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Abstract

In this paper, a new homogenization model is developed for the determination of macro-10

scopic shakedown limit state for porous media subjected to general cyclic loads. Based on
the variational principle over the stabilized cycle, a new macroscopic fatigue criterion is
established, beyond which the collapse of material will occur due to fatigue. Unlike the
classical Melan’s theory by statical approaches relying on the complex construction of a
time-independent residual stress field, the formulation of the new criterion is derived from15

a variational-based kinematical approach which allows overcoming this difficulty. Dirac’s
measure is adopted to simplify the volume integral with the assumption of vanishing plastic
strain increment over a stabilized cycle. The established criteria exhibit directly the depen-
dence of the plastic shakedown limit load on the invariants of the macroscopic stress tensor,
Poisson’s ratio of the solid matrix and the porosity. The macroscopic safety domain is de-20

fined by the intersection of limit surface of this new fatigue criteria and that corresponds
to the incremental collapse which is reached monotonically. The theoretical predictions of
shakedown limits by the new criterion are compared with the numerical results obtained
from non-linear optimization method and with those given by some representative existing
criteria. It is shown that the new criterion significantly improves the accuracy of plastic25

shakedown limit prediction for porous materials with large values of porosity.
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1. Introduction

Many engineering materials contain voids or pores at different scales. The macroscopic30

mechanical behaviour and failure process of porous materials are generally characterized by
plastic deformation and void growth. Moreover, in many engineering applications, those
materials are subjected to variable or cyclic mechanical loads. It is primordial to predict the
material strength under cyclic loading for the durability analysis of engineering structures.

During several decades, a large number of studies have been devoted to the determi-35

nation of macroscopic plastic yield or strength criteria explicitly including effects of voids
and their evolutions. Different homogenization methods have been developed, mainly based
on limit analysis theory and variational principles. Using a kinematical approach in the
framework of limit analysis, the pioneer’s work was done by Gurson [25] by formulating the
macroscopic strength criterion of porous media with a von Mises type solid matrix. Based on40

this work, numerous extensions have been proposed in the literature by introducing several
modifications. For instance, the well-known numerically motivated GTN model, developed
by Tvergaard [59, 60] incorporating three additional parameters, is widely used in structural
computations, considering that Gurson’s model appears too stiff. Among the other exten-
sions of Gurson’s model, important efforts have been focused on the consideration of void45

shape effects [21, 22, 37, 44, 45]. Benzerga and Besson [3] firstly considered the matrix plas-
tic anisotropy of ductile porous media containing spherical pores, which was later extended
to spheroidal ones in [43, 32] and to tension–compression asymmetry in [8]. More narrowly,
the plastic compressibility of the matrix was considered by adopting pressure-sensitive solid
matrix, for instance, a Mises–Schleicher, a Drucker–Prager or a Mohr-Coulomb type matrix50

for geomaterials [1, 24, 31, 46]. For completeness, some other applications have also been de-
voted to rigid inclusions-reinforced porous materials [18, 52]. These kinematical approaches
provide an upper bound of macroscopic strength surface of porous materials, requiring the
choice of a suitable trial velocity field. On the other hand, by using a dual statical ap-
proach originally developed from Green’s work [23], lower bounds of macroscopic strength55

criterion have been established in [56, 57]. Recently, an innovative stress-based variational
model (SVM) has been developed by [9, 53]. The SVM model combines the Hill variational
principle for rigid plastic solids and homogenization concept to deliver macroscopic strength
criteria of porous materials.

However, most of those criteria are devoted to the prediction of yield stress or failure60

strength of porous materials under monotonic loading or during the first loading cycle.
According to wide experiment data [33, 73, 70], the ultimate limit load under cyclic loading
can be very different with that estimated for monotonic case. Generally, three different
asymptotic responses can be distinguished under cyclic loads. The first one is the incremental
collapse or failure due to excessive accumulated plastic deformation. The second state is65

related to fatigue induced by alternative plastic deformation of equal amplitude but opposite
sign [39, 27, 64] during cycles. The third one is the shakedown state at which the mechanical
response becomes purely elastic after a transient phase [49, 16].

The direct way to determine the limit state under cyclic loading is to perform laborious
step-by-step computation over all cycles. In order to avoid this, the shakedown theory has70
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been developed to provide directly some essential information of limit state. The shakedown
theory has firstly been based on the extension of limit analysis initially used for monotonic
loading and a detailed review can be found in [38, 63]. Similar to limit analysis, both the
statical and kinematical approaches are studied for cyclic loads. The statical approach,
initiated by Melan [42] and further developed in [58, 35], gives a sufficient context for the75

evolution to shakedown state of perfect elasto-plastic bodies. The key step of that ap-
proach is to find out a time-independent residual stress field. This is usually a difficult task.
The kinematical approach, initially proposed by Koiter [34] and completed by [20, 50], is
based on an admissible plastic strain increment field. In general, the real shakedown limit
load is restrained by the respective approximate application of the statical and kinematical80

approaches through relaxing the admissible conditions. Besides, during the last decades,
different numerical methods have been developed concerning hardening effects of materi-
als [30, 29], multi-dimension and multi-field condition [47, 19, 61], multi-layered structure
[72, 48], structure’s imperfection [71, 2], and eventually porous media considering the void
influence [41, 36, 65], with the computational capacity improvement of computers.85

On the other hand, important efforts have also been made to extend the basic variational
principles initiated by Hill [28] and Markov [40] for monotonic loading to shakedown analysis
under cyclic loading. In particular, Save et al. [49] proposed two dual methods by using the
admissible time-independent residual stress field and plastic strain increment in the sense
of Melan and Koiter to develop variational approaches. Especially by considering that the90

plastic strain over a stabilized cycle vanishes, an upper bound approach for the shakedown
analysis was deduced from Markov principle. This approach is consistent with the micro-
macro approach developed for high-cycle multi-axial fatigue analysis [13, 14]. It is concluded
that the fatigue criterion can be obtained by maximizing the size of strength domain until
the limit state for plastic shakedown is reached [15].95

Concerning the application of Melan’s statical theorem to the conservative predictions
of macroscopic plastic shakedown limit loads, significant advances have been obtained for
porous media with perfectly plastic matrix obeying von Mises [68, 67] and Drucker-Prager
[66] yield laws, coupled with homogenization theory. Moreover, the kinematical hardening
solid phase has been recently studied in [69] with the same methodology by considering100

Feng’s corollary [17] of standard lower shakedown theorem. The plastic shakedown limit of
porous media considering kinematical hardening effects is proved identical to the perfectly
plastic one by both analytical and numerical results. Although the obtained shakedown
criteria in this series of works provide a comparatively direct way to evaluate the bearing
capacity of porous media, two remarks of such methodology must be pointed out: i) The105

construction of time-independent residual stress field is quite complex and leads to heavy
expressions with numerous terms, in order to meet the requirement of being statically admis-
sible. This is the most important concept of Melan’s theorem. Even if it can be eliminated
in the final expression by a small trick in [69], it still need to be considered during the
derivation. ii) Important differences are still observed between the theoretical predictions110

and numerical results for large values of porosity (f > 0.1), which requires a refinement of
the adopted stress fields.

Therefore, the main objective of the present study is to develop a new homogenization
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method for determining macroscopic fatigue criteria of porous materials with a large range
of porosity, without considering the time-independent residual stress field. Unlike the above115

mentioned works based on Melan’s statical theorem, despite also being within the framework
of micromechanics with a hollow sphere model, this paper is derived from the kinematical
solution [49] for the thick wall tube under isotropic pressure, which is initially developed
with Markov’s variational principle over a single cycle. The special technique of bounded
measures is used to simplify the mathematical derivation by eliminating the volume integral.120

In the same spirit of the Gurson-like homogeneous approaches [9, 53], both the stress and
strain fields are composed of a hydrostatic part and a pure deviatoric one. Concerning the
second remark in the previous paragraph, a new trial elastic stress field in the fictitious body
under pure shear loading is constructed semi-analytically in order to improve the accuracy
of the theoretical result, especially for high values of porosity.125

The present paper is organized as follows. In Section 2, we briefly recall the homoge-
nization theory and the variational principle for the shakedown problem. Section 3 is then
devoted to determination of the macroscopic fatigue criterion under general cyclic loading
conditions. In Section 4, the assessment of the new fatigue criterion is presented by compar-
ison with numerical results obtained from non-linear optimization and with some analytical130

solutions given in [67]. Some conclusions and prospectives are presented in the last section.
In addition, the implementation of the kinematical solution of the thick wall tube under
isotropic pressure and the construction of the new fictitious elastic stress field are provided
in the appendix.

2. Basic definitions and homogeneous variational formulations for shakedown135

problem

The porous material is here represented by a reference unit volume Ω composed of a void
ω and a solid matrix ΩM = Ω − ω made of elastic perfectly plastic material, obeying the
local yield criterion:

F (σ) ≤ 0 (1)

where F is the yield function and σ denotes the stress tensor.140

The strain rate tensor is given by the normality law:

ε̇p = λ̇
∂F

∂σ
(2)

where λ̇ ≥ 0 is a positive scalar multiplier.
The plastic dissipation function is obtained as

D(ε̇p) = σ : ε̇p (3)

if ε̇p is associated to σ.
According to the average-field theory for homogenization, the macroscopic stress Σ is145

classically defined as the volume average of its microscopic counterpart σ:

Σ =< σ >=
1

| Ω |

∫
Ω

σ dV (4)
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The set of statically admissible stress fields is defined as:

Sa = {σ s.t. div σ = 0 in Ω, σ · n = 0 on ∂ω, σ = 0 in ω} (5)

in which n is the unit outward normal vector of the matrix. Similarly, the set of kinematical
admissible velocity fields is given by:

Ka = {v s.t. v(x) = D · x on ∂Ω} (6)

where D is the macroscopic strain rate tensor and x is the position vector on the boundary.150

The total local stresses in perfectly elasto-plastic body Ω under variable loadings is
divided into two parts [63]:

σ = σE + ρ (7)

where σE represents the fictitious purely elastic responses subjected to the very same load,
and ρ is the corresponding residual stresses belonging to the following set:

N = {ρ s.t. div ρ = 0 inΩ, ρ · n = 0 on ∂ω, ρ = 0 in ω} (8)

Let (σE, εE,uE) be the fictitious purely elastic responses of the elementary cell Ω under155

the same loads. Likewise, the field defined by:

η = ε− εE (9)

belongs to the set of residual strain fields defined by:

N ∗ = {η | ∃v s.t. η = gradsv, v = 0 on ∂Ω} (10)

Let us introduce the definition of admissible plastic strain rate field to distinguish the
collapse process over a load cycle for a periodic action in Koiter’s sense [34]. For a considered
plastic strain rate field ε̇p, such that160

� the increment of the plastic strain on the load cycle is kinematically admissible:

∆εp =

∮
ε̇p dt ∈ N ∗ (11)

with zero values on the boundary.

� ε̇p is plastically admissible: ∫
Ω

∮
σE : ε̇p dt dV > 0 (12)

ε̇p is said to be an admissible plastic strain rate field.
Based on this ground, the kinematical shakedown theorem is proved by Halphen [26]: If165

an admissible plastic strain rate field can be found, the structure does not shake down.
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For the structure in shakedown state, the applied external actions can be replaced by
the corresponding stress field σE in the fictitious elastic body. The following variational
principle for shakedown problem is developed by Save et al. [49]:

Markov’s principle over a cycle1: Among the admissible plastic strain rate fields ε̇p
′
,170

the true one ε̇p makes the functional :

Φ(ε̇p) =

∫
Ω

∮
D(ε̇p)dt dV −

∫
Ω

∮
σE : ε̇pdt dV (13)

the minimum value.
In particular, for an admissible couple (ε̇p, ρ̄) such that the admissible plastic strain

rate field ε̇p is associated to the stress field (σE + ρ̄) by the normality law with the time-
independent residual stress field ρ̄, according to (3), one has:175

Φ0(ε̇p,σE) = 0 (14)

in which Φ0 denotes the minimum value of the functional Φ introduced in (13).
Further, by considering the principle of virtual work, one gets:∫

Ω

∮
ρ̄ : ε̇p dt dV =

∫
Ω

ρ̄ : ∆εp dV = 0 (15)

Indeed, it is difficult to find a general solution for the admissible couple (ε̇p, ρ̄), because
the fictitious elastic stress field σE also contributes to the associated total stress field. As
proved by [4], it is convenient to determine the true elastic stress field σE and then find the180

best admissible strain rate field by solving the following minimization problem:

Φ0(ε̇p,σE) = min
ε̇p′∈N ∗

Φ0(ε̇p
′
,σE) = 0 (16)

Replacing the local elastic stress field by the invariants of the macroscopic stress tensor,
a homogeneous criterion of porous media for the shakedown problem is finally written as:

F(Σ) =

∫
Ω

∮
D(ε̇p)dt dV −

∫
Ω

∮
σE(Σ) : ε̇pdt dV = 0 (17)

Obviously, the next step is the choice of a trial stress field depending on some parameters,
rich enough to capture the main physical characteristics. It must be remarked that, in185

order to simplify the calculation, the minimum of Φ0 may not strictly be equal to zero but
satisfying the admissible condition only in an average sense for the trial fields. Nevertheless,
according to previous studies [9, 11], this minimum principle still provides a best solution
within the framework imposed by the approximations. Different from the previous studies
devoted to transforming the yield criterion at micro scale to the macroscopic one, the above190

homogeneous shakedown formulation (17) is on account of the equivalence between the
plastic dissipation and the external work rate in nature.

1It is an extension of the variational principle in Limit Analysis to shakedown problem by considering
the critical load cycle, which is firstly introduced by Markov for perfectly plastic material. The reader is
referred to [62] for the rigorous demonstration.
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3. Construction of the stress and strain rate fields and determination of macro-
scopic fatigue criterion under general cyclic loadings

A hollow sphere model is adopted as the representative volume element (RVE) of porous195

media. The inner and outer radius are noted as a and b respectively, giving the void volume
fraction f = (a/b)3 < 1. The solid matrix is supposed to be made of elastic perfectly plastic
material obeying von Mises yield criterion:

F (σ) = σeq(σ)− σy ≤ 0 (18)

where σeq(σ) =
√

3
2
s : s denotes the equivalent stress with s being the deviatoric part

s = σ − tr(σ)1.200

The cyclic loadings are enforced proportional at the macro scale during each cycle with
a constant stress triaxiality:

T = Σm /Σeq (19)

where Σm and Σeq are the macroscopic mean stress and equivalent stress.
For the pure hydrostatic loading case (Σeq = 0), Save et al. [49] proposed an exact

solution initially for the thick wall tube under isotropic loadings using Markov’s principle205

over a cycle. The implementation on the hollow sphere model is outlined in Appendix A.
While for the general cyclic loading case, the trial microscopic elastic stress and plastic strain
rate fields are firstly constructed in the following subsection. Then a macroscopic fatigue
criterion is established for porous media by the use of the homogeneous formulation (17).

3.1. Trial elastic stress and plastic strain rate fields combined between hydrostatic and devi-210

atoric loadings

In order to limit the errors due to approximations, we shall consider trial fields for
which the macroscopic model is exact at least for pure hydrostatic loadings provided in the
previous section. And taking account of the symmetric hollow sphere model, both the trial
stress fields and plastic strain rate fields are considered as the sum of two decompositions215

in spherical and deviatoric parts:

1) For the fictitious elastic stress field, a heterogeneous part σE(1) corresponding to the
exact one generated by the pure hydrostatic loading is taking the same form of (61):

σE(1) =
Σm

1− f

(
1 +

1

2

(a
r

)3

(eθ ⊗ eθ + eφ ⊗ eφ − 2 er ⊗ er)
)

(20)

The second part σE(2) is added to capture the shear effects in the fictitious body. Based
on Papkovich-Neuber solution [55] of a hollow sphere under pure deviatoric tractions220

on its outer boundary, a trial elastic stress field writes in the following form in the
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spherical frame {er, eθ, eφ}:

σE(2) =2M0

{[(
−6νA2r

2 + 2B2 −
2 (10− 2ν)C2

r3
+

12D2

r5

)(
3 cos2 θ − 1

2

)]
(er ⊗ er)

+

[(
−3 (2ν + 14)A2r

2 − 4B2 +
2 (2ν − 1)C2

r3
− 9D2

r5

)(
3 cos2 θ − 1

2

)
+

(
(7− 4ν)A2r

2 +B2 +
(2− 4ν)C2

r3
+
D2

r5

)(
3 cos2 θ

)]
(eθ ⊗ eθ)

+

[(
−30νA2r

2 + 2B2 +
2 (5− 10ν)C2

r3
− 3D2

r5

)(
3 cos2 θ − 1

2

)
−
(

(7− 4ν)A2r
2 +B2 +

(2− 4ν)C2

r3
+
D2

r5

)(
3 cos2 θ

)]
(eφ ⊗ eφ)

−
[(

(2ν + 7)A2r
2 +B2 +

(2 + 2ν)C2

r3
− 4D2

r5

)
(3 cos θ sin θ)

]
(er ⊗ eθ + eθ ⊗ er)

}
(21)

where M0 is a constant and ν denotes Poisson’s ratio. The detailed determination of
σE(2) and the expression of A2, B2, C2, D2 are given in Appendix B.
Moreover, if the residual stress field is statically admissible ρ ∈ N , the residual stresses225

should vanish at macro scale:

Σr =
1

| Ω |

∫
Ω

ρ dV =
1

| Ω |

∫
∂Ω

(ρ · n)⊗ x dS = 0 (22)

So the macroscopic stress reduces to the corresponding value in the fictitious elastic
cell:

Σ = Σr + ΣE = ΣE (23)

Consequently, combining (20) and (21), the axisymmetric macroscopic stress tensor
can be calculated by the average defined in (4):230

Σ = Σm1 +M0N(er ⊗ er + eθ ⊗ eθ − 2eφ ⊗ eφ) , (24)

with

N =
42

5
A2(f 5/3 − 1) + 2B2(f − 1) (25)

from which one can compute the macroscopic equivalent stress Σeq and the third
invariant of stress deviator J3:

Σeq = 3N |M0 |, J3 = −2N3M3
0 . (26)

Considering that 0 < f < 1 and 0 < ν < 0.5 and the expressions of A2 and B2 given
by Eq.(91), one can eventually have N > 0.235

Then the following relation can be obtained:

M0 = −sign(J3)
Σeq

3N
(27)

8



As a result, replacing M0 by (27), one obtains the new trial elastic stress field in the
fictitious material:

σE = σE(1) + σE(2) (28)

2) Next, we adopt the trial velocity field in the following form:

v =
G1

r3
er + 6G2 (ρeρ − 2zez) (29)

where the first term in spherical coordinates is the exact solution for hollow sphere240

under isotropic loading and the additional two linear terms in cylindrical coordinate
systems are inspired form [24] to capture shear effects, leading to an axisymmetric
macroscopic strain rate. ρ and z are variables in cylindrical coordinate systems with
r =

√
ρ2 + z2.

However, in order to eliminate the parameters, we propose to derive the plastic strain245

rate field from the total stress field by using the normality law (2). Considering one
singer loading process, the loading condition is the same as the monotonic proportional
one if the stress triaxiality remains constant. So that we can adopt the trial stress field
established in the limit analysis-based work [9] as the total stress field defined in Eq.(7),
in order to produce the plastic strain rate.250

Consequently, the total stress field beyond the elastic limit with von Mises model
inspired from [9] reads:

σ = σ(1) + σ(2) (30)

σ(1) is the exact hydrostatic part in the spherical coordinate:

σ(1) = −M1

(
ln
(a
r

)
1− 1

2
(eθ ⊗ eθ + eφ ⊗ eφ)

)
(31)

with M1 being the proportional parameter.
σ(2) is a homogeneous deviatoric stress field under axisymmetric conditions in the255

cylindrical coordinates {eρ, eφ, ez}:

σ(2) = M2 (eρ ⊗ eρ + eφ ⊗ eφ − 2ez ⊗ ez) (32)

where M2 is also a constant parameter. Noticing that the equilibrium condition on
the void boundary for σ(2) is relaxed to the average value:

Σvoid
m =

1

3 | Ω |

∫
Ω

tr(σ(2))dV =
1

3 | Ω |

∫
∂Ω

(σ(2) · n)⊗ x dS = 0 (33)

Considering the normality law (2), one can derive the plastic strain rate field from
Eq.(30):260

ε̇p =
λ̇

2
√
M2

1 + 3M1M2(1 + 3 cos 2θ) + 36M2
2

[− (2M1 + 3M2(1 + 3 cos 2θ)) er ⊗ er

+ (M1 + 3M2(3 cos 2θ − 1)) eθ ⊗ eθ + (M1 + 6M2) eφ ⊗ eφ

+9M2 sin 2θ (er ⊗ eθ + eθ ⊗ er)]

(34)
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The equivalent strain rate is calculated for the general loading case:

εeq(ε̇
p) =

√
2

3
ėp : ėp = λ̇ (35)

where the deviatoric part of the plastic strain rate ėp = ε̇p − 1
3
tr(ε̇p)1. Noticing that

the plastic strain rate field (34) obtained from the total stress field provides the same
form with the one derived from the velocity field (29) (see Appendix C for details).

3.2. Determination of the macroscopic fatigue criterion265

Using Eq.(35), the plastic dissipation in general loading conditions can be calculated as:

D(ε̇p) = σy εeq(ε̇
p) = σy λ̇ (36)

Besides, resulting from (28) and (34), the local work rate by the external actions reads:

σE : ε̇p =−
3λ̇
[
−a3r2M1

Σm

1−f −
3a3r2(1+3 cos 2θ)

2
M2

Σm

1−f + P1M1M0 + P2M2M0

]
2r5
√
M2

1 + 3M1M2(1 + 3 cos 2θ) + 36M2
2

(37)

with

P1 =(1 + 3 cos 2θ)
[
(7 + 4ν) r7A2 + r5B2 + (−8 + 12ν) r2C2 + 6D2

]
P2 =24 ((1 + 3 cos 2θ)ν + 7) r7A2 + 24r5B2 +

(
24(1 + 3 cos 2θ)ν − 15(1 + 3 cos 2θ)2 + 48

)
r2C2

+
9

2

(
35 cos2 2θ + 10 cos 2θ − 13

)
D2

(38)
The homogeneous formulation over a loading cycle (17) then reads:270

∫
Ω

∮
σyλ̇ dtdV −

∫
Ω

∮ 3λ̇
[(
M1 + 3(1+3 cos 2θ)

2
M2

)
a3r2 Σm

1−f + (P1M1 + P2M2) sign(J3)Σeq

3N

]
2r5
√
M2

1 + 3M1M2(1 + 3 cos 2θ) + 36M2
2

 dtdV = 0

(39)
which provides the macroscopic shakedown condition for porous materials. It is remarkable
to observe that the above expression in the spherical coordinates not only depends on r, but
also is a function of θ, originating from the deviatoric part of the elastic stress filed σE(2).

As it is shown in [49], the loading cycle integrals can be replaced by average values if we
consider the final stabilized state. Likewise the pure hydrostatic loading case in Appendix275

A, we consider that the components of the plastic strain rate tensor ε̇pij+ (resp. ε̇pij−) in a
stabilized cycle during a unit time interval remain constant, when the macroscopic stress
invariants reach simultaneously their extreme values Σm+ and Σeq+ (resp. Σm− and Σeq−).
Thus, if the collapse occurs by alternating plasticity (fatigue), the increment of the plastic
strain over this cycle reads:280 ∮

ε̇pijdt = ∆εpij = ε̇pij+ + ε̇pij− = 0 (40)
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in which the corresponding multiplier is noted as λ̇+ and λ̇−, respectively. Eq.(35) and (40)
lead to the following relation:

λ̇+ = λ̇− ≥ 0 (41)

The shakedown limit is reached when the extreme values of cyclic loadings are taken.
Considering (40) and (41), the macroscopic shakedown condition (39) can be recast into the
following form:285

∫
Ω

σy

(
λ̇+ + λ̇−

)
dV −

∫
Ω

3λ̇+

[(
M1 + 3(1+3 cos 2θ)

2
M2

)
a3r2 Σm+

1−f + (P1M1 + P2M2) sign(J3+)Σeq+

3N

]
2r5
√
M2

1 + 3M1M2(1 + 3 cos 2θ) + 36M2
2

dV

+

∫
Ω

3λ̇−

[(
M1 + 3(1+3 cos 2θ)

2
M2

)
a3r2 Σm−

1−f + (P1M1 + P2M2) sign(J3−)Σeq−
3N

]
2r5
√
M2

1 + 3M1M2(1 + 3 cos 2θ) + 36M2
2

dV = 0

(42)
and reduces to

2

∫
Ω

σyλ̇+dV−
∫

Ω

3λ̇+

[(
M1 + 3(1+3 cos 2θ)

2
M2

)
a3r2 ∆Σm

1−f + (P1M1 + P2M2) ∆(sign(J3)Σeq)

3N

]
2r5
√
M2

1 + 3M1M2(1 + 3 cos 2θ) + 36M2
2

dV = 0

(43)
where

∆Σm = Σm+ − Σm−, ∆ (sign(J3)Σeq) = sign(J3+)Σeq+ − sign(J3−)Σeq−

As mentioned in the previous section, the admissible plastic strain rate field always
converges to Dirac’s measure with the assumption of collapse by fatigue (40). Similar to
the derivation of isotropic loadings, it is essential to apply Dirac’s measure (71) at certain
position in the cell at r = r0 , θ = θ0 to avoid the volume integral. The macroscopic290

shakedown condition (43) is recast to

2σy −
3
[(
M1 + 3(1+3 cos 2θ)

2
M2

)
a3r2 ∆Σm

1−f + (P1M1 + P2M2) ∆(sign(J3)Σeq)

3N

]
2r5
√
M2

1 + 3M1M2(1 + 3 cos 2θ) + 36M2
2

= 0 (44)

Regarding the macroscopic shakedown condition (44), the next step is to build an addi-
tional relation to eliminate the parameters M1 and M2. Recalling the enforced proportional
cyclic loadings, the macroscopic stress triaxiality can be also obtained from the adopted total
stress field (30):295

T =
−M1 ln f

3

−sign(J3) 3 (1− f)M2

(45)

The reader is referred to [9] for details.
Due to the linear cyclic responses when shakedown occurs, it is readily to build the

following relation:

Σm+

sign(J3+)Σeq+

=
∆Σm

∆ (sign(J3)Σeq)
=

M1 ln f

sign(J3) 9 (1− f)M2

(46)
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The shakedown condition (44) can be considered as a fatigue criterion to prevent the fail-
ure due to alternating plasticity when the amplitude of the cyclic loading takes its maximum300

value:

9
[(
M1 + 3(1+3 cos 2θ)

2
M2

)
a3r2 ∆Σm

1−f + (P1M1 + P2M2) ∆(sign(J3)Σeq)

3N

]2

16r10 (M2
1 + 3M1M2(1 + 3 cos 2θ) + 36M2

2 )
− σ2

y = 0 (47)

Replacing M1, M2 by the macroscopic stress invariants, one has:

9
[(

9(1−f)∆Σm

∆(sign(J3)Σeq) ln f
+ 3(1+3 cos 2θ)

2

)
a3r2 ∆Σm

1−f +
(
P1

9(1−f)∆Σm

∆(sign(J3)Σeq) ln f
+ P2

)
∆(sign(J3)Σeq)

3N

]2

16r10

((
9(1−f)∆Σm

∆(sign(J3)Σeq) ln f

)2

+ 3 9(1−f)∆Σm

∆(sign(J3)Σeq) ln f
(1 + 3 cos 2θ) + 36

) −σ2
y = 0

(48)
It can be seen from the equivalent stress distribution under pure deviatoric loading

(Figure 14) that the most heavily loaded point locates on the void surface at equator (r = a,
θ = π/2). Recalling that the hollow sphere under isotropic loading also yields firstly on the305

void surface, it is supposed that the first term of the left part in Eq.(48) takes its extreme
value at r = a. This leads to:

9
[(

9(1−f)∆Σm

∆(sign(J3)Σeq) ln f
+ 3(1+3 cos 2θ)

2

)
a5 ∆Σm

1−f +
(
P1(θ) 9(1−f)∆Σm

∆(sign(J3)Σeq) ln f
+ P2(θ)

)
∆(sign(J3)Σeq)

3N

]2

16a10

((
9(1−f)∆Σm

∆(sign(J3)Σeq) ln f

)2

+ 3 9(1−f)∆Σm

∆(sign(J3)Σeq) ln f
(1 + 3 cos 2θ) + 36

) −σ2
y = 0

(49)
where

P1(θ) =(1 + 3 cos 2θ)
[
(7 + 4ν) a7A2 + a5B2 + (−8 + 4ν) a2C2 + 6D2

]
P2(θ) =24 ((1 + 3 cos 2θ)ν + 7) a7A2 + 24a5B2 +

(
24(1 + 3 cos 2θ)ν − 15(1 + 3 cos 2θ)2 + 48

)
a2C2

+
1

2

(
315 cos2 2θ + 90 cos 2θ − 117

)
D2

(50)
which can be rewritten as:

F(Σ) =
9
[

9
ln f

∆Σ2
m +

(
3(1+3 cos 2θ)

2(1−f)
+ 9(1−f)P1(θ)

3a5 ln fN

)
∆Σm∆ (sign(J3)Σeq) + P2(θ)

3a5N
∆ (sign(J3)Σeq)

2
]2

16

((
9(1−f)

ln f
∆Σm

)2

+ 27(1−f)(1+3 cos 2θ)
ln f

∆Σm∆ (sign(J3)Σeq) + 36∆ (sign(J3)Σeq)
2

) −σ2
y = 0

(51)
The established criterion (51) is succinctly expressed by the amplitude of the macroscopic310

hydrostatic and deviatoric stresses. For the sake of clarity, we will rewrite this formulation
by using the maximum value of the cyclic loads. Let us introduce the macroscopic stress
ratio:

R = Σm− /Σm+ (52)

12



where −1 ≤ R < 1. Taking account of the enforced proportional cyclic loading process (19),
we have315

Σeq− /Σeq+ = |R|, sign(J3+) / sign(J3−) = sign(R) (53)

Referring to Fig.14, the shakedown condition can be detailed as follows by respecting
the sign of J3+:

1) When J3+ > 0, then ∆(sign(J3)Σeq) > 0, the macroscopic fatigue criterion becomes:

F (+)
θ=π/2 = (1−R)2

9
[

9
ln f

Σ2
m+ +

(
−3

1−f + 3(1−f)P1(π/2)

f5/3 ln fN

)
Σm+Σeq+ + P2(π/2)

3f5/3N
Σ2
eq+

]2

16

[(
9(1−f)

ln f
Σm+

)2

+ −54(1−f)
ln f

Σm+Σeq+ + 36Σ2
eq+

] −σ2
y = 0

(54)
for the triaxiality T ≥ T0

2, where the shakedown condition is guaranteed anywhere in
the cell when it is satisfied at θ = π

2
with:320

P1(π/2) =− 2
[
(7 + 4ν) f 7/3A2 + f 5/3B2 + (−8 + 4ν) f 2/3C2 + 6D2

]
P2(π/2) =24 (−2ν + 7) f 7/3A2 + 24f 5/3B2 − 12 (4ν + 1) f 2/3C2 + 54D2

(55)

Otherwise, for the triaxiality T ≤ T0, the shakedown condition

F (+)
θ=0 = (1−R)2

9
[

9
ln f

Σ2
m+ +

(
6

1−f + 3(1−f)P1(0)

f5/3 ln fN

)
Σm+Σeq+ + P2(0)

3f5/3N
Σ2
eq+

]2

16

[(
9(1−f)

ln f
Σm+

)2

+ 108(1−f)
ln f

Σm+Σeq+ + 36Σ2
eq+

] − σ2
y = 0

(56)
should be fulfilled at θ = 0 or π with

P1(0) =4
[
(7 + 4ν) f 7/3A2 + f 5/3B2 + (−8 + 4ν) f 2/3C2 + 6D2

]
P2(0) =24

[
(7 + 4ν) f 7/3A2 + f 5/3B2 + (−8 + 4ν) f 2/3C2 + 6D2

] (57)

2) Similarly, when J3+ < 0, then ∆(sign(J3)Σeq) < 0, the macroscopic shakedown crite-
rion:

F (−)
θ=0 = (1−R)2

9
[

9
ln f

Σ2
m+ −

(
6

1−f + 3(1−f)P1(0)

f5/3 ln fN

)
Σm+Σeq+ + P2(0)

3f5/3N
Σ2
eq+

]2

16

[(
9(1−f)

ln f
Σm+

)2

− 108(1−f)
ln f

Σm+Σeq+ + 36Σ2
eq+

] − σ2
y = 0

(58)
is fulfilled at θ = 0 or π in order to prevent the fatigue collapse for T ≥ −T0.325

2T0 is a particular value of triaxiality, of which the fatigue collapse occurs simultaneously at θ = π/2 and

0. It depends on f and ν, and can be obtained by solving the equation F (+)
θ=π/2 = F (+)

θ=0.
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Or, for T ≤ −T0, the shakedown condition is ensured at θ = π
2
, taking the following

form:

F (−)
θ=π/2 = (1−R)2

9
[

9
ln f

Σ2
m+ −

(
6

1−f + 3(1−f)P1(π/2)

f5/3 ln fN

)
Σm+Σeq+ + P2(π/2)

3f5/3N
Σ2
eq+

]2

16

[(
9(1−f)

ln f
Σm+

)2

− 108(1−f)
ln f

Σm+Σeq+ + 36Σ2
eq+

] −σ2
y = 0

(59)

At this point, Eqs.(54) to (59) represent the main contributions of the present paper,
giving macroscopic fatigue criteria for ductile porous media by the variational-based ho-
mogenization method. For no loss of generality, this established criterion is expressed in a330

consistent form for different cyclic loadings distinguished by the stress ratio −1 ≤ R < 1.
The following remarks can be concluded:

� The established fatigue criteria are separated into two parts, depending naturally on
the sign of J3+. Similar to the Gurson-like limit analysis [7, 9] and the recent statical
shakedown approach [69] of porous media in the framework of micromechanics, the335

symmetry property of the obtained criteria is both with the sign change of Σm and
that of J3+: F(Σm,Σeq, J3+) = F(−Σm,Σeq,−J3+) in this work. This observation is
plotted in Fig.2 by substituting (Σρ − Σz)+ for Σeq+.

� The obtained fatigue criterion has some analogies with that derived from Melan’s
statical theorem and presented in the previous study [67]. However, the derivation340

procedure in this paper using the variational principle does not need to consider the
residual stress field due to the choice of kinematical approach. The accuracy of the
established criteria relies on the applied fictitious elastic stress field σE and the plastic
strain rate field ε̇p.

� The application of Dirac’s measure (71) is an essential step to simplify the calcu-345

lation. The volume integral of the local work rate by external actions is accordingly
avoided. Actually, concerning the bounded measures techniques [63] (including regular
and singular measures), the singular measures are typically associated to alternating
plasticity collapses, for which the plastic strain increment shall vanish. For the same
reason, the obtained criterion can only provide the limit surface of the alternating350

plasticity collapse (fatigue). This will be further discussed in the following section.

4. Assessment of the predictive capability of the established criterion

A macroscopic fatigue criterion of porous materials has been obtained in Section 3 by
applying the variational principle. For a wide assessment of the predictive capability of the
new criterion, comparisons to numerical computations by non-linear optimizations and to355

analytical results in the previous studies are presented in this section.
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Figure 1: Limit surfaces defined by the analytical criteria (AC) subjected to alternating R = −1 (Red line)
and intermediate R = −1/5 (Blue line) loadings for porosity f = 0.15 with Poisson’s ratio ν = 0.3 by respect
to the sign of J3+ (Left: J3+ > 0; Right: J3+ < 0).

Fig.1 presents the limit surface defined by the proposed criteria with porosity f = 0.15
and Poisson’s ratio ν = 0.3 for alternating (R = −1) and an intermediate loading (R =
−1/5) cases. It is obviously seen that the shakedown domain are bounded by two distinct
parts, related to the two opposite signs of J3+ > 0 and J3+ < 0360

For the purpose of exhibiting the symmetric property of the limit surfaces reflecting
the effects of the sign of J3+ as discussed before, F (+) and F (−) are plotted on Fig.2 by
substituting (Σρ − Σz)+ for Σeq+, where (Σρ − Σz)+ > 0 and (Σρ − Σz)+ < 0 are directly
related to the ones of J3+ > 0 and J3+ < 0. It can be seen that the limit surfaces of the
shakedown domain present the symmetric property F(Σm,Σeq, J3) = F(−Σm,Σeq,−J3) as365

discussed in the previous section. To avoid the repetition, only F (+) is considered in the
following part of this paper for the validation by comparison to numerical results.

4.1. Investigations of the established macroscopic criterion by comparison to numerical re-
sults

The implementation of the numerical program consists of two steps: (i) producing the370

elastic responses under referential load by Finite Element Method; (ii) solving the non-linear
optimization problem based on Melan’s theorem.

Only a quarter of the REV is taken into consideration due to its geometrical symmetry,
which is discretized by 1500 quadratic axisymmetric elements (see Fig.3). The velocity field
v = D ·x on the exterior boundary of the hollow sphere to prescribe a constant macroscopic375

stress triaxiality (T = Σm/Σeq) during the load cycles by a user subroutine Multi-Points
Constraints (MPC) in Abaqus software [54], which was firstly provided by Cheng and Guo
[10] and successfully applied in many studies [12, 5, 6, 51].

Hence, the elastic response σE0 (xg) at each Gauss point xg in the unit cell under a
reference load Σ0 can be calculated by using Abaqus/Standard code. Then, for each Gauss380
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Figure 2: Symmetric shakedown domain for porosity f = 0.15 with Poisson’s ratio ν = 0.3 defined by
the proposed criteria (AC) under alternating R = −1 (Red line) and intermediate R = −1/5 (Blue line)
loadings. Two subfigures on Fig.1 are plotted by substituting (Σρ − Σz)+ for Σeq+.

symmetry

x

y

z

O

b

a

Figure 3: Symmetric hollow sphere representative model with inner and outer radius: a and b, and considered
initial FEM mesh . The velocity field v = D · x is imposed at r = b.

point xg, the computation of the local shakedown load factor αg is transformed to solving a
non-linear optimization problem with respect to different stress ratio:

max
αg ,ρ̄(xg)

,

αg s.t.
F (αg

1

1−R
σE0 (xg) + ρ̄(xg), σy) ≤ 0

F (αg
R

1−R
σE0 (xg) + ρ̄(xg), σy) ≤ 0

 (60)
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The plastic shakedown limit load factor αSD is obtained as the minimum value of αg
for all the Gauss points xg in the considered body. The plastic shakedown limit load is
ΣSD = αSD Σ0 due to the linearity behaviour. Moreover, the first occurrence of fatigue can385

also be provided by such numerical procedure.

Figure 4: Comparison between the limit surfaces of the analytical criteria (AC) and numerical results (NR)
for porosity f = 0.1 under alternating loadings R = −1 with respect to different values of Poisson’s ratio of
matrix: ν = 0.2 (Blue), 0.3 (Red) and 0.4 (Green).

Fig.4 and 5 plot the limit surfaces computed from the established macroscopic fatigue
criterion and the numerical results under alternating loading (R = −1) for the void volume
fractions f = 0.1 and 0.25 with respect to different Poison’s ratios. A very good agreement
between the analytical and numerical results can be observed. Particularly, for the pure390

hydrostatic case (Σeq

σy
= 0), the numerical results coincide exactly with theoretical predictions

Σm±
σy

= ±4
3
(1 − f), since both the elastic stress and the plastic strain rate field is obtained

from the exact solution. The value of ν has no influence on the plastic shakedown limit in
this case.

However, concerning the loading cases with high values of stress triaxiality, small dif-395

ferences between the analytical and numerical results are observed. This can be firstly
explained by that the homogeneous stress field (32) used to derive the deviatoric part of the
trial plastic strain rate satisfies the boundary condition only in the average manner (33).
Besides, errors also originate from the trial elastic stress field under pure deviatoric load
(21) obtained by the semi-analytical method.400

The influence of Poisson’s ratio ν on the macroscopic fatigue criterion can also be studied
on Fig.4 and 5. It can be seen that, with the increase of ν, the crossing point of two surfaces
defined by Eq.(54) and (56) approaches Σeq+-axis. Moreover, the macroscopic criteria shrink
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Figure 5: Comparison between the limit surfaces of the analytical criteria (AC) and numerical results (NR)
for porosity f = 0.25 under alternating loadings R = −1 with respect to different values of Poisson’s ratio
of matrix: ν = 0.15 (Navy), 0.25 (Orange) and 0.35 (Leaf green).

slightly with the variation of ν within the right part, while the shakedown domain in the
left part deduces with the increase of ν.405

For completeness, the validation for porosity f = 0.01, 0.2, 0.15 and 0.3 are also provided
in Appendix D. The same conclusions can be made from the comparisons.

Additionally, step-by-step computations to analyse the transient phase before collapse
are also performed to verify the assumption in the analytical solution. Fig.6 illustrates
the distribution of equivalent stress of the considered model subjected to 50 cycles cyclic410

loadings with respect to the variation of triaxiality. It can be seen that the maximum value
of the equivalent stress always presents on the void surface (r = a), and move from the
equator to the pole with the decrease of T . Consequently, the supposed ”dangerous point”
to ensure the shakedown condition (49) is validated. The local strain-stress curve tends to
a linear response at the very point and a stabilized cycle with zero width can be observed415

when shakedown occurs as shown on Fig.7.
On the other hand, Fig.8 and 9 display the comparisons between analytical results and

numerical ones of the macroscopic fatigue limit under pulsating R = 0 and the intermediate
R = 1/5 loadings with respect for f = 0.1 and 0.2. It is remarked that the effective
safety domain (plotted by the solid line) is at the intersection of the domain defined by420

the limit surface of the proposed macroscopic fatigue criterion and the one of stress-based
limit analysis by [53], which is corresponding to the collapse by development of a mechanism
(incremental collapse) at the first cycle.

Recalling the assumption of vanishing plastic strain increment (40) over a stabilized
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(a) T = +∞ (pure hydrostatic) (b) T = 1

(c) T = 0 (pure deviatoric) (d) T = −0.24

(e) T = −0.44 (f) T = −1

Figure 6: Distribution of equivalent stress σeq after 50 cycles of cyclic loadings with respect to variation of
triaxiality T : (a) T = +∞; (b) T = 1; (c) T = 0; (d) T = −0.24; (e) T = −0.44; (f) T = −1. The maximum
value of the equivalent stress always presents on the void surface (r = a).
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Stabilized cycle for shakedown
(pure elastic)

Figure 7: Cyclic responses ε11−σ11 on the internal boundary (r = a) at θ = π/2 by step-by-step computations
for traxiality T = 1. Porosity f = 0.15 and Poison’s ratio ν = 0.25 are adopted. The cyclic responses tend
to purely elastic when shakedown occurs.

Figure 8: Comparison between the analytical criteria (AC, solid line) and numerical results (NR, diamond)
for porosity f = 0.1 with Poisson’s ratio ν = 0.3 under pulsating R = 0 (Blue) and intermediate R = −1/5
(Green) loadings. The gray dash line represents the limit analysis criterion (LA) proposed in [53].

cycle, only the mechanism of alternating plasticity collapse is considered in the derivation425

in order to apply the Dirac’s measure. While concerning the incremental collapse, for which
the increment of plastic strain is nonzero, the mechanisms of failure can not be predicted by
the proposed criteria. The new fatigue criteria are computed by maximizing the amplitude

20



Figure 9: Comparison between the analytical criteria (AC, solid line) and numerical results (NR, diamond)
for porosity f = 0.25 with Poisson’s ratio ν = 0.25 under pulsating R = 0 (Blue) and intermediate R = −1/5
(Green) loadings. The gray dash line represents the limit analysis criterion (LA) proposed in [53].

of cyclic loadings. Obviously, an additional constraint of the maximum proportional load
is required to ensure the material’s safety. Consequently, the shakedown domain for high430

values of T is bounded by the limit analysis criterion [53] as shown on Fig.8 and 9. The
failure due to excessive deformation at the first cycle will immediately arrive in this case
(e.g. for traxiality T = 0 under pulsating loadings R = 0 on Fig.8).

On the contrary, regarding Fig.15 to Fig.18, the collapse by such mechanism does not
occur for alternating loading case. Thus, the safety domain is only defined by the proposed435

fatigue criterion. The effective shakedown criterion is found much smaller and completely
inside the one under monotonic loads.

4.2. Comparisons to analytical criteria in previous study and discussions

In this subsection, the new macroscopic fatigue criterion is compared with the quasi-lower
bound proposed in [67] based on Melan’s classical theorem under pulsating and alternating440

loadings.
Fig.10 to Fig.12 illustrate the comparison of the new macroscopic criterion (AC), the

previous one (LB) and the numerical results (NR) for the alternating (R = −1) and pulsating
loading (R = 0) cases with the porosities f = 0.01, 0.1 and 0.2, respectively. As mentioned
before, it is clearly seen that the two criteria derived from the different approaches both445

preserve the exact solution of the hollow sphere subjected hydrostatic loadings.
The noticeable differences between the quasi-lower approach in [67] and the numeri-

cal results for large porosities (Fig.11 and 12) are obviously improved by the new fatigue
criteria established in this paper. The reason is that the errors due to the approximated

21



Figure 10: Comparisons between the established criteria (AC, solid line) and the lower bound (LB, dot line)
based on Melan’s theorem given in [67] for porosity f = 0.01 under alternating (Red) and pulsating (Blue)
loadings. Gray dash line: limit analysis criterion (LA) proposed in [53]; Asterisk: numerical results (NR).

Figure 11: Comparisons between the established criteria (AC, solid line) and the lower bound (LB, dot line)
based on Melan’s theorem given in [67] for porosity f = 0.1 under alternating (Red) and pulsating (Blue)
loadings. Gray dash line: limit analysis criterion (LA) proposed in [53]; Asterisk: numerical results (NR).

time-independent residual stress field, the key idea of Melan’s theorem, is prevented in the450

present research, since such a residual stress field is not required by the variational-based
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Figure 12: Comparisons between the established criteria (AC, solid line) and the lower bound (LB, dot line)
based on Melan’s theorem given in [67] for porosity f = 0.2 under alternating (Red) and pulsating (Blue)
loadings. Gray dash line: limit analysis criterion (LA) proposed in [53]; Asterisk: numerical results (NR).

homogeneous model. Moreover, the new trial fictitious elastic stress field under pure devi-
atoric load is correspondingly much richer to capture the main shear effects of the hollow
sphere with more terms.

Meanwhile, the new criteria do not present a sufficient accurate prediction of the shake-455

down domain for small porosity f = 0.01 around the deviatoric part (Fig.10). According to
the Cheng et al. [9], for small porosities, large plastic strain heterogeneities may occur in
the vicinity of the void surface. Thus, the adopted trial homogeneous stress field which is
relaxed on the boundary condition leads to this inaccuracy.

5. Conclusions460

In this paper, we have developed a new variational homogenization method to determine
macroscopic fatigue criteria of porous materials under general cyclic conditions. Different
from the previous studies, the proposed homogeneous model is on account of the equivalence
between the plastic dissipation and the external work rate in nature over a stabilized cycle.
With this new method, it is no more needed to consider the time-independent residual stress465

field, which is a laborious task in the classical Melan’s theorem.
A specific macroscopic fatigue criterion has been established by using the new variational

method for porous materials with a von Mises type solid matrix and for a large range of
porosity. This criterion is expressed as a closed-form function of the first two stress invariants
of macroscopic stress tensor Σm and Σeq, the sign of the third one J3, Poisson’s ratio and470

void volume fraction. The corresponding safety domain is defined by the proposed fatigue
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criteria and the yield strength based on limit analysis for some specific loading conditions.
The established new criterion has been assessed by comparing the theoretical predictions

of limit states with some analytical solutions and with numerical results from direct simula-
tions of the hollow sphere. The accuracy of the new criterion has been clearly demonstrated.475

Especially for materials with large values of porosity, the new criterion significantly improves
the prediction of the plastic shakedown limit load with respect to the previous studies.

Finally, it is worth noticing that in this paper, the von Mises type solid matrix is consid-
ered for metal porous materials. As future prospectives, a challenging topic is to consider
the non-associated plastic Drucker-Prager solid matrix by using the bipotential theory for480

porous materials in geomechanics engineering.
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Appendix A Application of De Saxcé’s solution to hollow sphere under isotropic
pressure

The idea of using Markov’s principle over a cycle (13) was initially proposed by Save et
al. [49] and applied on the thick wall tube subjected to isotropic pressure. The derivation
is briefly rewritten in order to be implemented in the shakedown analysis of the porous490

materials under pure hydrostatic loadings in the following part.
Let us consider a hollow sphere under uniform pressure p upon its outer boundary ∂Ω.

Taking into account the central symmetry of the problem, it is easy to obtain the elastic
solution in the fictitious elastic body within the spherical coordinates {er, eθ, eφ}:

σE =
p

1− f

(
1 +

1

2

(a
r

)3

(eθ ⊗ eθ + eϕ ⊗ eϕ − 2 er ⊗ er)
)

(61)

Beyond the elastic region for von Mises model, one can build the following relation due495

to the spherical symmetry:
σϕϕ = σθθ (62)

Furthermore, considering the normality law (2) and the yield condition (18), the following
equation can be built:

ε̇prr(r) = −1

2
ε̇pϕϕ(r) = −1

2
ε̇pθθ(r) (63)

for the nonzero components of the plastic strain rate field.
The equivalent strain rate is calculated as follows:500

εeq(ε̇
p) =

√
2

3
ėp : ėp = |ε̇prr| (64)
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Besides, taking account of normality law, it is readily seen:

σ : ε̇p ≤ σeq(σ)εeq(ε̇
p) ≤ σy εeq(ε̇

p) (65)

Thus, the plastic dissipation function of von Mises model is reduced to:

D(ε̇p) = σy |ε̇prr| (66)

Consequently, applying the established minimum function (17) to the shakedown problem
of hollow sphere under isotropic loadings leads to∫

Ω

∮
σy|ε̇prr| dt dV −

∫
Ω

∮ (
3

2

p

1− f

(a
r

)3

ε̇prr

)
dt dV = 0 (67)

Assuming that the collapse occurs by alternating plasticity (fatigue) in a stabilized cycle505

of a unit period, the admissible plastic strain increment reads:

∆εprr =

∮
ε̇prr dt = ε̇prr+ + ε̇prr− = 0 (68)

where ε̇prr+ (resp. ε̇prr− ) is a constant value of the radial plastic strain rate, corresponding
to the applied pressure reaching its maximal value p+ (resp. minimal value p−) in the limit
state. So the shakedown condition (67) rewrites:∫

Ω

σy (|ε̇prr+|+ |ε̇
p
rr−|) dV −

∫
Ω

(
−3

2

p+ε̇
p
rr+ − p−ε̇

p
rr−

1− f

(a
r

)3
)
dV = 0 (69)

and reduces to:510 ∫ b

a

2σy ε̇
p
rr+ r

2 dr −
∫ b

a

(
3

2

(p+ − p−) ε̇prr+
1− f

(a
r

)3
)
r2dr = 0 (70)

In order to simplify the computation, the bounded measures technique [62] is adopted:
if x0 belongs to Ω and δx0 is a linear form on the space of the continuous functions, Dirac’s
measure, the simplest case of non regular measures, is written as∫

δx0(x)φ(x) dΩ = φ(x0) (71)

which is bounded by
||δx0|| = 1 (72)

It is proved that the admissible plastic strain rated field ε̇p in the hollow sphere always515

converges to Dirac’s measure concerning shakedown problem, which allows to eliminate the
volume integral.

As for the isotropic loads, the plastic yielding occurs in a small ring at r = c (a ≤ c ≤ b),
then Dirac’s distribution δ(r − c) can be expressed by∫ b

a

δ(r − c)φ(r)4πr2 dr = φ(c) (73)
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so that the integral in (70) can be simplified:520

2σy ε̇
p
rr+ c

2 − 3

2

(p+ − p−) ε̇prr+
1− f

(a
c

)3

c2 = 0 (74)

The shakedown condition is fulfilled with the cycle amplitude ∆p = p+ − p−:

∆p =
4

3
(1− f)

(a
c

)3

σy (75)

In the homogenization study of porous media, the macroscopic mean stress can be cal-
culated owing to (4) and (61)

Σm =
1

3
tr (Σ(p)) = p (76)

The maximal value of ∆Σm is reached for c = a. Hence, the amplitude of the plastic
shakedown limit load is525

∆ΣSD
m =

4

3
(1− f)σy (77)

It is worthy remarking that the obtained result of the plastic shakedown limit load
coincides to the one in [68] by Melan’s statical theorem, indicating that it is the exact
solution for the pure hydrostatic loading case. Indeed, in the framework of shakedown
analysis (or limit analysis), the minimization problem from the variational formulation (e.g.
Eq.(16)) can be solved if the exact velocity or stress field is provided.530

Appendix B Determination of the proposed trial elastic stress filed under pure
deviatoric loadings

The general solution for a hollow sphere subjected to axisymmetric deviatoric loadings is
a combination of the so-called internal and external problems inspired from the Papkovich-
Neuber formulations [55]. The problem is divided into a solid sphere subjected to an ax-535

isymmetric traction exerted onto its boundary (r = b) and a spherical hole embedded in an
infinite solid (The radius of cavity is noted as r = a) with vanishing loading at infinity.

The general solution in terms of Legendre’s polynomial series in the spherical frame is
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given by:

σErr =2M0

∑
n

[
An (n+ 1)

(
n2 − n− 2− 2ν

)
rn +Bnn (n− 1) rn−2

− Cn
rn+1

n
(
n2 + 3n− 2ν

)
+

Dn

rn+3
(n+ 1) (n+ 2)

]
Pn(ζ)

σErθ =2M0

∑
n

[
An
(
n2 + 2n− 1 + 2ν

)
rn +Bn (n− 1) rn−2

− Cn
rn+1

(
n2 − 2 + 2ν

)
− Dn

rn+3
(n+ 2)

]
d

dθ
Pn(ζ)

σEθθ =2M0

∑
n

[
−An

(
n2 + 4n+ 2 + 2ν

)
(n+ 1) rn −Bnn2r−2

+
Cn
rn+1

n
(
n2 − 2n− 1 + 2ν

)
− Dn

rn+3
(n+ 1)2

]
Pn(ζ) + 2M0

∑
n

[
−Bnrn−2

−An (n+ 5− 4ν)− Cn
rn+1

(−n+ 4− 4ν)− Dn

rn+3

]
cot θ

d

dθ
Pn(ζ)

σEϕϕ =2M0

∑
n

[
An (n− 2− 2ν − 4νn) (n+ 1) rn +Bnnr

−2

+
Cn
rn+1

n (n+ 3− 2ν − 4νn)− Dn

rn+3
(n+ 1)

]
Pn(ζ) + 2M0

∑
n

[
Bnr

n−2

+An (n+ 5− 4ν) +
Cn
rn+1

(−n+ 4− 4ν) +
Dn

rn+3

]
cot θ

d

dθ
Pn(ζ)

(78)

where An, Bn, Cn, Dn are 4 sets of constants to be determined.540

Considering the standard Legendre equation with the new variable ζ = cos θ, the Legen-
dre polynomials of the first kind Pn(ζ) for | ξ |≤ 1 is obtained as:

Pn(ζ) =
1

2nn!

dn(ζ2 − 1)

dζn
(79)

We claim that the new trial elastic stress field σE is statically admissible (5) in the
following way:

� σE satisfies the internal equilibrium equations in spherical coordinates:545

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

r sin θ

∂σrϕ
∂ϕ

+
1

r
(2σrr − σθθ − σϕϕ + σrθ cot θ) = 0

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

r sin θ

∂σθϕ
∂ϕ

+
1

r
((σθθ − σϕϕ) cot θ + 3σrθ) = 0

∂σϕr
∂r

+
1

r

∂σϕθ
∂θ

+
1

r sin θ

∂σϕϕ
∂ϕ

+
1

r
(3σrθ + 2σθϕ) = 0

(80)

� Concerning the free stress on the void surface:

σE · n = 0 (81)
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Thus,
σErr(r = a, θ) = 0, σErθ(r = a, θ) = 0 (82)

It is verified that the internal equilibrium condition (80) is auto-satisfied with the general
form (78). Besides, following [55], the only term for n = 2 of the involved Legendre’s
polynomial series is not vanishing in this case. Then, the polynomial of degree 2 is obtained550

by a simple identification:

P2(ζ) =
1

2
(3 cos2 θ − 1) (83)

As a result, the previous conditions for the proposed elastic stress field are reduced to{
−6A2νf

2/3 + 2B2 − 2 (10− 2ν) C2

f
+ 12D2

f5/3
= 0

(7 + 2ν)A2f
2/3 +B2 − (2 + 2ν) C2

f
− 4 D2

f5/3
= 0

(84)

Solving the previous equations, one has:{
B2 = −21

5
21A2f

2/3 − 2C2νf
−1 + 14

5
C2f

−1

D2 = 1
2
A2νf

7/3 + 7
10
A2f

7/3 + 6
5
C2f

2/3
(85)

Considering the definition of the average stress (4), the macroscopic stress tensor writes:
555

Σ = M0

56
5
f 5/3A2 − 56

5
A2 + 8

3
fB2 − 8

3
B2

4
3

 1 0 0
0 1 0
0 0 −2

 (86)

Applying to (44) for the pure deviatoric alternating loading case (Σm = M1 = 0 and
R = −1) leads to

Σeq+ =
4
(
21A2f

5/3 + 5B2f − 21A2 − 5B2

)
f 5/3

5 (8A2f 7/3ν − 28A2f 7/3 − 4B2f 5/3 + 8C2νf 2/3 + 2C2f 2/3 − 9D2)
(87)

Substituting B2 and D2 by (85), Eq.(87) is recast to

Σeq+ =
8

5

21A2f
5/3 − 10C2νf − 21A2f + 14C2f + 10C2ν − 14C2

7A2νf 5/3 − 35A2f 5/3 + 32C2ν − 40C2

(88)

The next step is to determine A2 and C2. In consideration of the dependency of the
elastic stress field on the porosity and Poisson’s ratio, a proposed expression is as follows:560

Σeq+ = a1f
b1 (c1ν + d1) + f b2 (c2ν + d2) + a3 (c3ν + d3) (89)

The numerical data (reported in Table 1) of the shakedown limit under pure deviatoric
alternating loading are obtained by the non-linear optimization method described in Section
4. Non-linear fitting of the shakedown limits with respect to various values of porosity and
Poisson’s ratio are performed as shown on Fig.13.

28



ΣE
eq/σy

f
0.01 0.1 0.2 0.3

ν
0.2 0.5544 0.5302 0.4827 0.4247
0.3 0.5714 0.5557 0.5091 0.4477
0.4 0.5908 0.5907 0.5456 0.4786

Table 1: Numerical values of the shakedown limit under pure deviatoric alternating load.

f

Σ
e
q

ν
0.4

0.45

0.5

0.35

0.55

0.3 0.30.250.20.25 0.150.10.050.2 0

Numerical results of shakedown limit

Figure 13: Non-linear fitting of the shakedown limits under pure deviatoric (T = 0) and alternating (R = −1)
loadings extracted from numerical simulations with different porosity f ∈ {0.01, 0.1, 0.2, 0.3} and Poison’s
ratio ν ∈ {0.2, 0.3, 0.4}. Gray surface: plotted expression of Σeq; Red points: numerical shakedown limits
under pure deviatoric loadings.
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The parameters in Eq.(89) can be identified:565

a1 = −1.808 a3 = 0.5705 b1 = 1.251 b2 = 1.063

c1 = 4.658 c2 = 7.119 c3 = 0.2738

d1 = −0.2971 d2 − 0.9803 d3 = 0.917

(90)

Consequently, combining (84), (85), (88) and (89), A2, B2, C2 and D2 are determined by a
simplest solution:

A2 =− 3.85 · 108f1.251ν2 + 5.06 · 108f1.251ν − 3.07 · 107f1.251 + 3.25 · 108f1.063ν2 − 4.52 · 108f1.063ν

+ 5.60 · 107f1.063 + 2.29 · 107νf − 3.2 · 107f + 7.14 · 106ν2 − 7.87 · 106ν + 2.11 · 106

B2 =− 1.34 · 108 + 2.71 · 109f1.918ν2 − 3.37 · 109f1.918ν − 2.30 · 109f1.730ν2 + 3.02 · 109f1.730ν

− 9.60 · 107f1.667ν − 1.68 · 108f1.918ν3 + 1.42 · 108f1.730ν3 + 3.12 · 106ν3f0.667 + 1.34 · 108f1.667

− 3.95 · 107f0.667ν2 − 1.08 · 108f0.667ν + 9.60 · 107ν + 2.04 · 108f1.918 − 3.73 · 108f1.730

+ 1.99 · 108f0.667

C2 =8.42 · 107f2.918ν2 − 4.26 · 108f2.918ν + 2.69 · 107f2.918 − 7.12 · 107f2.730ν2 + 3.66 · 108f2.730ν

− 4.90 · 107f2.730 − 1.56 · 106f1.667ν2 + 2.58 · 106f1.667ν + 7.42 · 107f1.667 − 4.8 · 107f

D2 =9.05 · 107f2.333 + 3.57 · 106ν3f2.333 − 8.10 · 105ν2f2.333 + 1.07 · 107f3.854 − 1.96 · 107f3.396

− 2.24 · 107f3.333 + 1.63 · 108ν3f3.396 − 8.34 · 107ν2f3.396 + 1.51 · 108νf3.396 + 1.14 · 107ν2f3.333

+ 8.45 · 107f3.854ν2 − 1.73 · 108f3.854ν − 1.36 · 106νf2.333 − 1.92 · 108ν3f3.854 − 5.76 · 107f1.667

(91)
Taking (91) into (78), we obtain the full expression of the new admissible elastic stress field
under pure deviatoric load.

The distributions of the equivalent stress σeq in the solid phase and on the boundaries570

are plotted on Fig.14. It is remarked that the hollow spherical cell will undergo incipient
plastic strains firstly on its inner boundary at equator (r = a, θ = π/2) if the load parameter
M0 increases.

Appendix C Formulations of plastic strain rate field derived from (29)

Accounting for the definition ε̇p = 1
2
(gradv + gradTv), the plastic strain rate field can575

be obtained derived from the adopted trial velocity field (29) in the spherical coordinates:

ε̇p =−
(

2
G1

r3
+ 3G2(1 + 3 cos 2θ)

)
er ⊗ er +

(
G1

r3
+ 3G2(3 cos 2θ − 1)

)
eθ ⊗ eθ

+

(
G1

r3
+ 6G2

)
eφ ⊗ eφ + 9G2 sin 2θ (er ⊗ eθ + eθ ⊗ er)

(92)

which takes the same form with (34).
Then the corresponding equivalent strain rate can be calculated as:

εeq(ε̇
p) = 2

√
(
G1

r3
)2 + 3

G1

r3
G2(1 + 3 cos 2θ) + 36G2

2 (93)
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(a) 3D plot of equivalent stress distribution σeq
with variation of r and θ.

(b) Variation of σeq on the inner (Red line: r = a)
and outer (Green line: r = b) boundaries.

Figure 14: Contour plots of local equivalent stress σeq under reference load corresponding to pure deviatoric
condition (T = 0) with porosity f = 0.1 and Poison’s ratio ν = 0.3.

As mentioned in Section 3, we adopt the strain rate field (34) obtained by the normality
law from the total stress field. The reason is that the parameters in (34) can be easily580

eliminated by considering an additional relation of the enforced macroscopic triaxiality (46),
although (92) and (93) lead to the same form of the shakedown formulation in (39).

Appendix D Comparison of the macroscopic criteria with numerical results
for alternating loading case (R = −1)

For completeness, Fig.15 to 18 display the comparisons between analytical results and585

numerical data of the shakedown limit with respect to f = 0.01, 0.15, 0.2 and 0.3 under
alternating loadings (R = −1).
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Figure 15: Comparison between the limit surfaces of the analytical criteria (AC) and numerical results (NR)
for porosity f = 0.01 under alternating loadings R = −1 with respect to different values of Poisson’s ratio
of matrix: ν = 0.2 (Blue), 0.3 (Red) and 0.4 (Green).

Figure 16: Comparison between the limit surfaces of the analytical criteria (AC) and numerical results (NR)
for porosity f = 0.15 under alternating loadings R = −1 with respect to different values of Poisson’s ratio
of matrix: ν = 0.15 (Navy), 0.25 (Orange) and 0.35 (Leaf green).
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Figure 17: Comparison between the limit surfaces of the analytical criteria (AC) and numerical results (NR)
for porosity f = 0.2 under alternating loadings R = −1 with respect to different values of Poisson’s ratio of
matrix: ν = 0.2 (Blue), 0.3 (Red) and 0.4 (Green).

Figure 18: Comparison between the limit surfaces of the analytical criteria (AC) and numerical results (NR)
for porosity f = 0.3 under alternating loadings R = −1 with respect to different values of Poisson’s ratio of
matrix: ν = 0.2 (Blue), 0.3 (Red) and 0.4 (Green).
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[49] Save, M. A., Massonnet, C. E., De Saxcé, G., 1997. Plastic limit analysis of plates, shells and disks.

Vol. 43. Elsevier.700

[50] Sawczuk, A., 1969. Evaluation of upper bounds to shakedown loads for shells. Journal of the Mechanics
and Physics of Solids 17 (4), 291–301.

[51] Shen, W., Cao, Y., Shao, J.-F., Liu, Z., 2020. Prediction of plastic yield surface for porous materials
by a machine learning approach. Materials Today Communications, 101477.

[52] Shen, W., Shao, J.-F., Kondo, D., Gatmiri, B., 2012. A micro–macro model for clayey rocks with a705

plastic compressible porous matrix. International journal of plasticity 36, 64–85.
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