was the case for both children and adults, which speaks 

volumes for the pervasiveness of the influence of non-mathematical knowledge on 

mathematical reasoning across the lifespan. Indeed, despite children’s drawings scoring 

lower, on average, than adults’ drawings on both scales (which we attributed to less detailed 

and more pictorial drawings) the difference between the two scores remained unequivocally 

significant in children’s productions on both cardinal and ordinal problems. 

 Interestingly, the use of these two drawing scales also made it possible to compare 

competing theories regarding the representation of arithmetic word problems. Indeed, as 

mentioned in the Introduction, the SECO model (Gros et al., 2020b) predicts that solvers 

encode an interpreted structure depending on the mathematical and world semantics evoked 

by the problem statement (in our case, a representation involving either mostly cardinal 

features, or mostly ordinal features). However, we believe that the two competing theories 

that the SECO model challenges would make different predictions regarding participants’ 

drawings in our experiment. According to the Schema model (Kintsch & Greeno, 1985), 

learners use the problem statement to extract a propositional structure that will be used to 

identify and implement a solving schema with the relevant numerical information in the 

problems. This schema then triggers a calculational strategy to find the solution (Kintsch & 

Greeno, 1985). In other words, according to this theory, the propositional structure 

determines the type of representation being constructed, as well as the solving strategies 

used. In this view, participants’ representations of the numerical elements in the cardinal and 
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ordinal problems should have been linked to the propositional wording of the problem 

statements, rather than to the entities mentioned in the problems. For instance, when 

describing the difference between Part 1 and Part 3, the marble problem used the wording 

“She has 2 green marbles less than Paul has red marbles” and the travel problem “Fred's trip 

lasted 2 hours less than Sofia's.” According to Kintsch and Greeno’s (1985) theory, both 

sentences include a HAVE-LESS-THAN proposition, which should cue the use of the same 

DIFFERENCE schema. Thus, under the framework of the schema theory, participants’ mental 

representation of this difference should be similar in both instances, which would result in 

similar diagrams being used to represent it in their drawings. Yet, the drawing analysis 

revealed that, contrarily to this prediction, this difference tended to be represented by an 

interval in ordinal problems, and by a set in cardinal problems (see Gros et al., 2020b for an 

in depth discussion of the competing predictions between the schema theory and SECO). 

 Similarly, the Situation Problem Solver model – the other competing theory – states 

that, when reading a problem statement, learners construct an episodic situation model 

specific to the problem (Reusser, 1990). This situation model is expected to include every 

functional relation described in the problem statement (Johnson-Laird, 2010). This approach 

thus proposes that every problem gives rise to a particular interpretation, an idiosyncratic 

representation. On the other hand, SECO suggests that structural regularities emerge in the 

representation of different problems, due to underlying semantic dimensions driving their 

encoding. In terms of problem drawings, the situation model approach would certainly 

predict that different problems elicit different drawings, but it would not predict a consistent 

difference between the drawings of cardinal and ordinal problems. SECO on the other hand,  

predicts that individuals’ representation of a numerical situation tends to highlight either the 

cardinality of its numbers, or their ordinality, depending on the world semantics attached to 

the problem statement (Gros et al., 2020b, 2021). The drawing analysis showed that 

diagrams of cardinal problems did share common structural features that were different 

from the structural features shared by the diagrams of ordinal problems.  

 Additionally, SECO also proposes that individuals’ representation of a numerical 

situation tends to focus either on the cardinality of its numbers, or on its ordinality, but rarely 

on both (Gros et al., 2021). By looking at the distribution of cardinal and ordinal scores, we 

were able to assess this prediction in our experiment (see Fig. F in supplemental materials). 
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Interestingly, among all the recorded answers, no drawing received a score equal to or 

greater than 2 on both scales simultaneously. In fact, whenever a drawing's cardinal score 

exceeded 2, its ordinal score was consistently zero. Conversely, if the ordinal score was 2 or 

higher, the corresponding cardinal score was always less than or equal to 1. This is 

compatible with the idea that individuals’ representations tend to include either cardinal or 

ordinal features, but not both simultaneously. 

As for strategy choice, Gros et al.’s (2021) findings were replicated in this experiment, 

since participants in both groups tended to use the 1-step strategy on ordinal problems 

whereas they preferentially used the 3-step strategy on cardinal problems, regardless of the 

instructions asking them to solve the problems using as few operations as possible. The fact 

that those effects could be highlighted with 5th graders as well as with adults on the same 

problems speaks to the universality of such encoding constraints. From beginner problem 

solvers to adults with years of experience performing small additions and subtractions, the 

difference between cardinal and ordinal problems remained influential.  

Finally, and most importantly, the apparent ordinality of the drawings made by 

children and adults was predictive of their propensity to use the 1-step strategy to solve the 

problems – regardless of whether the problems were cardinal or ordinal to begin with. This 

suggests that the drawings’ features that we were attentive to were indeed relevant to 

explain participants’ reasoning process and strategy choice. In other words, a drawing 

featuring axes instead of sets was more likely to indicate that children would find the 1-step 

strategy, regardless of whether the problem involved cardinal or ordinal quantities to begin 

with. From an educational perspective, this is especially interesting, since it suggests that the 

presence of specific features within a student’s drawing can reveal the inadequacy of their 

mental representation of the problem and predict their inability to successfully complete a 

task (in this case, finding the shortest solving strategy). Thus, analyzing students’ drawing 

productions may open the way for targeted interventions aiming at fostering a semantic 

recoding of a suboptimal problem representation. 

In addition to the insights gained from studying learners’ drawings, the use of a 

drawing task also made it possible to assess the robustness of the semantic congruence 

effects previously described. Indeed, the literature suggests that drawing production has 

several remarkable benefits: drawing tasks have been shown to improve encoding and recall 



Running Head: Drawings, mental representations, and solving strategies                                            34 

(Draschkow et al., 2014; Meade et al., 2018; Roberts & Wammes, 2021; Van Meter & Garner, 

2005; Wammes et al., 2016, 2017, 2018), while also helping with understanding complex 

notions (Schmeck et al., 2014), engaging in scientific thinking (Fan, 2015), and learning STEM 

content (Wu & Rau, 2019). Regarding problem solving, research indicates that drawing can 

help students draw crucial inferences, revealing information that was only implicit in the 

problem statement (Cox, 1999; Larkin & Simon, 1987). In interventions designed to improve 

mathematical word problem solving, drawing practice has even been shown to increase 

children’s progress (Csíkos et al., 2012; Sharp & Shih Dennis, 2017; Van Essen and Hamaker, 

1990). In this perspective, asking participants to make a drawing of the problems they are 

attempting to solve could have resulted in them gaining a finer understanding of the 

problems’ mathematical structure, thus increasing the likelihood that they would manage to 

identify the isomorphism between all the problems, and manage to use the 1-step strategy 

on every problem, regardless of the quantities they featured. The fact that the addition of a 

drawing task did not make the cardinal/ordinal effect disappear testifies to the inescapable 

influence of non-mathematical knowledge.  

Nevertheless, understanding the determinants of problems’ representations is a 

crucial step in identifying the potential pitfalls and dead ends born from unsuitable 

representations, as well as to help develop transfer or learning in a school setting (Gros & 

Gvozdic, 2022). In this perspective, interventions specifically targeting representational 

change in arithmetic word problems provide rich insights into the benefits of representation-

oriented teaching (Fischer et al., 2019; Gvozdic et Sander, 2020; Iacono et al., 2022). From 

this angle, the use of drawing production may be a promising path to promote the semantic 

recoding of a sub-optimal mental representation. Indeed, while insufficient in this 

experiment to overcome the cardinal-ordinal distinction, drawing tasks could nevertheless 

constitute one of the potential levers that children can use to help promote cognitive 

flexibility in the classrooms. Considering the beneficial influence of drawings as a study 

material - provided that there is adequate instructional support (see Wu & Rau, 2019 for a 

discussion) - it might be possible to guide students in using drawings to reach a better 

understanding of the mathematical relations depicted in a problem statement.  

Beyond that, prompting children to make drawings using specific features (e.g., 

representing a cardinal problem using graduated axes), may help target a specific difficulty 
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and foster a new problem representation that would be compatible with a better solving 

strategy. While prompting drawing production has sometimes yielded mixed results (see 

Verschaffel, 2016, for a discussion), this line of interventions using teacher-imposed 

constraints on the drawings has also shown encouraging results (Jitendra & Hoff, 1996; Ng & 

Lee, 2005; Verschaffel, 2020). More work is needed to better understand the role of drawings 

in promoting representational change using systematic drawing analysis. This line of 

research may find renewed inspiration in the recent methodological advances leveraging 

crowd-sourced drawing analysis to get a deeper understanding of their underlying mental 

representations (Bainbridge, 2022). Be it through guided or unguided tasks, it is our hope 

that future research will identify the optimal conditions to make the most of drawing 

production, in order to fully harness the thousand words’ worth of every drawing. 
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Fig. A Sample drawings from children and adults for each type of cardinal problem. The 

raters’ evaluation of the problems on the two scales is reported on the right side of the table.   
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Fig. B Sample drawings from children and adults for each type of ordinal problem. The raters’ 

evaluation of the problems on the two scales is reported on the right side of the table.   
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Fig. C Rate of presence in participants’ drawings of each of the cardinal scale’s 4 criteria, 

depending on the quantities used to create the problems (i.e., Collections, Prices, or Weights 

for cardinal problems, and Durations, Elevators, or Heights for ordinal problems). 

 

Fig. D Rate of presence in participants’ drawings of each of the ordinal scale’s 4 criteria, 

depending on the quantities used to create the problems (i.e., Collections, Prices, Weights for 

cardinal problems, and Durations, Elevators, or Heights for ordinal problems). 
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Fig. E Children’s and adults’ mean cardinal and ordinal scores depending on the quantity 
used in the problems. Vertical bars denote 0.95 confidence intervals.  

*** p < .001, **  p < .01 Tukey-adjusted least squares means. 

 

 

Fig. F  Distribution of drawing scores on individual productions. The drawings that were 

rated 2 or above on one of the two scales were never rated above 1 on the other scale. 
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Fig. G Children’s and adults’ mean rate of use of the two solving strategies depending on 
which quantities were featured in the problems.  


