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A B S T R A C T   

From the basic physical insight, the configuration and switching process of ferroelectric domains are both 
governed by energetic principles. Based on these energetic principles, a model for the nonlinear hysteretic 
behaviour of ferroelectric ceramics is developed. It relies on an energy-consistent thermodynamic formulation, 
based on two constitutive functions: free energy and dissipation. The model is grounded on an energy balance 
where the free energy and dissipation are known at all times during the polarisation process due to the incre-
mental formulation obtained. All internal variables arise from the minimisation of a thermodynamic potential. 
Experimental measurements are performed in order to identify the parameters of the model and to validate the 
evolution of internal parameters generated by the energy-based model for different cases of loading. It is notably 
shown that the model allows capturing the energy losses under varying electrical loadings, which can be a key to 
the prediction of functional fatigue.   

1. Introduction 

Active materials play an essential role in intelligent systems design. 
Ferroelectrics are a popular category of active materials. They are 
widely used in various applications such as MEMS devices, medical 
imaging devices, ultrasonic transducers, sensors, and actuators (Booth 
and Goldsmith, 2017; Damjanovic, 2001; Granzow et al., 2021; Kimura 
et al., 2010; Mahbub et al., 2017; Smith, 2005). The coupled electro-
mechanical behaviour of these materials is an essential aspect of their 
use in smart systems. Usually, the ferroelectric ceramics exploited in 
applications have a polycrystalline structure, formed of grains with 
different crystallographic orientations. Each grain is itself divided into 
domains with uniform spontaneous polarisation and strain (Fig. 1). 

Ferroelectric ceramics exhibit a change in macroscopic polarisation 
and strain when subjected to external loading. A seemingly linear 
behaviour under low electro-mechanical loadings is observed, while the 
application of more intense electromechanical loadings produces a 
nonlinear and dissipative behaviour (Pardo and Ricote, 2011) (Fig. 2). 
For an unpoled material, the average polarisation, over a representative 
volume element, is null. 

The variation of polarisation and strain is generated by intrinsic ef-
fects in relation to elasticity, dielectricity and piezoelectricity (Dam-
janovic and Taylor, 1999; Zhang et al., 1994), as well as extrinsic effects 

in relation to ferroelectricity and ferroelasticity, which refers to the 
reorientation of spontaneous polarisation and strain, respectively 
(Kamlah, 2001; Lynch, 1996). Extrinsic effects are related to domain 
switching and domain wall motion. Changes in polarisation are gener-
ated by both 180◦ domain wall motion and non-180◦ wall motion 
whereas non-180◦ wall motion induces a variation in strain (Cao and 
Evans, 1993; Kamlah, 2001). 

Major hysteresis loops describing the nonlinear behaviour of ferro-
electrics provide many important characteristics. In the ferroelectric 
hysteresis (Electric displacement versus electric field), it allows to define 
the coercive field, dielectric constant and remnant and saturation 
polarisation (Fig. 2). In the longitudinal strain versus electric field loop, 
the piezoelectric coefficients as well as the maximum strain can be 
defined. These features are key to the functional applications of ferro-
electrics. In most applications, operating in a linear regime around 
remnant polarisation point (Pr in Fig. 2) is the optimum case. However, 
this apparently linear regime includes significant nonlinearity mostly 
due to domain switching (Daniel et al., 2015) which explains the need 
for hysteresis models. 

To exploit the material properties at their maximum, to control and 
optimise ferroelectric devices, it is necessary to develop accurate models 
that can describe the nonlinear behaviour of ferroelectrics. Currently, a 
multitude of modelling approaches are available. They can be divided 
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into two main categories. One gathers macroscopic phenomenological 
models, and the other micro-electromechanical ones. 

In recent years, macroscopic modelling of ferroelectric behaviour 
was studied and fed into finite element codes. Most of these models were 
inspired by viscoplasticity concept (Guillon et al., 2004), using internal 
variables such as remnant polarisation and remnant strain. Although 
this type of models is able to describe the general features of ferro-
electricity, only few works treated the behaviour of ferroelectrics for 
minor loops (Ricinschi and Okuyama, 2007; Wang et al., 2017) (Fig. 2), 
which is the usual operating condition of ferroelectrics. 

Phenomenological models consist of describing the state of the ma-
terials using internal variables at a specific instant and the evolution of 
these internal variables is governed by kinetic equations (Bassiouny 
et al., 1988a; Bassiouny and Maugin, 1989a; Chen, 1980; Kamlah and 
Böhle, 2001; Kamlah and Tsakmakis, 1999; Landis and McMeeking, 
1999; Sateesh et al., 2008). The dependence of this modelling class on a 
large number of parameters may result in complex identification pro-
cedures. Moreover, the uniqueness of the material parameters may not 
be guaranteed due to the possible non-convexity of the underlying 
optimization problem related to their identification. 

Bassiouny and his coworkers proposed phenomenological models 
based on the elastoplastic theory in the framework of continuum ther-
modynamics. In their works (Bassiouny et al., 1988a, 1988b; Bassiouny 
and Maugin, 1989a, 1989b), based on Helmoltz free energy, they used 
residual polarisation as internal variable to describe the behaviour of 
ferroelectrics under a multiaxial electromechanical loading. The choice 
of switching criterion and energy were developed later by (Cocks et al., 
1999) and McMeeking for one-dimensional case of loading and extended 
to the multi-dimensional case in McMeeking and Landis works (Landis, 
2002; McMeeking and Landis, 2002). In the former work (McMeeking 

and Landis, 2002), the only internal variable considered is the polar-
isation. In the latter work (Landis, 2002), the two internal variables, 
polarisation and strain were considered despite being governed by the 
same switching function. 

(Schröder and Romanowski, 2005) proposed a fully electrome-
chanically coupled formulation to model the dielectric and strain hys-
teresis. One switching function was defined to obtain the remnant 
polarisation. The remnant strain is assumed proportional to the devia-
toric part of the dyadic product of polarisation. Another approach was 
introduced by (Kamlah, 2001; Kamlah and Tsakmakis, 1999). The in-
ternal variables were determined by a set of different switching criteria 
and saturation conditions that are based on the kinematic hardening 
plasticity theory. 

Among all the proposed models to describe the ferroelectric behav-
iour, only few energy-based (EB) models were developed (Arockiarajan 
et al., 2010; Guillon et al., 2004; Jacques, 2018; Meindlhumer et al., 
2021; Pechstein et al., 2021; Sands and Guz, 2013; Miehe et al., 2011) 
developed a continuum-based model exhibiting 
electro-magneto-mechanical coupling. In this work, a distinction was 
made between energy-based models and enthalpy-based. The 
energy-based models are considering that polarisation and strain are the 
independent control variables, whereas, for enthalpy-based models, the 
chosen independent control variables are the electric field and stress. 
(Sands and Guz, 2013) presented also a one-dimensional, rate inde-
pendent model for piezoelectrics, based on the maximum entropy 
created. Another recent Energy-based model was developed by 
(Meindlhumer et al., 2021; Pechstein et al., 2021, 2020). The polar-
isation of the ferroelectric ceramic was presented as a dissipative pro-
cess. A minimisation condition was added and formulated as a 
variational inequality taking as parameter the dielectric displacement, 
strain and remnant polarisation. 

The second category of modelling approaches is the micro-
mechanical models (Daniel et al., 2014a, 2014b; Huber, 2005; Hwang 
et al., 1995; Lange and Ricoeur, 2015; Lobanov and Semenov, 2019; Su 
and Weng, 2006; Tan and Kochmann, 2017). This type of models is 
based on the behaviour of a single crystal, single domain, or a single 
lattice cell. This approach is mandatorily combined with homogeniza-
tion techniques to describe the macroscopic behaviour of ferroelectrics. 
The accuracy of the model depends on the averaging scheme adopted as 
well as the description of the local behaviour. 

(Hwang et al., 1995) developed a micromechanical model where the 
polarisation and strain for an individual grain were predicted from the 
applied stress and electric field through a Preisach hysteresis model. The 
condition of switching was defined by an energy criterion. The response 
of the specimen to the applied loadings is deduced by averaging the 
response of grains at different orientations. A non-linear constitutive 
model for ferroelectric polycrystals was also developed by (Huber et al., 
1999) to describe the nonlinear switching phenomenon in ferroelectrics 
under a coupled electromechanical loading. Huber assumed that the 
switching occurs within each crystal, which cause a change in remnant 
strain, polarisation, and other properties. The switching is based on the 
crystal plasticity theory developed by (Hill, 1966) and is resisted by the 
dissipative motion of domain walls. 

(Daniel et al., 2014b) developed an anhysteretic multiscale model 
where the relation between the crystallographic texture and the 
macroscopic properties were investigated. In this model, an energetic 
description of the equilibrium at the single crystal level in conjunction 
with a statistical estimation of the ferroelectric domain structure were 
taken into account. This model can be used to take into consideration the 
contribution of the crystalline elastic anisotropy to the macroscopic 
behaviour and to the internal stress distribution in ferroelectrics under 
electromechanical loading (Daniel et al., 2014a). 

(Lange and Ricoeur, 2015) presented a micro-electromechanically 
motivated model, considering a discrete switching in the unit cells and 
a quasi-continuous evolution of the irreversible fields for domain walls. 
In this model, the interaction between grains is considered by using an 

Fig. 1. Different scales for ferroelectric ceramics (Li et al., 2005).  

Fig. 2. Typical ferroelectric hysteresis curve.  
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averaging method to calculate the effective irreversible electrical or 
mechanical fields. 

(Tan and Kochmann, 2017) presented a variational constitutive 
model for polycrystalline ferroelectric ceramics. It describes the 
electro-mechanically coupled performance under an externally applied 
electric field and stress. The model starts at a single domain scale then 
develops to a single crystal with multiple domains, and finally extends to 
a polycrystal description. More recently, (Lobanov and Semenov, 2019) 
proposed a micro-mechanical model where they added the phases effect. 
This model is able to describe the behaviour for tetragonal, rhombohe-
dral, and orthorhombic phases. 

Another micromechanical model is developed by (Arockiarajan 
et al., 2010) where the grain boundary effect is examined. The activation 
of domain switching process is described using Gibbs free energy. The 
main characteristic of the model is the integration of the effects of the 
stress imposed by surrounding grains on a switching grain. 

The main objective of this study is to develop a model to predict the 
evolution of polarisation and strain for ferroelectrics under unipolar and 
bipolar loadings and to directly calculate the energy loss. The model 
presented in this paper is a thermodynamically consistent phenomeno-
logical model taking in consideration the spatial variation of properties, 
combining the two categories of models and inspired from the energy- 
based model for ferromagnetic materials (Da Silva et al., 2022; Jac-
ques et al., 2018). The novelty of the proposed model stands in the 
ability to describe the nonlinear behaviour of ferroelectrics under low 
electric field around remanent polarisation and in the method adopted 
to define the free energy which is based on a multi-scale approach 
describing the volume fraction of ferroelectric domains (Daniel et al., 
2014b), unlike the previously proposed energy-based models, where the 
free energy is defined phenomenologically. The polarisation is obtained 
by minimisation of a thermodynamic potential. To take into account the 
progressive nature of polarisation mechanisms, the model considers 
several cells characterized by different and varying coercive fields. The 
overall macroscopic strain and polarisation are obtained by averaging 
the response of all the cells considered. 

The paper is divided into four major sections. The first section pre-
sents the studied materials and experimental setup. The second section is 
dedicated to the energy-based model, fundamental equations, 

constitutive laws, and a description of the variational approach adopted. 
The third section will be entirely devoted to the procedure of identifi-
cation of the energy-based model parameters using experimental mea-
surements. The final section is the validation of the model proposed for 
two different types of modified soft lead zirconate titanate. The capa-
bility of the proposed model to predict minor ferroelectric and ferroe-
lastic loops as well as major loops is verified for both materials. 

2. Experimental set-up and studied materials 

The studied materials are both soft piezoelectric ceramics, 
commercially designed NCE55 and PIC 153 from Noliac and PI ceramic, 
respectively (Noliac; PI Ceramic. The dimension of the specimens is 4 ×

4 × 4 mm3 and silver electrodes are provided on two opposite surfaces. 
The piezoelectric and dielectric coefficients, indicating respectively the 
ratio of strain with respect to the applied electric field and the permit-
tivity of the material, are given in Table 1. d33 is the piezoelectric co-
efficient obtained from the longitudinal strain of the sample (Fig. 12), 
whereas d31 is calculated using the transversal strain values. 

The bench test used for strain and dielectric displacement measure-
ments is described in Fig. 3 (Segouin et al., 2019). The sample is placed 
between two fixtures, electrically isolated using Teflon parts and 
immersed in an insulating fluid (Fluorinert™ FC-770, 3 M) to prevent 
dielectric breakdown. The electric field E is produced by a high voltage 
amplifier (Trek 20/20C-HS) and controlled by a real time Dspace 
hardware module with a maximum sampling frequency of 5 kHz. The 
dielectric displacement D is measured from the upper electrode of the 
sample using an integrating capacitor of 2057nF (Glazer et al., 1984) 
and recorded using the same module. 

During experiments, the strain field is measured by Digital Image 
Correlation (DIC) (Segouin et al., 2017). A random speckle pattern is 
painted on a lateral face to create a tracking texture. The procedure of 
preparation of the artificial texture is described in (Segouin et al., 2019, 
2017). This face is imaged using a high-resolution camera (Ximea 
MD091MU-SY, 14 Monochrome, 3380 × 2708 px) with a maximum 
frame rate of 5 Hz mounted on a long-distance microscope (Questar 
QM100MKIII). The optical resolution of the system is ~5 μm. The 
sample is imaged through a flat glass window of 1mm of thickness. The 
whole optical system is placed at 38 cm from the sample surface. The 
lighting of the surface is ensured by a light source (LLS3 LED). The 
exposure time is fixed to 4 ms per image. The image acquisition by the 
camera is triggered using the same Dspace module that acquires the 
electric field E. The images record is then synchronized with the appli-
cation of the loading. A MATLAB program allows to calibrate the posi-
tioning of the sample based on an image gradient analysis and is used to 

Table 1 
NCE55/PIC153 piezoelectric and dielectric coefficients from datasheet.  

Parameter d33(× 10− 12m /V) d31(× 10− 12m /V) ε33/ε0 

NCE55 670 − 260 5000 
PIC153 600 – 4200  

Fig. 3. schematic drawing and general view of the measurement bench.  
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process the images. The TIFF format of the recorded images are corre-
lated using CorelliRT3 (Tomičevć et al., 2013) which is a 2D-DIC 
MATLAB program. The strain field is then obtained from the displace-
ment field. 

The frequency of acquisition of DIC is related to the frequency of the 
applied loading. Although many images are needed to get accurate re-
sults, there is a limitation for the number of images that can be saved 
using DIC during the experiment. As a complementary measurement, a 
laser sensor (IFS 2405-1), connected to a controller (IFC 2471), is used to 
measure the longitudinal strain. 

3. Energy-based model 

In the energy-based hysteresis model developed in this article, the 
dielectric displacement and strain are taken as the primary unknowns, 
while the remnant polarisation is used as an internal variable. This 
choice of internal variables is not unique but was made in accordance 
with the multiscale approach (Daniel et al., 2014b) that is used as a basis 
for the anhysteretic response. The dissipation model is grounded on an 
analogy between pinning field and a dissipative dry friction force, 
inspired from an approach developed to model the behaviour of ferro-
magnetic materials (François-Lavet et al., 2013; Henrotte et al., 2006). 

3.1. Single-cell approach 

As shown in Fig. 4, the electric field is supposed to be analogous to 
the applied force and therefore the displacement corresponds to the 
polarisation. The applied electric field is decomposed into a reversible 
Erev and irreversible part Eirr. The reversible part acts like a spring force, 
while the irreversible part is similar to a dry friction force (Steentjes 
et al., 2014). The friction slider is activated once the norm of the applied 
electric field surpasses the pinning field threshold κ. 

The hysteresis model is based on the conservation of energy 
(Bergqvist, 1997; Jacques, 2018). The first and second law of thermo-
dynamics can be expressed through the Clausius-Duhem inequality: 

Δ = E.Ṗ + T : Ṡ − ψ̇ ≥ 0 (1)  

where Δ is the dissipation, ψ is the Helmholtz free energy, E.Ṗ is the 
electric work and T : Ṡ is the mechanical work. The term T : Ṡ vanishes 
in the case of stress-free loading. ψ is chosen as an explicit function of the 
polarisation P. 

In the case of reversible transformation, the dissipation is null. 
Therefore, the rate ψ̇ of the Helmholtz free energy is a function of the 
polarisation P and can be written as: 

ψ̇ = Erev.Ṗ with Erev =
∂ψ
∂P

(2) 

Erev is called reversible electric field. In the reversible context, the 

electric work is totally transformed into internal energy. Considering 
that the internal energy ψ is convex and smooth, P and Erev are related 
by a one-to-one function that is said to be anhysteretic (see Fig. 5). This 
relation can be expressed by: 

P = Pan(Erev) ↔ Erev = P− 1
an (P) (3) 

Pan is a convenient notation for the reciprocal of the function ∂ψ
∂P 

where ψ = ψ(P). 
The general expression of the dissipation is obtained using equations 

(1) and (2): 

Δ = (E − Erev).Ṗ ≥ 0 (4) 

In ferroelectrics, the nonlinear dissipative response results from 
domain wall movement characterized by pinning-depinning dynamics 
(Paruch and Guyonnet, 2013; Smith and Hom, 1999). It is known that 
the coercive field of ferroelectrics is related to the pinning-depinning 
transition of domain walls (Yang et al., 1999). 

The dissipation depends on the variation of the internal variable (i.e., 
polarisation) and is assumed to be equal to the rate of a work caused by 
dry friction: 

Δ = κ|Ṗ| (5) 

κ is the pinning field amplitude and is a positive scalar for an 
isotropic material. It was shown that, in ferroelectric ceramics, not all 
the irreversible field dissipates upon mechanical loadings, and by 
comparing hysteresis loops and self-heating measurements, it was found 
that a part of the irreversible field contributes to some trapped energy 
(Barati et al., 2021). But here, for simplicity, it is assumed that all work 
associated with the irreversible field is dissipated. We can then express 
the dissipation in terms of the irreversible electric field Eirr : 

Δ = Eirr.Ṗ (6) 

We can deduce another expression of the equilibrium equation using 
equations (4) and (6) after factorisation of Ṗ: 

Fig. 4. Mechanical analogy of the energy-based model (Jacques et al., 2018).  

Fig. 5. Representation of the anhysteretic P-E curve and corresponding 
free energy. 

C. Babori et al.                                                                                                                                                                                                                                  



European Journal of Mechanics / A Solids 103 (2024) 105151

5

(E − Erev − Eirr).Ṗ = 0 (7) 

Equation (7) is not differentiable for Ṗ = 0. Since the functional is 
convex, we can define Eirr as a set of sub-gradients of the functional Δ in 
lieu of a single-valued gradient. 

E − Erev − Eirr = 0→E −
∂ψ
∂P

∈ ∂Δ(Ṗ) =

⎧
⎪⎪⎨

⎪⎪⎩

Eirr, |Eirr| ≤ κ ifṖ = 0

Eirr = κ
Ṗ
|Ṗ|

otherwise
(8) 

Equation (8) is the fundamental equation of the energy-based hys-
teresis model for a single cell. 

The single cell prediction for the major loop is in good agreement 
with experimental results, but the experiments have shown that it is less 
accurate for minor loops (Jacques, 2018; Jacques et al., 2018). To obtain 
more accuracy from the model, a set of different strengths of pinning 
fields can be used. Therefore, a multi-cell approach is adopted 
(Bergqvist, 1997; Henrotte et al., 2014) where the pinning field follows a 
distribution law (Bergqvist et al., 1997; Bertotti, 1998). 

The pinning field strength for each cell is therefore considered as 
κ∗(λ) = λκ. λ is a dimensionless value which characterizes each cell and 
scales the width of the hysteresis loop, with a given probability ζ(λ) that 
corresponds to the weight of the contribution of the cell λ. It is important 
to note that the notion of cells refers to the numerical implementation of 
the dissipation and is not explicitly connected to individual ferroelectric 
domains inside the material. 

3.2. Multi-cell approach 

The polarisation associated to each cell λ is denoted by P∗(λ). The 
density of the free energy stored in the λ-cell ψ∗(P∗(λ)) is related to the 
free-energy by: 

ψ∗(P∗(λ)) = ζ(λ)ψ
(

P∗(λ)
ζ(λ)

)

(9) 

Such that ψ̇∗
(P∗(λ)) = E∗

rev(λ).Ṗ
∗
(λ). 

The dissipation in the λ-cell is expressed as follows: 

Δ∗(λ) = |κ∗(λ)Ṗ∗
(λ)| = E∗

irr(λ).Ṗ
∗
(λ) (10) 

Each λ-cell satisfies the fundamental equation of the energy-based 
model: 

E −
∂ψ∗

∂P∗ ∈ ∂Δ∗(P∗(λ)) =

⎧
⎪⎪⎨

⎪⎪⎩

E∗
irr(λ),

⃒
⃒E∗

irr(λ)
⃒
⃒ ≤ κ∗(λ), if Ṗ∗

(λ) = 0

E∗
irr(λ) = κ∗(λ)

Ṗ∗
(λ)

|Ṗ∗
(λ)|

, otherwise
(11) 

In the multi-cell approach, we assume that λ-cells are independent. 
Equation (11) is satisfied for each cell. 

The macroscopic polarisation is expressed as the sum of all λ-cell 
contribution: 

P=

∫ ∞

0
P∗(λ)dλ (12) 

Integration of equation (8) over each cell λ allows to get the ho-
mogenized energy balance: 

E.Ṗ =

∫ ∞

0
(E∗

rev(λ).Ṗ
∗
(λ)
)

dλ +
∫ ∞

0
(E∗

irr(λ).Ṗ
∗
(λ)
)

dλ (13) 

The energy-based equation for each cell after discretization becomes: 

E −
∂ψ
∂Pk ∈ ∂Δk( Ṗk)

=

⎧
⎪⎪⎨

⎪⎪⎩

Ek
irr,
⃒
⃒Ek

irr

⃒
⃒ ≤ κk, if Ṗk

= 0

Ek
irr = κk Ṗk

⃒
⃒Ṗk⃒⃒

, otherwise
(14) 

The second step after establishing the energy-based model equations 

is the discretization of the pinning field distribution. λ is divided into N 
parts, each part is characterized by a specific weight ωk and a pinning 
field strength κk, given by: 

ωk =

∫λk

λk− 1

ζ(λ)dλ, κk =

∫λk

λk− 1

ζ(λ)κ∗(λ)dλ

ωk (15) 

For the numerical implementation of the hysteresis model, the 
variational approach is adopted, which was investigated for ferromag-
netic materials in (François-Lavet et al., 2013) and in ferroelectric ma-
terials in (Mielke and Timofte, 2006). It consists of searching an exact 
solution of the non-linear equation (14) by assigning a functional Ωk of 
the state variable Pk to each cell. The polarisation can evolve only in the 
sense of minimisation of the functional Ωk. The functional is defined in 
two steps: first, the Landau free energy, which is linked to Helmholtz 
potential by: 

gk( E,Pk)=ψ
(
Pk) − E.Pk (16) 

Such that: 

∂gk

∂Pk =
∂ψ
∂Pk − E (17) 

Second, the dissipation Δk is a function of Ṗk, while the functional Ωk 

is assumed in term of Pk. A pseudo-potential is defined to solve this 
disagreement: 

Δ̃
k(

Pk,Pk
(p)

)
= κk

⃒
⃒
⃒Pk − Pk

(p)

⃒
⃒
⃒ (18) 

Whose sub-gradient: 

∂Δ̃
k(

Pk,Pk
(p)

)

∂Pk =

⎧
⎪⎪⎨

⎪⎪⎩

Ek
irr,
⃒
⃒Ek

irr

⃒
⃒ ≤ κk, if Pk = Pk

(p)

Ek
irr = κk Pk − Pk

(p)⃒
⃒
⃒Pk − Pk

(p)

⃒
⃒
⃒
, otherwise

(19) 

Using equations (17) and (18), equation (17) can be reformulated as: 

∂
∂Pk

(
gk + Δ̃

k)
= 0 (20) 

That results in the functional to be minimized: 

Ωk
(

E,Pk,Pk
(p)

)
= gk( E,Pk)+ Δ̃

k(
Pk,Pk

(p)

)
(21)  

3.3. Helmholtz free energy 

To minimize the functional Ωk, we need to define the Helmholtz free 
energy. For this purpose, a simplification of the multi-scale model for 
reversible ferroelectric behaviour will be utilized (Daniel et al., 2014b). 
This model is based on the energy description of the equilibrium at a 
single crystal scale. Each single crystal is described as a set of domain 
families, each of them is associated to a particular easy axis. The free 
energy of each domain family is given by: 

ψα = − Eχ.Pα − Tχ : Sfe
α − 2Eχ.dpz

α : Tχ (22) 

ψα is the free energy of a domain family. Eχ , Tχ are electric field and 
stress at the single crystal scale and Pα, Sfe

α , dpz
α are respectively the 

polarisation, strain, and piezoelectric coefficient at the ferroelectric 
domain scale. The simplified multiscale model (SMSM) requires the 
identification of the following parameters:  

- Dielectric permittivity ε, assumed isotropic (so that ε is a scalar): its 
value was taken from (Kamlah and Wang, 2003), for a similar 
material. 
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- Spontaneous polarisation P0 of the single crystal: its value was taken 
as 1.2 × Ps, following the homogenization rule found in (Li and 
Rajapakse, 2007) (it is 1.20 for tetragonal and 1.16 for rhombohedral 
ceramics). Ps is the macroscopic saturation polarisation of the ma-
terial, identified from macroscopic measurements (see later in the 
text).  

- Adjustment parameter AS: this parameter is shown in (Daniel et al., 
2014b) to be proportional to the initial slope χ0 of the anhysteretic 
polarisation curve (As =

3χ0

P2
0
). In practice χ0 was taken as the 

maximum susceptibility extracted from the experimental major P-E 
loop. 

Other parameters are needed for the SMSM (piezoelectric co-
efficients d33, d13, d15 for the single crystal and spontaneous polarisation 
strain λ0) but do not play any role in the case of stress-free polarisation 
curves. 

The expression of the free energy ψ obtained from the SMSM is fitted 
into a scalar saturation curve depending on the polarisation only (the 
strain contribution is omitted): 

ψ(P)=A × Ps

(
P
Ps

atanh
(

P
Ps

)

+
1
2

ln

⃒
⃒
⃒
⃒
⃒

(
P
Ps

)2

− 1

⃒
⃒
⃒
⃒
⃒

)

(23) 

A is determined by fitting equation (23) to the free energy curve 
constructed using the anhysteretic polarisation curve generated by the 
SMSM (Daniel et al., 2008). Ps is the saturation polarisation. It is ob-
tained from the measured polarisation curve (maximum value of the P-E 
loop). The choice of the function (23) is based on the similarity between 
the shape of this function and the free energy curve obtained (Françoi-
s-Lavet et al., 2013). 

The polarisation is calculated by minimisation of the functional Ωk(E,
Pk,Pk

(p)). The next step is to identify κk and ωk. The procedure of iden-
tification is developed in the next section. 

The EB-Model is able to generate the macroscopic strain evolution by 
considering a quadratic polynomial function as expressed in equation 
(24). 

S33 = Q × P3
2 (24) 

The coupling parameter Q is obtained by least squares regression 
over all points of the measured strain-polarisation loops (Fig. 13). It is 
recalled that (24) is only intended to describe the longitudinal strain 
under no applied stress. If a static stress was to be considered, the 
parameter Q shall then be identified for each considered stress state, 
taking the strain under no applied electric field as the reference (zero) 
strain. 

3.4. Identification procedure 

The identification procedure is performed on unpoled materials. 
There are different methods of depoling, with different effect on the 
material: A thermal method by applying a temperature above Curie 
temperature, an electrical method which consist of applying a 
decreasing cyclic electrical loading (Kaeswurm et al., 2018) or a me-
chanical depoling which is the application of a compressive stress on 
samples (Li et al., 2010). In this study, the electrical method is applied to 
depole the samples. 

The next step after depolarisation of the samples is to apply a cyclic 
electrical loading with increasing amplitudes and record the variation of 
dielectric displacement to construct hysteresis loops (Fig. 6). The curves 
obtained will be used for identification procedure or validation. The 
method used for parameter identification was initially designed for 
ferromagnetic materials by Henrotte, then Jacques (Henrotte et al., 
2006; Jacques et al., 2018). It is detailed hereafter. Later on, an 
analytical formula to identify Energy-Based parameters was developed 
by (Scorretti and Sixdenier, 2022). 

Starting from an unpoled state where E∗
rev(λ) = 0∀λ , a unidirectional 

electric field is applied to the specimen from E = 0 up to E = EP. The 
polarisation in each cell satisfies Equation (11), the dielectric state of 
cells is modified when κ∗(λ) < EA , and one has for them, after loading, 
E∗

rev = EP − κ∗(λ). 
The macroscopic reversible electric field is given by: 

Erev(0 → EP)=

∫∞

0

ω(κ∗) max(EP − κ∗(λ), 0)dκ∗ = F(EP) (25)  

where ω(κ∗) =
ζ(κ∗/κunit)

κunit 
is the equivalent of the probability density ζ(λ)

but expressed as a function of κ∗. κunit is a constant factor expressed in 
unit of the electric field. F(E) is the auxiliary function used in the pro-
cedure of identification, defined by: 

F(E)=
∫ E

0
ω(κ∗)(E − κ∗)dκ∗ (26) 

For a given hysteresis loop, the coercive field Ec(E) is characterized 
by: 

Pan(Erev(0 → E → − Ec(E)))= 0 (27) 

Which involves: 

F(E) − 2F
(

E + Ec(E)
2

)

= 0 (28) 

Fig. 6. Hysteresis loop using 48 amplitudes for (a) NCE55 and (b) PIC153.  
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The coercive field can be obtained by applying a loading with 
increasing amplitudes and can be measured from the resulting hysteresis 
loops. The auxiliary function is constructed using the curve of Ec versus 
EP (Fig. 6), and satisfies the criteria hereunder.  

• F(0) = 0,  
• F(E) = E − Ec,max∀E > Esat. 

We define the sequence: 

xn =
xn− 1 + Ec(xn− 1)

2
< xn− 1 (29) 

Esat is the electric field at saturation. Starting from a certain value 
x0 > Esat for which F(x0) = x0 − EC,max, all the subsequent terms of the 
series are given by F(xn) = F(xn− 1) /2. This series is strictly decreasing 
and converges toward F(0) = 0. 

The coercive field characteristic is interpolated linearly in the mea-
surement range [Emin,Emax] as follows: 
⎧
⎪⎨

⎪⎩

Ec(E) = Ec,max if E > Emax

Ec(E) = Ec,min

(
E

Emin

)2

if E < Emin

(30) 

As it is a geometric progression, the values of the series appear to be 
equidistant in the logarithmic scale. If the auxiliary function is well 

interpolated and extrapolated, it shows a smoothness and a well-defined 
asymptotic behaviour. 
{

F(E) = E − Ec,max if E > Emax
F(E) = αE if E < Emax

(31) 

α is a material constant. The auxiliary function is constructed and 
drawn in Fig. 7, the reversible part is also drawn, and it corresponds to a 
straight line of a unitary slope since there is no coercive field by 
definition, 

The auxiliary function is constructed and interpolated using Makima 
method. The resulting curve is smooth, which will allow us to calculate 
the values of the first and second derivatives of F(E) using the finite 
difference method: 

∂EF
(
xj)=F

(
xj)Δ2 − Δ1

Δ1Δ2
+F
(
xj+1) Δ1

Δ2Δ3
+ F
(
xj− 1) Δ2

Δ1Δ3  

∂2
EF
(
xj)= 2

(
F(xj− 1)

Δ1Δ3
−

F(xj)

Δ1Δ2
+

F(xj+1)

Δ2Δ3

)

Δ1 = xj − xj− 1,Δ2 = xj+1 − xj,Δ3 = xj+1 − xj− 1 

Fig. 8 represents a spline interpolation of the first derivative of F 
using ∂EF(xj), which represent the cumulative distribution function of 
the pinning field. ∂EF reaches a saturation value around κ = 2000 (V/ 

Fig. 7. Coercive field as a function of the electric field for (a) NCE55 and (b) PIC 153. Red points are representing the measured data, and the orange circles are the 
points that fit in the interpolation. 

Fig. 8. Auxiliary function for (a) NCE55 and (b) PIC153.  

C. Babori et al.                                                                                                                                                                                                                                  



European Journal of Mechanics / A Solids 103 (2024) 105151

8

Fig. 9. Spline interpolation of the pinning field cumulative distribution function for (a) NCE55 and (b) PIC153.  

Fig. 10. Pinning field probability density for (a) NCE55 (b) PIC153.  

Fig. 11. Discretization of the pinning field probability density for (a) NCE55 and (b) PIC153.  
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mm) for both materials. 
The terms of the first derivative are used to calculate the second 

derivative of the auxiliary function which represents the pinning field 
probability density (Fig. 9). Fig. 10 shows pinning field probability 
density of κ∗ after discretization in the cases of PIC153 and NCE55 
samples, respectively. Each value of pinning field strength κ∗ has its own 
corresponding probability (Fig. 11). 

It is worth noting that the probability density (ω) has a non-zero 
value at κ = 0. Pinning field probability density gains its maximum 
value around the coercive field of the major loop obtained experimen-
tally, and then by increasing κ value, it starts to decrease until zero. 

For the numerical implementation, the continuous probability den-
sity ω(κ∗) is discretised. The pinning field is divided into N cells. Each 
cell is characterized by a pinning field κk and its weight ωk. For this 
purpose, a linear piecewise function y(x) is considered. 

The number of points xk is fixed a priori. An optimization process is 
applied to define the best partitioning of the electric field and the po-
sitions of (xk, yk). The parameters κk and ωk are calculated using the 
coordinates (xk,yk). 

The numerical values for the material parameters used in this study 
are given in Table 2. 

4. Validation 

To highlight the capability of the energy-based model for the 
description of the ferroelectric behaviour, first, a comparison between 
the experimental data and a symmetrical hysteresis major loop is illus-
trated. Then, a second comparison is realised between the loop 

generated by the model and the experimental result for a unipolar 
loading for different amplitudes. The results used for model validation 
are different from the experimental curves used for identification. 

In Fig. 14, a major hysteresis loop is presented, for both PIC153 and 
NCE55, where a good agreement between the experimental curve and 

Fig. 12. Longitudinal strain S33 under increasing unipolar loading for a frequency of 50 mHz for PIC153.  

Fig. 13. Longitudinal strain as function of dielectric displacement for increasing unipolar loading of a frequency of 50 mHz for PIC153.  

Table 2 
Material parameters for the proposed energy-based model.  

Parameter Description Value for PIC 
153 

Value for 
NCE55  

As Adjustment 
parameter 

3.1 × 10− 5 m3/ 
J 

1.5 × 10− 5 m3/ 
J 

SMSM 
Equation  
(22) and ( 
Daniel et al., 
2014b) 

P0 Spontaneous 
polarisation 

0.41 C.m− 2 0.40 C.m− 2 

ε Dielectric 
permittivity 

0.02 μF.m− 1 0.02 μF.m− 1 

A Free energy 
parameter 

3.55× 105 C.
m− 1.V− 1 

2.7× 105 C.
m− 1.V− 1 

Free energy 
Equation  
(23) Ps Saturation 

polarisation 
0.34 C.m− 2 0.33 C.m− 2 

Q Coupling 
parameter 

3.7 × 10− 3m2.

C− 1 

3.32 ×
10− 3m2.C− 1 

Strain 
Equation  
(24) 

ωk Weight of 
pinning field 

See section 3.4. Dissipation 
function 

κk Pinning field 
strength 

See section 3.4. 

N Number of 
cells 

26  
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the EB-Model results can be seen. Fig. 15 shows the capability of the 
model to generate internal minor loops. Using equation (24), strain 
loops can also be obtained as shown in Fig. 16. A comparison is made 
between the experimental strain loop and the modelling results. The 
observed differences can be explained by the strong assumptions made 
in the definition of the strain-polarisation relationship: polynomial 
restricted to the order two and use of a one-to-one function while 
experimental measurements show some hysteresis in strain-polarisation 
response. 

To test the accuracy of this model, and to correlate it with the way 
ferroelectrics are used in most practical applications, the D(E) and S(E) 
loops for unipolar loading on PIC 153 and NCE55 are illustrated in 
Figs. 17–19 and Fig. 20. The experimental results describe the behaviour 
of the material close to saturation state. Therefore, all cycles are narrow 
compared to bipolar cycles. The model is able to capture the behaviour 
for this case of loading as seen in the figures below. The comparison 
shows that both loops have the same shape, even the same area, with a 
tiny difference in the behaviour towards saturation. The difference 
might be caused by the variation of the piezoelectric coefficient which is 
dependant to the electric field amplitude. The results presented in 
Figs. 19 and 20 show the strain loop generated by the model in com-
parison to the measurements obtained by the laser sensor. 

The experimental dissipated energy (i.e., the area of the dielectric 
displacement-electric field hysteresis cycle) is obtained and compared to 

Fig. 14. Major hysteresis loop for (a) PIC153 and (b) NCE55.  

Fig. 15. Major hysteresis loop with inner loops for (a) PIC153 and (b) NCE55.  

Fig. 16. Major strain curve loops for NCE55.  
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Fig. 17. Minor hysteresis loops for a unipolar electric field, around remnent polarisation for PIC153 for an amplitude of (a) E = 500 (V/mm) and (b) E = 1000 
(V/mm). 

Fig. 18. Minor hysteresis loops for a unipolar electric field, around remnent polarisation for NCE55 for an amplitude of (a) E = 500 (V/mm) and (b) E = 1000 
(V/mm). 

Fig. 19. Strain loops for a unipolar loading on PIC 153, (a) E = 500 (V/mm) (b) E = 1000 (V/mm).  
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the calculated dissipation generated by the energy-based model 
(Fig. 21). This comparison shows good agreement between the experi-
mental and modelling results, especially around the coercive field for 
the bipolar load where the dissipation increases rapidly. The saturation 
of the dissipated energy around 3500V/mm under bipolar loading is also 
captured by the model. Such a good agreement between experiments 
and modelling is very promising for the study of functional fatigue in 
ferroelectrics, for which the cumulative dissipated energy is a key 
aspect. 

5. Conclusion 

An energy-based model to describe the behaviour of ferroelectric 
ceramics is proposed in this paper. The model relies on two constitutive 
functions: The free energy and the dissipation. The dissipation is 
generated by the pinning of the walls while the free energy is defined 
using a simplified formulation of a multi-scale model. To give more 
accuracy to the model, a multi-cell approach is adopted to characterize 
the different and rapidly varying strengths of pinning fields at the 

microscopic scale. 
For the numerical implementation, a variational approach was 

adopted, and it consists of solving the fundamental equation of the 
energy-based model and calculate the polarisation at each iteration. For 
each cell, a functional of polarisation Ω(P) is assigned, then minimized 
to calculate the polarisation P∗ .To minimize the functional Ω(P), the 
strength of the pinning field κ and the pinning field probability density ω 
has to be identified. In the identification procedure, an electrically 
unpoled sample was used. The procedure consists of applying a cyclic 
electric field with increasing amplitudes, extracting the coercive field Ec 

from the hysteresis loops and constructing an auxiliary function F which 
is used to calculate the pinning field intensity and its corresponding 
probability density. The performance of the model is shown for different 
types of loading, and the comparison between experimental and 
modelling results is presented in the validation section. The model is 
tested under unipolar loading around remnant polarisation, which is the 
most common case in practical applications, and it shows its ability to 
describe the polarisation and strain evolution for the two materials used 
in the experiments. The dissipated energy for PIC153 and NCE55 under 

Fig. 20. Strain loops for a unipolar loading on NCE55, (a) E = 500 (V/mm) (b) 1000 (V/mm).  

Fig. 21. Dissipated energy evolution for (a) PIC153 and (b) NCE55 under bipolar and unipolar growing electric field.  
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unipolar and bipolar loading is calculated using the energy-based model 
and is compared to the measurements. These results can be used to 
define the operating range to be selected according to the application. 
The model is also a promising tool to study functional fatigue of ferro-
electrics, due to its sound thermodynamic consistency. 

A natural extension for the energy-based model would involve 
describing the behaviour under more complex loading configurations. 
This includes simultaneous electric and mechanical loadings, multiaxial 
electric field loadings or cycling loadings. Such extensions will be built 
by taking full advantage of the multi-scale model formulation for the 
anhysteretic behaviour. 

Efforts are underway to improve the model and address this limita-
tion. Future works also aim to enhance the model by incorporating more 
significant internal variables, including strain. Additionally, the imple-
mentation of the energy-based model in a finite element code will enable 
the evaluation of multiaxial loading cases and facilitate field studies on 
heterogeneous specimens. 
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Glossary 

D: Dielectric displacement 
d33, d31: Piezoelectric coefficients 
E: Electric field 
Ec: Coercive field 
Eirr : Irreversible electric field 
Erev: Reversible electric field 
Esat: Saturation electric field 
P: Polarisation 
Psat: Saturation polarisation 
T: Stress 
Δ: Dissipation 
ε33: Dielectric coefficients 
κ: Pinning field intensity 
ψ: Helmoltz Free energy 
ω: Pinning field probability 
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