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Abstract

Key features of higher-spin extensions of ordinary gravity are briefly reviewed. The

introduction of consistent interactions between massless fields with spin higher than two

is a notoriously difficult challenge of modern theoretical physics, which is well-motivated

by string theory and holographic duality. Particular emphasis is put on the fact that

the kinematical foundations of the subject are firmly grounded on rigorous mathematical

results. Moreover, the introduction of higher-spin interactions admits several formulations

that make the former a well-posed problem in mathematical physics. A quick tour is offered

through the main results and open issues in this area of research.

Invited contribution to the section “Classical and Quantum Gravity”

of the Encyclopedia of Mathematical Physics (Elsevier)
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Introduction

Higher-spin gravity (also called higher-spin gauge theory) can be defined as any interacting

relativistic field theory satisfying the following conditions, respectively on its vacuum solution,

symmetries and spectrum:1

(1) It admits a maximally-symmetric (i.e. Minkowski, de Sitter or anti de Sitter) spacetime

as vacuum solution (i.e. when all fields are turned off, except the metric).

(2) Its Lie algebra of rigid symmetries contains:

(2.a) the symmetry (isometry or conformal) algebra of the vacuum solution in (1),

(2.b) some extra generators that transform, under the previous algebra (2.a), in a represen-

tation that is beyond the trivial, adjoint and fundamental (i.e. the vector or spinor)

representations, and that is labelled by a Young diagram with at least two columns.

(3) Its spectrum contains a tower of massless fields with at least:

(3.a) one massless field of helicity two (the “graviton”),

(3.b) one massless field of helicity greater than two (“higher spin”).

The above definition and terminology applies in any dimension (though the notion of “helicity”

requires some adaptation) and allows supersymmetry to be easily included (one simply adds

above the adjective “super” before “algebra” and “symmetry”).

The introduction of consistent interactions between massless higher-spin fields can be for-

mulated as a well-posed problem in mathematical physics, offering a difficult but tantalising

challenge.2 In fact, it is notoriously difficult to introduce consistent (i.e. preserving the number

of physical degrees of freedom) interactions between massless higher-spin fields (especially in

dimensions strictly greater than 3). There is a long list (whose size monotonously increases

over time) of no-go theorems preventing a naive construction of such interactions. See e.g.

(Bekaert, Boulanger, Sundell, 2012; Ponomarev, 2023) for some extensive discussions of the

1The rationale behind this broad definition is as follows. Higher-spin symmetries are characterised by the
condition (2.b). The conditions (1), (2.a) and (2.b) have a hierarchical structure: the next condition requires the
previous one in order to be even formulated. Similarly, the global symmetries mentioned in (2.a)-(2.b) correspond,
respectively, to the local symmetries in (3.a)-(3.b) of the theory preserving the vacuum solution (remember that
the usual covariant description of massless fields is as gauge fields). The condition (3.a) is a minimal requirement
for talking about a “gravity” theory. Analogously, a theory satisfying the condition (3.b) is generically called a
higher-spin theory, even if the condition (3.a) and/or the adjectives “massless” are relaxed everywhere in (3). For
instance, from this point of view string theory can be seen as higher-spin theory where all fields of spin greater
than two are massive.

2Strictly speaking, several (mathematically inequivalent) formulations of this physical problem exist, depend-
ing on the approach (e.g. variational, light-cone, formal PDE).



main no-go theorems and some ways out. Each time obstacles were overcome, various modern

mathematical notions played a crucial role in the construction. Several objects of importance

in contemporary mathematical physics have already appeared in higher-spin gravity: they origi-

nate from conformal geometry (Cartan connections, Fefferman-Graham ambient metric, tractor

bundles), formal geometry of Partial Differential Equations (e.g. infinite jet bundles and their

Cartan distributions), differential graded geometry (such as Q-manifolds, Batalin-Vilkovisky

and Becchi-Rouet-Stora-Tyutin formalisms, Alexandrov-Kontsevich-Schwarz-Zaboronsky sigma

models) and deformation quantisation (for instance star products, Fedosov-like connections,

formality theorems, strong homotopy Lie algebras, etc).

Two obstacles met by the construction of a unitary higher-spin gravity in dimension four (or

more) are the following generic features:

� The spectrum must necessarily contain an infinite tower of fields of unbounded spin. In-

directly, this implies some tension with locality (at least in its strictest sense).

� In the formulations in terms of tensor gauge fields, there is a tension between higher-spin

gauge symmetries and minimal coupling to gravity, especially around flat spacetime and

assuming parity symmetry.

If one either considers lower spacetime dimensions (two or three), or go to Euclidean signature

or relax unitarity, then there exists a variety of manageable examples of higher-spin gravity

theories (e.g. Jackiw-Teitelboim, Chern-Simons, chiral, conformal). Higher-spin gravity theories

are usually named after the corresponding gravity theory (whose Lie algebra is extended by

higher-spin generators), e.g. “conformal higher-spin gravity” is understood as the higher-spin

extension of Weyl’s conformal gravity.

In what follows, we give a quick tour through the main results and open issues in this area

of research. The discussion is divided into four parts. In the first one, the early history of the

subject is summarised from a mathematical physics perspective. In the second part, the problem

of perturbatively introducing interactions between massless higher-spin fields is introduced, to-

gether with some of its difficulties. A list of some yes-go examples is also provided. In the third

part, the modern perspectives brought on the subject by string theory and holographic duality

are presented. In the fourth part, some strategies and mathematical tools used for attacking the

interaction problem are sketched. We end up with a brief conclusion.

Many pedagogical reviews of various levels are available by now, from advanced ones to

introductory ones. A non-exhaustive list is proposed at the end for further readings, together

with few seminal papers cited in the body of the text.



Early history

The early theoretical works on higher-spins can be structured around 4 main questions, formu-

lated here as mathematical classification research programs (ordered in logical progression and

suitably generalised to suit modern considerations):

- Wigner’s programme (1939): Classify all unitary irreducible representations of the isom-

etry groups of maximally-symmetric spacetimes.

- Bargmann-Wigner’s programme (1948): Associate a covariant linear differential equa-

tion to each unitary irreducible representation of the isometry groups of maximally-symmetric

spacetimes, such that the space of inequivalent solutions carries the corresponding repre-

sentation.

- Fierz-Pauli’s programme (1939): Associate a quadratic covariant local Lagrangian to each

unitary irreducible representation of the isometry groups of maximally-symmetric space-

times, such that the space of inequivalent solutions to Euler-Lagrange equations carries

the corresponding representation.

- Fronsdal’s programme (1978): List all consistent, covariant, local, perturbative interac-

tions deforming a positive sum (finite or not) of quadratic covariant local Lagrangians

associated with unitary irreducible representations of the isometry group of a maximally

symmetric spacetime.

Obviously, these programmes were originally restricted to four-dimensional Minkowski space-

time. The first two programmes involved Wigner. They were motivated by his modern and

extremely profound view on the classification of elementary particles: combining the axioms of

quantum mechanics and the principles of special relativity necessarily leads to the fact that the

space of states (rays) of a free quantum relativistic particle is a unitary module of the spacetime

isometry group. Consequently, there is a one-to-one correspondence between wave equations de-

scribing a free quantum relativistic particle and unitary representations of the spacetime isometry

group. The Wigner programme was one of the seminal motivations behind the development of

the mathematical theory of unitary representations, through the subsequent works of Bargmann,

Gel’fand, Harish-Chandra, ... The second programme (i.e. Bargmann-Wigner’s) consists in go-

ing from the abstract representation (classified by mathematicians) to a more concrete realisation

(as solution space of a differential equation). This step is not trivial because it is not algorithmic:

writing suitable relativistic equations is some sort of art. In fact, these classification programmes

allowed to put some order in the plethora of relativistic wave equations available at that time:

d’Alembert, Dirac, Fierz, Klein–Gordon, Majorana, Maxwell, Proca, Weyl, ...



At the beginning of the sixties, the proliferation of hadrons with “high” (¥ 3{2) spin was one

of the main mystery of the strong nuclear interaction. Experimental plots suggested the existence

of an infinite tower of hadrons, with unbounded spin. The attempts to model scattering cross-

sections of higher-spin hadrons required the knowledge of the propagators for fields of arbitrary

spin. This provided a new motivation for the Fierz-Pauli programme, i.e. the inverse problem of

variational calculus with respect to the equations obtained in the Bargmann-Wigner programme.

The Fierz-Pauli programme in four-dimensional Minkowski spacetime was completed in the late

seventies, by Singh and Hagen for massive fields, and by Fang and Fronsdal for massless fields.

These works (and their subsequent extensions) set the mathematical foundations of the subject,

as far as the free theory is concerned.

The perturbative introduction of consistent interactions for massless spin-two fields and the

corresponding reconstruction of Einstein’s gravity is sometimes called Gupta’s programme. The

completion of Fierz-Pauli’s programme and the generalisation of Gupta’s programme for all

“low” spins (s ¤ 2) via supergravity lead to further generalise the latter for arbitrary spins

(Fronsdal, 1978). It is important to point out that, from the point of view of mathematical

physics, the Fronsdal program can be formulated as a well-posed problem which must therefore

have an unambiguous answer. Even if it admits no solution in dimension four corresponding to

a higher-spin gravity (as defined above), at least this would explain the experimental fact that

particles of zero mass and high spin have never been observed. As explained later, a wealth

of results on higher-spin interactions, supplemented with arguments coming from string theory,

support the existence of an interacting solution, possibly with exotic locality properties.

Perturbative approach

As was explained above, the covariant gauge theories describing arbitrary free massless fields on

constant-curvature spacetimes of dimension D ¥ 2 are firmly established by means of the unitary

representation theory of their isometry groups. For instance, the massless unitary irreducible

representations of the Poincaré gr.oup ISOpD� 1, 1q � SOpD� 1, 1q
RD�1,1 are induced from

unitary irreducible representations of the stabiliser subgroup ISOpD� 2q � SOpD� 2q
RD�2.

The latter representations are finite-dimensional if and only if the Abelian normal subgroup

RD�2 acts trivially. The corresponding massless representations of the Poincaré group ISOpD�

1, 1q are usually called “helicity” (or “finite spin”) representations. It is standard to restrict

one’s attention to the helicity representations induced from the irreducible representations of

SOpD � 2q spanned by completely-symmetric traceless tensors of rank s P N. In order to

have Lorentz invariance manifest, as well as second order local field equations with minimal

field content, the theory is usually expressed (Fronsdal, 1978) in terms of completely-symmetric



and double-traceless tensor fields hµ1...µs (µ � 0, 1, � � � , D) of rank s, in a way analogous to

the metric formulation of gravity (s � 2). In Minkowski space-time RD�1,1 with flat metric

ηµν � diagp�1,�1, � � � ,�1q, the Fronsdal action for a free massless spin-s field is

p0q

S rhµ1...µss �
1

2

»
dDx

�
Bνhµ1...µsB

νhµ1...µs

�
sps� 1q

2
Bνh

λ
λµ3...µsB

νhρ
ρµ3...µs � sps� 1q Bνh

λ
λµ3...µsBρh

νρµ3...µs

�s Bν � hν
µ2...µsBρh

ρµ2...µs �
sps� 1qps� 2q

4
Bνh

νρ
ρµ2...µsBλhσ

λσµ2...µs

	
, [1]

where the tensor field is double-traceless (ηµ1µ2ηµ3µ4hµ1...µs � 0). This action is invariant under

the gauge transformations
p0q

δ ξ hµ1...µs � Bµ1ξµ2...µs � cyclic , [2]

where the gauge parameter ξµ1...µs�1 is a completely-symmetric and traceless (ηµ1µ2ξµ1...µs�1 � 0)

tensor field of rank rank s � 1 and “cyclic” stands for the sum of terms necessary to ensure

the symmetry of the right-hand side under permutations of the indices. The Lie algebra of

field-independent gauge transformations such as [2] is of course Abelian. For spin s � 1, the

quadratic action [1] is the Maxwell action of a vector gauge field, for which [2] are the usual Up1q

gauge transformations. For spin s � 2, the action [1] is the Pauli-Fierz action that is obtained

from the Einstein-Hilbert action SEHrgs via the substitution gµν � ηµν � hµν and keeping only

the quadratic term in the expansion. Moreover, the gauge transformations [2] correspond to

linearised diffeomorphisms.

Non-Abelian gauge theories for “low spins” (s ¤ 2) are well known and essentially corre-

spond to Yang-Mills (s � 1) and Einstein (s � 2) theories for which the underlying geometries

(principal bundles and pseudo-Riemannian manifolds) were familiar to mathematicians before

the construction of the physical theory. In contrast, the situation is rather different for “higher

spins” (s ¡ 2) for which the underlying geometry remains obscure. Due to this lack of informa-

tion, it is natural to look for inspiration in the perturbative reconstruction of Einstein gravity

as the non-Abelian gauge theory of a spin-two particle propagating on a constant-curvature

spacetime.

The condition (1) in the definition of higher-spin gravity allows one to expand around the

vacuum solution. Furthermore, it follows from conditions (2)-(3) that the Lie algebra of gauge

symmetries must be non-Abelian already at first order in the deformation parameter. Two extra

assumptions are most often added in this perturbative setting:

(4) perturbative unitarity: absence of “ghosts” (i.e. kinetic terms with the wrong sign in



the Lagrangian or negative norm states in the Hilbert space of physical states).3

(5) perturbative locality: each term in the expansion of equations of motion (or Lagrangian)

in powers of field fluctuations (around the vacuum solution) is a local function for any fixed

set of fields in the vertex (e.g. for a prescribed collection of individual helicities).

Note that the assumption (4) is sometimes dropped, e.g. in conformal higher-spin gravity (con-

sistently with the fact that Weyl’s gravity also has ghost terms in its Lagrangian). Nevertheless,

unitarity is a very reasonable assumption for any candidate theory of fundamental interactions.

The assumption (5) allows for a mild form of non-locality, controlled by one (or more) parame-

ter(s). Locality seems a pretty natural requirement in the realm of field theory, but it becomes

questionable once an infinite collection of fields is present in the spectrum (as in higher-spin

gravity or string theory). Traditionally, locality is required because it allows (with Lorentz in-

variance) to guarantee the causality of the quantum field theory (QFT). Nevertheless, a mild

form of non-locality is allowed: an equation of motion (or a Lagrangian) is perturbatively local if

each of the coefficients in its formal power series expansion (in the deformation parameters) is a

local function (i.e. a polynomial function in the derivatives of the fields). Concretely, this means

that the complete series can contain an infinite number of derivatives but, order by order, each

partial sum can contain only a finite number of derivatives. This type of controlled non-locality

seems physically acceptable, at least at the perturbative level. Indeed, most of the effective

theories belong to this class (where the non-locality is controlled by the cut-off length) as well

as string field theory (where the non-locality is controlled by the string length ℓs). From the

mathematical point of view, the assumption of perturbative locality makes it possible to have a

tractable well-posed problem. However, as will be discussed below, the extra physical condition

(5) might need to be refined because it seems too strong for allowing solutions to the higher-spin

interaction problem at quartic level (and higher), at least in flat spacetime of dimension D ¥ 4.

In any case, it appears that he notion of locality should be re-examined carefully in the context

of higher-spin gravity and replaced with a weaker notion, whose precise definition remains to be

unravelled. This issue has been debated and is under intense investigations, see e.g. the lecture

notes (Ponomarev, 2023) for some discussion and references.

Putting together the assumptions (1)-(5), in the metric-like formulation set by the free the-

ory from Eqs [1]-[2], allows to formulate the Fronsdal programme as a well-posed deformation

problem (that can be addressed via a perturbative analysis, often referred to as the “Noether

method”, with a slight abuse of terminology):

3Concretely, this implies that the total quadratic action is a positive sum of Fronsdal actions (i.e. there is no
relative negative sign). This seems like a simple criterion to satisfy but it is often the one that is violated in bold
attempts at solving Fronsdal’s programme (without making use of conventional free formulations).



Fronsdal programme (tower of massless fields): List all Poincaré-invariant local deforma-

tions

Srhs �
p0q

S rhs � ε
p1q

S rhs � ε2
p2q

S rhs � Opε3q [3]

of a positive sum, including s � 2 and with at least one s ¡ 2,

p0q

S rhs �
¸
s

p0q

S rhµ1... µss [4]

of quadratic actions such that the deformed local gauge symmetries

δξh �
p0q

δξ h � ε
p1q

δξ h � ε2
p2q

δξ h � Opε3q [5]

are already non-Abelian at first order in the deformation parameter(s) ε and do not arise from

local redefinitions

h Ñ h � ε ϕphq � Opε2q , ξ Ñ ξ � ε ζph, ξq � Opε2q [6]

of the gauge fields and parameters.

The assumption that the deformations are formal power series in a deformation parameter ε

enables one to investigate the problem order by order. The crucial observations of any perturba-

tive analysis is that (i) the first order deformations Sp1qrhs of the action are constrained by the

gauge symmetries δ
p0q
ξ h of the undeformed action Sp0qrhs and (ii) the first order deformations of

the gauge symmetries δ
p1q
ξ h are constrained by the rigid symmetries of the undeformed action

Sp0qrhs. The so-called Noether method scrutinises the gauge symmetry of the action, δξS � 0 .

At zeroth order, the latter equation is satisfied by hypothesis: δ
p0q
ξ Sp0q � 0 . At first order, it

reads
p0q

δξ
p1q

S �
p1q

δξ
p0q

S � 0 . [7]

This equation may be used to constrain the possible deformations by reinterpreting them as

familiar objects of the undeformed gauge theory. By definition, an observable of a gauge theory

is a functional which is gauge-invariant on-shell, while a reducibility parameter of a gauge theory

is a gauge parameter such that the corresponding gauge variation vanishes off-shell. For instance,

a reducibility parameter of Fronsdal transformations [2] is a traceless tensor field ξµ1...µs�1
such

that
p0q

δξ h � Bµ1ξµ2...µs
� cyclic � 0 , [8]

that is to say it is a Killing tensor field on Minkowski spacetime. The following lemma provides

the basic constraints on the deformations at first order.



Lemma (First-order deformations in terms of the undeformed theory):

(i) First-order deformations of the action are observables of the undeformed theory, i.e. δ
p0q
ξ Sp1q

vanishes when δSp0q{δh vanishes.

(ii) First-order deformations of the gauge symmetries, δ
p1q
ξ h, evaluated at reducibility param-

eters ξ of the undeformed gauge theory (i.e. δ
p0q

ξ
h � 0), span a Lie algebra of global

symmetries δ
p1q

ξ
h of the undeformed theory (i.e. δ

p1q

ξ
Sp0q � 0).

Statements (i)-(ii) easily follow from the previous definitions applied to Eq. (7).

The reformulation of the Fronsdal programme in terms of the local Becchi-Rouet-Stora-

Tyutin (BRST) cohomology allowed the complete classification of non-Abelian deformations in

various particular cases. Other techniques have also been applied to (i) in order to classify all

first-order local deformations of Fronsdal’s free theory. These results can be combined with

three stringent constraints on the global symmetries following from (ii). The first constraint is

that there should be a non-Abelian Lie algebra whose vector space is spanned by the traceless

Killing tensors. Second, it is necessary that this Lie algebra has a faithful representation on the

space spanned by off-shell gauge fields modulo pure gauge degrees of freedom. Third, the action

functional of the free theory must be invariant under these linear transformations. Combining

previous classifications results of consistent vertices together with these stringent conditions,

one can show4 that the Fronsdal programme, as formulated above, does not admit solutions in

D ¥ 4 flat spacetime, under the above list of assumptions (1)-(5). To qualify this no-go theorem,

several comments are in order.

Firstly, if one drops one of the implicit assumptions (spacetime dimension D ¡ 3, parity

invariance or unitarity), then there exists at least 4 examples of fully interacting higher-spin

gravity theories (without matter) extending the following spin-two gravity theories:

1. Jackiw-Teitelboim gravity (D � 2),

2. Chern-Simons gravity (D � 3),

3. Self-dual gravity (D � 4),

4. Conformal gravity (even D or Chern-Simons for D � 3).

The corresponding higher-spin gravity theories share the following features: they

� are consistent with minimal coupling to gravity, even around flat background,

4See e.g. (Ponomarev, 2023) where the chain of arguments is spelled out. See also (Bekaert, Boulanger,
Sundell, 2012) for a different proof leading to the same no-go theorem. Similar conclusions are reached in the
light-cone formulation. So this obstruction seems quite robust, in agreement with S-matrix no-go theorems.



� do not require the unfolding procedure (instrumental in Vasiliev’s equations),

� can be truncated consistently to the usual low-spin (s ¤ 2) sector,

� admit a perturbatively local action principle.

However, they are either topological, or in Euclidean signature, or not unitary.

Secondly, one may consider the Fronsdal programme for a tower of massless fields around

(anti) de Sitter spacetime instead. In this way, the tension between higher-spin gauge symmetries

and minimal coupling to gravity is evaded (in a subtle manner, sometimes called “quasi-minimal

coupling”) which allows to bypass a crucial step in the proof of the no-go theorem. A formally

consistent system of nonlinear equations whose linearisation is equivalent to the equations of

the free theory (e.g. Fronsdal equations) for a tower of massless fields, has been proposed in

(Vasiliev, 1990, 2003) as a complete solution to the interaction problem, at the level of equations

of motion. See e.g. (Bekaert, Cnockaert, Iazeolla, Vasiliev, 2005; Didenko & Skvortsov, 2014;

Vasiliev, 2015; Giombi, 2016) for reviews. A fundamental ingredient of Vasiliev equations is the

“unfolded” formulation, which is somewhat exotic since each individual particle is described by

an infinity of fields (of which almost all of them are auxiliary or purely gauge). This exotic

feature makes the issue of their perturbative (non)locality a technically challenging problem

which is still under detailed investigation.

Thirdly, the spectrum of fields in the Fronsdal programme can be modified to contain massive

fields instead, in which case consistent interactions are known to be possible, even for higher-spin

fields around flat spacetime. This arises for instance in string theory. The latter provided several

modern motivations for higher-spin gravity, to which we now turn.

Modern developments and motivations

The main physical motivation for studying higher-spin gravity theories is that they could provide

toy models of quantum gravity. The line of reasoning is as follows. The global symmetry algebras

underlying higher-spin gravity theories with unbounded spin are infinite-dimensional Lie algebras

realised as differential operators of arbitrarily high order. The corresponding higher-spin gauge

symmetries are so huge and stringent that higher-spin gravity is expected to be uniquely fixed

by the higher-spin symmetry algebra. If so, then no counter-terms are allowed in the action,

which suggests that the quantum theory must be ultraviolet (UV) finite. This expectation also

fits nicely with known features of string theory.

It was the theoretical study of hadronic physics that gave birth to string theory, the spec-

trum of which is made of an infinite pyramid of particles with unbounded spin. All particules in

exotic representations (higher spin, mixed symmetries, etc) have a mass above (or of the order



of) Planck mass (� 1019 proton mass). This infinite pyramid of extremely massive higher-spin

particles is responsible for the very good ultraviolet behaviour (UV softness and finiteness) of

string theory. From the point of view of Fronsdal’s programme, string field theory is a highly

nontrivial example of consistent interacting theory of massive higher-spin fields. Conversely, a

better understanding of higher-spin interactions could shed new light on string theory, by provid-

ing an underlying symmetry principle responsible for its extremely soft high-energy behaviour.

In fact, an old conjecture (by Fradkin, Gross and others) is that string theory would arise from

a higher-spin gravity (understood in a very broad sense, c.f. the definition proposed above) via

some gigantic spontaneous symmetric breaking (where all but a finite number of fields, with

spin not higher than two, become massive). This qualitative scenario was supported and made

somewhat more concrete in the setting of the Maldacena conjecture, as will be explained later.

String theory agrees with the folk theorem that jumping beyond the spin two barrier requires

including (I) spin two itself (therefore gravity) and also (II) an infinite tower of arbitrarily high

spins. Although an infinite tower of exotic particles may seem like a high price to pay for the

consistency of the theory, the point is that, in return, this infinity of additional fields beyond the

barrier (gravity) solves the problem of the barrier itself (its perturbative non-renormalizability).

In a sense, adding the infinite pyramid of high-spin massive fields can be interpreted as a pro-

cedure for regularising the ultraviolet divergences of the graviton (and all other particles at

the same time) while preserving covariance, unitarity, etc. From the perspective of QFT, the

mechanism of ultraviolet regularisation at work in string theory is the following: although the

interactions including a finite number of particles of spin 2 (or more) are non-renormalizable

(by power-counting), the sum of the contributions of an infinite collection of particles with un-

bounded spin, can be finite. The origin of this intriguing mechanism consists in turning two

vices, peculiar to high spins, into two virtues. Firstly, the ultraviolet divergences worsen with

the spin of the fields (like the number of derivatives in the interaction vertices) but the cor-

responding power series for the total amplitude can converge in the ultraviolet limit, even if

each of the partial sums diverges. Secondly, massless higher-spin particles appear not to admit

non-trivial scattering matrix in flat spacetime, hence one may expect that scattering amplitudes

including exchanges of massive higher-spin particles should go to zero in the ultraviolet limit.

More precisely, the tree-level scattering amplitudes can effectively become very soft (i.e. quickly

tend to zero) in the high-energy limit. Loop diagrams are constructed by gluing legs of loop

diagrams trees, thus a good ultraviolet behaviour of the tree diagrams allows for the perturbative

finiteness of loop diagrams.

At the beginning of this century, a major conceptual change of perspective on higher-spin

gravity and its potential applications in physics was brought by holographic duality (aka the

“AdS/CFT correspondence”). In its strong form, a holographic duality is an equivalence between



a theory of quantum gravity in the bulk of (an asymptotically) anti de Sitter (AdS) spacetime

M and a conformal field theory (CFT) on the conformal boundary BM . The semi-classical

limit (tree level approximation) in the bulk gravitational theory corresponds to the limit of large

number of fields on the boundary. The seminal example is the Maldacena conjecture postulating

a holographic duality between maximal super-Yang-Mills (SYM) theory in four dimensions and

superstring theory around AdS5 � S5. One often considers in the bulk the semi-classical limit

of small string coupling gs ! 1 (which is equivalent to a large string length with respect to

the Planck length, ℓs " ℓP ) that corresponds on the boundary to a large number of colors

with respect to ’t Hooft coupling, N " λ. In addition, usually the bulk spacetime is assumed

weakly curved, this is the supergravity approximation of superstring theory. The latter regime

(equivalent to a large curvature radius with respect to the string length, ℓAdS " ℓs) corresponds

to a strongly coupled CFT on the boundary, in the sense of a large ’t Hooft coupling λ " 1.

But the opposite regime (small curvature radius/’t Hooft coupling: ℓs " ℓAdS ô λ ! 1) is

also of interest, as argued early by Sezgin, Sundell, Sundborg, Witten, ... In this exotic regime

one should, in principle, be able to reconstruct perturbatively the gravitational theory in the

strongly curved bulk from the weakly coupled SYM theory. In particular, the bulk theory dual

to free SYM theory must be a higher-spin gravity with unbroken higher-spin symmetries. This

corollory of the strong form of Maldacena conjecture has been extensively generalised to other

types of higher-spin holographic dualities (not involving strings nor supersymmetry).

The basic ideas behind higher-spin holographic duality are the following generic observations.

Free (or integrable) CFTs have an infinite number of higher-order conformal symmetries. By

Noether theorem, their spectrum of primary operators contains an infinite tower of traceless

conserved currents with unbounded spin, including the energy-momentum tensor (since it is a

CFT). According to the AdS/CFT dictionary, a conformal current at the boundary couples to

the asymptotic value of a gauge field (f the same rank) inside. Therefore the spectrum of the

bulk theory contains an infinite tower of gauge fields with unbounded spin, including spin two.

This leads to the following conclusion:

Higher-spin holographic duality: Free (or integrable) CFTs should be dual to higher-spin

gravity theories with unbroken higher-spin symmetry.

Some remarks are in order. First, one should stress the important point that, although

the boundary dual is free, the n-point correlators are non-vanishing (they are computed by

Wick contractions of 2n elementary dynamical fields in the boundary theory), thus the n-point

interaction vertices of the bulk higher-spin gravity must be non-vanishing. In this sense, the

above duality actually predicts non-vanishing interactions of bulk higher-spin gauge fields.5 This

5Nevertheless, these interactions are sometimes argued to be nevertheless “trivial”, in the sense that they
reconstruct the correlators of a free theory.



is in contrast with S-matrix no-go theorems (Coleman-Mandula theorem, generalised Weinberg-

Witten theorem, Weinberg low-energy theorems, etc) which predict the absence of scattering

in flat spacetime. Second, the above duality supports the expectation that higher-spin gravity

theories could provide toy model examples for quantum gravity (in the sense that they are UV-

finite QFTs including interacting gravitons) because free CFTs have no 1{N corrections therefore

bulk higher-spin theories should be “tree-level exact” (i.e. receive no quantum correction).

A natural question arises: what about interacting CFT? After the perturbative introduction

of interactions on the boundary, the conformal currents are no longer conserved in general. This

should correspond to a breaking of the gauge symmetries in the interior. The ultraviolet cut-off

of a QFT with asymptotic freedom corresponds holographically to the infrared cutoff of classical

high-spin gravity around AdS. In the case of the Maldacena conjecture, this suggests that the

perturbative regime of the SYM theory would contain (in a form very hard to decipher) all

necessary information about the tensionless limit of superstring theory (around AdS5 � S5) as

well as on the mysterious Brout-Englert-Higgs-like mechanism responsible for the higher-spin

symmetry breaking. Another interesting possibility is when the interacting deformation of the

free CFT on the boundary remains integrable, at least in the large-N limit. One of the most

inspiring (though simple) example of such holographic duality concerns a collection of massless

scalar fields on the boundary (c.f. the seminal observations by Klebanov, Polyakov, Sezgin and

Sundell). The idea is to consider “double-trace” deformations of large-N vector models and

look for a semi-classical bulk description of the singlet sector. Applying general observations

on double-trace deformations of CFTs to the OpNq vector model, one finds that, in the large-

N limit, the free energies of the free and the critical vector model are related by a Legendre

transformation (with respect to the source for the charge density, and modulo proper rescalings).

The two fixed points have the same infinite set of conserved currents and symmetries, most

of which are (softly) broken by 1{N corrections in the interacting theory. Both fixed points

(Gaussian and Wilson-Fisher) should correspond to different choices of boundary conditions for

the same bulk theory (holographic degeneracy). This chain of observations leads to the following

example of higher-spin holographic duality, which will be our main focus from now on.

Higher-spin/Vector-model duality: The higher-spin gravity around AdSd�1 whose spectrum

is a tower of totally-symmetric tensor gauge fields of all integer spins (s � 0, 1, 2, 3, � � � ) is dual

to the singlet sector of the UpNq vector model in d dimension. In particular, for unbroken

higher-spin symmetries the free/critical vector model (i.e. at the Gaussian/Wilson-Fisher fixed

point) is dual to higher-spin gravity with Dirichlet/Neumann boundary conditions.

The singlet primary operators of the vector model are bilinear in the fundamental scalar fields

(taking values in the vector representation of some internal compact symmetry group). They

form an infinite tower of composite conserved currents, dual to bulk gauge fields. This conjecture



(type A model) can be extended to the vector model based on spinor fields (type B model). In

three dimensions, the scalar and spinor are naturally coupled to a Chern-Simons gauge field,

thereby justifying the focus on gauge-invariant singlets. These “Chern-Simons-matter” theories

have attracted considerable attention in QFT literature.

Higher-spin/vector-model dualities are among the simplest possible examples of holographic

dualities, not only because the hologram is most simple (the bilinear sector of a free CFT) but

also because both sides of the correspondence are in principle under computational control in the

same regime (such dualities are sometimes called “weak/weak” dualities to emphasise this fact).

Accordingly, they might be explicitly provable, even with mathematical level of rigour, which

could be a tantalising goal for mathematical physicists interested in holographic duality. In

this sense, one may speculate that the explicit realisation of Fronsdal programme in AdS could

be key to proving the conjectured holographic duality. Conversely, the AdS/CFT dictionary

suggests a perturbative algorithm for the holographic reconstruction of the higher-spin gravity

theory in the interior from the boundary CFT. In this sense, the holographic reconstruction can

be interpreted as another angle of attack for the Fronsdal program around AdS, on the same

footing than the Noether method. Taking this view to the extreme, one could even be tempted

to interpret the CFT as providing a definition (albeit indirect) of the higher-spin gravity inside.

However, it is bulk locality that makes the AdS/CFT correspondence so highly non-trivial (when

it applies). Precisely, the problem with a holographic definition of higher-spin gravity is that

such a formal definition does not guarantee the existence of a perturbatively local solution to

the Fronsdal programme in AdS. The point is that holographic reconstruction is non-local in

essence (it involves boundary to bulk propagators, etc).

To sum up, string theory and holographic duality keep bringing many insights on higher-spin

gravity and point towards explicit solutions to the higher-spin interaction problem, though many

open questions remain.

Mathematics of higher-spin gravity: some basic ingredi-

ents and results

Higher-spin symmetry is so huge that the dynamics of the theory is essentially fixed by its

kinematics. In fact, the kinematical ingredients (i.e. spectrum and symmetry) essentially fix

the theory uniquely (i.e. interactions in the bulk, correlators on the boundary, etc). For this

reason, before turning to a sketch of the main strategies for building interactions two seminal

results (respectively on the symmetry algebra and on the spectrum of fields) are reviewed. They

are best described via the representation theory of the Lie algebra sopd, 2q, the AdSd�1{CFTd



isometry/conformal algebra.

In group-theoretical language, the one-to-one relation between bulk and boundary fields is

an intertwiner of equivalent representations realised either as an on-shell field on AdSd�1 or as

a conformal primary field on compactified Minkowski spacetime S1 � Sd�1. The jet space of

a conformal primary field (together with all their descendants) is dual to a generalized Verma

module

Vp∆; s⃗q � U
�
sopd, 2q

�
bUpRAisopd,1qq V p∆; s⃗q [9]

defined6 as the lowest-weight sopd, 2q-module induced from the irreducible finite-dimensional

module V p∆; s⃗q of the maximal compact subalgebra sop2q ` sopdq with weight r∆; s⃗s where:

� ∆ � E0 is the scaling dimension ∆ of the CFTd primary field or, equivalently, the lowest

energy E0 of the AdSd�1 particle.

� s⃗ � ps1, . . . , srq is the “spin” or, better, the weight with respect to the rotation subalgebra

sopdq of rank r. Since our focus is on totally-symmetric traceless tensors, for which s⃗ �

ps, 0, . . . , 0q, this weight will consist in a single number (so the notation will be abbreviated)

in the concrete examples.

The irreducible sopd, 2q-module obtained as a quotient of the generalised Verma module Vp∆, s⃗q

by its maximal submodule is usually denoted Dp∆, s⃗q in the physics literature.

The main players in the higher-spin holographic duality are the unitary irreducible represen-

tations of sopd, 2q that saturate the unitarity bound, such as

Dpd� s� 2, sq � Vpd� s� 2, sq {Vpd� s� 1, s� 1q [10]

for s ¥ 1. On the boundary, this sopd, 2q-module corresponds to a spin-s conserved conformal

current. In the bulk, it corresponds to a spin-s gauge field with Dirichlet boundary condition.

The unitary irreducible representation of sopd, 2q that saturates the unitarity bound for s � 0

is the minimal representation (aka the scalar singleton in the higher-spin literature)

Dpd�2
2
, 0q � Vpd�2

2
, 0q {Vpd�2

2
, 0q . [11]

On the boundary, it corresponds to an on-shell conformal scalar field ϕ satisfying the wave

equation lϕ � 0. It corresponds to the leading boundary data of an on-shell bulk scalar field Φ

6Consider a parabolic subalgebra h � g of a finite-dimensional semisimple Lie algebra g. The g-module
induced from a finite-dimensional h-module V is a filtered g-module V � Upgq bUphq V called the generalized
Verma module induced from the finite-dimensional module V .



satisfying the Klein-Gordon equation

�
gµν
AdS

∇µ∇ν �
pd
2
q2 � 1

ℓ2AdS

�
Φ � 0 . [12]

Higher-spin algebras admit various equivalent definitions (singleton symmetry algebra, oscil-

lator realisation, etc). Among them, one may pick the abstract definition of higher-spin algebras,

i.e. as quotients of the universal enveloping algebra Upsopd, 2qq of the conformal algebra. More

precisely, consider the quotient of the latter by its Joseph ideal, i.e. the annihilator of the scalar

singleton, AnnDpd�2
2
, 0q � Upsopd, 2qq. A concrete realisation of this higher-spin algebra is as

the maximal algebra of symmetries of the scalar singleton, as made precise by the following

theorem.

Theorem 1: [Nikitin (1991), Shapovalov-Shirokov (1992), Eastwood (2002)] The associative

algebra of higher symmetries of the wave equation lϕ � 0 on Rd�1,1 (i.e. differential operators Â

on Rd�1,1 such that l �Â � B̂� l and modulo trivial generators Â � Ĉ� l , for some differential

operators B̂, Ĉ on Rd�1,1) is isomorphic to the quotient algebra U
�
sopd, 2q

�
{AnnDpd�2

2
, 0q.

Furthermore, as a vector space it is isomorphic to the space of conformal Killing tensors fields

on Rd�1,1.

Vasiliev’s equations of bosonic higher-spin gravity around AdSd�1 (Vasiliev, 2003) are based

on a suitable real form hs
�
sopd, 2q

�
of the above algebra, endowed with the commutator as Lie

bracket. Furthermore, the reducibility parameters for a totally-symmetric tensor gauge field on

AdSd�1 are Killing tensors on AdSd�1. The latter are in one-to-one correspondence with the

conformal Killing tensor fields of the same rank defined on the boundary. Consequently, Theorem

1 ensures the match of symmetries in the higher-spin/vector-model duality. The match of spectra

is settled by another theorem, reviewed below.

By construction, the scalar singleton [11] is an irreducible representation of the higher-spin

algebra hs
�
sopd, 2q

�
with the remarkable property that it remains irreducible under restriction

to the conformal algebra sopd, 2q. On the contrary, its tensor product Dpd � s � 2, sqb2 spans

a reducible sopd, 2q-module whose decomposition in irreducible sopd, 2q-modules is provided by

the following theorem.

Theorem 2: [d � 3: (Flato & Fronsdal, 1978), d ¡ 3: (Vasiliev, 2004)] The tensor product of

two scalar singletons decomposes as the following sum

D
�d
2
� 1, 0

	
b D

�d
2
� 1, 0

	
�

8à
s�0

Dpd� s� 2, sq [13]

of the unitary irreducible sopd, 2q-modules describing the conformal currents of all ranks s P N.



The corresponding decomposition gives the spectrum on both sides of the higher-spin/vector-

model duality: the collection of bilinear conformal primary fields of the free boundary theory

(e.g. the conserved currents) and the collection of on-shell elementary fields in the interacting

bulk theory (e.g. the gauge fields). The sopd, 2q-modules [10] on the right-hand side of Eq.

[13] can be interpreted either as the Noether currents associated to the symmetry algebra of

the free singleton on the boundary, or as on-shell massless fields in the bulk. The left-hand

side of Eq. [13] can be interpreted as the bilinears in the scalar singleton while the right-hand

side reproduces the spectrum of the higher-spin gravity in the higher-spin/vector-model duality.

Hence, Theorem 2 ensures the match of spectra.

Furthermore, a corollary of Theorem 2 is that the sum of all vacuum bubble diagrams of the

higher-spin gravity vanishes in the zeta-regularisation (this can be shown via the corresponding

sopd, 2q-characters). More generally, the vanishing of vacuum one-loop quantities (partition

function, Casimir energy, etc) is by-now well-established, see e.g. Section 11 in (Giombi, 2016).

Finally, the higher-spin symmetries are known to impose that the CFT must have correlators

equivalent to the ones of the free vector model (c.f. the Maldacena-Zhiboedov theorem and

its avatars). In this sense, the boundary correlators that would be obtained via the Gubser-

Klebanov-Polyakov-Witten prescription from the on-shell value of a bulk action for higher-spin

gravity should necessarily be equivalent to the ones of the free vector model. Although the last

argument does not yet yield a mathematically complete and rigorous proof, these results makes

a very strong case in favour of the conjectured duality. Still, a rigorous proof of the duality

cannot make the economy of facing the Fronsdal programme in AdS spacetime in one way or

another. Therefore, let us now briefly mention some results on the latter programme.

There are two celebrated manifestly-covariant tensorial7 formulations of higher-spin gauge

fields: the metric-like and the frame-like formulations. Accordingly, there are two main paths

for introducing interactions:

� Metric-like formulation: Higher-spin gauge fields are described as completely-symmetric

tensor fields hµ1...µs P ΓpdsT �Mq of higher rank s ¡ 2 on the spacetime manifold M . The

Fronsdal formulation reviewed above is a particular example of metric-like formulation of

the free theory.

The main results on higher-spin interactions that have been obtained in this formulation

are perturbative:

– the systematic classification of vertices, which are consistent with gauge symmetries

and modulo field redefinitions.
7In four dimensions, there are also formulations (such as the light-cone and twistor ones) which are not

necessarily tensorial. They allow to bypass some of the obstructions met by the Fronsdal programme. Due to
lack of space, they are not reviewed here.



– the (re)construction of vertices (and/or study of their physical properties, such as

locality) either as scattering amplitudes in flat or AdS spacetimes, or as effective

action vertices (in the case of conformal higher-spin gravity).

� Frame-like formulation: Higher-spin gauge fields are described in terms of generalised

coframes, i.e. tensor-valued differential one-forms ea1���as�1 � dxµ ea1���as�1
µ P Ω1pMq bÄs�1RD on the D-dimensional spacetime manifold M (where Greek indices are holonomic

while Latin indices are fibre indices in a given tangent frame), together with a collection of

generalised spin-connections ωa1���as�1 | b1���bt � dxµ ω
a1���as�1 | b1���bt
µ (t � 1, 2, � � � , s � 1). The

collection of one-forms (frame-like and generalised spin-connection) must be in one-to-one

correspondence with the generators of a higher-spin algebra.

In this formulation, one can construct fully interacting theories by looking for inspiration

in three seminal contributions by Élie Cartan:

– Cartan’s calculus (Differential forms and exterior calculus): The action, equations of

motion and gauge symmetries of the free theory are rewritten in the coordinate-free

language of differential forms in terms of the above collection of one-forms.

– Cartan’s view of gravity (Cartan connection on a principal bundle): The idea is to

replace, in the Cartan connection of gravity, the isometry algebra by its higher-spin

extension. In this way, one builds a Cartan-like connection one-form (as well as its

curvature two-form and gauge parameter zero-form) taking values in the higher-spin

algebra. The flat Cartan connection provides a coordinate-free description of the

vacuum solution. The linearisation of the Cartan-like formulation must reproduce

the free theory.

– Cartan’s method of prolongation (Geometry of PDEs): One reformulates the equa-

tions of motion as an exterior differential system or its modern avatars (such as L8-

algebras, Q-manifolds, etc). This procedure is known as “unfolding” in higher-spin lit-

erature. This reformulation lifts the deformation problem to the infinite-dimensional

target space, which allows to apply modern techniques from the deformation theory

of associative algebras to the higher-spin interaction problem.

One can conclude this brief survey (for more recent applications and developments, see e.g.

the white paper (Bekaert et al, 2022)) with a list of the two major open problems in higher-spin

gravity:

� Problem 1 (locality vs formality): Clarify the status of perturbative locality (or find

a mathematically precise substitute) in unitary higher-spin gravity in dimension four.



� Problem 2 (higher-spin symmetry breaking): Design a suitable mechanism for spon-

taneously breaking higher-spin gauge symmetries to the usual low-spin ones (such as dif-

feomorphisms). At interacting level, this issue essentially is uncharted territory. It is not

even clear how to address it. Nevertheless, this issue remains cardinal in order to relate

higher-spin gravity to low-spin physics, e.g.

– define a low-energy limit and make contact with standard gravity, tensile strings, ...

– obtain a nontrivial scattering matrix and make contact with non-integrable interacting

CFTs, string amplitudes, ...

A reasonable expectation is that Problems 1 and 2 should be intimately related.

Conclusion

Higher-spin gauge fields have a long history and provided a wealth of well-posed mathematical

problems, notably the introduction of consistent interactions among them. Understanding bet-

ter the properties of higher-spin interactions remains a major challenge in theoretical physics,

motivated by general considerations in quantum field theory, string theory and holographic du-

ality. The deep relation between higher-spin gravity and important topics of contemporary

mathematics might also keep some surprises in store.
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