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A B S T R A C T   

Predicting shoreline change is a key issue in coastal research. Predictors, process-based or data-driven, tend to be 
developed and tested on high-frequency and high-quality data sets. Combining hydrodynamic and morphological 
variables extracted from video images and artificial neural network allows us to evaluate if sparse data could still 
provide physically-sound shoreline change predictions. The data set covered a 3-year period with shoreline 
position data (with an accuracy of ±5 m) available 73 % of the time and 66 % for the morphological parameters 
(beach state or bar location). The best configuration of the trained shallow (one hidden layer) Feedforward 
Artificial Neural Network (ANN), includes 10 input variables and 10 nodes allowing to capture the shoreline 
dynamic at different time scales, from the storm-event to the seasonal scale, and to predict the shoreline position 
on a 1-year period with a RMSE of about 6.7 m. Increasing the complexity of the architecture of the ANN by 
increasing the number of hidden layers did not improve the predictions. By modifying the number of input 
variables in the algorithm, the ANN also allows us to highlight the mitigation effect of the bar during the storm 
event and its role as sediment buffer during seasonal accretion.   

1. Introduction 

More than one-third (2.75 billion) of the world's population lives 
both within 100 km distance of the coast and <100 m above sea level 
(Reimann et al., 2023). Sixty percent of the world's 39 largest cities with 
a population of over 5 million are located within 100 km of the coast, 
including 12 of the world's 16 cities with populations >10 million 
(Nicholls et al., 2007). As pointed out by Newton et al. (2012), the 
condition for success in integrated coastal zone management is the 
active involvement of all actors: scientists, stakeholders, governance 
actors as well as an informed and educated public. 

Sandy beaches comprise over 30 % of the world's ice-free coasts 
(Splinter and Coco, 2021) and, for those beaches situated in wave- 
dominated environments, shoreline dynamics can vary over a wide 
range of different temporal and spatial scales (Splinter and Coco, 2021). 
As a result, building comprehensive datasets of shoreline change re-
mains a challenge. The use of satellite imagery (Vos et al., 2019, 2023) 
and the emergence of community-based programs (Harley et al., 2019; 
Harley and Kinsela, 2022) is now making the development of shoreline 
datasets a reality for every beach worldwide. With more data becoming 
available from these systems, it becomes imperative to develop models 

that can take advantage of such measurements, make predictions and 
help management. 

Over the past decades, predicting shoreline change has been a key 
issue worldwide and many approaches have been developed from 
models based on conservation equations to equilibrium-based models (e. 
g. Splinter et al., 2018; D'Anna et al., 2021; Schepper et al., 2021), from 
data decompositions techniques (e.g. Montaño et al., 2021) to machine 
learning algorithms (e.g. Montaño et al., 2020; Zeinali et al., 2021). 
Despite these advances, there is still the need for improved quantitative 
shoreline prediction in order to mitigate present and future impacts of 
climatic changes. One type of models that has received attention in 
recent years is equilibrium-based models, which rely on the disequilib-
rium concept by evaluating the difference between instantaneous and 
equilibrium wave energy. These models generally perform quite well on 
beaches with a clear seasonal cycle and are able to capture both the 
seasonal and short-term scales despite the limited set of parameters 
included (e.g. Splinter et al., 2018; D'Anna et al., 2021; Schepper et al., 
2021; Ibaceta et al., 2022). However they require long-term high quality 
data sets and they also require the adjustment of some of the coefficients 
to take into consideration local conditions (e.g. memory decay, time up- 
scaling, time down-scaling). In contrast, machine learning algorithms, 
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among them Artificial Neural Networks (ANN), allow considering a 
much broader set of parameters. However, it is usually claimed that 
their performance depends highly on the quantity and the quality of the 
data available (e.g. Montaño et al., 2020). 

As underlined by Splinter and Coco (2021), data is key, especially 
real-time high frequency and high-quality in-situ coastal monitoring 
programs with the focus to capture the shoreline and nearshore ba-
thymetry. To meet this demand, the design of low-coast community 
beach program, such as CoastSnap (Harley and Kinsela, 2022), which 
empowers local communities to collect quantitative measurements of 
coastline change using their smartphones, improves data coverage but it 
almost inevitably produce a sparse dataset (i.e., the time between im-
ages available is not regular). Here we propose to evaluate if machine 
learning, specifically Artificial Neural Networks (ANN), can help 
providing physical insight in complex environment dynamic using a 
sparse dataset of oceanographic variables. The purpose of this work is 
thus to use the simplest ANN with simple morphological parameters, 
which could be easily extracted from this community beach program 
data set and with simple hydrodynamic parameters which are widely 
collected (e.g. wave buoy) or modeled, and to evaluate if it provides 
reasonable predictions of shoreline change. 

2. Study area and field data 

2.1. Study area 

The field data used here were first published and discussed in 
Sénéchal et al. (2015). Data were collected at Biscarrosse beach 
(Bbeach) situated on the southern French Atlantic coast (Fig. 1). Bbeach 
is an open coast sandy beach with a median grain size of about 0.35 mm 
facing the Atlantic swells in a meso- to macrotidal environment (e.g. 
Biausque and Sénéchal, 2019). Bbeach generally exhibits a gentle slope 
in the lower intertidal area (typically tanβ~0.01–0.02) and a steeper 
upper beach (typically tanβ~0.03–0.05). The beach generally exhibits a 
double bar profile with a single intertidal bar and a single subtidal bar 
(Almar et al., 2009). The inner bar often exhibits 3D patterns. However, 
observations based on three years of daily low tide images (Péron and 
Sénéchal, 2011) indicate that the most typical states observed fall in the 
category of Low Tide Terrace, LTT, and Transverse Bar and Rip, TBR 
(following the classification by Wright and Short, 1984). Péron and 
Sénéchal (2011) also indicate that both up-state and down-state tran-
sitions were dependent on the previous beach state and that no ‘direct 
jump’ from the lowest ‘reflective’ state to the highest ‘dissipative’ beach 

Table 1 
Input variables used in the model. Previous means previous to the shoreline extraction.(blue) variables 
related to wave forcing, (green) variables related to the tide (yellow) variables related to the beach 
morphology (orange) variables related to the surf zone width. 

Variable description Number

Offshore Significant wave height averaged the previous tide 1

Offshore Significant wave height averaged the previous day 2

Offshore Significant wave height averaged the previous week 3

Offshore Significant wave height averaged the previous month 4

Cumulated Longshore wave energy flux over the previous day 5

Cumulated Longshore wave energy flux over the previous week 6

Cumulated Longshore wave energy flux over the previous month 7

Tidal range the previous day 8

Maximum Tidal range the previous week 9

Alongshore Averaged inner Bar position the previous day 10

Standard deviation associated with alongshore averaged inner Bar position 11

Mean alongshore averaged inner Bar position estimated the previous week 12

Intertidal Beach State the previous day 13

High Tide offshore breakpoint position 14

N. Senechal and G. Coco                                                                                                                                                                                                                      
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state was observed. Previous studies have shown that the dynamic of the 
upper beach face presents a dominant seasonal pattern essentially 
driven by the seasonal wave conditions (e.g. Sénéchal et al., 2015). 
However the short term ‘storm-post-storm’ component is also important 
in this area (Sénéchal et al., 2015; Angnuureng et al., 2017; Biausque 
and Sénéchal, 2019). In particular Biausque and Sénéchal (2019), using 
intensive topographic surveys spanning two consecutive winter seasons, 
showed that short term (within a few days) inter-storm recovery could 
mitigate the seasonal erosion. Data also showed that shoreline dynamics 
can be driven by both hydrodynamic (tide, wave) and morphological 
parameters (bar location, e.g. Sénéchal et al., 2009, 2015; Biausque and 
Sénéchal, 2020). Diverse management strategies are deployed along the 
beach-dune system. The back dune is covered by grass in order to be 
accessible and more attractive to tourists, the southern section is fixed 
by seawalls (100 m long) and the northern dune is protected by sand 
fences (Fig. 1, C). However, except for the very southern end of the 
beach, the effect of these anthropogenic works on the alongshore 
averaged shoreline dynamic can be considered negligible (Biausque and 
Sénéchal, 2018). 

2.2. Hydrodynamic parameters 

In the present study, we used the wave buoy measurements provided 
by the nearest CANDHIS directional wave buoy location (1◦26.8′W, 
44◦39.15′N) moored in about 54 m water depth nearly 25 km north-west 
of the field area (Fig. 1). The wave data consist in hourly bulk param-
eters for the sea state conditions including the significant wave period 
(Hs), the peak period (Tp) and the direction of the peak period (Dp). In 
case of failure of the wave buoy, the bulk parameters were extracted 
from the nearest WW3 model (HOMERE) output using a corrected sig-
nificant wave height. Correction was obtained from the technical vali-
dation proposed by Castelle et al. (2020). In this paper, after correction, 
Hs hindcast show strong agreement with measured wave data with a 
coefficient of determination R2 = 0.94 and a root mean square error 
RMSE = 0.25 m. Accuracy decrease for Tp (R2 = 0.25 and RMSE = 1.7 s). 

Consistent with Biausque and Sénéchal (2019), wave energy flux 
(Ptot) has been estimated in 54 m water depth following the linear 
approach as (1): 

Ptot =
1
8

ρgH2
s Cg (1)  

Fig. 1. Field site: (a) Location on the south Atlantic coastline of France; (b) location (1◦26.8′W, 44◦39.15′N) where data were extracted from the nearest CANDHIS 
wave buoy or obtained using hindcast. Wave rose with the mean direction of the coast indicated by the red solid line. (c) example of a rectified video image of 
Biscarrosse Beach at low tide. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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where Cg is the wave group velocity (2), ρ the density of the ocean's 
water (1025 kg/m3) and g the gravitation constant (9.81 m/s2). 

Cg =
1
2

c
(

1+
2kd

sinh2kd

)

(2)  

where c is the phase velocity (3), 

c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g
k
tanhkd

√

(3)  

and k the wavenumber and d the depth. The wavenumber k associated 
with the peak period has been calculated by resolving the linear 
dispersion relation using a Newton approach. 

The longshore component of the energy flux has then been calculated 
as: 

Ply = Ptotcosθsinθ (4)  

where θ is the incidence of the wave. 
Tide data were provided by both the tidal model developed by the 

French naval hydrographic and oceanographic service (“SHOM”) and 
tide data collected in the Arcachon lagoon (REFMAR). 

2.3. Shoreline detection 

Datum-based shorelines generally consist of the cross-shore position 
of a specified elevation contour. Given we used the data set published by 
Sénéchal et al. (2015), the shoreline was defined in the same way. Thus, 
the shoreline has been identified as the elevation associated with the 
isocontour 2.6 m, which corresponds to the elevation where the seasonal 
berm generally forms and which is consistent with previous works (e.g. 

Fig. 2. Merged rectified images of Bbeach on March 25th 2008. Current wave conditions are: Hs = 2.3 m and Tp = 9 s (A) at low tide to determine the beach state; (B) 
at water level 1.7 m used for bar extraction (blue line) and (C) at water level 2.6 m used for shoreline extraction (blue line). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Sénéchal et al., 2009, 2015). In the initial work of Sénéchal et al. (2015), 
shoreline locations were captured from daily oblique photo imagery 
from May 2007 to April 2010. The video station is composed of five color 
cameras located on the top of the foredune (height above mean water 
level is about 26 m). The total alongshore distance covered is approxi-
mately 2 km (Fig. 1C) at low tide. The images are recorded during 
daylight hours, at a frame rate of 2 images/s during 10-minute bursts, 
resulting in four 10-minute time-exposure images per hour (Almar et al., 
2009). A semi-manually technique based on the Minimum Shoreline 
Variability method (MSV, Almar et al., 2011) is used to extract daily 
shoreline proxy from 10-minute time-exposure rectified and merged 
video images (Fig. 2). Daily images were selected using a computed 
mean water level including wave set-up and the data set was then 
limited to days when the overall accuracy in the shoreline cross-shore 
position was ±5 m. At this water level the alongshore covered a dis-
tance ranging between 500 m and 700 m depending on the number of 
camera available (Fig. 2C). Each shoreline position corresponds thus to 
the alongshore averaged cross-shore position of the mean waterline. The 
resulting dataset consists of 797 shorelines over a 3-year period (about 
73 % of the possible data) and covers the different seasons. 

2.4. Morphological parameters 

Sand bar position was monitored using the time-exposure video 
images (see Sénéchal et al., 2015 for a complete description of the 
methodology). Sand bar position was manually digitized tracking the 
cross-shore location of the image intensity peaks in the alongshore di-
rection (Fig. 2B). To reduce wave- and tide-artificial shift, bar extraction 
was performed at the same water level each day and in the presence of 
offshore significant wave height <2.5 m for the inner bar. The resulting 

dataset consists of 720 inner bar positions (66 % of the covered period) 
with an accuracy of ±8 m and 110 days of outer bar position (10 % of 
the covered period) with an accuracy of ±10 m. 

A qualitative description has also been used to characterize the beach 
intertidal morphology (see Péron and Sénéchal, 2011). Using rectified 
images extracted at low tide (Fig. 2A), the intertidal beach state was thus 
visually classified into six states: Low Tide Terrace (LTT); Transitional 
Low Tide Terrace Transverse Bar and Rip (LTT-TBR); Transverse Bar and 
Rip (TBR); Rhythmic Bar and Beach (RBB); Dissipative (D) and MBS 
(Multiple Bar System). Observations showed that despite high energetic 
conditions (mean annual Hs was 1.66 m), the inner bar exhibited mostly 
complex 3D patterns, TBR and LTT states being the most frequently 
observed states and multiple intertidal bar systems being also observed. 
The same numbers of down-state and up-state transitions were observed 
and both transitions were observed to be dependent on the previous 
beach state. 

2.5. Environmental conditions 

Wave climate clearly exhibits a seasonal trend with longer periods 
(12–14 s) and more energetic wave conditions during winter and shorter 
periods (8–10 s) and lower energetic wave conditions during summer 
(Fig. 3A & B). The winter season is also characterized by the presence of 
storms that can be either isolated or in cluster (Sénéchal et al., 2015). 
Waves are essentially propagating from the W-N-W (280◦N-300◦N) 
corresponding to a north incidence with the coastline orientation at 
Bbeach (Fig. 1). Tidal range varies between 1 m and 4.2 m (Fig. 3C). 

The shoreline exhibits seasonal cycles with an overall accretion 
during spring and summer and significant erosion during the winter 
period. The dynamic of the shoreline is also highly sensitive to the short- 

Fig. 3. Environmental conditions, shoreline and bar position at Bbeach. (A) Offshore significant wave height (m); (B) Peak period (s); (C) Longshore component of 
the energy flux estimated with Eq. (4) (kg⋅m⋅s− 3), (D) Tidal Range (m), (E) Daily alongshore-averaged position of the shoreline, (F) Daily alongshore-averaged 
position of the bars: (green cross) outer subtidal sandbar (m) (blue) the inner first intertidal bar and (pink) the second intertidal bar when observed. The red box 
represents the period used for blind forecast of the FNN model and will be referred here as shorecast period. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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term storm/post-storm forcing (Biausque and Sénéchal, 2019). The 
alongshore-averaged shoreline position varies between 100 m and 170 
m from the dune toe where the video system is deployed (Fig. 3E). We 
observe that at the end of the winter 2008, the beach exhibited a double 
bar system in the intertidal domain (Fig. 3F). The intertidal beach can 
generally be classified as TBR (68 % of observations, Péron and 
Sénéchal, 2011) and its cross-shore dynamic is strongly driven by the 
mean water level (Almar et al., 2010). The outer bar system, in contrast, 
is sensitive to offshore incoming waves and wave breaking occurring at 
high tide is essentially observed only during energetic conditions. 

3. Methodology 

3.1. Artificial Neural Network 

Calkoen et al. (2021) recently compared Machine-Learning methods 
for forecasting sandy shoreline evolution using satellite-derived shore-
lines. Their results indicated that the performance of the simple Feed-
forward network (FFN) was similar to the one of more complex Neural 
Networks (NN) like Recurrent Neural Networks (e.g. deep Autore-
gression) or Long Short Term Memory (LSTM) NN. Montaño et al. 
(2020) using video derived shoreline and diverse Machine-Learning 
models in term of approach or architecture (e.g. k-Nearest Neighbor, 
Autoregressive NN with exogenous inputs, LSTM, Bayesian Network) 
also concluded that all models displayed similar performance in shore-
line dynamics at event and seasonal scales. Since the main goal of the 
present study is to explore how morphological and hydrodynamic pa-
rameters affect shoreline change prediction, we used the simplest basic 
shallow neural network, the FFN. Basically in this kind of network, the 
information moves in only one direction-forward-from the input nodes, 

through the hidden nodes and to the output nodes. There are no cycles or 
loops in the network in contrast to more complex NN. 

The architecture of the FFN consists of three types of layers: the input 
layer, the hidden layer, and the output layer. Each layer is made up of 
units known as neurons: the neurons of the input layers will be called 
input variables (see Section 3.2 for their description), the neurons of the 
hidden layer will be called nodes and in the present work and there is 
only one neuron in the output layer which corresponds to the predicted 
shoreline position. The layers are interconnected by weights. Each 
hidden layer's node takes the weighted sum of the outputs from the 
previous layer (the input layer or the previous hidden layer if several 
hidden layers are present), apply an activation function, and pass the 
result to the next layer. The final layer (output layer) finally produces 
the output (shoreline position) for the given inputs. Each neuron in one 
layer is thus connected to every neuron in the next layer. There are also 
no memory cells or gates that allow FFN to retain or forget information 
over time selectively in contrast to more complex NN (e.g. LSTM). 

There are two phases in FFN process: 1- the feedforward phase: the 
input variables are fed into the network and propagate forward through 
the network until the output layer is reached, and a predication is made. 
2- the backpropagation phase: once a prediction is made, the error (a 
measure of the difference between the predicted and the actual output) 
is calculated. This error is then propagated back through the network, 
and the weights are adjusted to minimize this error (using for example a 
gradient descent optimization algorithm). 

Training a FFN network involves using a dataset to adjust the weights 
of the connections between neurons. Thus the shoreline data set is first 
divided into two different sub data sets: a calibration data set and a blind 
forecast data set. To ensure that the calibration data set covered the 
different seasons, we used the initial 66 % of shoreline data of the time 

Fig. 4. Results of data selection and correlation between the input variables. In red is the training data set (~67 % of the original dataset) and in black is the 
Shorecast test (~33 %). Input variables considered: shoreline position, offshore significant wave height averaged the week (Hweek, variable 3) and the month (Hmonth, 
variable 4) before, cumulated longshore wave fluxes over the previous week (Pweek, variable 6) or month (Pmonth, variable 7), maximum tidal range the week before 
(TRmax, variable 9) and alongshore averaged inner bar position the day before (BarPosition, variable 10). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

N. Senechal and G. Coco                                                                                                                                                                                                                      



Geomorphology 451 (2024) 109084

7

series, the remaining 34 % were used for the blind shorecast data set (red 
box in Fig. 2). The calibration data set has been further divided into a 
training data set and a test data set. During the training process, the 
training data set is passed through the network multiple times, and each 
time, the weights are updated to reduce the error in prediction made on 
the test data set. The network was trained using the Levenberg- 
Marquardt algorithm and the goal is to reproduce the shoreline posi-
tion as the test data, as accurately as possible. The training is carried into 
120 epochs, which means that each data in the training data set has been 
used 120 times to update the internal model parameters. The activation 
function used in the hidden layer is a sigmoid function while the transfer 
function used in the output layer is a linear transfer function. The initial 
learning rate used in the gradient descent optimization algorithm was 
set to the default value 0.001. We used the Mathworks, Deep Learning 
Toolbox of Matlab support to set up the FFN. 

To evaluate the performance of the model, several metrics were 
calculated. Indeed previous works have highlighted the difficulty in 
choosing a metric for assessing model performance as it might favor one 
model to another one (e.g. Montaño et al., 2020; Calkoen et al., 2021). It 
is thus important to consider multiple metrics and different approaches 
to evaluate the model. Model performance was evaluated using: the root 
mean squared error (RMSE), the coefficient of efficiency (CE) and the 
correlation coefficient R. The coefficient efficiency (CE) was calculated 
as: 

CE = 1 −

⎛

⎜
⎜
⎝

∑n

i
(Xi − Xe)2

∑n

i
(Xi − Xi)2

⎞

⎟
⎟
⎠ (5)  

where Xi is the observed input, Xe is the estimated value and Xi is the 
averaged of observed inputs. A CE closer to 1 means higher accuracy of 
the model. Model performance was also assessed in terms of quantile- 
quantile (prediction vs measurements) which provides information 
about extreme events, the direction of shoreline change and mean 
behavior. 

3.2. Input variables 

In total, 14 input variables have been evaluated describing the 
offshore wave forcing (variables 1 to 7), the tide (variables 8 and 9), the 
morphology of the intertidal area (variables 10 to 13) and a proxy of the 
surf zone width at high tide (variable 14). The accuracy of the method 
relies on the training data set and particularly on its capacity to repre-
sent the largest and most diverse environment's conditions (Fig. 4). 

3.3. Model calibration 

The first step of the calibration was ensuring that the Artificial 
Neural Network provided reasonable results. The FFN is a shallow 
network with only one hidden layer so calibration was only done on the 
number of nodes in such layer. Table 2 resumes the model performance: 
on the training data set (bold, referred to as calibration) and on the blind 
forecast (referred to as shorecast). 

We observe that the FFN displays good performance on the calibra-
tion data set for the different number of nodes. Given the simplicity of 

Table 2 
Model performance when trained with 10 input variables (1–7, 9–11) and 
different number of nodes. The values in bold correspond to the calibration 
period and the other values correspond to the shorecast period.   

7 nodes 10 nodes 12 nodes 15 nodes 

RMSE 7.76/9.81 6.7/8.71 7.67/8.92 6.8/8.3 
CE 0.59/0.41 0.72/0.61 0.60/0.59 0.68/0.65 
R 0.67/0.72 0.76/0.82 0.68/0.77 0.65/0.85 
R2 0.45/0.51 0.58/0.67 0.46/0.59 0.42/0.72  

Fig. 5. Architecture of the FFN with 10 input variables and 10 nodes.  
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the input variables and the resolution of the shoreline measurements 
(±5 m), the RMSE is reasonable. Using the different metrics, it appears 
that the configuration with 15 nodes displays the best performance. 
However, if one takes into consideration the blind forecast only, it ap-
pears that the best configuration is obtained with 10 nodes. Fig. 5 il-
lustrates the architecture of the FFN with the sigmoid activation 
function used in the hidden layer and the linear transfer function used in 
the output layer for this specific configuration. The initial learning rate 
was set to 0.001 and when the training process was stopped, the learning 
rate was 0.01. 

Fig. 6 illustrates that during the calibration period, the FFN is able to 
reproduce seasonal cross-shore (alongshore averaged) shoreline 
behavior as well as short-term behavior both accretive and erosive. For 
example the FFN is able to reproduce the seasonal accretive period at the 
beginning of the summer '08 (right-hand of the black rectangle) and 
faster oscillations during fall '07. The quantile-quantile plot displays a 
left-skewed shape. During the shorecast period, the FFN is also found to 
be able to reproduce the seasonal trend and the high frequency erosive- 
accretive event. The quantile-quantile plot also displays a left-skewed 
shape. 

4. Results 

The FNN has then been trained with different numbers of input 
variables. As a comparison, we evaluated how each input variable fits 
the data using a linear regression method. To do this, the best fit using 
linear regression has been calculated on the training period and the 
parameters have then been applied to the shorecast period. Table 3 re-
sumes all the different cases. Cases 1 to 14 represent the result of the 
linear regression method for each input variable. Cases 15 to 38 were 
obtained by using the FFN with different input variables. Cases 15 to 27 
only include input variables associated with the wave forcing and the 

tide (cases 17 and 26). Cases 28 to 38 also include parameters related to 
the intertidal beach morphology. Bulk metrics of model performances 
(RMSE, CE and R) for each tested case are presented in Fig. 7 for (blue) 
the calibration period and (green) the shorecast period. 

The differences observed in the correlation coefficient between the 
calibration and the shorecast are not statistically significant (Fig. 7). The 
RMSE is generally higher for the calibration period but this is not sur-
prising, given that modelling extremes is difficult and the shoreline 
reached its most eroded location and its most accreted location during 
this period (see Fig. 4). The coefficient efficiency (CE) is larger for the 
shorecast period than for the calibration period when parameters of 
different nature (hydrodynamic and morphological) are considered 
(cases 28 to 38). Overall, results indicated that cases including both 
hydrodynamic conditions (waves with or without tide) and morpho-
logical parameters perform better than the ones relying only on one kind 
of parameters; this improvement is consistently observed for the three 
metrics used to assess model performance. 

4.1. Hydrodynamic variables 

Focusing first on wave conditions (Fig. 7, cases 1 to 7), we observe 
that the simple linear regression approach does not fit the data when 
considering only the longshore fluxes (Fig. 7, cases 5, 6 7), consistent 
with previous observations indicating that Bbeach is primarily driven by 
cross-shore processes (e.g. Angnuureng et al., 2017; Biausque and 
Sénéchal, 2018, 2019, 2020). When analyzing each of the significant 
wave height descriptors in isolation, taking into consideration wave 
conditions on longer time scales (e.g. previous month, case 4) improves 
significantly the results compared to the cases where only wave on short 
time scales are considered (cases 1 and 2). This is consistent with the 
observations reported in Sénéchal et al. (2015). They observed a nega-
tive relationship between the wave conditions and the shoreline 

Fig. 6. Models outputs and performance obtained with 10 nodes and 10 exogenous parameters. The middle figures represent (left) the (black) measured and (green) 
modeled shoreline position during the calibration period and (right) during the shorecast period. The bottom figures represent the Quantile-Quantile plots of model 
behavior during (left) calibration and (right) shorecast. Dashed lines indicate the average shoreline position. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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position, which is consistent with a shoreline migrating landward under 
energetic conditions (eroding conditions) and offshore under calm 
conditions (accreting conditions) but they also reported that the 
alongshore averaged shoreline position was only poorly related to the 
daily variation in offshore conditions suggesting that short-duration 
events (typically <1 day) may only have a limited effect on the shore-
line position. 

Fig. 8 illustrates how the FNN is able to reproduce the seasonal cross- 
shore (alongshore averaged) shoreline behavior as well as the short-term 
behavior both accretive and erosive although there is a shift in the re-
covery rate at the seasonal scale (case 24) (see left panels in Fig. 8). 
Including the tide allows improving the recovery rate at the seasonal 
scale (case 26) (see right panels in Fig. 8) but at the same time it also 
increases the erosion rate at short scales leading to an overestimation of 
the erosion at this time scale. The Quantile-Quantile plot displays a light 
tailed shape. The bulk parameter of performance also improved: the 
RMSE decreases from 10.6 m in case 24 to 9.8 m in case 26, the coef-
ficient efficiency increases from 0.24 in case 24 to 0.35 in case 26 and 
the correlation coefficient increases from 0.35 to 0.48. 

4.2. Morphological variables 

Fig. 9 illustrates the impact of the morphological variables. Because 
of the lack of observations related to some variables, particularly the 
ones on the inner bar position, the shorecast period in case 20 (left) is 
sparser. However if we focus on the shorecasts obtained simultaneously 
by the two cases, we observe that the shorecasts obtained in case 29 
(right) are better than the shorecasts obtained in case 20. The 
improvement is observed during recovery periods and also during the 
erosive events. In particular, including the inner bar limits the erosion 
during consecutive energetic events, consistent with the physical pro-
cesses. Indeed several studies reported that the presence of the bar will 
protect the upper part of the beach from severe erosion especially during 
storm events (e.g. Almar et al., 2009; Angnuureng et al., 2017). The 
seasonal recovery is also consistent with previous observations indi-
cating that the berm dynamic is linked to the presence and the position 
of the inner bar (e.g. Sénéchal et al., 2009). In term of prediction per-
formance on the shorecast period (blind prediction of the models), the 
RMSE drops from 10.5 m in case 20 to 7.7 m in case 29, the coefficient 
efficiency rises from 0.25 to 0.60 and the correlation coefficient 

Table 3 
The 14 cases (1 to 14) evaluating data fitting with the linear regression for each individual input variable and the 24 trained configurations (cases 15 to 38) with the 
various input variables (see Table 1 for the detailed definition of each variable). 
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Fig. 7. Model performance: RMSE, coefficient efficiency (CE), correlation coefficient (R) for each individual input variable linear fit (cases 1 to 14, black box) and the 
FNN (cases 15 to 38, red box) and both the (blue) calibration period and (green) the shorecast period. The vertical dashed line indicates the value of R significant at 
99 %. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Model performance with wave inputs at different temporal scales and tide: (left) wave parameter at different time scales (case 24) and (right) when adding 
tide (case 26). The upper plots represent the modeled versus the measured shoreline; the middle panels represent the time series of (black) measured shoreline and 
(green) modeled shoreline; the bottom figures represent the Quantile-Quantile plots of model behavior. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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increases from 0.40 to 0.67. 
Because recording the inner bar position is not always possible, we 

evaluated if providing qualitative information of the beach state 
morphology will improve model outputs. Fig. 10 displays the results 
obtained in case 26 and in case 34 (including beach state). We observe 
that including the beach state does not improve the prediction of the 
impact of storms on shoreline position. This result is not surprising given 
the limited states exhibited by Bbeach (only 6 different states) and the 
TBR state being observed 68 % of the observed period. 

5. Discussion 

5.1. Uncertainty and model robustness 

Since the model developed is entirely based on data, it is critical to 
quantitatively assess the type of uncertainty and where such uncertainly 
is found. While some parameters are relatively easy and widely available 
(e.g. waves, tide), other parameters are not always easily accessible (e.g. 
bar location, beach state, memory decay). In the present work, there are 
two main types of uncertainties. The first ones arise from the data set 
collected and are specifically related to the estimation of the mean sea 
level. This uncertainty was estimated to be ±5 m for the averaged 
shoreline position. The uncertainties associated with the inner bar 
location were estimated to be ±8 m. Since at times we used wave con-
ditions obtained through a numerical model, a potential different source 
of error should also be considered, especially with respect to the period 
and the direction. The second source of uncertainty arises from the 
model itself: machine learning methods do not take into consideration 
the physical processes but instead try to find hidden patterns and re-
lations among drivers and response. The number, the choice and the 

definition of the input variables used in the machine learning may 
considerably modify the results. In the present study we decided to use 
simple variables that can be easily computed without knowledge of the 
typical timescales of the field study as required for some more compli-
cated parameters (e.g. memory decay, time-upscaling, time down- 
scaling). The calibration of the model indicated that the model was 
able to reproduce the cross-shore shoreline behavior at both seasonal 
(several months) and short-time (several days) scales with reasonable 
good performance parameters consistent with previous works (e.g. 
Montaño et al., 2020). During the calibration period, the model failed at 
capturing correctly an erosive event in early April 2008 although results 
were consistent with the physical processes. This might be due to the 
difficulty for the algorithm to capture the most extreme and/or rare 
events. In this particular case, this erosive event was associated to a rare 
combination of morphological and hydrodynamic parameters. Indeed 
two inner bars in the lower intertidal domain were observed and this 
event also resulted from the combination of spring high tide, dissipative 
beach configuration and weak oblique wave conditions (see Coco et al., 
2014). 

The robustness of the model was then evaluated during the shorecast 
period (one year of blind prediction). The model showed comparable or 
even better skills on this period, probably because the shorecast period 
did not include as many extreme events as the calibration dataset. One 
could argue that the model performance and model robustness could be 
improved by using a more complex architecture for the neural networks. 
Table 4 resumes the model performance by using a more complex ar-
chitecture. The model has been run using the same input variables used 
for the calibration but with different number of hidden layers with the 
sigmoid activation function used in the hidden layer and the linear 
transfer function used in the output layer. We observe no significant 

Fig. 9. Model performance with the same number but different kind of input variables: (left) only wave parameters (case 20); and (right) wave and morphological 
parameters (case 29). The upper plots represent the modeled versus the measured shoreline; the middle panels represent the time series of (black) measured shoreline 
and (green) modeled shoreline; the bottom figures represent the Quantile-Quantile plots of model behavior. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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improvement either on the calibration or on the shorecast period. One 
could also argue that the model could be improved by using other neural 
networks: recurrent network, radial basis function network, time delay 
neural network or generalized regression neural network. However, 
there is no general consensus about this point. Zeinali et al. (2021) 
applying different network approaches on a 34 years of monthly topo-
graphic surveys did not obtain more accurate results. Similarly, Calkoen 
et al. (2021) applying various Machine Learning time-series forecast 
algorithms (e.g. Simple Long-Short-Term Memory, Deep Autore-
gression, Multi-Quantile Convolutional Neural Network, Simple Feed-
forward) to satellite-derived shorelines concluded differences in 
accuracy scores within this group of algorithms were notably small and 
obtained lower accuracy scores than in the present study. More recently, 
deep learning techniques have resulted in the development of a model 
that more accurately predicts shoreline position at Tairua beach 
(Gomez-de la Peña et al., under review). 

5.2. How many input variables? 

It is often claimed that models fail at providing good prediction of 
cross-shore shoreline dynamic because we lack all relevant variables to 
describe the different timescales involved in shoreline change. Schepper 
et al. (2021) recently showed that the addition of a time-upscaling and a 
down-upscaling terms significantly improved predictions of cross-shore 
shoreline changes at different timescales and their interactions. Fig. 11 
illustrates that increasing the number of variables will not necessarily 
improve the model performance. In this figure, both the training and the 
shorecast periods are represented. Both models are able to reproduce the 
seasonal pattern of the shoreline dynamic and also give similar results at 
the short-term event scale. The differences in model performance pa-
rameters between the two cases are not statistically significant: the RMS 
is 8.0 m and 8.2 m (for case 30 and 37, respectively) the coefficient 
efficiency are 0.56 and 0.60, and the coefficient correlation is 0.65 in 
both cases. The Quantile-Quantile plots are very similar. Several reasons 
can explain why the increase in the number of variables will not 
necessarily improve the model performance. The first reason is probably 
that the added variable is cross-correlated to another variable and thus 
does not provide a complementary information. However this seems not 
the main reason in the present study as the different input variables 
show weak correlation (Fig. 4). The second reason is that the variable 
might not be relevant physically. Another reason can be associated to 
the uncertainties associated with the parameters, which might increase 
and reduce the overall performance of the model. 

Overall, also when dealing with machine learning, the issue is not 
only how many input variables to use but rather which input variables 
should be included in the model. 

Fig. 10. Model performance including beach state classification: (left) only hydrodynamic parameters (case 26); and (right) including beach state (case 34). The 
upper plots represent the modeled versus the measured shoreline; the middle panels represent the time series of (black) measured shoreline and (green) modeled 
shoreline; the bottom figures represent the Quantile-Quantile plots of model behavior. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Table 4 
Model performance when trained with 10 input variables (1–7, 9–11), 10 nodes 
and different number of hidden layers. The values in bold correspond to the 
calibration period and the other value correspond to the shorecast period.   

1 hidden 
layer 

2 hidden 
layers 

3 hidden 
layers 

4 hidden 
layers 

5 hidden 
layers 

RMSE 6.7/8.71 7.31/9.81 6.93/8.89 7.10/8.38 7.51/8.72 
CE 0.72/0.61 0.63/0.51 0.67/0.60 0.66/0.63 0.62/0.61 
R 0.76/0.82 0.56/0.75 0.70/0.79 0.60/0.82 0.61/0.80 
R2 0.58/0.67 0.31/0.56 0.49/0.62 0.48/0.67 0.37/0.64  
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5.3. Which input variables? 

The model provided results consistent with the physical processes 
reported previously for this area (Almar et al., 2009; Sénéchal et al., 
2015; Angnuureng et al., 2017; Biausque and Sénéchal, 2018) despite 
the use of a sparse data set, as well as the complexity of the field site 
characterized by the presence of multiple bars, a meso to macrotidal 
environment and a strong seasonality in the wave conditions associated 
with a significant storm activity. In particular, the model was able to 
provide further insight on the role of the inner bar cross-shore position in 
the dynamic of the shoreline: its mitigating effect during storm condi-
tions but also its role as sediment buffer during seasonal recovery, 
consistent with previous observations on wave-dominated sandy coast-
lines (e.g. Phillips et al., 2017). The model was also able to provide 
further insight on the role of tides. In particular the inclusion of the tide 
improved the model prediction of the erosive event observed in early 
April 2008 (see black rectangle in Fig. 12). In term of prediction per-
formance on the training period, the RMSE drops from 10.9 m in case 24 
to 10.1 m in case 26, the coefficient efficiency rises from 0.39 to 0.48 and 
the correlation coefficient increases from 0.38 to 0.53. This is consistent 
with the observations of Coco et al. (2014) on a nearby beach who re-
ported a similar erosive event. Observations indicated that it resulted 
from the combination of low energetic oblique waves, a dissipative 
beach profile resulting from an up-state transition of the outer bar under 
consecutive severe conditions and spring tidal conditions allowing thus 
these low energetic waves to reach the upper beach face without 
breaking. 

6. Conclusions 

A sparse data set of hydrodynamic and morphological parameters 
that could be relatively easily extracted for example from low-coast 
community beach programs was used to develop a simple Feedfor-
ward Neural Network with only one hidden layer. The algorithm pro-
vided reasonable forecast of shoreline position, capturing both the 
seasonal scale and the short-term (storm/post-storm) scale. The model 
was also able to provide some insight into the physical processes driving 
the dynamic of the shoreline. With the recent world-wide growth of low- 
coast community beach programs and so the possibility to include many 
input variables into machine learning algorithms, there is the possibility 
to develop more reliable predictions of shoreline positions and gain 
further insight into the physical processes. 
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Angnuureng, D.B., Almar, R., Sénéchal, N., Castelle, B., et al., 2017. Shoreline resilience 
to individual storms and storm clusters on a meso-macrotidal barred beach. 
Geomorphology 290, 265–276. 
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