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Abstract

Transcriptomics and metabolomics, two biological research fields that need large
numbers of zebrafish embryos, require the removal of unfertilized or nonviable
zebrafish embryos. Biologists routinely conduct the tedious, error-prone, and
time-consuming manual sorting of embryos. We suggest a novel approach that
combines deep learning and microfluidics for automated sorting to overcome this
difficulty. To determine the developmental stage and viability of zebrafish eggs,
we trained an optimized YOLOv5 model with 95% accuracy and a processing
speed of 10.6 ms per frame, classifying them as dead, unfertilized, or alive. The
eggs are contained in traps on a microfluidic chip using micro-pumps. After that,
the deep learning system can identify and automatically sort the eggs according
to their viability by positioning this chip on an XYZ motorized stage.The sorting
experiment was conducted in two modes: without feedback and with feedback
while using the dead egg position. The first one had a sorting success rate of
90% as opposed to 97.9% for the feedback mode with 3 seconds required for each
dead egg. This automated approach provides a precise and efficient way to han-
dle a large number of zebrafish embryos while also greatly reducing the workload



associated with manual sorting. The success rates attained demonstrate the use-
fulness and effectiveness of our suggested methodology, opening new avenues for
biological research involving accurate embryo selection.

Keywords: Zebrafish embryo, Deep Learning, Micro robotics, Microfluidic, YOLOv5

1 Introduction

Research often utilizes patients cells or tissue samples, but to determine if a mutation
in a specific gene can cause a patient’s symptoms, experimental animal models are
often needed. The zebrafish (danio rerio) has emerged as an important model organ-
ism for developmental genetic studies as well as for drug discovery. Researches based
on the zebrafish have brought to new advances in numerous medical fields. Its anal-
ysis is crucial in the study of hematopoietic, cardiovascular and vascular disorders,
as well as of tumours, neurodegenerative and neuromuscular diseases like Alzheimer’s
syndrome, Huntington’s disease and Duchenne muscular dystrophy. These Zebrafish
mutants are therefore used to simulate the human pathologies in order to study effec-
tive pharmacological therapies. However, manual handling of zebrafish embryos is a
tedious and time-consuming task due to their small size and the large quantity of
samples usually required in an experimental setup [1]. The need for a fast and auto-
mated screening method to improve working conditions with zebrafish embryos and
larvae has become critical. Retrieving and sorting eggs after a spawning event and
removing the unfertilized or dead ones is of high importance for maintaining optimal
growth conditions and promoting the well-being of growing embryos. Contaminated
hatching water stimulate bacterial proliferation among the eggs which secrete enzymes
to degrade the egg shells, leading to premature hatching and death. Similarly, fungi
spores can develop and spread over dead eggs and eventually spread to healthy eggs,
compromising embryos development. Therefore, removing unfertilized eggs or dead
embryos is crucial to prevent batch contamination as spoiled eggs can serve as a growth
medium to deadly microorganisms [2]. Including unfertilized eggs or premature dead
embryos in a cohort of tested embryos can lead to non-precise results as unfertilized
eggs will increase the death rate following a screening assay. Therefore, early sorting
of embryos should be performed not only to prevent batch contamination but also to
exclude any irrelevant samples from the experiment [3].

The current state of technology for automated microscopic imaging of zebrafish
and interpreting these images is well-established. Nevertheless, automating the sample
preparation process offers further opportunity for unique developments [4]. To assess
the trend in the cell preparation domain, powerful strategies to sort cells utilizing high
spatial and often time-resolved data have emerged, collectively called Image-Based
Cell Sorting (IBCS) [5]. These IBCS platforms address major limitations of commonly
used technologies, such as Fluorescence-Activated Cell Sorting (FACS) and Magnetic
Activated Cell Sorting (MACS) which are the most commercialized methods for sorting
cells. The Big Data Era and the development of Deep Learning (DL), image detection
will become the mainstream for single cell analysis [5]. DL techniques enhance the



detection procedure compared to conventional techniques as it reduces the expensive
computational time as well as detecting irregular shapes which is common among the
biological cells [6]. Researchers have developed a classification software using SVM
able to differentiate wild-type embryos from mutant individuals with an accuracy of
79-99% depending on the test and system [7]. A sorting system based on Convolutional
Neural Networks (CNN) is capable of sorting and placing individual zebrafish eggs in
multiwell plates [8]. A fully automated pipetting sorting system based on template-
matching algorithms made it possible to classify zebrafish eggs and sort them with a
robot [9]. Although several machine learning approaches are available and can achieve
reliable detection results but Deep Neural Networks (DNN) is the most popular system
exploited so far for zebrafish egg detection [6, 10, 11]. EmbryoNet is a software based
on a DNN model to identify zebrafish embryo signaling mutants in an unbiased manner
[12]. A system based on Inception v3 allows to detect and performs microinjection on
zebrafish eggs [13].A machine vision guided robot based on YOLOv4 is developed for
fully automated embryonic detection and microinjection [14].

Microfluidics-based approaches are in their early stages and hold significant impor-
tance. The fabrication of microfluidic chips becomes economically viable once their
design is established, potentially reducing the price barrier for widespread adoption.
As an investigative tool, LOC (Lab-On-Chip) represents a new direction that may
miniaturize and revolutionize research in toxicity and physiology in vivo [15]. Com-
pared to other non-contact methods for manipulating cells, microfluidics is interesting
as it can accommodate different actuation techniques, in addition to flow-control based
approaches [16]. However, in case of using external activation, electric or optic, there
is currently no guarantee that the field will not damage or badly influence the tar-
geted cell. Using only the fluid’s power on the cells guaranteed the cells to stay in
liquid medium all the process. Also, with the possibility of designing microfluidic chips,
cell immobilization chambers can then be created. Combining microfluidic approaches
with DL to automate sorting and selection of zebrafish embryos might replace sample
manipulation steps that researchers currently perform manually [4]. Microfluidic chip
has been used with zebrafish embryos but more for culture, perfusion systems [17, 18].
This work describes a zebrafish egg sorting system based on robotic, microfluidic and
DL. While zebrafish egg classification systems have been well-established in the liter-
ature, fast and precise zebrafish egg sorting systems have not received much attention
and exploration.

2 Materials and methods

2.1 System overview

A DL model for zebrafish permit to sort dead or unfertilized embryos and viable
embryos of stage 1 or other stage of development. The process is conducted in two
phases: the phase of filling the traps of the microfluidic chip with zebrafish embryos
then the robotic sorting phase.



2.1.1 Filling process

This is the phase where zebrafish embryos measuring approximately 1mm are placed
in cavites. The idea of placement is to facilitate and organize sorting later.

(A)

Fig. 1 (A): Microfluidic chip design. (B): The geometric parameters of a single cavity.

During the filling phase, the eggs swim in the water injected into the channel of
the microfluidic chip and fall into designed traps (see Fig.2(B)). A single egg can fill
a trap and the others slide over it to pass through the other traps. This method is
based on gravity and sliding of embryos in traps which has shown its effectiveness
for immobilization in many previous works with zebrafish embryos. The trapping of
zebrafish embryos in microfluidic devices relies on the forces generated by fluid flow
within the microchannel. These forces are essential for directing the embryos towards a
trapping cavity where they can be held in place. The transport passageway facilitates
the flow of fluid, which carries a component force directed towards the trapping cavity,
effectively trapping the embryo. The magnitude of this component force is closely
related to the geometric parameters of the trapping cavity. Figure 1(B) illustrates these
geometric parameters and their association with the size of the trapping component.
These parameters may include dimensions such as width, length, and depth of the
trapping cavity, among others. Tang et al. [19] describe that the ability to trap embryos
depends on the flow resistance along two pathways:

e Path 1 (Rz): Flow resistance along the main channel.
e Path 2 (Ry): Flow resistance along the trapping cavity direction

According to the work [20], the flow resistance along the main channel (Path 1) and
along the trapping cavity direction (Path 2), can be described as :

oy

- w? w? H.Ly, (Wy, + H.)?

= + .
Ry,  |H.L,(W.+ H,)? H,L,(W.+ H,)’ W,

(1)



where W(.) is the width of the channel, H.) is height, and the L(.) is the length.
Letter m , ¢ , and t stand for the main channel, trapping cavities, and transport
passageway (behand the cavities) separately. Embryos can be effectively trapped when
the flow resistance along both the main channel and the trapping cavity direction are
appropriately balanced. This balance ensures that the fluid flow exerts a sufficient force
to direct the embryos towards and eventually trap them within the designated cavity.
Adjusting the geometric parameters of the trapping cavity can influence this balance
and hence affect the trapping efficiency of zebrafish embryos in microfluidic systems.
To ensure that the trapping cavity can provide enough force to the embryo during the
trapping process, it’s necessary to adjust the cavity-related parameters (Hgy, We, Lg,
L;) in such a way that the flow resistance ratio Rz : Ry is greater than 1. This ensures
that the flow resistance along the main channel (Rx) is higher than the flow resistance
along the trapping cavity direction (Ry), allowing for effective trapping of embryos.
The detailed parameters of the channel should be adjusted according to equation 1 to
achieve the desired trapping and release behaviors of the embryos. The specific values
for these parameters found for this study are in Table 1.

Table 1 The
parameters of the
channel

Parameters  Size/mm

Lm 20
Wm 3

Lg 1

Lt 1.5
Hc 1.5
Wec 1.5
Hg 0.5

2.1.2 Robotic Sorting process

Once eggs are immobilized in traps on the microfluidic chip , the cover is removed and
the chip is placed on a motorized XYZ-stage (see Fig.3). The stage placed above a DL
system moves the microfluidic chip such as each trap will be examined. The cell clas-
sification algorithm will be used to decide to remove or to keep the concerned egg. A
micromanipulator with a glass pipette as an effector is used to suck and hold the con-
cerned egg to finally place it in the waste part of the chip (see Fig.4). The automated
suction process involves the utilization of a piezoelectric water pump that is connected
to the holding pipette. This pump is activated once the holding pipette reaches the
designated pick-up point. Google Colab’s Tesla T4 GPU was used for DL model train-
ing. Figure 11 shows the different devices for sorting process. The experiment was
carried out with the uMp manipulator from Sensapez, the XYZ-stage LNR50D and
DRV250 stepper motors from Thorlabs. The vision system comprises a UI-3590CP-
C-HQ R2 USB camera from IDS Imaging Development Systems, a LM50HC-VIS-SW



lens from Kowa and OZB-A4515 6W LED lights from Kern Optics. Bartels mikrotech-
nik’s piezoelectrip mp6-lig micropumps were used for cell suction as well as for the
zebrafish embryo filling system in the traps of the microfluidic chip.
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Fig. 2 PHASE 1 : (A): Overview of the filling system, egg are injected with the pipette from the
top , (B) : Close look-up to the chip when eggs are injected
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Fig. 3 PHASE 2 : Schematic overview of the sorting system.

2.2 Chip Design and Fabrication

The microfluidic chip comprises an inlet and an outlet, along with traps designated
for cell placement. A waste part is where dead eggs are placed by the micromanipu-
lator (see Fig.1). The other parts will be filled by cells at the corresponding stage of
developmentThe chip is designed with the 3D CAD software : Solidworks 2021 and
printed using Formlab’s Form 3+ printer with clear V4 resin. After printing the chip
is cleaned with isopropanol then placed in UV light for 30 min at 60°C. A cover where
also eggs can be injected made with the same resin is placed above the chip durin the
filling process.



Microfluidic chip Microfiuidic chip
(A) (8)

Fig. 4 Pick and place process: (A) Dead or unfertilized embryo being picked. (B) : placed on waste
part. Dead cell are black dots and orange are for livable.

2.3 Data collection, labelling and augmentation

The dataset collection was conducted during the first 5 hours after the immediate
collection of fresh zebrafish embryos. The zebrafish embryo images were captured
at different developmental stages. Images were collected using a combination of an
external USB camera UI-3590CP-C-HQ R2 from the manufacturer IDS Imaging Devel-
opment Systems connected to the microscope Nikon SMZ800N. So, 1061 images were
taken and for the purpose of dataset preparations, the online tool called RoboFlow
was used. Images are labelled into seven classes : 'stagel’ | 'stage2 — 4, 'advanced’,
'dead’, 'returned’, 'empty’ , 'holder’.

(a) (b) (c) (d)

(e)

Fig. 5 Differents classes of the model. (a) : stagel , (b) : stage2 — 4, (c¢) : advanced, (d) : returned,
(e) : holder, (f) : dead . (g) : empty

Especially since many study with zebrafish are generally done at the primary stage
like microinjection, it is then necessary to detect and differentiate stages 1 and 2 or 4.
So after 1 hour post fertilization (hpf), if an egg remains at stage 1, it means that it
is unfertilized. Advanced stages, ie above stage 4, are combined in a single class. the
"empty’ class represents an empty cavity and the 'holder’ class represents the tip of
the pipette which will suck up the embryos Augmented data is driven from original
data with some minor changes. In the case of image augmentation, geometric and color
space transformations are made (flipping, resizing, cropping, brightness, contrast) to



increase the size and diversity of the training set. Rotation, brightness and satura-
tion operations was performed. Image augmentation techniques like random rotation
are commonly used in computer vision tasks to augment the training dataset, thereby
increasing its diversity and reducing overfitting. Random rotation introduces variabil-
ity into the training data, which enables the model to learn to recognize objects or
patterns from different perspectives, making it more resilient to variations in real-
world scenarios where the camera angle may vary. The eggs swim in the water which
means that they rotate arbitrarily by the action of the flow, so applying a rotation
augmentation is suitable for a more powerful model. Applying a brightness augmen-
tation makes sense because the model may be used in scenarios where the brightness
varies. For example the brightness varies from different microscope images. Adjusting
the saturation of images during training make it possible to simulate different color
environments and conditions, allowing the model to learn features that are invariant
to changes in color saturation. This can help the model generalize better to real-world
scenarios where the colors may vary significantly. These operations resulted in a more

Table 2 Data augmentation
parameters

Operation  Values

Rotation -15° and 15°
Brightness -25% and 25%
Saturation -25% and 25%

larger, augmented training dataset with 2302 images.

2.4 Description and evaluation of YOLOvVS5 algorithm

A recent version of the YOLO (You Only Look Once) algorithm: YOLOv5 [21]
was employed. YOLOv5 builds upon the previous versions, incorporating various
improvements in terms of speed, accuracy, and efficiency.Its architecture is composed :

® Backbone: YOLOvV5 uses a CSPDarknet53 backbone as its feature extractor. CSP-
Darknetb3 is a variant of Darknet, which is a deep neural network architecture
designed for object detection tasks. CSPDarknet53 includes a ”cross-stage partial”
(CSP) connection scheme, which enhances feature reuse and gradient flow, leading
to improved performance.

e Neck: A novel neck architecture called PANet (Path Aggregation Network) is intro-
duced. PANet is designed to aggregate features at different scales and resolutions
efficiently, enabling the model to detect objects of varying sizes effectively.

® Head: The detection head of YOLOV5 consists of several convolutional layers respon-
sible for predicting bounding boxes and object classes. YOLOv5 predicts bounding
boxes using anchor boxes and employs a variant of the focal loss function to handle
class imbalance during training.



Overall, YOLOvV5 is designed to provide a good balance between speed and accu-
racy, making it suitable for various real-time object detection applications, including
autonomous vehicles, surveillance systems, and robotics. Its modular architecture and
different variants offer flexibility to accommodate different computational constraints
and application requirements. YOLOvV5’s speed is an important criterion in the sorting
system because zebrafish embryo sorting must be done quickly, especially at the first
stage of development in order to be able to carry out biological studies like microin-
jection before they move on to the later stages of development. The YOLOv5 training
process involves optimizing several loss functions to ensure accurate object detection.
The loss function is the combination of loss functions for the bounding box, classi-
fication, and confidence. Equation 2 represents the overall loss function of YOLOv5

lossy 0r.0vs = 10SSppor + 108Sciass + 108Scont (2)

Where conf refers to confidence, bbox to bounding box and class to classification. The
box loss measures how well the predicted bounding box covers the object and accu-
rately locates its center. It evaluates the spatial accuracy of the predicted bounding
boxes. Objectness measures the likelihood that an object is present within a specific
region of interest. It helps in distinguishing between true objects and background clut-
ter. The classification loss evaluates how accurately the model predicts the correct
class label for the detected object. It assesses the algorithm’s ability to classify objects
into predefined categories. Common evaluation metrics for DL are precision (P), which
is precision rate, recall rate (R) and mean average precision (mAP) and Intersection
over Union (IoU) . The expressions are as follows:

TP
P= (TP + FP) 3)
TP
B=Tpirm @
_ Areaof Overlap

IoU =

()

Areaof Union

ToU is a measure of how well the predicted bounding box overlaps with the ground-
truth bounding box as shown in Equation 5. Among them, true positives (TP), false
positives (FP), and false negatives (FN), represent positive samples with correct clas-
sification, negative samples with incorrect classification, and positive samples with
incorrect classification, respectively. AP is the average accuracy rate, which is the
integral of the P index to the R index; mAP is the average accuracy of the mean,
which means that the AP value of each category is summed, and then divided by all



categories, i.e., the average value. It is defined as follows:
1
mAP = —— AP(q 6
aa X AP0 0

A high mAP means that the model has both a low false negative and a low false
positive rate. The higher the mAP, the more precise and the higher the recall is for
the model. Additionally, mAP@0.5 and mAP@QQ.5 : 0.95, which assess the mAP over
different IoU thresholds from 0.5 to 0.95.

2.5 Optimization of the hyperparameters

Hyperparameter tuning in object detection involves selecting the best values for
parameters that shape the model’s architecture and training process. These param-
eters significantly affect the model’s accuracy, precision, and recall. The process of
hyperparameter tuning entails systematically testing different combinations of these
parameters to identify the configuration that maximizes the chosen performance met-
ric, like accuracy or mAP. Common techniques for hyperparameter tuning include grid
search, random search, Bayesian optimization, and genetic algorithms. Each method
aims to efficiently explore the hyperparameter space to find the optimal configuration
for the object detection model. Selecting the optimal hyperparameters for YOLOv5
is particularly challenging due to the vast parameter space involved. Initially, we uti-
lized the hyperparameters provided by the official YOLOv5 model as a starting point
and fine-tuned them for our custom dataset. Each model underwent training and eval-
uation using an objective function, where we employed mAP metrics with a specific
weighting scheme to ensure consistency with our evaluation method. Models were
selected based on a fitness score derived from the evaluation metrics, aiming to max-
imize this score. These models were then subjected to a genetic algorithm mutation
operator, which introduced random perturbations to explore new configurations while
preserving successful solutions. The iterations continued for 10 generations. The final
hyperparameters were chosen based on the YOLOv5 model with the highest evaluation
metric score at the end of the iterations. We successfully tuned all 29 hyperparameters
for YOLOv5, demonstrating its effectiveness in improving overall detection accuracy.
Figure 8 illustrates the hyperparameter tuning process using a Genetic Algorithm,
with the fitness score plotted on the y-axis and hyperparameter values on the x-axis,
where greater concentrations are highlighted in yellow.

3 Results and discussion

The training was completed in 100 epochs, a batch size of 16 using YOLOv5x which
is the extra large version of YOLOv5. This version comes with high robustness at the
cost of higher computation time. The pixel size of the input image was set to be 640
x 640.
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3.1 Zebrafish embryo detection results

The training results are summarized in the Table 3. The values of Precision, Recall
and mAP are obtained using the equations respectively 3, 4, 6 The confusion matrix

Table 3 Training results for each class.

Classes Precision Recall mAPQ@0.5 mAPQO0.5:0.95

stage 1 0.732 0.814 0.851 0.732
stage 2 0.717 0.844 0.866 0.767
dead 0.894 0.905 0.95 0.772
advanced  0.902 0.838 0.941 0.801
returned 0.892 0.875 0.92 0.819
empty 0.865 83 0.921 0.798
holder 0.983 1 0.995 0.853
all 0.868 0.882 0.93 0.784

dead advanced

empty

halder

Predicted

0

returned

stagel

background FN stageZ-4

=0.0
advanced dead empty haolder returmed stagel stage?-4 background FP
True

Fig. 6 Confusion matrix was made at IoU threshold of 0.45, confidence threshold of 0.25.

(see Fig.6) helps in understanding the classes that are being confused to other class.
The 'empty’ and "holder’ classes are the most precise and are not confused by any
other class because simply they aren’t look like them. Similarly 'dead’ class is not
confused because, egg becomes degraded with whitish or black colors depending on

11
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Fig. 7 Performance of first training. (a) mAP@0.5 and mAP@0.5 : 0.95 evolution through gener-
ations. (b) overall training loss and validation loss plotted using equation 2

the luminosity applied, this shows why they are not confused. The training loss serves
as a measure to evaluate how well a deep learning model aligns with the training
data. It gauges the model’s error on the training set by reflecting how well the model
is fitting the training dataset. It should decrease over time as the model learns from
the dataset which is our case (see Fig.7). However, a very low training loss doesn’t
necessarily mean the model will perform well on new, unseen data, as it may have
overfit the training data. Hence the usefulness of the validation loss which helps assess
how well the model generalizes to data it hasn’t seen during training. The two curves
converge but with a shift all the same, which shows that the model learns well from
training data but does not perform very well on validation data. So, the first training
gives an accuracy of 0.93 but in order to have better results, we try to optimize the
hyperparameters. *

Table 4 Optimized model results through generations

Generations  Precision  Recall mAPQ0.5 mAPQO0.5:0.95

1 0.86711 0.9253 0.93 0.7884
2 0.8394 0.93655  0.93317 0.797

3 0.8671 0.8988 0.94145 0.8116
4 0.85584 0.9026 0.9374 0.80353
5 0.8425 0.9088 0.9231 0.7725
6 0.8619 0.9273 0.9459 0.8108
7 0.85676 0.93631  0.9428 0.8088
8 0.8668 0.9512 0.9480 0.8042
9 0.8858 0.8834 0.9392 0.7960
10 0.9015 0.9102 0.9545 0.8206

The optimization of the YOLOv5 model offers several advantages. As shown in
Fig.9 and summarized in the Table 4, the model consistently achieves higher accuracy
over generations. Therefore, the training and validation loss for the optimized YOLOv5
demonstrates a significantly better fit for the training and validation datasets. Unlike

12
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Fig. 8 Some hyperparameters tuning.Fitness score plotted on the y-axis and hyperparameter values
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Fig. 9 (a) Overall training loss and validation loss optmized (10th generation) plotted using equation
2. (b) mAP@O0.5 and mAP@OQ.5 : 0.95 evolution through generations

the default model, this one shows a loss validation curve which follows the loss training
towards the end of the epoch. Our model provides accuracy of approximately 82%
mAP@0.5:0.95 and 95.4% mAP@QO0.5, while the default model provides accuracy of
approximately 78% mAP@0.5:0.95 and 93% mAP@Q.5 after 100 epochs. Which is an
increase of 4% and 2.4% respectively.

The model was tested on a testing database of 241 images. Using the same GPU
, we obtained an accuracy of 95% with a detection speed of 10.6 ms per frame. The
Figure 10 shows some examples of zebrafish egg detected with our trained model.
The model is able to detect different stage of development of zebrafish egg as well as
mortality with confidences above 90%.

13



(a) (b) (c)

Fig. 10 Some examples of images coming from the test dataset with eggs detected by our model.
(a) : stage 1, (b) : stage 2-4 , (c) : returned

3.2 Zebrafish embryo sorting experiment result

The model optimized is used to perform zebrafish egg sorting. The experiment was
carried out with 40 eggs for each trial separated into 20 dead eggs and 20 livable
eggs at different stages of development. The eggs are injected with a pipette into
the microfluidic chip at 1 hpf. After immobilization , the chip is placed in the XYZ-
stage, then the sorting process begins. Six trials was performed, the first two trials
without feedback use of dead egg position and the others with feedback use of dead
egg position.

Fig. 11 Overview of the real system for the experiments.

3.2.1 Without feedback use of dead egg position

In this mode the XYZ-stage speed is set at 20mm/s and the manipulator at 4mm/s.
The microfluidic chip is designed so that the traps all have the same horizontal distance

14



between them. The camera is being fixed and focus on a starting trap. The XYZ-
stage is controlled in step by step mode. Each step of the XYZ-stage corresponds to a
displacement from trap to trap and a focus of the camera on the following trap. The
position of the traps being predefined, the micromanipulator is initialized by fixing
Z and Y coordinates during the two first trials so that the holdertip glass faces the
initial trap. We measure the necessary displacement along X from the initial position
to reach the egg in the trap. This predefined distance is integrated into the coding
program for access to an embryo in case of sorting. The first trial showed a major
efficiency (100%) in the detection of eggs because all dead eggs and livable eggs were
well detected, however, the pick and place procedure had a very low efficiency since
only 5 of them was well picked. This was indeed due to a large part of the water in the
system is removed by the pump system in the traps filling process to prevent zebrafish
embryos displacement after immobilization. To overcome this, the pump was set in
bidirectional mode. This allows to inject a quantity of water necessary for suction and
then automatically suck the egg with this water injected in the trap. A second trial
begins with a pump set to bidirectional mode for the suction process and results in
a pick and place success percentage that has improved significantly from 20% of the
first trial to 90%.

3.2.2 With feedback use of dead egg position

The previous trial gave satisfactory results. Nevertheless, the micro-displacements of
the chip finally result from a bad position of the trap in the picking process but
can be solved by fixing the chip on the XYZ-stage. Anyway, the first approach is
weak in terms of adaptation because a small displacement of the chip or a change
of position of the traps in the chip would limit the sorting process. We aim to make
the holding pipette able to access to an egg according to the pixel coordinates of the
egg. Given that the field of view (FoV) doesn’t change during all the process because
the camera is fixed, only two coordinates of the micromanipulator are used during
the picking process namely X and Y. The displacement of the micromanipulator for
the picking process is in reality only two translational movements, under the x and y
axes, while z axis is fixed for all the process. We create an equation to map camera
pixel Y*, X* coordinates of the holdertip to global reference frame X, Y coordinates
of the micromanipulator. To do so, we choose an initial position of the holdertip in
the FoV and make travel the micromanipulator along the y axis throughout the FoV
by taking images and recording the real positions of the manipulator corresponding to
each image. We do the same operation for the x axis. These images are then applied
to our YOLO model detection algorithm by adding a segmentaion algorithm named
YOLOVvV5 Instance Segmentation for the holding pipette which will allow to recover
the pixel coordinates of the holdertip (see Fig.13(B)). We then plot the curves of the
coordinates of the micromanipulator X , Y as a function of the pixel coordinates X*
, Y* of the holdertip. The trend curves are thus recovered (see Fig.12). We obtain
a relation between the variation of the pixel coordinates of the holdertip and global
frame coordinates of the micromanipulator. Let’s assume that the micromanipulator
is at the initial position (Xi,Yi) global reference frame and the holdertip is at (X* Y*)
pixel coordinate (see Fig.13(A)). When a dead egg is detected by our model at (Xc,Yc¢)
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Fig. 12 (a): Manipulator global frame coordinates X in micrometer evolution in the FoV according
to the holdertip pixel coordinates X*. (b): Manipulator global frame coordinates Y in micrometer
evolution in the FoV according to the holdertip pixel coordinates Y*
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Fig. 13 Illustration of pipette displacement. (Xf,Yf) : Micromanipulator real frame coordinates
(final position); (Xi,Yi) : Micromanipulator real frame coordinates (initial position); (X*,Y*) : Pixel
coordinates of the holdertip ; (Xc,Yc) : Pixel coordinates of the cell. (B) An example of detection
followed by segmentation of the holding pipette

pixel coordinates, to minimize the distance d between the holdertip and the dead
egg, it suffices to calculate the global reference frame coordinates of the manipulator
defined by the mapping equations:

X f=0.0007Xc* 4 2.3122X ¢ + 9141.9 (7)

Y f = —0.0004Y ¢ + 2.0947Y ¢ 4 16227 (8)

With the equations thus obtained, it is possible to move the holdertip in the FoV
based on the pixel coordinates of the egg and tests show a margin of error of +2um,
which is acceptable considering the size of zebrafish embryo (0.7 mm). During trial 3,
we define the initial position of the micromanipulator the same as when establishing
the mapping. In this experiment, we move the stage continuously rather than in steps,
and it only stops when a dead egg is found by the DL model. Dead eggs are reached
by the glass pipette holder by putting the pixel coordinates of the detected cell into
the equation (See equations 7 and 8). The two equations serve as a mapping tool that
enables the holdertip to precisely locate and access dead eggs. In trials 3,4,5 and 6,
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the implementation of these formulas resulted in a 97% success rate for the pick and
place process but a decrease of the embryo’s detection accuracy which is 98%. This
decrease in the accuracy of the classification of zebrafish embryos may be due to the
movement of the stage which is not adequate with the number of frames that the
camera can take because certain embryos will require more stability to be well seen.
For example, the camera can capture frames with images of half-viewed embryos. By
further reducing the speed of the XYZ stage, we will be able to obtain better results
at the expense of the speed of the sorting process.

Holding pipette placed In front of the egg Holding pipette initially not Holding pipette approaching
makes a direct movement to reach the egg. placed In front of the . the egg based on equations.
i Sl - o

\

(A) t=0s

_ o C] t=2s D) t=3s
o Lxes ®) teRe HWW;#JOMWMH Hd;m;dmdds
Holding pipette picks the egg. the
the egg. (X) (Y) “

Fig. 14 X: Without feedback use of dead egg position. (X.A): Dead egg in the trap, , holdertip no
need to be in the FoV. (X.B): access of the pipette in the trap, aspiration in progress with 500ml/min
during 1 s. (X.C): Egg already picked. (X.D): Empty trap, after aspiration. Y: With feedback use
of dead egg position. (Y.A): Dead egg in the trap, holdertip in the FoV. (Y.B): Holdertip going to
the egg position using map equations. (Y.C): Aspiration in progress with 500ml/min during 1 s.
(Y.D): Egg already picked, empty trap after aspiration. When using feedback of dead egg position,
the holdertip can be anywhere in the FoV and manages to access the egg compared to the other mode
, the holdertip must be initialized to be in front of the starting trap and only moves along x axis to
acess the dead egg.

Sorting out dead or unfertilized zebrafish eggs is an important task for biologists.
Our optimised detection model succeeds in detecting zebrafish eggs observed during
the tests with acceptable accuracies which vary depending on the operating mode.
Moreover, this is done with high processing speed (10.6 ms per frame), which makes it
possible to fully explore the chip (36 egg traps) in 44 s if traps contain livable eggs or
empty. The idea of the microfluidic chip greatly improves the pick and place or access
to an egg in general, because it greatly reduces computation time while immobilizing
the egg at the same time. The microfluidic chip allows eggs to be stored in cavities
without handling them with contact, which can damage them. Without feedback use
of dead egg position mode, the micromanipulator is calibrated so that the y and z
axes are fixed. Knowing the distance between the cavities, the displacement of the
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XYZ-stage is chosen as being the distance which separates the cavities. Therefore,
the cavity must be in front of the pipette holding and a translation on the x axis
will allow the embryo to be recovered as shown in figure 14(X.B). However, a simple
calibration error will upset the process without use of feedback for the dead embryo
position. Using a feedback mode ie with feedback use of dead egg position, gives us
more efficiency in the picking process but decrease the scanning speed of the chip. In
continuous mode, the experiments made have shown that the maximum speed of the
XYZ-stage which allows detection of zebrafish eggs is around 4 mm/s. Under these
conditions, our microfluidic chip is fully explored in around 52 s if all of the traps are
empty or contain livable eggs. The feedback mode offers more robustness because, a
change of the microfluidic chip and its characteristics or a micro-displacement of the
chip will not affect the process. The holding pipette no longer needs to be exactly in
front of the face of the embryo to access it. In figure 77, the holding attacks the cell
from the side and manages to find the cell using the equations and pixel coordinates of
the center of the embryo. This is a major advantage of the feedback mode because the
accuracy of sorting increases but the speed of the exploration of the chip is reduced.
This is normal because closed-loop systems work precisely due to the feedback system.
Open loop system usually gives fast response, while closed loop system gives slow
response. A better approach which would combine the two advantages of the two
modes would be to combine a movement of the XYZ stage in step by step mode with
a high speed (20 mm/s) and use the map equations to find the embryos to be sorted.
To demonsrate the superior side of our proposed automated zebrafish embryo sorting
system, a comparison with similar works in the literature was conducted.

Table 5 Comparison of our work with the literature.

Tasks Our work | [9] (8]
Num. of eggs for sorting experiments | 240 4752 | 694
20% (trial 1)
Egg sorting accuracy 90% (trial 2) - 96.8%
97.9% (trial 3,4,5 and 6 combined )
Egg detection speed (per 1 egg) 10.6 ms 1s -
Egg sorting speed (per 1 egg) 3s 14s | 8s

Our sorting system (see Table 5) provides higher accuracy, egg detection and sort-
ing speed compared to [8, 9]. However they have experimented with a larger number
of zebrafish than ours. It is clear that nowadays the detection models are effective, the
competition lies in the speed of execution of the task. Our work based on an optimized
YOLOv5 model offers a much higher speed compared to the methods used in these
two works, it is 94x faster than [9] based on template matching. Same observation for
the speed of sorting an egg. In addition to the good immobilization and the sorting
offered by the chip, it is believed that our approach may be useful in particular for
rapid cell microinjection.
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4 Conclusion

Using the deep learning detection algorithm YOLOv5, we have successfully developed
a sorting system for identifying dead or unfertilized zebrafish eggs. After successful
training, we were able to optimized the model to operate at a speed of 10.6 ms per
frame with a 95% accuracy. This model was used for a sorting system composed of a
microfluidic chip where the eggs are housed in cell traps, an XYZ-stage and a micro-
manipulator with a glass pipette as end-effector. Experiments finally showed a sorting
efficiency of 97.9% for the feedback mode which is better than similar works. Future
works will focus on cell sorting with DL and microfluidic chip without external ele-
ment like micromanipulator or XYZ-stage, but only using water and pumping system
to have a portable system.
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