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SUMMARY 13 

How do neural codes adjust to track time across a range of resolutions, from milliseconds to 14 

multi-seconds, as a function of the temporal frequency at which events occur? To address this 15 

question, we studied time-modulated cells in the striatum and the hippocampus, while 16 

macaques categorized three nested intervals within the sub-second or the supra-second range 17 

(up to 1s, 2s, 4s or 8s), thereby modifying the temporal resolution needed to solve the task. 18 

Time-modulated cells carried more information for intervals with explicit timing demand, than 19 

for any other interval. The striatum, particularly the caudate, supported the most accurate 20 

temporal prediction throughout all time ranges. Strikingly, its temporal readout adjusted non-21 

linearly to the time range, suggesting that the striatal resolution shifted from precise 22 

millisecond to coarse multi-second range as a function of demand. This is in line with monkey’s 23 

behavioural latencies which indicated they tracked time until two seconds, but employed a 24 

coarse categorization strategy for durations beyond. By contrast, the hippocampus 25 

discriminated only the beginning from the end of intervals regardless of the range. We 26 

propose that the hippocampus may provide an overall poor signal marking an event’s 27 

beginning, whereas the striatum optimizes neural resources to process time throughout an 28 

interval adapting to the ongoing timing necessity.   29 

Keywords: Ongoing timing; Neural population dynamics; Temporal range adaptation; 30 

Striatum; Hippocampus 31 
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INTRODUCTION 32 

We manage time differently depending on pressure, unaware of the passage of time when 33 

preparing for a distant event or attentive to time when this event is close. How does the brain 34 

track time when subjected to different timing necessities? Although involved in different 35 

cognitive functions, such as actions and habits on the one hand, episodic memory and 36 

navigation on the other hand, both the striatum and the hippocampus display time-modulated 37 

neural activity1 2 3. Similar neural patterns in the striatum and hippocampus were described 38 

when animals tracked a duration 1 4 5 6 7. However, it is unknown whether and how both 39 

regions contingently adapt neural codes to track serial durations in ranges from the 40 

milliseconds to multi-seconds. To address this question, we analyzed neural activity in both 41 

regions in rhesus macaques performing a novel time-categorization task. Animals categorized 42 

three ongoing continuous durations, with two (short, intermediate) nested in the longer one, 43 

at the millisecond (up to 1s) or multi-second range (up to 2, 4 or 8s). The task therefore 44 

introduced different timing necessities through high to low temporal densities, with 45 

categorizations required at the level of the millisecond or the second depending on the sub-46 

second, second or supra-second ranges. To ensure that the animal focused on potential time 47 

signals per se, the task did not rely on evaluation of the duration of a visual or auditory 48 

stimulation, nor of motor production, but response choices depended solely on the estimation 49 

of elapsed time since a brief cue. Our results identify for the first-time important differences 50 

in the time-modulated populational activity between the striatum and the hippocampus. We 51 

show that the striatum provides a stronger signal adjusting the precision of the time read-out 52 

from narrow to broad as a function of timing necessity, whereas the hippocampus only 53 

provides a poor time read-out at all time ranges. These results show how the brain adjusts 54 

neural resources differentially to time demands within different circuits.  55 

RESULTS 56 

Better performance for higher temporal demand 57 

We recorded single-unit activity in the striatum and the hippocampus while two rhesus 58 

macaques performed a novel time-categorization task based on cumulative elapsed time, 59 

nesting two successive durations (short: 1/4, intermediate: 1/2) into a longer one (1/1, Figure 60 

1A, STAR Methods). Monkeys were tested on different ranges, with the long duration ranging 61 

from 1 to 8 seconds on different blocks, thereby producing high-to-low density of stimuli 62 
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expectation within a single second across different time ranges (Figure 1B). Both monkeys 63 

categorized the three intervals well above chance (0.33) at all ranges (Figure 1C, 64 

χ²(6)=3.3194e4, p<0.0001 for Monkey#1; χ²(6)=2.6883e4, p<0.0001 for Monkey#2). 65 

Behavioural accuracy was globally higher at the sub-second (set 1s-long) and second (set 2s-66 

long) ranges, followed by supra-second ranges: sets 4s-long and 8s-long. Within sets, the long 67 

interval was better discriminated at all ranges, except for the sub-second range, in which the 68 

short interval was better discriminated (Figure 1C, STAR Methods). Thus, monkeys performed 69 

the task well from sub-second to supra-second ranges, but there was a range-dependent 70 

decrease of performance, and potentially an effect of training history (STAR Methods), as the 71 

set 2s-long was the best categorized for both monkeys. The analysis of the nature of errors 72 

illustrates that animals were more likely to categorize an intermediate interval as long at 73 

supra-second ranges than at shorter ranges (Figure 1D, 1-way ANOVA F(3,6384)=252.94, 74 

p<0.0001). This latter result suggests that the monkeys' responses were not skewed toward 75 

shorter durations, hence, not driven by a preference for earlier rewards. On the contrary, it 76 

suggests that beyond 2 seconds, animals tended to overestimate time consistent with a 77 

categorical response rather than a time estimation. This goes against the previously 78 

documented effective strategy for motor production tasks, where responses are based on a 79 

prior distribution centered on the mean8. Interestingly, not only was the intermediate 80 

duration overall categorized less accurately, but the nature of the errors revealed 81 

underestimation in the 1s- and 2s-long sets, contrary to what would have been expected if the 82 

animals followed the intervals’ means (0.583s, 1.166s, 2.333s and 4.666s for sets 1s-, 2s-, 4s- 83 

and 8s-long, respectively.). This lower accuracy for intermediate trials suggests that monkeys 84 

performed the task using a categorical rule distinguishing between 'short', 'intermediate', and 85 

'long' resembling behaviour in a bisection task where categorization is better for the extreme 86 

values9 10.  87 

Two additional results demonstrated that monkey’s behaviour did not exhibit scalar 88 

property in this task. First, the probability to respond ‘long’ differed between ranges for both 89 

monkeys (Figure 1E, 1-way ANOVA F(3,331)=14.53, p<0.0001 for Monkey#1, F(3,314)=60.89, 90 

p<0.0001, for Monkey#2,  STAR Methods). Additionally, the Coefficient of Variation (CV) by 91 

blocks (Figure 1F), differed significantly for both, time range (2-way ANOVA, F(3,1308)=112.71, 92 

p<0.0001, STAR Methods) and interval (F(2,1208)=95.52, p<0.0001). The interaction 93 
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(F(6,1308)=20.13, p<0.0001) shows that CVs for short and intermediate intervals decreased 94 

with time range, while they did not do so for long intervals. Hence, temporal behaviour can 95 

undergo non-scalar adaptations likely driven by the specific task categorization demand. 96 

Second, normalized response latencies (STAR Methods, Figure 1G) were overall shorter at sub-97 

second and second ranges. Moreover, there was a significant shift in distribution towards 98 

negative values for sub-second and second ranges, suggesting that the animals were better 99 

prepared to respond (at the end of any interval) at these ranges compared to longer ones. In 100 

addition, at short time ranges (less than 2s), responses were faster for the longest intervals, 101 

while at longer ranges (4s, 8s), they were slower for long intervals. As the task does not rely 102 

on the animal’s speed to respond, this likely reflects a lack of motor preparation and a more 103 

passive waiting strategy, instead of active timing, for longer ranges. It could also reflect a 104 

slower decision-making process due to increased task difficulty, in line with the decreased 105 

performance for longer ranges.  Importantly, the trial was aborted if any joystick movement 106 

was executed before the end of the interval instead of during the response window. Aborted 107 

trials were rare (less than 1.5% for Monkey#1, and less than 4.5% for Monkey#2), and their 108 

timing was consistent with an anticipation of the longest interval at the sub-second and 109 

second ranges. Therefore, the task likely dissociates evaluation of elapsed time from motor 110 

production providing a new way to assess time processing in rhesus macaques from 111 

milliseconds to multiple seconds. Overall, monkeys’ performances were higher for finer 112 

categorization at the sub-second and second ranges, compared to supra-second ranges, in line 113 

with the hypothesis that temporal processing adjusts to temporal demand.  114 

A strong recruitment of striatal cells that adapts to processing demand over time 115 

To determine whether neurons displayed time-modulated signals, we analysed the spiking 116 

activity of 615 neurons in the caudate, 736 in the putamen and 929 neurons in the 117 

hippocampus (Figure 1H, STAR Methods). Analyses were computed on correct long trials, 118 

because short and intermediate durations were embedded into the longer one. We computed 119 

a time “Information Content”11 (IC, in bit per spike) for the longest interval of each range 120 

partitioned in 100 bins. We defined time-modulated cells (TM cells) as cells for which the IC 121 

computed on actual data was above the 95th percentile of the distribution obtained from 1000 122 

surrogates with permuted spikes (STAR Methods). TM cells (Figure 1I and Figure 2 for 123 

individual examples) were significantly more numerous in the caudate, followed by the 124 
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putamen and the hippocampus across all ranges (χ²-test ran on each range, χ²(3)=41.05, 125 

p<0.0001, for set 1s-, χ²(3)=117.78, p<0.0001, for set 2s-, χ²(3)=20.75, p=0.003 for set 4s-, 126 

χ²(3)=11.35, p=0.0034 for set 8s-long, Figure 1G left pies). The percentage of TM cells 127 

remained approximatively constant across ranges within regions. There were only modest 128 

differences in the number of TM cells recruited between monkeys (Figure S1A) and the neural 129 

populations of TM cells in each monkey appeared strikingly similar (Figure S1B). To test 130 

whether the proportion of TM cells adapted to time demand, we compared the percentage of 131 

TM cells obtained from a fixed bin size and number (100x10ms) on a fixed interval (i.e. the 132 

first 1s, STAR Methods) across ranges. This method identified TM cells using only the first 133 

second of all possible ranges, the difference being the processing demand as a function of 134 

temporal expectancies during this first second (STAR Methods). The results showed that the 135 

percentage of TM cells identified for the first 1s at the second and multi-second ranges 136 

decreased dramatically in the striatum, compared to the number of cells identified when one 137 

second is the long interval (Figure 1I right pies, χ²(2)=63.4434, p<0.0001 in caudate, 138 

χ²(2)=21.5167, p<0.0001 in putamen), but not in the hippocampus (χ²(2)=5.95, p=0.051). In 139 

sum, while hippocampal activity displays very little time-related changes, striatal activity, 140 

especially in the caudate, is strongly modulated, and further, time within intervals is processed 141 

adaptively relative to time range and temporal expectancies. 142 

A mix of ramping and sequential peaks across brain areas 143 

The nature of neural activity throughout time has been linked to different computational 144 

functions12. For example, peak activity can represent precise temporal boundaries9 or 145 

expected stimuli13. Here, we hypothesized that cells peaked near expected events, i.e. the 146 

potential interval ends (red lines in Figure 2). However, visual inspection of activity through 147 

time (Figure 2 for 2s-long interval, and Figure 3A and Figure S1B for population time maps) 148 

revealed a variety of time-modulated patterns that did not specifically fit these expectations. 149 

Via a stepwise regression (STAR Methods), we identified a higher proportion of ramping 150 

neurons in the striatum compared to the hippocampus at all time-ranges (Figure S1C-D). An 151 

ANOVA on the absolute linear terms, confirmed a significant effect of regions: caudate and 152 

putamen exhibiting stepper slopes (i.e. more ramping activity) than hippocampus, but no 153 

effect of time range, nor interaction (Figure S1D, 2-way ANOVA, F(2,677)=36.54, p<0.0001 for 154 

region). In addition, the net changes in firing rate amplitude, computed on 20ms bins across 155 
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sets, differed between brain area (2-way ANOVA, F(2,245.45)=13.45, p<0.0001) and time 156 

range (F(3,677)=19.14, p<0.0001) with no interaction: amplitudes at the sub-second and 157 

second ranges were significantly higher than at the longer ranges. In sum, the TM cells in the 158 

caudate exhibited the highest changes in amplitude, linked with steeper slopes, followed by 159 

the putamen and then the hippocampus.  160 

We then showed that peak activity was not homogeneously distributed within the long 161 

interval in any region at any time range (Figure S1E, STAR Methods). While many TM cells 162 

responded to reward delivery (Figure 2, Figure S1F), we found that it was not indicative of the 163 

peaks’ distribution within the interval (Figure S1G), nor linked to reward valuation or 164 

expectation as a function of interval length. Only a minority of TM cells exhibited distinct 165 

responses to rewards depending on the interval (STAR Methods): 23.6% in the caudate 166 

(n=35/148) and 28.6% in the putamen (n=26/91). Instead, the majority of cells reached 167 

maximal firing rate within the first half of the trial in all the brain regions (Figure S1E), 168 

suggesting that TM cells carried more information during the part of the interval requiring 169 

more time processing demand, rather than relative to the upcoming reward. Finally, we tested 170 

whether “time field” size, known as the width, increased as a function of peak-times as 171 

previously reported9 14 7 15, within and across ranges. Width did not increase within a time 172 

range’ interval (Figure S1E), but increased with the overall size of the interval with increasing 173 

time-ranges (Figure S1H). This suggests an effective neuronal recruitment adjusting “time 174 

field” density to time demand.  175 

Little involvement of striatal TM cells in motor preparation and execution.  176 

In addition to reward evaluation, the striatum is intricately engaged in movement execution 177 

and preparation16 17 18.  In our task, we found that only a small fraction of neurons displayed 178 

selectivity for a specific movement during execution after the interval’s end (STAR Methods, 179 

Figure S1F, third row): 37.2% of caudate neurons (n=55/148) and 39.6% of putamen neurons 180 

(n=36/91) exhibited exclusive preference for a single movement at the second range. 181 

Then, we asked whether the pattern of neural activity during the interval could be 182 

linked to the movement preparation itself, focusing on TM cells recorded during both the 1s-183 

long and 2s-long sets in the caudate (n=87) or the putamen (n=38).  Our rationale was that, if 184 

neurons prepared for a specific movement, their activity before a motor action (e.g., 185 

classifying the interval as ‘short’ at sub-second or second ranges) should remain consistent 186 
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across different time ranges. In the caudate, 24% of cells (21/87) were not influenced by 187 

movement (Figure S2, top row).  Next, 71% of cells (62/87) were modulated by upcoming 188 

movement, but the majority of these (39/62) was also modulated by time range, (Figure S2, 189 

middle row).  In the end, only 23 neurons (26.4%) were modulated by upcoming movement 190 

only, without any effect of time range (Figure S2, bottom rows). These neurons may 191 

potentially be candidates for motor preparation rather than explicit time computation. 192 

However, they constitute a minority within the neural population.  193 

In the putamen, following a similar breakout, 26.3% of neurons (10/38) were 194 

unaffected by movement Among the 58% of cells (22/38) influenced by movement, 31% 195 

(12/38) were also modulated by time range. Only 26.3% of neurons (10/38) exhibited a 196 

significant movement, devoid of any time-range impact or interaction. Thus, akin to the 197 

caudate, only a few neurons in the putamen might reflect motor preparation, independent of 198 

time range.  199 

A slow speed but steady progression of a circular neural trajectory in the caudate 200 

The population’s activity in all regions presented dynamic changes over time (Figure 3A). It 201 

was proposed that such neural dynamics constitute distinct states through time19 20 21 of a 202 

moment-to-moment trajectory in a neural space. The population’s activity is then represented 203 

in an “n” dimensional space, as a function of n neurons, over the number of time-bins “t”, and 204 

captured through dimension reduction techniques such as principal component analysis 205 

(PCA), represented in Figure 3B, via the projections of the first two principal components (PCs). 206 

Strikingly, the first PCs revealed a circular progression strongly separating neural states 207 

through time in the caudate and putamen, while this is less clear in the hippocampus. To 208 

directly compare neural trajectories across regions and time ranges (Figure S3C,D,G), we 209 

employed a down-sampling method (STAR Methods) computing PCs on equal-sized 210 

subsamples obtained on each iteration. First, we determined that fewer components captured 211 

50% of the variance in the caudate compared to other regions at all time-ranges (Figure S3A). 212 

The lower dimensionality at short time range (less than 5PCs) compared to higher 213 

dimensionality at longer time range (less than 11 PCs) suggested that stronger time 214 

representation (such as at short time range) is associated to a low dimensional space, 215 

confirming previous results22. Second, using an absolute binning method (STAR Methods), we 216 

computed: a) the distance between the neural state at each time-bin and the centroid of the 217 
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trajectory (Figure 3C and S3B,D,F x-axis), and b) the instantaneous Euclidean distances 218 

between two consecutive time-bins (Figure 3C and S3B,D,F, y-axis), referred to as the speed 219 

of the neural trajectory6 (STAR Methods). The overall distance was larger in the caudate, 220 

followed by putamen and hippocampus (2-way ANOVA, F(2,2238)=9.8, p=0.0001), and 221 

decreased significantly as time range increased (F(2,2238)=58.35, p<0.0001), with no 222 

interaction between the two factors (Figure S3B-D-F). The average speed was significantly 223 

different 1) between regions, lower for caudate followed by putamen, and then hippocampus 224 

(Figure 3C, 2-way ANOVA, F(2,11988)=45012.44, p<0.0001); and 2) across ranges (Figure 3D), 225 

with an overall higher speed at sub-second range (F(3,11988)=20076.29, p<0.0001) 226 

dominated by smaller speeds in the caudate compared to other regions (F(6,11988)=7903.57, 227 

p<0.0001). In sum, low speed, coupled with a large distance from the centroid, reveals a neural 228 

trajectory occupying a larger area despite small alterations between consecutive time-bins. 229 

To test whether speed displays a scalar adaptation across ranges, we computed a Coefficient 230 

of Variation (CV, STAR Methods). Within each region, the CVs were strikingly different from 231 

sub-second and second ranges to supra-second ranges (Figure 3E, 2-way ANOVA, 232 

F(6,11988)=17.2798, p<0.0001). This suggests that the variation of speed from a time range 233 

to another was not scalar23.  234 

Finally, to capture the dynamics in the PCs space over time across regions, using a relative 235 

binning method, we computed the angular position of each time-bin with respect to the 236 

centroid (crosses in Figure 3B) and then, calculated the moment-to-moment differences 237 

between the angles obtained for consecutive time-bins (STAR Methods). Figure 3F represents 238 

the distribution of 1000 angles obtained on the subsamples from the 1000 iterations for each 239 

of the 100 time-bins at the second range ( Figure S3C-E-G for other ranges). The moment-to-240 

moment changes incremented more linearly in the caudate and putamen compared to 241 

hippocampus (2-way ANOVA, F(2,1176)=102.27, p<0.0001,  STAR Methods). There was a 242 

significant effect of the range (F(3,1176)=12.72, p<0.0001), but the interaction 243 

(F(6,1176)=9.55, p<0.0001) revealed this was mainly driven by the hippocampus, which 244 

displayed no overall increments at set 1s- and set 8s- compared to set 2s- and 4s-long (Figure 245 

S3). Together with measures of speed and distance in trajectory over time, the results show 246 

that the caudate, followed by the putamen, exhibited dynamics made of large, steady and 247 

continuous changes in moment-by-moment population states through time, without 248 
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exhibiting temporal scaling in speed nor strong changes in geometry across ranges. On the 249 

contrary, the hippocampus exhibited disorganized changes through time. The results suggest 250 

that striatum neural trajectory may better support a continuous time read-out than the 251 

hippocampus.  252 

Neural trajectory analysis reveals non-scalar time encoding in caudate activity  253 

The changes in speed across different time ranges suggest that the trajectory adapts as a 254 

function of time demand, which may occur without changing the overall geometry. We 255 

reasoned that if time is encoded in an absolute way, then, neural trajectories should progress 256 

at the same speed on an absolute scale for different time ranges. On the other hand, if the end 257 

of a trajectory represents a category to reach (e.g. long), the speed would adaptively rescale 258 

in a relative manner. To test these hypotheses, we performed a PCA on the 87 caudate TM cells 259 

activity, concatenating the two time ranges, using a 20ms binning and a bootstrapping method 260 

(STAR Methods). Figure 4A shows the scores obtained at each iteration for each time sample 261 

for 1s-long in purple (top) and for 2s-long in orange (bottom). We considered rescaling (Figure 262 

4B, left) and no rescaling hypotheses (Figure 4B, right), by computing distances between 263 

trajectories according to an absolute or relative sampling (STAR Methods). The linear 264 

regressions of these distances are represented in Figure 4C (dashed lines for the fit average 265 

and shaded areas for standard deviation). The slopes were significantly higher for the absolute 266 

sampling (1-way ANOVA, F(1,1908)=2507.14, p<0.0001) indicating the presence of rescaling. 267 

In addition, 97.7% of the regressions computed on the 1000 absolute samplings were 268 

significant, while this was the case for only 36.13% of the regressions computed on the relative 269 

samplings. In sum, the distances between PCs for 1s and 2s obtained through absolute and 270 

relative samplings matched the relative rescaling prediction (Figure 4C), indicating that the 271 

neural trajectory rescaled time within the interval.  272 

To test the nature of the rescaling, we compared the final positions of the neural 273 

trajectories between ranges (Figure 4D), assuming these wouldn’t differ if the rescaling was 274 

scalar. However, the distribution of the final PC scores differed significantly for PC1 (2-sample 275 

T-Test, T-stat(1953)=-7.8466, p<0.0001) and PC2 (T-stat(1953)=-29.5397, p<0.0001), 276 

suggesting that the final positions did not overlap. However, we then showed that the 277 

distribution of scores of the end of the 1s-long interval did not overlap either with the ones 278 

for the half of the 2s-long interval (PC1 scores, 2-sample T-Test, T-stat(1953)=-115.4932, 279 
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p<0.0001; PC2 scores, T-stat(1953)=95.2070, p<0.0001, Figure 4E), confirming a rescaling 280 

pattern. Therefore, the results indicate that the neural activity of the caudate rescales the 281 

durations between the second and sub-second ranges. Yet, because the final positions did not 282 

overlap, the neural adjustments do not appear to follow “scalar” rules, despite being scalable. 283 

Neural activity supports explicit time processing demand 284 

We compared the strength of time prediction between regions with a decoder based on linear 285 

regression (STAR Methods). First, in any region, only decoding based exclusively on TM cells 286 

was significantly higher than chance (Figure 5A). Next, we asked whether the temporal 287 

organization of neural activity within the timed interval was unique to that specific interval, 288 

or whether it allowed decoding time in another interval. To address this, we trained a model 289 

on the first 800ms of the 2s-long interval (coloured in Figure 5B) and then compared i) the 290 

predictions generated when tested with these 800ms, and ii) the predictions generated when 291 

tested on the 800ms of the inter-trial interval (ITI, in grey in Figure 5B). Decoding was above 292 

chance when tested on the first 800ms of the interval in the striatum only (p=0.0008 for 293 

caudate and p=0.0038 for putamen), but was not significantly different from chance when 294 

tested on the ITI. Thus, the neural organization within the interval was unique to the timed 295 

interval, and could not support time decoding during the ITI. We then asked whether TM cells 296 

activity could support time decoding for other periods (STAR Methods). TM cells identified 297 

during the timed interval did not support time decoding for another interval (Figure S4A). 298 

However, in theory, another interval could be timed by a different subpopulation of neurons. 299 

Thus, we identified TM cells during the ITI (instead of the timed interval, STAR Methods). We 300 

found fewer TM cells during the ITI than during the timed interval: 34 neurons in the caudate 301 

(7.38%), 51 (8.89%) in the putamen and 51 in the hippocampus (6.74%). We used these 302 

neurons to test the decoding during the ITI (Figure S4B), assuming that they were more likely 303 

to decode time during ITI than TM cells defined during the timed interval. Strikingly, time of 304 

the ITI could not be predicted above chance with these populations (p=0.146 in caudate, 305 

p=0.0922 in putamen, p=0.2729 in hippocampus). In sum, the key finding is that the striatum 306 

and the hippocampus did not support time per se, but rather only time within the temporal 307 

window needed to solve the task.  308 

 309 
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A time prediction in the striatum maintained across multiple time ranges 310 

To test whether the strength of time prediction varied across time ranges, we down-sampled 311 

neural populations to enable a comparison across regions (Figure 5C, STAR Methods).  By 312 

comparing regressions obtained at each iteration (top insets in Figure 5C), we found that 313 

decoding based on both striatal regions performed above chance at all time-ranges, unlike 314 

hippocampal-based decoding (p=0.0008, p=0.0022, p=0.0248 and p=0.0078 for caudate, 315 

respectively at sets 1s-, 2s-, 4s- and 8s-long and p=0.0028, p=0.0216, p=0.0054 and p=0.0472 316 

for putamen). Further, the distances of the predicted time to the real time at each time-bin 317 

and across time ranges, (bottom insets in Figure 5C) revealed better time prediction in the 318 

caudate compared to the putamen, while hippocampal-based prediction was very poor (2 way 319 

ANOVA, F(2,1188)=96.83, p<0.0001). Across time ranges, striatal-based decoding 320 

performances decreased only at supra-second ranges (F(3,1188)=6.27, p=0.0003). The 321 

interaction (F(6,1188)=3.75, p=0.001) revealed that caudate-based predictions were better 322 

than putamen’s, specifically at the longer range. Overall, the results underscore the higher 323 

suitability of caudate neural activity to predict time over putamen and hippocampus. 324 

Discriminability between two time-points adapts to processing demand from milliseconds 325 

to supra-second ranges 326 

The regression-based analysis assesses overall strength of temporal prediction but doesn't 327 

characterize the precision of the moment-to-moment discrimination within the interval. Hence, 328 

to characterize the temporal resolution, we used Support Vector Machine (SVM)-based 329 

decoding on each possible pair of time-bins within an interval (STAR Methods). Figure 6A 330 

shows the results as a time-by-time matrix, where each pixel is the discrimination probability 331 

(accuracy) between two time-points of the interval, tn and tm. First, average accuracy (Figure 332 

6B) was higher in the caudate, followed by the putamen, then the hippocampus (2-way 333 

ANOVA, F(2,59388)=5876.61, p<0.0001). Across time ranges, accuracy was slightly better in 334 

the well-trained second range interval than at sub-second range, but decreased strongly for 335 

longer intervals (F(3,59388)=3517.73, p<0.0001). The significant interaction 336 

(F(6,59388)=399.83, p<0.0001) indicates a faster decrease of accuracy beyond the second 337 

range in the caudate, than in putamen.  338 
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Next, to test whether changes in decoding accuracy within the interval were indicative 339 

of categorical representations (short, intermediate or long), we conducted an unsupervised 340 

clustering analysis (K-means analysis) on the time-by-time decoding accuracy. The clusters 341 

obtained did not correspond to distinct time intervals, and their number (Figure S5A) far 342 

exceeded the actual number of expected events (i.e. 3) in any region. Rather, the number of 343 

clusters was inversely proportionate to decoding accuracy, with fewer clusters observed in 344 

the striatum compared to the hippocampus. This observation reflects a lower time-by-time 345 

variability in the striatum.  346 

To quantify decoding accuracy for each time-bin, we calculated its discriminability 347 

score (ranging 0 to 99,STAR Methods, Figure 6C).  In the striatum, discriminability scores were 348 

overall higher than chance during the whole interval. Within short intervals, discriminability 349 

scores were maintained at a very high level throughout, as indicated by the null or close to 350 

zero slopes at sub-second range (β1=-0.0172, p=0.3361 for caudate; β1=-0.0973, p<0.0001 for 351 

putamen), or at the second range (β1=-0.0727, p<0.0001 for caudate; β1=0.0164, p=0.1786 for 352 

putamen). This contrasted strongly with the steep decrease observed for longer intervals (at 353 

4s-long, β1=-0.5416, p<0.0001; β1=-0.2964, p<0.0001, respectively for caudate and putamen; 354 

and β1=-0.3452, p<0.0001; β1=-0.4905, p<0.0001 at 8s-long). This suggests that in the striatum, 355 

unlike a categorical representation, time is continuously represented with the same strength 356 

within the interval throughout short time ranges, whereas at longer time ranges, the 357 

beginning is better discriminated from the rest of the interval. In the hippocampus, 358 

discriminability was maintained above chance for the entire interval only at the second range 359 

(the time range used for training, β1=-0.2923, p<0.0001). At the sub-second range, only the 360 

very end of the interval was discriminated from the rest of the interval (β1=0.3841, p<0001), 361 

whereas at longer ranges, discriminability was higher at the beginning of the interval and 362 

decreased steeply with time, as indicated by the strong negative slopes (β1=-0.3561, p<0.0001; 363 

and β1=-0.3871, p<0.0001 respectively for 4s-long and 8s-long ranges). This pattern illustrates 364 

a coarse temporal discrimination in the hippocampus at sub-second and supra-second ranges, 365 

which only discriminates beginning from end of intervals. In all regions, the steep decrease in 366 

discriminability score within the interval at long ranges suggests a temporal adaptation that 367 

was not scalar, as the accuracies were not equally distributed across time-ranges. These 368 
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results also align with the observation that temporal prediction decreased for longer time 369 

ranges (Figure 5C).   370 

Next, we examined the temporal resolution of the decoding within and across ranges, 371 

defined as the distance ti-tj, where tj is the closest time-bin from which ti is decoded above 372 

chance (STAR Methods). A small to large distance reflects variation from fine to coarse 373 

temporal resolution, and can be intuitively perceived along the narrow to wide diagonals in 374 

Figure 6A. Overall, the resolution was narrower in the caudate and putamen than in the 375 

hippocampus (2-way ANOVA, F(2,1188)=80.82, p<0.0001), and widened with increased 376 

durations (F(3,1188)=149.37, p<0.0001). The post-hoc analysis following the significant 377 

interaction (F(6,1188)=7.76, p<0.0001) showed a difference between caudate and putamen 378 

at the 4s-long range only. Further, the caudate and putamen temporal resolution did not 379 

change from sub-second to second range, but widened significantly at supra-second ranges. 380 

An analysis of breaking points allowed excluding that temporal resolution adjusted in a step-381 

wise fashion to anticipated events. We found more breaking points for the putamen and the 382 

hippocampus than for the caudate, but did not observe any evidence that these changes 383 

occurred at the expected events during the interval (1/4, 1/2 and 1) in any region (Figure S5B). 384 

Taken together, the results suggest that the temporal resolution for time was not categorical 385 

within an interval, and adapted to temporal demand across ranges, with a high resolution at 386 

sub-second and second ranges compared to a lower one at supra-second ranges. This 387 

adaptation did not appear to be scalar, as the resolution at different ranges differed when 388 

represented in a relative scale (Figure 6C).  389 

The neural encoding of 1s is contextually adapted across ranges  390 

Here, we compared decoding accuracy for the first 1s of the timed interval depending on the 391 

time range at which the animal performed. Importantly, while the cue onset was the same, 392 

the task relevant durations differed between ranges. We hypothesized that the decoding 393 

resolution adapted to the time processing demand and expected events (e.g. possible endings 394 

of trials at 0.25 or 0.5 for the set 1s-long, whereas no event was expected before 2s during set 395 

8s-long). Therefore, we performed the pairwise decoding on the first 1s of the second- and 396 

supra-second ranges using the neurons defined as TM cells for this specific duration (Figure 397 

1I, right pies). The first 1s was better decoded at sub-second and second ranges compared to 398 

supra-second ranges (Figure S5C, F(3,59388)=3094.3, p<0.0001) and caudate population 399 
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based decoding accuracy was above the other ones (F(2,59388)=2491.44, p<0.0001). The 400 

interaction (F(6,59388)=881.48, p<0.0001) confirmed the better decoding accuracy achieved 401 

by the striatum, mixed with lower decoding at supra-second ranges. Significant time decoding 402 

for the first second in the hippocampus was nearly absent at all ranges. In sum, in the striatum 403 

only, temporal accuracy was finely adapted to time demand. 404 

DISCUSSION 405 

By recording neural activity while non-human primates successfully categorize elapsed-time 406 

(Figure 1), we demonstrated distinct neural dynamics between striatum and hippocampus 407 

despite the presence of "time cells" in both regions (Figure 2). Hippocampus activity poorly 408 

signalled elapsed time. In contrast, many cells in the striatum were recruited by the task 409 

(Figure 1I). Striatal neural trajectory displayed a constant progression through time (Figure 3) 410 

which supported temporal prediction at all ranges (Figure 5C). The neural trajectories (Figure 411 

3) and population-based temporal decoding adapted to the contextual time demand (Figure 412 

5B, S4, S5C), yet in a non-scalar fashion (Figure 3E, 4). Specifically, the temporal resolution 413 

adjusted from milliseconds at the shorter ranges, to coarser multi-second resolution at supra-414 

second ranges (Figure 6). In contrast, the hippocampus poorly represented moments by 415 

discriminating interval beginning from ending. The present evidence for differential 416 

adaptation for time in the striatum and the hippocampus, is a major cornerstone to 417 

understand how the brain adjusts neural resources to meet temporal demand within distinct 418 

circuits. 419 

Neural tracking of time is selective to intervals requiring explicit timing. 420 

Our study is the first to report accurate estimation of elapsed time below 2s and up to 8s in 421 

macaques, in a task that, unlike others,  is not based on a timed motor production24 25 or on a 422 

stimulus duration discrimination26. Striatal activity supported time representation specifically 423 

for the temporal window relevant to the task (i.e. the timed interval). This is seen in successful 424 

decoding from TM cells identified during timed interval only (Figure 5A) and not during 425 

intervals irrelevant to the task, such as the ITI (Figure 5B, S4), nor during the first second of 426 

longer durations (Figure S5C)., Such epoch specificity was also present in the hippocampus, 427 

despite poorer time decoding (Figure 5A).  Therefore, time signals in both regions do not 428 

indicate elapsed time in general (time per se), but rather are recruited for explicit timing during 429 
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the temporal window relevant to the task. This suggests a cognitive control during time 430 

tracking exerted on both regions.  431 

Striatal neural dynamics more suitable to temporal read-out than hippocampal dynamics.  432 

We expected striatum activity to support temporal decoding27 5 28 7 10. In the 433 

hippocampus, “time cells” encoded sequence order at short time range29, or specific moments 434 

in longer periods30 1.  However, a direct comparison of time read-out based on striatal and 435 

hippocampal dynamics has never been reported. Further, whether neural activity in each 436 

region provided discrete encoding of multiple serial durations or a continuous representation 437 

of time was unknown. Here, we reveal large differences between these regions. While 438 

ramping cells were almost absent in the hippocampus, a mix of ramping and peak neurons 439 

was recruited in the striatum. The latter provided progressive and steady changes in neural 440 

trajectory through time (Figure 3F, S3), in line with results linking ramping activity with 441 

timing22 31 and showing that highly distributed sequential peaks supports better time read out 442 

in rodent’s striatum5 28. The idea that explicit timing is encoded within low-dimensional 443 

manifolds has been proposed32 22. Given the low number of PC explaining variance in the 444 

caudate, we speculate that this area offers the most suitable neural foundation for timing in 445 

this task, particularly excelling at shorter time intervals. Overall, our findings suggest that the 446 

striatum provides a continuous -not categorical- representation of time, despite the 447 

previously documented role of the putamen in sequential stimulus categorization33 34. 448 

 Further, associated to the large striatal neural trajectories, population-based 449 

predictions were above chance up to 8s (Figure 5C) and overall higher in the caudate 450 

compared to the putamen, introducing herein a distinction within striatal territories, likely 451 

based on input35 36 37 or specific functional organization within the cortico-striatal loops38. 452 

Indeed, compared to the putamen, the caudate has a stronger connectivity with dorsolateral 453 

and ventro-medial prefrontal cortex, orbito-frontal cortex and dorso-anterior cingulate 454 

cortex16 39. These brain regions are known to be involved in working memory40 41, sequence 455 

learning42, reward sequences43 and reward discounting44 45, which are cognitive functions 456 

heavily relying on precise time representation. Therefore, stronger timing signal may stem 457 

from the caudate’s connectivity with these prefrontal regions. In contrast, the putamen is 458 

involved in motor-execution17, motor-selection and habit learning46, consistent with the 459 

regions’ main inputs and outputs with motor area 447 37 48. Thus, unlike the caudate, the 460 
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putamen is more suitable to support the execution of context-adapted movements49 50 51.  461 

Previous studies showed that inactivation of the caudate, but not the putamen, increased 462 

impulsivity52. Nonetheless, the functional distinction between the caudate and putamen 463 

remains contentious16. Surprisingly few studies compared neural activity in these regions, 464 

making our study an important step toward understanding their functional differences. 465 

Starkly contrasting with striatum, disorganized hippocampal neural trajectories (Figure 3, S3) 466 

failed to support temporal prediction above chance. This is surprising considering the 467 

literature reporting high sequentiality provided by hippocampal “time cells” 53 54 55. We also 468 

report “time cells”, but the nature of hippocampal TM-based decoding, discriminating 469 

beginning from end of intervals, echoed the entorhinal “relaxation” cells, allowing higher 470 

temporal prediction for the beginning of an interval56. More broadly, our findings suggest that 471 

internally-generated sequences poorly support time representation in the absence of visual57 472 

29, sensory-motor4 58 30 or social components59.  473 

Behaviour and neural activity adapt as a function of timing necessity 474 

Do timing behaviour and time-modulated neural signals adapt in parallel to time demand? 475 

Animals transferred the time-based rule from one time range to another, suggesting that 476 

monkeys represented classes of relative durations within and across ranges (Figure 1C). 477 

However, monkeys transferred the rule better from the second to the sub-second range, 478 

compared to the supra-second ranges. The nature of errors suggested a subjective timing in 479 

which the internal clock’s pace speeds up for longer time ranges, leading to overestimations 480 

of longer intervals (Figure 1D). Alternatively, time is less finely tracked beyond 2s, leading to 481 

threshold-based categorization (i.e. long once 2s is passed). Accordingly, response latencies 482 

indicated higher anticipation for intervals ending under 2s, at any time range, even when 2s 483 

was the longest interval (Figure 1G). In sum, the results suggest a non-scalar adaptation across 484 

time ranges (Figure 1E-F) supported by a transition in timing strategy from fine tracking for 485 

high temporal demand at shorter ranges, to coarse categorization at supra-second ranges. 486 

Neural activity in the striatum appeared to follow a parallel pattern. The read-out accuracy of 487 

striatal neurons adapts to temporal demand, high at short ranges and low at long ones (Figure 488 

S5C), by adjusting its temporal resolution in a non-scalar way (Figure 6). An analysis of the 489 

moment-to-moment changes in caudate neurons recorded across two time ranges (Figure 4), 490 

confirmed that the ratio of the change in speed of neural trajectory was not scalar. By contrast, 491 
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the hippocampus exhibited a poor and coarse representation of ongoing time, as illustrated 492 

by the low number of cells displaying time-related properties. This representation of time was 493 

stronger at the second range, likely because the animals were trained at this range, thus 494 

implying the hippocampus may be recruited for well-known durations1. 495 

The results showing a “non-invariant” adaptation in the striatum contrasts with studies 496 

showing scalar rescaling on seconds-to-minutes fixed-interval timing in rodents60 7, or scalar 497 

trajectories adaptation for timed movement in macaques prefrontal cortex and caudate6  or 498 

in medial premotor cortices61. Our findings also contrast with the striatal-beat frequency 499 

model, which  proposes that the striatum reads out multiple pacemakers62 63 and provides a 500 

precise and time-range invariant interval timing64. Several differences may explain the 501 

contradictions. First, in fixed-interval60 7, bisection tasks9 65, and motor-production6 66 or -502 

reproduction31 tasks, when a trial starts, only  one duration has to be estimated or produced. 503 

This is unlike our task, in which three nested intervals must be discriminated thereby varying 504 

event’s temporal frequency and required timing precision. Thus, scalar scalability may be 505 

relevant to the anticipation of a single event, but less for multiple events within a short 506 

temporal window. Second, unlike previous neurophysiological studies of timing in animals, 507 

our task dissociated temporal estimation from motor production, as the motor response had 508 

to be performed after the timed interval had elapsed. Furthermore, our three nested interval 509 

task has inherent complexity which likely increased processing demand. Therefore, we suggest 510 

that scalar scalability may break down when the subjects process temporal expectancies of 511 

multiple successive events for which neural activity reflects the temporal density.  512 

In sum, our results suggest that striatal neural time tracking adapted to timing 513 

necessity, while, hippocampal neural time remained more invariant. The striatum’s range 514 

adaptation may be limited by biological constraints restricting short-term plasticity within the 515 

cortico-striatal network67. This may reduce the delay allowing associating the neural sequence 516 

recruited at the beginning of the interval and the feedback received at the end of the interval. 517 

We suggest that feedback at short or long delays provides an intrinsic way to flexibly modify 518 

neuronal resources as a function of time demand, across various ranges.  519 

 520 

 521 
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FIGURE LEGENDS 570 

 571 

Figure 1. Ongoing time categorization task and striatal and hippocampal neuronal 572 

population.  573 

A. The ongoing time categorization task. A trial started when a white square (cue) was briefly 574 

presented on the screen (200ms), marking the beginning of the duration to be timed, and 575 

ended when three blue squares (responses targets) appeared at the bottom, left and top of 576 

the screen (Figure 1A). Depending on the elapsed time (interval), the monkey used a joystick 577 

to move a pointer to the bottom square for short, to the left one for intermediate, or to the 578 

top one for long (respectively 0.5, 1 and 2s). Movements performed too early resulted in 579 

aborted trials.  If the response was correct, the monkey was rewarded with a drop of juice. 580 

The inter-trial interval (800ms) started once the monkey moved back the joystick to the centre 581 

of the screen. B. Sets of intervals tested across time-ranges. Length of the durations at sub-582 

second (0.25-0.5-1s), second (0.5-1-2s), supra-second-1 (1-2-4s) and supra-second-2 (2-4-8s) 583 

ranges. C. Behavioural categorization of intervals across sets. Proportion of correct responses 584 

for short, intermediate and long intervals across sets for Monkey#1 (M#1, left panel) and 585 

Monkey#2 (M#2, right panel). Effects of time range and intervals were tested with a general-586 

linear mixed-model (GLMM), showing a significant effect of time range (F(3,74232)=637.35, 587 

p<0.0001), interval (F(2,74232)=762.53, p<0.0001) and interaction (F(6,74232)=151.53, 588 

p<0.0001). D. Nature of errors for intermediate trials across sets. The left values indicate 589 

underestimations and the right values indicate overestimations. From top to bottom, 590 

intermediate trials at sub-second, second, supra-second-1, supra-second-2 ranges. E. 591 

Psychometric curves across ranges. Probability to respond long (p(long response), y-axis) after 592 

short, intermediate and long intervals (x-axis) depending on the time range (coloured lines). 593 

Results for Monkey#1 are shown by solid lines and for Monkey#2 by dashed lines. F. 594 

Behavioural Coefficient of Variation. Coefficient of Variation (CV, y-axis) displayed for short, 595 

intermediate and long intervals (x-axis) as a function of time-range (colours) for both monkeys 596 

separately. Each dot (circle or square respectively for Monkey#1 and Monkey#2) represents a 597 

block of behavioural performance. Averaged CVs and +/-1 standard deviation for both 598 

monkeys’ performance merged are shown with black diamonds and lines. Colour code is the 599 

same as in E. G. Response time density for each interval across sets. Response time 600 
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normalized to mean motor response (STAR Methods) for Monkey#1 (top row) and Monkey#2 601 

(bottom row). A linear mixed-model (LMM) shows an effect of time range 602 

(F(3,61185)=1.2962e3, p<0.0001), interval (F(2,61185)=549.9881; p<0.0001), and a significant 603 

interaction (F(6,61185)=700.19, p<0.0001). H. Recording sites. Recording sites in both 604 

monkeys: blue dots for caudate, green dots for putamen and red dots for hippocampus. 605 

Hippocampus coordinates of both monkeys are aligned to the inter-aural, striatal coordinates 606 

are aligned to the anterior commissure. I. Percentage of Time-Modulated cells. Sets are 607 

displayed in rows, brain regions in columns. In each column, the left pie represents the 608 

percentage of TM cells obtained during the long interval of the set. The right pie represents 609 

the percentage of TM cells obtained for the first second only when it was taken from the long 610 

interval. 611 

Figure 2. Time-Modulated single cell examples during the second range set.  612 

From left to right columns, raster histograms of spikes recorded in the caudate, putamen and 613 

hippocampus with the superposed average activity (lines). Left panels show the activity during 614 

baseline, the cue, and the long interval, aligned at 0, the offset of the cue. The possible short 615 

and intermediate intervals are marked by red lines. Right panels show the neural activity 616 

aligned to the reward delivery (black line), with -300ms corresponding to movement. All trials, 617 

short, intermediate and long, are displayed, respectively indicated with light grey, dark grey 618 

and black. Per each cell, we indicate its bit/spike score and its p-value in parenthesis. See also 619 

Figures S1 & S2. 620 

 621 

Figure 3. Population changes through time across regions at set 2s-long.  622 

A. From left to right, neuronal population of TM cells recorded in the caudate (left), putamen 623 

(middle), and hippocampus (right). Activity is z-scored. Neurons are sorted as a function of 624 

their linear term computed during the stepwise regression analysis. Superposed on the 625 

population maps, solid line and dotted lines show average z-score and standard-deviation. 626 

Time of expected interval ends are indicated with white vertical lines. B. Population activity 627 

over time (set 2s-long) projected onto the first two Principal Components for the caudate (left), 628 

putamen (middle), and hippocampus (right). Each coordinate is the score of each principal 629 

component at time t1 to t100. The time of expected interval ends are indicated for short (S), 630 
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intermediate (I) and long (L) intervals. The centroid of the distribution is represented with a 631 

cross. C. Average speed (y-axis) of the neural trajectories during the 2s-long interval, obtained 632 

with the first 11 PCs, from each iteration, with the down-sampling method (i=1000) plotted 633 

against the average distance to the centroid of the same trajectories (x-axis). E. Average speed 634 

(y-axis) of the neural trajectories obtained from each iteration (i=1000) for each brain region 635 

across sets (x-axis). F. CV (y-axis) of the neural trajectories obtained from each iteration 636 

(i=1000) for each brain region across sets. D. Distribution of angular positions computed from 637 

each iteration (i=1000) at each time-point. White circles indicate the angle obtained with the 638 

highest probability (best angle) for the 1000 iterations, for each time-point. Time of expected 639 

interval ends are indicated with white vertical lines as in A. See also Figure S3. 640 

 641 

Figure 4. Non-scalar scalability in caudate between sub-second and second ranges.  642 

A. Neural trajectory of caudate neurons during sets 1s-long (purple) and 2s-long (orange) 643 

represented by PC1 (x-axis) and PC2 (y-axis) scores obtained from 20ms-bins. Each dot 644 

represents the scores for a time-bin obtained on one of 1000 iterations from the down-645 

sampled data. Solid lines show the averaged trajectory. Circled point, cross and asterisk show 646 

respectively the short (1/4), the intermediate (1/2) and long interval. B. Hypothesis space to 647 

interpret the overall geometry of neural trajectories as a function of rescaling. The distance 648 

between neural trajectories across time is plotted according to absolute (in black) and relative 649 

sampling (in grey). For absolute sampling, we use all the bins of 1s-long interval and only the 650 

first half of 2s-long one. For relative sampling, all time bins of set 1s-long are included but only 651 

every odd sample of set 2s-long are included. Plotting distances between neural trajectories 652 

according to relative sampling should result in a flat line if the trajectories rescale 653 

proportionally (third row, left panel, grey line on the bottom left), or on the contrary as a 654 

gradual increase if the trajectories do not rescale proportionally (third row, right panel, grey 655 

on the bottom right plot). The inverse relationship can be derived for absolute sampling (Third 656 

row, black lines). C. Top panel. Distances between trajectories for absolute (black) and relative 657 

(grey) sampling computed on each one of the 1000 iterations. Bottom left. Distribution of the 658 

slopes obtained for the relative sampling (βr). Bottom right. Distribution of the slopes obtained 659 

for the absolute sampling (βa). D. Distribution of the PC1 scores (top) and PC2 scores (bottom) 660 

from the 1000 iterations for set 2s-long (orange) and set 1s-long (purple) at the final point of 661 
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the trajectories (asterisks in A) for a relative comparison, end to end. E. Distribution of the PC1 662 

scores (top) and PC2 scores (bottom) from the 1000 iterations for set 2s-long (orange) and set 663 

1s-long (purple) at the final point of the trajectories of set 1s-long (asterisks in A, top row) and 664 

the half of the interval of set 2s-long (cross in B, bottom row) for an absolute comparison, 1s 665 

interval between ranges. 666 

 667 

Figure 5. Population decoding as a function of time.  668 

A. Multiclass decoding during 2s-long interval for the caudate (left), putamen (middle) and 669 

hippocampus (right). Decoding of predicted time (y-axis) as a function of real time (x-axis). 670 

Decoding performance on TM cells (coloured line) is represented against decoding 671 

performance on other cells (dotted black line). Chance value is shown with light grey shade. 672 

Possible interval ends are indicated by light grey (short) and dark grey (long) dashed lines. 673 

Bottom right panel insets: Slopes distribution obtained from the 5000 decoding outputs for 674 

TM cells versus other cells. TM cells slopes distributions were higher than other cells slopes 675 

distribution for any region (n=5000, 2-samples T-test, for all regions, T(9998)=68.64 for 676 

caudate, T-stat=61.7118 for putamen, T-stat=52.9489 for hippocampus, p<0.0001 for all brain 677 

regions). Chance level (95th percentile of the distribution) is represented in dashed lines. 678 

Distributions of TM cells slopes were different from chance (p=0, p=0.001 and p=0.049, 679 

respectively for caudate, putamen and hippocampus) and are indicated with an asterisk. Other 680 

cells slope distribution did not differed from chance level. B. Multiclass decoding tested on 681 

activity during the ITI (black line) after training on the first 800ms of the interval (coloured line) 682 

for the caudate (left), putamen (middle) and hippocampus (right). Decoding of predicted time 683 

(y-axis) as a function of real time (x-axis). Bottom right panel. Slopes distribution obtained from 684 

the 5000 decoding outputs of first 800ms (coloured dotted line) and baseline activity (black 685 

line). Distributions different from chance are indicated with an asterisk. C. Decoding across 686 

sets after down-sampling the populations for the caudate (left), putamen (middle) and 687 

hippocampus (right). Decoding of predicted time (y-axis) as a function of normalized time (x-688 

axis). Possible ends of intervals are indicated by light grey (short) and dark grey (long) on the 689 

normalized time axis. Top right panel. Distance from predicted time to real time for each time-690 

point of the decoded interval. Bottom right panel. Slopes distribution obtained from the 5000 691 
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decoding outputs at each set. Chance level (95th percentile of the distribution) is represented 692 

in dashed lines. Distributions different from chance are indicated with an asterisk. See also S4.  693 

 694 

Figure 6. Time-by-time discrimination.  695 

A. Pairwise decoding for the caudate (left), putamen (middle) and hippocampus (right). 696 

Results for each set are presented in rows: from top to bottom are sets 1s-long, 2s-long, 4s-697 

long and 8s-long, and displayed in a time-by-time matrix in which each data-point is the 698 

discriminability accuracy between t(x) and t(y). Accuracy scores ranged from 0.5 to 1. Chance 699 

level is defined at 0.6. The temporal resolution is the window within the diagonal between 700 

black lines (chance level). Times for possible intervals to end are shown by light grey (short) 701 

and dark grey (intermediate) dashed vertical and horizontal lines. B. Average accuracy over 702 

time for the caudate (left), putamen (middle) and hippocampus (right) across ranges (coloured 703 

lines). Times for possible intervals to end are indicated by solid vertical lines, light grey for 704 

short and dark grey for intermediate. Dotted line represents the chance level. C. 705 

Discriminability scores (dots) across sets for the caudate (left), putamen (middle) and 706 

hippocampus (right). Each time on the x-axis (normalized time) is discriminated from n-points 707 

on the y-axis within the intervals. Coloured lines show the regressions of the accuracy scores 708 

by normalized time. Times for possible intervals to end are indicated by solid vertical lines, 709 

light grey for short and dark grey for intermediate. Dotted line indicates the chance level (=.6). 710 

See also S5. 711 

 712 
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 720 

STAR METHODS. 721 

RESSOURCE AVAILABILITY 722 

Lead contact. 723 

Further information and requests for resources should be directed to and will be fulfilled by 724 

the lead contact, Sylvia Wirth (sylvia.wirth@isc.cnrs.fr).  725 

Material Availability. 726 

 This study did not generate new unique reagents. 727 

Data and code availability. 728 

All data and original code has been deposited at [link will be made public upon acceptance] 729 

and is publicly available as of the date of publication. DOIs are listed in the key resources table. 730 

Any additional information required to reanalyse the data reported in this paper is available 731 

from the lead contact upon request. 732 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 733 

Animals and surgical protocols.  734 

Two naïve adult female rhesus macaques (Monkey#1, 6.5 kg, and Monkey#2, 7kg, both 5 years 735 

old at the beginning of the experiments) were housed in the same group of four females. 736 

Surgical, behavioural and experimental procedures were authorized by the ethical comity of 737 

animal experimentation N°42 and by the French minister of research and innovation under 738 

the number APAFIS#13212-20180125104191. Under general anaesthesia, the animals were 739 

implanted with a rectangular nylon chamber (21x15) on the right hemisphere allowing 740 

simultaneous access to the striatum and the hippocampus (coordinates of the centre of the 741 

chamber relative to inter-aural line, for Monkey#1, AP: +14, ML: +11; for Monkey#2, AP: -15, 742 

ML: +10; Figure 1H). The anaesthesia for the surgery was induced by Zoletil (Tiletamine-743 

Zolazepam, Virbac©, 5mg/kg) and maintained by isoflurane (Belamont, 1–2%). Pain during 744 

and after surgery was controlled by buprenorphine (Temgesic0.3mg/ml, 0.01mg/kg), and 745 

prophylactic antibiotics were administered. A head-post was also implanted and covered by 746 
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bone cement (Palacos©). The surgical procedures conformed to European and National 747 

Institutes of Health Guidelines for the Care and Use of Laboratory Animals. 748 

METHOD DETAILS 749 

Behavioural training and task design.  750 

Before experiments took place in the laboratory, animals were trained to enter a primate 751 

seating chair via positive reinforcement through clicker training and gradually habituated to 752 

be brought outside the animal facility to the lab. Animals were taught to touch an object to 753 

obtain a reward in their cage, then, they were brought to the lab, where they were also 754 

rewarded to touch and manipulate a joystick. After this initial period, proper task training 755 

followed. The task was programmed using Presentation (Neurobehavioral systems), which 756 

controlled reward deliveries conditioned to the movements of the joystick (Sakae Tsushin 757 

Kogyo, L.T.D.) depending on task contingencies. Monkeys were seated at a distance of 55cm 758 

from a 1024x768 screen with a refreshing rate of 60Hz. The experimental chair allowed 759 

reaching the joystick placed in front of the animal. Both monkeys preferred to use their right 760 

hand to manipulate the joystick. We first trained the two macaques to associate the 761 

movements of the joystick to a pointer on the screen. Following the presentation of a brief 762 

white square (200ms interval start cue), if the animal moved the pointer via the joystick to a 763 

target (a blue square), it was rewarded by a small amount of diluted juice delivered close to 764 

its mouth. The square (150x150 pixels) was randomly positioned at the top, bottom or left of 765 

the screen on every trial. Once the monkey learned the motor movements to reach targets in 766 

the three positions, three intervals were progressively inserted between the cue and the 767 

target. The screen remained dark during these intervals. We first trained the monkeys to 768 

discriminate the durations at the second-range for months (2 blocks a day, for circa 12 weeks), 769 

hereby resulting in an overtraining at this specific time-range that could explain better 770 

performances. On each trial, the monkey waited for .5, 1 or 2s (respectively short, 771 

intermediate and long trials for the set 2s-long) between the white square offset (start cue) 772 

and the targets’ appearance, without moving the joystick. In an initial training phase, the 773 

monkey was presented with an interval duration individually, and learned to move the joystick 774 

to its respective target. Then, to induce the time-based decision, we interleaved trials with 775 

two intervals during a block, and at the end of each interval, only two targets appeared at the 776 

screen, bottom and top). The monkey had to learn which (top or bottom) target was correct 777 
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as a function of interval duration. Then, when the monkey correctly categorized short and long 778 

intervals, it faced short-intermediate or intermediate-long on different blocks. This latter 779 

training phase was longer then for the first one.  Finally, trials with all 3 intervals were 780 

interleaved within a block. Therefore, even though the three durations were presented with 781 

equal probability during the recording sessions, it is interesting to note that, despite the fact 782 

that monkeys were exposed more frequently to the intermediate interval, that interval 783 

remained the most challenging duration to categorize (Figure 1C). Monkeys received three 784 

possible rewards, lasting 100, 200 or 400ms for Monkey#1 and 75, 150 or 300ms for 785 

Monkey#2. Reward sizes were kept the same across sets, and were intermixed with any 786 

possible interval length. If the monkey moved the joystick before the end of the interval, the 787 

trial was aborted without reward given. The inter-trial interval started when the monkey reset 788 

the joystick position.  789 

Retiming sets.  790 

When the monkeys reached 80% of correct responses at categorizing durations at set 2s-long, 791 

we tested them on different sets. First, for several blocks, the monkeys started with set 2s-792 

long, and then the durations were halved: long became 1s, intermediate 0.5 and short .25s 793 

(set 1s-long, or sub-second range). Then, we tested the monkeys on set 4s-long (supra-second 794 

range-1) following the same procedure. Monkeys started a block with set 2s-long and after 795 

circa 100 trials, the durations were multiplied by 2: long became 4s, intermediate 2 and short 796 

1s. Once monkeys adapted to this new retiming condition (retiming long), it had to 797 

discriminate even longer durations following the same rule: once they performed enough 798 

trials at set 4s-long, durations were multiplied by 2 once more, reaching 8s, 4s, and 2s (set 8s-799 

long or supra-second range-2). Once monkeys learned the retiming rules, we tested them on 800 

the same durations, but starting from set 8s-long, then retiming to 4s- and finally to 2s-long. 801 

We recorded from both monkeys while they performed one block of one set followed by a 802 

second set. By employing this approach, the monkeys were not excessively trained in any of 803 

the retiming sets. Consequently, the training history cannot account for the variations in 804 

performance observed among these sets. To summarize, blocks could start with 2s-long 805 

followed by 1s-long, or with 2s-long followed by set 4s-long and set 8s-long (Figure 1B). 806 

Therefore, the task design led to the limitation that all cells were not recorded for all sets, and 807 
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thus we recorded from many more neurons in set 2s-long, as this was the reference set. For 808 

Monkey#1, a few sessions consisted of set 2s-long only. 809 

Electrophysiological recordings.  810 

Neural activity was recorded using the AlphaLab SNR version 2.0.4 (AlphaOmega©).  Single-811 

unit responses were recorded using a 16-channel laminar probe with 300-µm inter-electrode 812 

spacing (V-probe, Plexon Inc.; LMA Microprobes). Two such electrodes were inserted 813 

simultaneously on every recording session, alternatively in the caudate and the hippocampus, 814 

or the putamen and the hippocampus. Cells were isolated offline using a semi-automatic 815 

method and checked manually using Offline Sorter (Version 3 and 4; Plexon Inc.)  We recorded 816 

615 neurons in the caudate (151 in Monkey#1, 464 in Monkey#2), 736 in the putamen (177 in 817 

Monkey#1, 559 in Monkey#2), and 929 in the hippocampus (291 in monkey 1, 638 in monkey 818 

2). Among caudate neurons, 196, 461, 204, 170 cells were recorded respectively during sets 819 

1s-, 2s-, 4s- and 8s-long. Following the same order, 199, 574, 333, 239 neurons were recorded 820 

in the putamen, and 348, 759, 340, 203 neurons in the hippocampus.  We recorded from many 821 

more neurons in set 2s-long, as this was the reference set. For Monkey#1, a few sessions 822 

consisted of set 2s-long only. 823 

 824 

QUANTIFICATION AND STATISTICAL ANALYSIS 825 

All analysis was done using custom written scripts in MALTAB R2018b (The MathWorks Inc., 826 

Natick, Massachusetts). 827 

Behavioural analysis.  828 

To ensure comparability of behavioural and neural activity across ranges, we only included 829 

sessions that were above a behavioural criterion. This criterion was determined using a 830 

performance threshold (proportion of correct responses), calculated by subtracting one 831 

standard deviation from the average performance across all recorded sessions. To take into 832 

account variability between time ranges, the threshold was adjusted to the behavioural 833 

performances within a time range. This conservative approach ensured that the data analysis 834 

was conducted on sessions in which the animal was truly engaged in the task. For Monkey#1, 835 

performance thresholds, expressed in proportion of correct responses, were set at 0.74, 0.72, 836 
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0.60, and 0.58 for the sub-second, second, supra-second-1, and supra-second-2 ranges, 837 

respectively. For Monkey#2, the thresholds were 0.65, 0.73, 0.59, and 0.44, following the 838 

same order. The analysis included 54, 151, 77, and 54 blocks (with 1 to 3 sets per recording 839 

session) for Monkey#1, totalling 41,598 trials. For Monkey#2, the analysis covered 55, 118, 840 

64, and 51 blocks for the sub-second, second, supra-second-1, and supra-second-2 ranges, 841 

respectively, amounting to 32,588 trials in total. At the beginning of each set, we 842 

systematically excluded the 10 first trials from all the analyses to remove a potential effect of 843 

the behavioural adjustment between ranges, as there was no indication of a switch in sets, 844 

except through previously correct response becoming incorrect. To take into account the trial-845 

by-trial variability, ssubsequent behavioural analysis was carried out on a trial-by-trial basis, 846 

leading to a high degree of freedom. Next, we used a General-Linear Mixed-Model (GLMM) 847 

model to identify whether the time range (i.e. the Time Range) or the interval durations (short, 848 

inter, long, i.e. Interval), monkey’s identity (i.e. Monkey ID) and testing day (i.e. Block) 849 

influenced discriminability: 850 

Response ~ Interval*Time Range + (1|Monkey ID) + (Monkey ID|Block) 851 

where ‘Interval’ and ‘Time Range’ were categorical fixed factors, and the block and monkey’s 852 

identity were random factors, respectively numerical and categorical. This method avoids 853 

treating trial sub-samples as independent values, as we also incorporated the ‘Block’ factor. 854 

The accuracy followed a binomial distribution, 1 or 0, for respectively correct and error trials.  855 

To determine the nature of error for intermediate trials, we performed a GLM on the response 856 

of incorrect trials (i.e. Type of error) as a function of the time range of the set (Time Range) 857 

and the testing day (Block). 858 

Type of error ~ Time Range + (1|Monkey ID) + (Monkey ID|Block) 859 

with Time Range as main factor and the type of error as explained variable (with 0 for short 860 

and 1 for long). Monkey ID and Block were defined as random factors. Type of errors were 861 

significantly influenced by the time range. 862 

To examine whether the probability to respond ‘long’ across different ranges followed a scalar 863 

pattern, we constructed psychometric curves. Note that there were only three intervals to 864 

categorize compared to bisection tasks for which classic psychometric curves are constructed 865 

with more durations68 69, preventing us computing classic metrics to test scalar property of 866 
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behavioural timing70. Hence, for each range we computed only three values: the probability 867 

of responding ‘long’ after a short interval, after an intermediate interval, and after a long 868 

interval. These individual “psychometric curves” were generated for each monkey. We 869 

subsequently applied a logarithmic model to each curve: 870 

Y = a + b * log(x) 871 

In this equation, "a" and "b" represented free parameters, while "x" denoted the empirical 872 

data gathered on the probability of responding "long" after short, intermediate, or long trials. 873 

We performed this analysis for each range, considering each block separately and averaging 874 

responses per block. Subsequently, for each monkey individually, we tested the effect of time 875 

range on the "b" parameters using a 1-way ANOVA. 876 

For the behavioural Coefficient of Variation (CV), we calculated a CV for short, intermediate, 877 

and long trials within each set of every block, separately for each monkey. The CV was 878 

computed as follows: 879 

CV = μ / σ 880 

where μ represents the average of correct categorizations, and σ denotes the standard 881 

deviation. These calculations were based on distributions with values of 0 and 1, 882 

corresponding to error trials and correct trials, respectively. Subsequently, we examined the 883 

CV variations across trial types and ranges using the following GLMM: 884 

CV ~ Interval * Time Range + (1|Monkey ID) + (Monkey ID|Block) 885 

In this equation, Interval, Time Range, Monkey ID, and Block are the same factors as in the 886 

previous models. The key distinction is that in this context, CV serves as a block-by-block 887 

measure, whereas in the other models, Response and Type of Errors are evaluated on a trial-888 

by-trial basis. The main effects were then tested using a 2-way ANOVA on the models. 889 

We tested another trial-by-trial model on normalized response latencies, after selecting 890 

correct trials only: 891 

Response latency ~ Interval*Time Range + (1|Monkey ID) + (Monkey ID|Block) 892 

Response latencies calculation and normalization. We calculated response latencies for each 893 

interval (short, intermediate, long) by measuring the time between the target onset and the 894 
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action completion. However, to account for differences in motor production times associated 895 

with different required responses (bottom, left, top), we normalized these response times by 896 

the ones obtained in a “motor-control task”. After each block, monkeys were tested on a 897 

“motor-control task”, where no delay was inserted between cue offset and targets onset. Only 898 

one target was presented at the time, for a total of ~70 trials per block. The monkey had to 899 

move for the presented target, getting an immediate reward. Latency measures in this task 900 

revealed differences in the response times among the three motor productions (bottom-901 

short, left-intermediate, top-long). Specifically, left movements were significantly faster (1-902 

way ANOVA, F(2,22026)=89.3, p<0.0001) than bottom and top movements, while latencies for 903 

bottom and top responses did not differ from each other. This suggested our monkeys were 904 

more proficient in performing a left joystick movement compared to top or bottom. To 905 

standardize the response times, we subtracted the average latencies obtained from the 906 

“motor-control task” for each direction from the corresponding latencies obtained at each 907 

trial during the categorization task. This normalization gives us a result for which responses 908 

latencies below 0 reflected anticipation of the end of the interval, as the response latency was 909 

below the time needed for action selection/execution when the monkey was presented one 910 

target at a time with no delay.  911 

Information content computation.  912 

To define time-modulated cells, we computed a “Time” Information Content (IC) and tested 913 

whether the ICreal obtained on the actual data was above that of an IC obtained by chance. 914 

The time ICreal reflects the information carried by a spike as a function of a time-bin weighted 915 

against all time-bins, and when tested against chance, allows determining whether actual 916 

pattern of firing rate as a function of time differs from chance. Importantly, the aim here is to 917 

test the hypothesis that an IC above chance reflects a temporal organization across time 918 

different from the one that could be just random. We calculated the ICreal for each cell 919 

following the next formula: 920 

IC = ∑ λ(x) * log( λ(x)/λ ) 921 

where λ(x) is the firing rate of the neuron at time t, λ is the overall firing rate, from t1 to t100. 922 

Due to the formula's sensitivity to the number of bins, the IC value decreases when the 923 

number of time bins increases, as the firing rate within each time bin depends on the total 924 
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count of time bins. Therefore, to ensure consistency in comparisons across different time 925 

ranges, we opted to divide the longer interval within each set into 100 bins. The size of the 926 

bins varied between ranges (i.e. 10ms, 20ms, 40ms, and 80ms respectively for sets 1s-, 2s-, 4s- 927 

and 8s-long) but the total number of bins did not. Next, we shuffled the spikes within the 928 

interval 1000 times, and, at each time, we calculated an ICfake on the shuffled data. With these 929 

1000 permutations, we computed a distribution of 1000 ICfake. We defined time-modulated 930 

cells as neurons that had an ICreal superior to 95% of the ICfake obtained by chance (p-value 931 

calculation). Additionally, neurons identified as TM cells at the sub-second and second ranges 932 

exhibited robust cross-correlation between the first and second halves of the trials, 933 

demonstrating stability of the temporal pattern within the session (data not shown). Non-934 

significant neurons were defined as other cells. This procedure was repeated for all ranges.  935 

To test whether the proportion of TM cells changed if only the first second is considered for 936 

all sets, we cropped all correct long trials after 1s and then computed the ICreal value for each 937 

neuron on this 1s, for all conditions. As the number of bins strongly influence the value of the 938 

IC and the permutation test, this cropping method allows a proper control across ranges with 939 

an absolute bin size and the comparison across ranges for this analysis is then not sensitive to 940 

the length of the interval. Thus, we identified TM cells with ICreal significance computed on 941 

100x10ms bins of the first second of the 2s-long (cropping the second half), 4s-long (cropping 942 

the next 3s) or 8s-long interval (cropping the next 7s), and compared them to the 100 bins of 943 

the 1s-long interval of the sub-second range. We followed the same procedure, as before, 944 

shuffling the spikes within trials across the first second for all trials, to calculate the p-values 945 

within the first second. 946 

In the same way, we identified TM cells on the inter-trial interval (ITI). Neural activity within 947 

the ITI was divided into 100x8ms bins and the IC was calculated in this segment. Again, per 948 

each neuron, we compared this ICreal versus the distribution of ICfake obtained after spike 949 

shuffling and obtained a p-value. 950 

Definition of the neural pattern of single-cells.  951 

 To classify the single cells as ramping or peak neurons, we used a stepwise regression analysis 952 

to test whether a linear or a quadratic term best explained the neural activity of each neuron 953 

during the interval. We defined a cell as ramping when 1) the linear term explained best the 954 



38 
 

firing rate throughout the interval and 2) the R² of the fitted model explained at least 66% of 955 

the variance. For cells that did not reach those criteria, we tested whether their neural activity 956 

exhibited a peak, defined as an increase of 80% above their maximal activity followed by a 957 

decrease of at least 15%. If they did, and that only one peak was found in the interval, they 958 

were classified as 1-peak neurons. If they did, and several peaks were found in the interval, 959 

they were classified as n-peaks neurons. The latter cells exhibited one or more “time fields” 960 

and made up the majority of the population in all regions (Figure S1A). The “time field” size 961 

was defined, in seconds, as the width of the peak measured at half of its prominence. For peak 962 

time analysis (Figure S1E-G-H), we only took the highest peak time of the n-peaks neurons.   963 

Neuron’s selectivity to motor preparation and execution 964 

We tested whether the single cells responses could be associated with the motor responses 965 

during the task, by using an ANOVA and post-hoc analysis, on the trial-by-trial activity 966 

exhibited during the 300ms of the movement execution. Next, focusing on TM cells recorded 967 

during both the 1s-long and 2s-long sets in the caudate (n=87) or the putamen (n=38), and 968 

using correct trials, we analysed the last 200ms before target presentation for long (top 969 

movement), intermediate (left movement), and short (bottom movement) intervals via a 2-970 

way ANOVA. 971 

Neurons selectivity to epochs of the task.  972 

To identify neurons that were selective for other epochs of the task (cue, target, response and 973 

reward), we tested a GLMM to identify if 1) neurons were responsive to each task epoch in 974 

comparison to the baseline, and 2) if there was a difference in that epoch as a function of 975 

short, intermediate and long trials (Interval). The GLMM was computed on each neuron’s 976 

firing rate trial-by-trial at the second range following the formula:  977 

Firing Rate ~ Task Epoch*Interval + (1|Trial) 978 

where Firing Rate is expressed in spikes/second, Task Epoch is a categorical variable for which 979 

the modalities are the baseline (inter-trial interval), and separately, either the cue display 980 

(200ms), the targets displayed (400ms), the movement preceding reward (-400ms before 981 

reward delivery) and reward delivery (200ms). Thus, GLMM were computed separately for 982 

each feature. Interval identity is a categorical variable, either “short”, “intermediate” or 983 

“long”. Trial is a random factor. This model allows to identify the baseline activity different 984 



39 
 

from another task epoch per each neuron. If the task epoch was significantly different from 985 

the baseline, then we tested if there was a difference as a function of interval identity. We 986 

defined neurons as selective for one interval when its activity for that interval was significantly 987 

different from the other two, and these other two intervals did not differ from each other.  988 

Down-sampling methods. 989 

To address the imbalance in sample sizes across various regions and time ranges, we 990 

consistently applied down-sampling techniques in all our population analyses. This involved 991 

computing measures (PCA) or cross-validating analysis (linear-regression-based decoding and 992 

SVM-based decoding) on subsamples drawn over multiple iterations. During each iteration, 993 

we randomly selected a subset of neurons (N), with N being determined by the smallest TM 994 

cell population size (31 for putamen and hippocampus within the sub-second range). For PCA 995 

and linear regression-based decoding, a subset of 28 neurons (leaving 3 out) was drawn at 996 

each of 1000 iterations for each brain region and time range. In the case of SVM-based 997 

decoding, a subset of 30 neurons (leaving 1 out) was randomly drawn for 10 iterations for 998 

each brain region and time range. By adopting this approach, results across regions and time 999 

ranges were minimally affected by variation in neural population size. 1000 

Principal Component Analysis.  1001 

We computed Principal Component Analysis (PCA) for each set and each brain region on 1002 

correct long trials within the set. For each neuron, we used the raw activity averaged across 1003 

trials at each time-bin. Each neuron was defined as a variable and each time-bin was defined 1004 

as an observation. We performed PCA with the down-sampling method, conducting 1000 1005 

measures (as described above) on randomly selected sub-populations of 28 neurons for each 1006 

region within each time range. On each iteration, we determined the number of components 1007 

needed to capture at least 50% of the variance (Figure S3A), as measures of speed and 1008 

distance to centroid are computed based on this number of PCs. Thus, we selected 11 1009 

components, which represented the highest number of PCs needed to capture at least 50% of 1010 

the variance across regions and time ranges (observed in the putamen and the hippocampus 1011 

for the 8s-long set, see Figure S3A). Our choice of a 50% threshold differs notably from the 1012 

conventional approach66 22 6, mainly because we performed PCA on raw spiking activity. 1013 

However, we determined that this equaled 80% of the variance explained when PCs were 1014 
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computed on smoothed data. Next, the speed (Figure 3C-D) was calculated on each iteration 1015 

as the Euclidean distance between the PC scores of two consecutive time-bins. Importantly, 1016 

to compute speed (and other measures below), we employed an absolute binning approach 1017 

using 20ms bins across all ranges, as it is essential to maintain a consistent binning method to 1018 

measure true differences from time to time. Consequently, the number of time-bins increased 1019 

significantly as the time range expanded: from 50 time-bins in the sub-second range to 100, 1020 

200, and 400 in the second range, supra-second range-1, and supra-second range-2, 1021 

respectively. The Coefficient of Variation (CV= μ / σ, Figure 3E) was computed by taking the 1022 

average speed (μ) on each iteration and dividing it by the standard deviation (σ). Following a 1023 

similar rationale, we determined the centroid as the point equidistant from the scores at each 1024 

time-bin. We then computed the average distance to centroid on each iteration, as a mean to 1025 

compare across time ranges, as the number of observations varied between ranges. The 1026 

distances to the centroids were expressed in Euclidean distances with the following formula:  1027 

D(x,c) = (xi,j,k-ci,j,k) * (xi,j,k-ci,j,k)’ 1028 

Where x is the state of the population at time t and c is the centroid of the distribution X. i, j, 1029 

and k are the coordinates in the 3-dimensional state.  1030 

Separately, we determined the angular position of the scores’ coordinates at each time-bin 1031 

(ranging from 1 to 100, normalized time) by calculating the angle formed between: 1) the 1032 

scores at the first time-bin, 2) the scores at the current time-bin's position (from 1 to 100), 1033 

and 3) the centroid of the trajectories. This equals to determine the angular progression of 1034 

the hands of a clock ranging from the first to the last bin. For this analysis, as for the IC calculus, 1035 

we binned the intervals into the same number of time-bins (i.g. 100) to prevent an imbalance 1036 

in the number of observations for across range comparisons. The angular calculation was 1037 

performed using the first 3 principal components in a trigonometric space using normalized 1038 

bins. To this end, the time-space was normalized such that angle 1 corresponded to time 1 1039 

and angle 360 corresponded to 1, 2, 4 or 8s depending on the time range. For each time-bin, 1040 

we obtained a distribution of 1000 angles, obtained from each iteration (see the section 1041 

Down-sampling methods). We then examined whether there was a consistent progression in 1042 

neural trajectory over time. To accomplish this, we identified the most frequently occurring 1043 

angle (referred to as the best angle) from the 1000 iterations at each time-bin (depicted as a 1044 

white circle in Figure 3F and Figure S3C-E-G, bottom rows). Subsequently, we calculated the 1045 
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difference between the best angles of two consecutive time-bins for each brain region and 1046 

range. Finally, we conducted a 2-way ANOVA on these angle differences, with brain region 1047 

and time range serving as factors.  1048 

PCA analysis for rescaling of neural trajectory 1049 

For this analysis, we used exclusively the 87 neurons that were recorded across the sub-1050 

second and second time ranges, and identified as TM cells in at least one of the time ranges. 1051 

We performed a PCA on the concatenated rate matrices from the two time ranges using an 1052 

absolute binning (20ms bins) across time ranges (50 bins for set 1s-long, and 100 bins for 2s-1053 

long). The rows for the input matrix corresponded to the firing rate of 87 caudate neurons 1054 

binned in 20ms. The columns of the input matrix for the PCA consisted of the time-bins of the 1055 

interval for the two time ranges as follows: the firing rates for each of the 50 time-bins of the 1056 

1s-long interval and the firing rate of each of the 100 time-bins of the 2s-long interval. 1057 

To compute statistics, we used a bootstrap method in which we drew 30 trials on each 1058 

of 1000 iterations to compute the PCs on the concatenated matrix. We first extracted the 1059 

eigenvectors on the entire population, and then projected the data for 15 trials taken 1060 

randomly from each set at each iteration. To consider the overall geometry of neural 1061 

trajectories, the distance between neural trajectories across time between 20ms samples of 1062 

1s-long and 2s-long conditions was plot according to absolute (1 to 1) and relative sampling (1 1063 

to every other one). The slope of the regression of the distances as a function of time was 1064 

interpreted according to the hypothesis space depicted in Figure 4B. 1065 

Multi-class decoding using linear regression.  1066 

To predict time based on neural activity, we used a linear regression model to decode time. 1067 

First, to compare the temporal prediction from TM cells and other cells, we trained the model 1068 

on the neural activity of the two populations separately. Training phase was computed on the 1069 

2s-long interval, during 15 correct long trials and the temporal prediction was tested on 5 1070 

separate correct trials. We would like to stress out that the time prediction is based on neural 1071 

data collected for correct long trials, therefore prediction values cannot be directly linked to 1072 

the behavioural accuracy, which used both error and correct trials, and hence have to be 1073 

interpreted differently. Neural activity was cut into 100 bins, of 20ms, and smoothed on +/- 4 1074 

bins trial-by-trial. Then, the model was tested on five different correct long trials. The analysis 1075 



42 
 

was cross-validated 1000 times. Per each iteration, we obtained a decoding output y = β0 + 1076 

β1 * X. In the equation, X is the matrix of neurons (rows) and time (columns) which represents 1077 

the real-time activity, y is the vector which contains predicted time at each one of the 100 1078 

time-bins, and β1 is a vector containing the weight of each neuron. As we tested the model 1079 

on 5 correct trials and cross-validated it 1000 times, we obtained 5000 decoding outputs per 1080 

each brain region and each population. For each of these 5000 outputs, we calculated the 1081 

slope of the predicted time (y). We get a αreal distribution of 5000 slopes of decoding for both 1082 

populations, TM cells and other cells, for each brain region at set 2s-long. To define our 1083 

chance-level, we performed the same decoding analysis after shuffling the time-labels on 1084 

tested and trained trials. Thus, we also obtained a distribution of slopes αshuffle calculated on 1085 

shuffle data. Decoding above chance was define by 1 – (∑ β1 real > P95(β1 shuffle) / 5000). Because 1086 

our model was trained on neural activity during the timed interval, predictions can only be 1087 

obtained within the time window and cannot extrapolate beyond the boundaries for under or 1088 

over-estimations. This approach is therefore solely suitable for assessing the general 1089 

prediction capability of the entire population within the specified time window. We used the 1090 

same method to test if the neural activity during the ITI could be decoded from the activity of 1091 

the first 800ms of the interval (Figure 5B). This time, we trained our model on the first 800ms 1092 

of 15 trials of 2s-long conditions defined as correct. The cropped interval was cut into 100 bins 1093 

of 8ms and smoothed on +/-4 bins. The model was then tested on 1) the first 800ms activity 1094 

of the long interval during 5 different trials and 2) on 5 inter-trials intervals (ITI). Then, we 1095 

tested the temporal predictability of TM cells identified as such during the ITI, by training and 1096 

testing the activity on 15 and 5 ITI respectively. For this analysis, the ITI was cut into 100 bins 1097 

of 8ms and smoothed on +/-4 bins trial-by-trial. In all cases, decoding above chance was tested 1098 

using the same method to compute the slopes and calculate the p-values as before. Finally, to 1099 

test the performance of decoding across sets, we used the same method, with the exception 1100 

that, at each iteration, we down-sampled our neural population to 28 neurons. This makes 1101 

comparisons between sets and brain regions possible. For each set, we took the longest 1102 

interval of the set, and parsed it into 100 bins: resulting in bin size of 10, 20, 40 and 80ms; as 1103 

for the PCA angular position calculus. Again, this allowed to keep a constant number of 1104 

observations across sets to facilitate cross ranges comparisons. For each set, the activity was 1105 

smoothed on +/-4 bins trial-by-trial. As before, we computed, per each set and each brain 1106 

region, the distribution of the slopes of decoding outputs on real and shuffled data to test the 1107 
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temporal predictability versus chance. In addition, we also tested the distances of predicted 1108 

time to real time to compare brain regions between each other and sets. We averaged our 1109 

5000 decoding output to get 1 vector of predicted time. At each time-point, we calculated the 1110 

distance from predicted time to real time, and then compared the brain regions and sets using 1111 

2-way ANOVAs.  1112 

Pairwise analysis using Support Vector Machine, and measures derived from decoding 1113 

accuracy. 1114 

To quantify the difference between two time-points tn and tm within an interval, we used a 1115 

support vector machine (SVM)-based decoding analysis. At time tn and tm, the neural state of 1116 

the population is given by the activity of n neurons. Unlike the linear-regression-based 1117 

decoding, which evaluated overall prediction, this pairwise decoding technique offers the 1118 

advantage of assessing time-by-time discriminability, providing a more precise metric. to 1119 

compare the activity between brain region and sets, we down-sampled our populations to 30 1120 

neurons this time, as neuronal shuffling was also supported by different trial selections across 1121 

iterations. For each set, we binned the activity of correct long trials into 100 bins, sizing and 1122 

smoothing them as we did for multiclass decoding across sets. Then, we extracted the 3 first 1123 

components of the neural state at tn and tm using PCA on trial-by-trial basis. After 1124 

dimensionality reduction, the neural state at tn and tm are given by 3 coordinates instead of n 1125 

(n=30). Then, we trained a SVM classifier on the 3 PCs of 10 trials from tn and 10 trials from 1126 

tm, and tested it on the PCs obtained from 10 different trials of tn and 10 others of tm. The SVM 1127 

classifier returns an accuracy value between 0.5 and 1: 1 reflects the absolute certainty to 1128 

classify each time-point (tn and tm) correctly, and 0.5 reflects the chance level to distinguish tn 1129 

and tm. Each pair of time-bins, from t1 to t100, was tested versus each other. We did this analysis 1130 

for 10 iterations, and represented the averaged outcomes of SVM classifier in a time-by-time 1131 

matrix, averaging the output of the 10 iterations. To test the temporal accuracy between brain 1132 

regions and time range, we tested the bottom half along the diagonal of the matrix’s 1133 

accuracies between time range and brain regions using a 2-way ANOVA. Next, we computed 1134 

the exact same analysis after shuffling the labels on training and test trials. The 95th percentile 1135 

of the overall distribution of accuracy obtained from shuffled decoding was 0.55. We used a 1136 

conservative chance level at 0.6. Next, for each time-bin, for each interval, we computed the 1137 

accuracy score from t1 to t100.  1138 
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Discriminability Score. Discriminability score of tn was defined by the number of time-bins 1139 

decoded above chance from tn. Its value ranged from 0 to 99, with 0 indicating that no other 1140 

time-bin differs from tn and 99 indicates that all other time-bins of the interval are different 1141 

from tn. Then, we calculated the chance level for the number of other time-bins differing from 1142 

another time-point, with matrices obtained after shuffling the labels, from each region and at 1143 

all time ranges, and the matrices obtained from each iteration (i=10). Per each one of these 1144 

matrices, we computed the accuracy score of each time-bin. Chance level was defined as the 1145 

mode of this distribution of 12,000 values.  1146 

To compare discrimination per brain region and time range, we regressed the mean 1147 

discriminability scores as a function of time to test whether they increased or decreased in 1148 

the interval. an absence of significant linear regression is hence indicative of a constant 1149 

accuracy within the interval.  1150 

Temporal Resolution. To compute the temporal resolution of each brain region across sets, 1151 

we calculated at each time-bin ti the distance ti to tj, where tj is the closest time-bin to ti 1152 

successfully discriminated from it (above 0.6). To do so, considering the diagonal of our 1153 

matrices and for each ti, we identified the distance to the closest time-point decoded above 1154 

chance at the upper half and the lower half of the matrix, and then averaged these to get the 1155 

width of the decoding. This distance represents the size of the time window within which 1156 

neural activity around ti is too similar to be discriminated from ti. 1157 

To test temporal discriminability in the first second of the intervals across ranges, we used 1158 

only the first second of the activity of TM cells (cropping off longer intervals). We computed 1159 

the same decoding analysis, down-sampling our neuronal populations to 18 neurons for each 1160 

brain region at each time range, except for the caudate at set 8s-long where we had 9 TM cells 1161 

only. To test whether time was discriminated successfully within one second as a function of 1162 

time-range, we computed a 2-way ANOVA on the bottom half along the diagonal of the output 1163 

matrices. 1164 

Breaking points. The breaking points in the linearity of the consecutive measures of temporal 1165 

resolution were identified with the ischange MatLab function. 1166 

 1167 

 1168 
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Figure S1. Population measures across regions and ranges. Related to Figure 2. A. Table 

showing the percentage of TM cells in each region at each time range for each monkey 

separately. Different proportions between monkeys are shown in bold and with an asterisk. 

B. Heatmaps of TM cells populations in Monkey#1 (top row) and in Monkey#2 (bottom row) 

in caudate (left column), putamen (middle column) and hippocampus (right column). Neurons 

are z-scored and sorted by their linear terms. Monkey#1 consistently had a higher proportion 

of TM cells compared to Monkey#2. However, due to the limited number of animals, it is 

challenging to establish a direct link between these differences and behavioural variations. C. 

Proportion of ramping cells, 1-peak, multi-peaks and other cells for each brain region across 

sets, from top to bottom, at sets 1s-long, 2s-long, 4s-long, 8s-long. D. Distribution of the linear 

terms obtained from the stepwise regression analysis, for each brain region across sets, from 

top to bottom, at sets 1s-long, 2s-long, 4s-long, 8s-long. E. From top to bottom, peak times at 

set 1s-long, 2s-long, 4s-long and 8s-long. Columns from left to right: caudate, putamen, 

hippocampus. Left y-axis, percentage of peak times over the interval (white bars represent 

peak neurons, coloured bars ramping neurons). Median of the distribution (triangle) and 

interquartile range represent the peaks distribution. In the caudate, the peak times were 

mainly distributed within the first half of the interval (medians respectively at 39, 42.5, 31, 

and 37% of the intervals at sets 1s-, 2s-, 4s- and 8s-long). In the putamen, the peaks were 

distributed in the second half of the interval at set 1s-long (median at 68%) and in the first half 

of the interval for the other sets (medians respectively 46, 42, and 36% of the intervals for sets 

2s-, 4s- and 8s-long). In the hippocampus, peak distributions were also mainly distributed 

within the first half of the intervals (medians respectively at 43, 42, 38, and 51% of the 

interval). These observations show that overall, neurons peaked during the first half of the 

interval to be timed. Right y-axis shows the width size of peaks as a function of peak times. 

Superposed dashed line represents the fit obtained after linear regressions. None of them was 

significant, suggesting that the time-field of each neuron (width) did not increase linearly as a 

function of its peak time within the interval. F. Table showing the number of TM cells 

responding to other epochs of the task and the number of TM cells selective for an epoch of 

the task as a function of the length of the interval (short, intermediate, or long) for set 2s-long 

only. To test it, we used a LMM (see STAR Methods). A large proportion of TM cells in all 

regions also responded to cue, target onset, response execution and reward delivery. These 

proportions were higher in the striatum compared to the hippocampus. Some cells also 



 

showed a selectivity to the trial type. G. Distribution of peak times during the interval as a 

function of neurons selectivity to short, intermediate, and long trials (bold in E) during target 

task epoch in set 2s-long. Crosses represent the mean peak time. From left to right: caudate, 

putamen and hippocampus. We found no difference in the distribution of the peaks during 

the long interval between ‘short-preferring’ neurons, ‘intermediate-preferring’ neuron, or 

‘long-preferring’ neurons whether their selectivity was assessed for target presentation. 

motor execution or reward delivery.  In sum, these results show that the neurons displayed 

activity outside the interval, but that this activity was not firmly indicative of the peaks’ 

distribution within the interval. H. Width size of the “time-field” as a function of peak time per 

caudate (left), putamen (middle) and hippocampus (right) across all time ranges. Coloured 

lines represent the fit model of the linear regression (β1= 0.168 for caudate, β1=0.1424 for 

putamen and β1=0.119 for hippocampus, p<0.0001 in all regions).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S2. Single cells examples aligned at the end of the sub-second and second ranges 

intervals. Related to Figure 2. 

Single cells activity aligned at the interval’s end (target presentation). Each cell (columns) is 

displayed three times: before long interval’s end (top movement, in black), before 

intermediate interval’s end (left movement, dark grey) and before short interval’s end 

(bottom movement, light grey). Analysis was performed on the 200ms before interval’s end 



 

(0 in the figure). Top row. Neurons that were not affected by time range nor following 

movement. Middle row. Neurons that were sensitive to both, movement and time range. 

“Preferred” movement is shown in red, significant pairwise comparisons following significant 

interaction, are shown by the asterisk. Bottom row. Neurons that were sensitive only to 

movement, preferred movement is shown by the red activity. 



 
 



 

Figure S3. Principal Component Analysis for retiming ranges. Related to Figure 3 

A. Cumulative explained variance (y-axis) as a function of Principal Components (x-axis) for 

each brain region (coloured lines) across time ranges, from left to right, using an absolute 20ms 

binning on raw data. 50% of the variance is shown by the dotted line. B. Average speed (y-axis) 

of the neural trajectories during the 1s-long interval, obtained with the first 11 PCs, from each 

iteration, with the down-sampling method (i=1000) plotted against the average distance to the 

centroid of the same trajectories (x-axis). C. Top row. Population activity over time during set 

1s-long, projected onto the first two Principal Components for the caudate (left), putamen 

(middle), and hippocampus (right). The time of expected interval ends are indicated for short 

(S), intermediate (I) and long (L) intervals. The centroid of the distribution is represented with 

a cross. Bottom row. Distribution of angular positions computed from each iteration (i=1000) 

at each time-point for set 1s-long. White circles indicate the angle obtained the most out of 

the 1000 iterations, for each time-point. Time of expected interval ends are indicated with 

white vertical lines. C. Same as in A for set 4s-long. D. Same as in B for set 4s-long. E. Same as 

in A for set 8s-long. F. Same as in B for set 8s-long.  

 

 

 

 

 

 

 

 

 

 



 

 

Figure S4. Absence of time decoding from inter-trial interval. Related to Figure 5 

A. Multiclass decoding trained and tested on baseline activity during the ITI (black line). 

Decoding of predicted time (y-axis) as a function of real time (x-axis) for caudate (left), 

putamen (middle) and hippocampus (right). Chance value is shown with grey shade. Bottom 

panel. Slopes distribution obtained from the 5000 decoding outputs on baseline activity (black 

line) did not differ from chance. B. Same as in A with TM cells defined during the ITI. 

 

 

 

 

 



 

 



 

Figure S5. Temporal resolution of time decoding across time ranges and Time-by-time 

discrimination within 1s. Related to Figure 6 

A. Number of clusters obtained per each brain area across time-ranges. B. Resolution of the 

temporal discrimination (y-axis) as a function of time for the 3 brain areas (caudate in blue, 

putamen in green and hippocampus in red). Circles show the times where the linearity of the 

resolution changes. From left to right: results for set 1s-long, 2s-long, 4s-long and 8s-long. C. 

Pairwise decoding computed on the neurons defined as TM cells within the first second of 

each interval, across different time ranges: from top to bottom are sets 1s-long, 2s-long, 4s-

long and 8s-long. Brain regions are presented in columns: caudate (left), putamen (middle) 

and hippocampus (right). Possible times for the interval to end are represented by light grey 

(short) and dark grey (intermediate) dashed vertical lines. Results are displayed in a time-by-

time matrix, each data-point is the discriminability accuracy between t(x) and t(y). Accuracy 

scores ranged from 0.5 to 1. Chance level is defined at 0.6. The temporal resolution is the 

window within the diagonal between black lines (chance level). 


