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OUTER STRONG BLOCKING SETS

GIANIRA N. ALFARANO1, MARTINO BORELLO2,3, AND ALESSANDRO NERI4

Abstract. Strong blocking sets, introduced first in 2011 in connection with saturating sets, have
recently gained a lot of attention due to their correspondence with minimal codes. In this paper, we
dig into the geometry of the concatenation method, introducing the concept of outer strong blocking
sets and their coding theoretical counterpart. We investigate their structure and provide bounds
on their size. As a byproduct, we improve the best-known upper bound on the minimum size of
a strong blocking set. Finally, we present a geometric construction of small strong blocking sets,
whose computational cost is significantly smaller than the previously known ones.

Introduction

A strong blocking set is a set P of points in the projective space PG(k − 1, q), such that for
every hyperplane H ⊆ PG(k − 1, q) the intersection P ∩H spans H. These combinatorial objects,
introduced in [14] in connection with saturating sets, have been recently investigated, not only for
their theoretical properties but also for their use in applications, in particular in coding theory and
cryptography.

Independently in [1] and [28], it was initially shown that projective equivalence classes of strong
blocking sets in PG(k − 1, q) are in one-to-one correspondence with monomial equivalence classes
of projective minimal codes of dimension k over Fq. A code is minimal if all its nonzero codewords
are minimal, i.e. their support does not contain the support of any other linearly independent
codeword. First results on minimal codes were presented in [11], in connection to secure two-party
computation. Bounds on the parameters of a minimal code were investigated in [1,2,11,12,23]. In
[4], a sufficient condition (now called the Ashikhmin-Barg condition) for a code to be minimal was
presented and later has been extensively used to get constructions. Only recently, minimal codes
have been studied through their connection with strong blocking sets; see [1,2,23,28].

A remarkable property of minimal codes is that they are asymptotically good; see [1,12]. In this
regard, one of the main research directions of the last years focused on finding explicit constructions
of minimal codes whose length grows linearly with their dimension, or equivalently, providing con-
structions of infinite families of strong blocking sets whose size grows linearly with the dimension of
the ambient projective space. Strong blocking sets realized as union of subspaces are the most com-
mon constructions. Indeed, if the pointset in PG(k−1, q) consists of union of subspaces it is usually
easier to control the intersection with hyperplanes. In particular, many of the known constructions
of strong blocking sets are union of lines; see [1,2,6,7,14,18]. In [21], an upper bound on the size of
the smallest strong blocking set in PG(k − 1, q) is provided using probabilistic methods, which im-
proves upon the previously known bounds. In the recent paper [6], the authors explicitly construct
families of asymptotically good minimal codes via the method of concatenation, already exploited in
[12]. In this way, they also obtain explicit constructions of small strong blocking sets in projective
spaces, whose size linearly depends on the dimension of the ambient space. In order to do so, they
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2 OUTER STRONG BLOCKING SETS

leverage explicit constructions of asymptotically good algebraic-geometry (AG) codes. Moreover,
an analogue of the Ashikhmin-Barg condition in the context of concatenated codes, denominated
Outer AB condition is provided.

In this paper we pursue the study of strong blocking sets in connection with minimal codes.
We provide a deeper geometric insight on the concatenation method, introducing the notions of
outer strong blocking sets and outer minimal codes, which include the classical ones. These are sets
whose field reduction is a strong blocking set and codes whose concatenation with minimal codes is
minimal. Since adding a point to an outer strong blocking set gives a larger outer strong blocking
set, we are interested in the smallest sets with this property. We identify a sufficient property that
a collection of subsets of points in PG(k− 1, q) can satisfy for their union to form a strong blocking
set. This turns out to be the basis for generalizing different results from [18] and [21]. In particular,
we provide lower and upper bounds on the smallest size of an outer strong blocking sets and as a
byproduct, we get the best-known general upper bound on the cardinality m(k, q) of the smallest
strong blocking set in PG(k − 1, q):

m(k, q) ≤







1

logq2
(

q4

q3−q+1

) · k







· (q + 1),

for k even. For odd dimensions, we get essentially the same bound by projection. We also highlight
the impact of this new result on saturating sets. Finally, we provide an explicit construction
of small strong blocking sets obtained by iterative field reduction. The computational cost of
our construction is significantly smaller than the ones proposed in [3,6], since these require to
construct first an AG code and the fastest algorithm for constructing such a code has a much higher
complexity; see Section 5.

Outline. The paper is organized as follows. In Section 1 we provide the necessary background on
strong blocking sets and minimal codes. In Section 2 we explain the concatenation method and
establish its connection to the field reduction concept in geometry. Section 3 is devoted to the
introduction and the study of outer strong blocking sets and outer minimal codes. In Section 4 we
present a lower bound on the size of outer strong blocking set and the best-known general upper
bound on the size of the smallest strong blocking set for a given dimension and given field size.
Moreover, a connection with saturating sets is highlighted. In Section 5 we provide an iterative
construction of small outer strong blocking sets and we study its computational complexity.

Notation. Throughout this paper, q denotes a prime power, Fq is the finite field with q elements,
and h, n, k are integers with 1 ≤ k ≤ n and h ≥ 1. For i ∈ N = {0, 1, 2, . . .} we let [i] := {j ∈
N : 1 ≤ j ≤ i}. We denote by PG(k − 1, q) the (k − 1)-dimensional projective space over Fq and

by AG(k − 1, q) the (k − 1)-dimensional affine space over Fq. For any matrix M ∈ F
a×b
q we denote

by rowsp(M) and colsp(M) the rowspace and the columnspace of M over Fq, respectively, that

is the Fq-subspace of Fb
q generated by the rows of M and the Fq-subspace of Fa

q generated by the
columns of M . Given a subset S of an Fq-vector space V , we denote by 〈S〉Fq its Fq-span, that is
the Fq-vector subspace generated by all the elements of S. Given instead a subset T of a projective
space PG(k − 1, q), we denote by 〈T 〉 its projective span, that is the projective subspace generated
by all the elements of T . For a vector v ∈ F

k
q , we denote by v⊥ the (k − 1)-dimensional subspace

of Fk
q orthogonal to 〈v〉Fq , with respect to the standard inner product.

1. Preliminaries

In this section we briefly recall the notions of strong blocking sets and linear codes, with a
particular focus on minimal codes.
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1.1. Strong Blocking Sets. The concept of strong blocking set has been introduced in [14] in
order to construct saturating sets in projective spaces over finite fields. In [18] strong blocking sets
are referred to as generator sets and they are constructed as union of disjoint lines. In [10] they
were re-introduced under the name of cutting blocking sets in order to construct a family of minimal
codes. In this subsection, we recall some properties of strong blocking sets, existence conditions
and known results about their size.

Definition 1.1. A set of points P in PG(k − 1, q) is called strong blocking set if for every
hyperplane H ⊆ PG(k − 1, q) we have that

〈P ∩H〉 = H.

Example 1.2. Clearly, the whole projective space PG(k − 1, q) is a strong blocking set.

Observe that from a given strong blocking set we can always obtain a larger one by adding any set
of points and considering multiplicities, hence, with a little abuse of notation, we can also consider
multisets of points as strong blocking sets. Moreover, for the same reason, it is interesting to know
how small a strong blocking set can be. A lower bound was shown in [2], which is, however, not
tight.

Theorem 1.3 ([2, Theorem 2.14]). The size of a strong blocking set in PG(k − 1, q) is at least
(q + 1)(k − 1).

One way to construct small strong blocking sets is by taking unions of lines. We are going to
recall two constructions of small strong blocking sets given in this way. The first one was proposed
by Fancsali and Sziklai in [18] and it works as follows. Choose 2k− 3 distinct points on the rational
normal curve in PG(k− 1, q) and take the union of the tangent lines at these points. The resulting
set is a strong blocking set, under the assumption that q ≥ 2k − 3 and char(Fq) ≥ k. The latter
condition can be removed, by using the method of diverted tangents, also described in [18]. We
refer to a strong blocking set of this form as a rational normal tangent set. The drawback of
this construction is the constraint on q. In particular, it cannot be used for a fixed field with large
values of k. Smaller constructions have been provided for k = 3, 4 (see [18]), k = 5 (see [8]) and
k = 6 (see [7]). The second construction, that we will call tetrahedron, works for every choice of
parameters k, q and it was provided independently in [1,5,14,23]. Consider k points P1, . . . , Pk in
general position in PG(k − 1, q). Then, the union of all lines passing through each pair of distinct
points {Pi, Pj} forms a strong blocking set.

Denote by m(k, q) the size of the smallest strong blocking sets in PG(k − 1, q). In [21] a proba-
bilistic argument gives an upper bound on m(k, q), which refines the result in [11].

Theorem 1.4 ([21]). We have that

m(k, q) ≤







2k−1
log2( 4

3)
if q = 2,

(q + 1) ·

⌈

2
1+ 1

(q+1)2 ln q

· (k − 1)

⌉

otherwise.

1.2. Linear Codes and Projective Systems. Let v ∈ F
n
q . The support of v is defined as

σ(v) = {i | vi 6= 0} ⊆ [n] and its (Hamming)-weight is wt(v) = |σ(v)|.
An [n, k]q (linear) code is an Fq-linear subspace C ⊆ F

n
q of dimension k. The vectors in C are

called codewords. The minimum (Hamming) distance of C is defined as

d(C) = min{wt(c) | c ∈ C, c 6= 0}.

If d = d(C) is known, we say that C is an [n, k, d]q code. A generator matrix G ∈ F
k×n
q of C is

a matrix such that rowsp(G) = C. We say that C is nondegenerate if there is no i ∈ [n] such
that ci = 0 for all c ∈ C, and that C is projective if in one (and thus in all) generator matrix of C
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no two columns are Fq-linearly dependent. Codes C and C′ are (monomially) equivalent if there
exists an Fq-linear isometry f : Fn

q → F
n
q with f(C) = C′.

Definition 1.5. A projective [n, k]q system P is a finite set of n points (counted with multiplicity)
of PG(k−1, q) that do not all lie on a hyperplane. Projective [n, k]q systems P and P ′ are equivalent
if there exists φ ∈ PGL(k, q) mapping P to P ′ which preserves the multiplicities of the points.

There is a well-known correspondence between the (monomial) equivalence classes of nondegen-
erate [n, k]q linear codes and the equivalence classes of projective [n, k]q systems; see [29, Theo-
rem 1.1.6]. More precisely, let G be a k×n generator matrix of an [n, k]q linear code. Consider the

set P of one-dimensional subspaces of Fk
q spanned by the columns of G, which gives a set of points

in PG(k − 1, q). Conversely, let P be a projective [n, k]q system. Choose a representative for any
point of P and consider the code generated by the matrix having these representatives as columns.

Notation 1.6. Let C be an [n, k]q code. Since all the results that we provide are independent from
the choice of the generator matrix of C, with a little abuse of notation, in the sequel we denote by
P(C) an arbitrary projective system in the equivalence class corresponding to the class of C.

Definition 1.7. Let C be an [n, k]q code. A nonzero codeword c ∈ C is called minimal if its
support does not contain the support of any other linearly independent codeword, i.e. for every
codeword c′ ∈ C with σ(c′) ⊆ σ(c), there exists λ ∈ Fq such that c′ = λc. We say that C is minimal
if all its nonzero codewords are minimal.

Example 1.8. Let G be the k× (qk− 1)/(q− 1) matrix having as columns a nonzero vector chosen
from each one-dimensional subspace of Fk

q . The simplex code Sq(k) of dimension k over Fq is a
code equivalent to rowsp(G). It is easy to see that all the codewords of Sq(k) have the same weight

qk−1, which implies that Sq(k) is a minimal code. Note that this example is the coding theoretic
counterpart of Example 1.2.

Through the same correspondence aforementioned, we get the following.

Theorem 1.9 ([1,28]). Equivalence classes of nondegenerate [n, k]q minimal codes are in one-to-
one correspondence with equivalence classes of projective systems which are strong blocking sets in
PG(k − 1, q).

In [4] a sufficient condition for an [n, k]q code to be minimal, known as Ashikhmin-Barg (AB)
condition, has been provided. We recall it in the next result.

Lemma 1.10 (AB condition [4]). Let C be an [n, k, d]q code and w := maxc∈C wt(C). If

w

d
<

q

q − 1
,

then C is minimal.

Observing that in a minimal code any nonzero codeword is not only minimal, but also maximal,
in [2] the following lower bound on the minimum distance derived.

Theorem 1.11 ([2, Theorem 2.8]). Let C be an [n, k, d]q minimal code. Then,

d ≥ (q − 1)(k − 1) + 1.

Note that the tetrahedron in PG(k− 1, q) gives rise to a minimal code whose minimum distance
meets the previous bound with equality. This observation will be useful in Section 3.
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2. Concatenation and Field Reduction

This section is devoted to the explanation of the concatenation method, that is a machinery
which can be used to provide families of asymptotically good minimal codes; see [6,12,13]. The
concatenation works as follows.

Let C be an [N,K,D]qh code and let (I1, . . . ,IN ) be a sequence of [nℓ, h, dℓ]q codes, for every
ℓ ∈ [N ]. Let π = (π1, . . . , πN ) be a sequence of Fq-linear injective maps, πℓ : Fqh → F

n
q , such that

Iℓ = πℓ(Fqh) for every ℓ ∈ [N ]. Then, the concatenation of C with (I1, . . . ,IN ) by π is given by

(I1, . . . ,IN )�πC := {(π1(c1), . . . , πN (cN )) : (c1, . . . , cN ) ∈ C} ⊆ F
M
q ,

where M =
N∑

ℓ=1

nℓ.

The code C is called outer code, while the codes Iℓ are called inner codes. Note that the
concatenation depends on the choice of the maps πℓ. However, some properties do not depend
on it: for example, for every choice of π we have that (I1, . . . ,IN )�πC is an [M,Kh]q code. If
π = (π, . . . , π) and all the inner codes are the same [n, h, d]q code I, we denote the concatenation
(I, . . . ,I)�πC simply by I�πC. In this case, I�πC is an [Nn,Kh,≥ Dd]q code. When we consider
properties independent of π, we omit it from the subscript from �.

We finally recall a possible shape of the generator matrix of the concatenated code, corresponding
to a specific choice of π, as described in [6, Remark 2.4]. Let GI1 , . . . , GIN ∈ F

h×n
q be generator

matrices of the inner codes I1, . . . ,IN , respectively, and fix ω ∈ Fqh to be such that 〈ω〉 = F
∗
qh
. Let

A ∈ F
h×h
q be the companion matrix of the minimal polynomial of ω. For any α ∈ Fqh let

A(α) =

{

Ar ∈ F
h×h
q if 0 6= α = ωr,

0 ∈ F
h×h
q if α = 0.

Consider now a generator matrix GC ∈ F
K×N
qh

of the outer code C, where GC = (αi,j)1≤i≤K,1≤j≤N .

Then, a generator matrix of a concatenation of C with (I1, . . . ,IN ) can be chosen as

(1)






A(α1,1)GI1 A(α1,2)GI2 · · · A(α1,N )GIN
...

...
...

A(αK,1)GI1 A(αK,2)GI2 · · · A(αK,N)GIN




 ∈ F

Kh×M
q .

A geometric insight of the concatenation process can be given by making use of the field reduction

map, which is a map sending subspaces of PG(K − 1, qh) into subspaces of PG(Kh − 1, q). More
formally, let Fq be the field reduction map, sending points of PG(K − 1, qh) in (h− 1)-dimensional
projective subspaces of PG(Kh − 1, q). With a slight abuse of notation, we will consider Fq as a

multimap from PG(K − 1, qh) to PG(Kh− 1, q).
Let r > 0 be an integer and S = {P1, . . . , Pr} be a set of points in PG(K − 1, qh). We denote

by Fq(S) the set Fq(P1) ∪ . . . ∪ Fq(Pr). Let C be an [N,K]qh code and let P(C) be the projective
system associated to one generator matrix for C. By a little abuse of notation, we denote by Fq(C)
the code associated with the projective system Fq(P(C)).

Theorem 2.1. Let C be an [N,K]qh code. Then Fq(C) = Sq(h)�C.

Proof. Let GC = (αi,j)i,j be a generator matrix for C and A ∈ F
h×h
q be the companion matrix of

the minimal polynomial of a primitive element ω ∈ F
∗
qh
. First of all recall that a generator matrix

GSq(h) of Sq(h) contains as columns all the points of PG(h−1, q). Let G be the generator matrix of
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Sq(h)�C given as in Eq. (1). Observe that the first column-block of G is given by X ·GSq(h), where

X =








A(α1,1)
A(α2,1)

...
A(αK,1)








.

By definition, colsp(X) corresponds to the (h−1)-dimensional projective subspace of PG(Kh−1, q)
given by the field reduction of the projective point P = [α1,1 : . . . : αK,1]. Finally, the multiplication
of X with GSq(h) gives a nonzero vector of each one-dimensional subspace of colsp(X). This shows
that the first column-block of G is the same as the one of Fq(C). The same reasoning can be done
for all the column-blocks, and hence we get that Sq(h)�C = Fq(C). �

Example 2.2. Let {1, ω} be a basis of F22/F2. Let C be the code generated by the matrix

G =

(
1 0 1 1
0 1 1 ω

)

∈ F
2×4
22

.

Then, F2(C) is the code generated by






1 0 1 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 0 1 1
0 0 0 0 1 1 0 1 1 1 1 0







,

which is easily seen to be a generator matrix for S2(2)�C as given in (1).

Remark 2.3. Let C be an [N,K]qh code generated by GC and let I be an [n, h]q projective code,
different from the simplex code. For each j ∈ [N ], let πj : Fqh → I. Note that since I is projective,
we have that P(I) ⊆ P(Sq(h)). For every j ∈ [N ], define π̄j : Fqh → Sq(h), such that when
π̄j is applied to the j-th entry of C, it gives the field reduction Fq(Pj) of the projective points
given by the j-th column of GC . Applying πj to the j-entry of C corresponds to selecting only
some points from the (h − 1)-dimensional space given by Fq(Pj). In other words, we have that
P(I�πC) ⊆ P(Sq(h)�π̄C). We illustrate this in the following example.

Example 2.4. Let ω ∈ F23 be such that ω3 = ω + 1 and let {1, ω, ω2} be a basis of F23/F2. Let

GC =

(
1 0 1 ω
0 1 1 ω2

)

∈ F
2×4
23

.

Let I be the [4, 3]2 code generated by

GI =





1 0 0 1
0 1 0 1
0 0 1 1





which corresponds to the columns highlighted in yellow of the generator matrix of the simplex code

GS2(3) =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



 .

Then, we have that

GS2(3)�C =






1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 1 1 1

0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0




.

A generator matrix for I�C is obtained from GSq(h)�C by selecting only the columns highlighted in
yellow.
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3. Outer Strong Blocking Sets and Outer Minimal Codes

In this section we introduce the notion of outer strong blocking sets and outer minimal codes. We
establish a series of correspondences and results. We start by introducing auxiliary definitions.

Definition 3.1. We call a set V ⊆ F
K
qh

an Fq-vectorial strong blocking set if 〈V ∩ H〉Fq = H

for all Fq-hyperplanes H of FK
qh
.

Definition 3.2. Let C be an [N,K]qh code and let G ∈ F
K×N
qh

be a generator matrix of C. Let

v1, . . . , vN ∈ F
K
qh

denote the columns of G. We define the vectorial system associated with G

to be the set

V(G) := 〈v1〉F
qh

∪ 〈v2〉F
qh

∪ · · · ∪ 〈vN 〉F
qh
.

Note that if C′ is a code equivalent to C and G′ is a generator matrix of C′, we have that V(G) and
V(G′) are GL(K, qh)-equivalent. Hence, as we did in Notation 1.6, we refer to V(C) as an arbitrary
vectorial system associated to the equivalence class of C.

Definition 3.3. We say that a subset P of PG(K − 1, qh) is a q-outer strong blocking set if
Fq(P) is a strong blocking set in PG(Kh − 1, q), i.e. for any hyperplane H ⊆ PG(Kh − 1, q), we
have that

〈Fq(P) ∩H〉 = H.

From now on, whenever the extension considered is clear from the context, we will simply say outer
strong blocking set.

Recall the following result from [2].

Lemma 3.4 ([2, Proposition 4.5]). Let U1 ∪ · · · ∪Ur be a strong blocking set in PG(K − 1, q). For
each i ∈ [r], let Γi := 〈Ui〉 ∼= PG(hi − 1, q) for some hi − 1 ≤ k and let Bi ⊆ Γi be the isomorphic
image of a strong blocking set in PG(hi − 1, q). Then B1 ∪ · · · ∪ Br is a strong blocking set in
PG(K − 1, q).

Theorem 3.5. Let C be an [N,K]qh code. The following are equivalent:

(a) (I1, . . . ,IN )�C is minimal, for every sequence (I1, . . . ,IN ) of [ni, h]q minimal codes.
(b) Sq(h)�C is minimal.
(c) P(C) is an outer strong blocking set.
(d) V(C) is an Fq-vectorial strong blocking set.

Proof. (a)⇒(b). This is trivially true, since Sq(h) is minimal.

(b)⇒(a). Since Sq(h)�C is minimal, the set P(Sq(h)�C) is a strong blocking set. Each P(Ij) is a

strong blocking set in P(Sq(h)) ∼= PG(h− 1, q). Hence, P((I1, . . . ,IN )�C) is a strong blocking set
by Lemma 3.4.
(b)⇔(c). This is a direct consequence of Theorem 1.9 and Theorem 2.1.

(c)⇔(d). This equivalence follows immediately from the correspondence between Fq-hyperplanes in

F
K
qh

and hyperplanes in PG(Kh−1, q), and from the isomorphism between F
K
qh

and F
Kh
q as Fq-vector

spaces. �

Definition 3.6. We call q-outer minimal an [N,K]qh code C satisfying one of the equivalent
conditions in Theorem 3.5. Again, we will omit the q- whenever the extension considered is clear
from the context.

Remark 3.7. Note that if there exists j such that Ij is not minimal, then (I1, . . . ,IN )�C is not
necessarily minimal. For instance, let F4 = F2(α) with α2 = α + 1 and consider C = S4(2) ⊆ F

5
4.
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Let I be the whole space F
2
2, which is not minimal. Then a generator matrix for I�C is given by






1 0 0 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1 0 1
0 0 1 0 1 0 0 1 1 1
0 0 0 1 0 1 1 1 1 0







∈ F
4×10
2 .

Clearly, I�C is not minimal, since the first two rows of its generator matrix have nonintersecting
support.

In the following we characterize outer minimal codes in terms of the supports of their codewords,
in the same way as it is defined for minimal codes. We first introduce the concept of outer minimal

codeword.

Definition 3.8. Let C be an [N,K]qh code. A nonzero codeword c ∈ C ⊆ F
N
qh

is called (q-)outer

minimal if, for all c′ ∈ C,

σ(c′) ⊆ σ(c) ∧ ∀i ∈ σ(c),∃λi ∈ Fq s.t. c′i = λici =⇒ ∃λ ∈ Fq s.t. c′ = λc.

Proposition 3.9. An [N,K]qh code C is outer minimal if and only if all its nonzero codewords are
outer minimal.

Proof. (⇒) Assume C is outer minimal. Let π : Fqh → F

qh−1
q−1
q be an Fq-linear map such that

π(Fqh) = Sq(h). Consider the concatenated code

(2) Sq(h)�πC = {(π(c1), . . . , π(cN )) : c = (c1, . . . , cN ) ∈ C}.

Then, Sq(h)�πC is a minimal code by Theorem 3.5. Hence, for every v, v′ ∈ Sq(h)�πC such that
σ(v′) ⊆ σ(v), there is a scalar λ ∈ Fq such that v′ = λv. In particular, there are two codewords
c, c′ ∈ C such that v = (π(c1), . . . , π(cN )) and v′ = (π(c′1), . . . , π(c

′
N )) and π(c′i) = λπ(ci) for every

i ∈ {1, . . . , N}. Since π is an Fq-linear map and it sends nonzero elements into nonzero elements,
we have that σ(c′) ⊆ σ(c) and c′ = λc. In other words, the codewords of C are all outer minimal
according to Definition 3.8.
(⇐) Assume that all the codewords of C are outer minimal and consider the concatenation Sq(h)�πC
as in (2). Consider v = π(c), v′ = π(c′) ∈ Sq(h)�πC, for c, c

′ ∈ C such that σ(v′) ⊆ σ(v). Then, by
the linearity of π, we have that σ(c′) ⊆ σ(c). By assumption, if for every i ∈ σ(c) there is λi ∈ Fq

such that c′i = λici, then there is λ ∈ Fq such that c′ = λc. This means that v′ = π(c′) = λπ(c) = λv,
i.e. Sq(h)�πC is minimal and by Theorem 3.5, C is outer minimal. �

As an easy consequence, we get the following result, which is a slight generalization of [6, Theorem
2.2].

Corollary 3.10 (Outer AB condition). Let C be an [N,K,D]qh code and W := maxc∈C wt(C). If

W

D
<

q

q − 1
,

then C is outer minimal.

Remark 3.11. Let C be an [N,K,D]qh code satisfying the AB condition. Then C satisfies the
outer AB condition.

Proposition 3.12. Let C be an [N,K]qh minimal code. Then, C is outer minimal. Equivalently, if

P ⊆ PG(K − 1, qh) is a strong blocking set, then P is an outer strong blocking set.

Proof. Since C is an [N,K]qh minimal code, every nonzero codeword c in C is minimal. In particular,
for all c′ ∈ C with σ(c′) ⊆ σ(c), there exists λ ∈ Fqh such that c′ = λc. Assume that in addition for
every i ∈ σ(c), there is µi ∈ Fq such that c′i = µici. Then, we have that µi = λ for every i ∈ σ(c),
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and hence λ ∈ Fq. This implies that c is outer minimal. By Proposition 3.9, this shows that C is
outer minimal. �

In Figure 1 an illustrative summary of the above results is provided.

AB

Outer AB

Minimal

Outer Minimal

SBS

Outer SBS

Figure 1. Relations.

We conclude the section with a lower bound on the minimum distance of outer minimal codes.

Theorem 3.13. Let C be an outer minimal [N,K]qh code. Then

d(C) ≥

⌈
(q − 1)(Kh− 1) + 1

(q − 1)(h− 1) + 1

⌉

.

Proof. Let I be an h-dimensional code over Fq. It is clear that there exists an appropriate choice
of π1, . . . , πN such that the concatenation I�πC has exactly minimum distance d(C) · d(I). This is
obtained by taking a nonzero codeword c in C of minimum weight and choosing π1, . . . , πN so that
the image πi(ci) of each nonzero entry ci of c has minimum weight in I. Now, suppose that C is
outer minimal, so that I�C is minimal. Then, by Theorem 1.11,

d(I�πC) ≥ (q − 1)(Kh − 1) + 1.

So

d(C) ≥

⌈
(q − 1)(Kh− 1) + 1

d(I)

⌉

If we choose I to be the tetrahedron, we get the statement. �

Remark 3.14. Consider the case K = 2 in Theorem 3.13. We get that the minimum distance of
an outer minimal [N, 2]qh code C is at least

⌈
(q − 1)(2h − 1) + 1

(q − 1)(h− 1) + 1

⌉

= 2.

If we assume that the code C is projective, then the associated projective [N, 2]qh system is an arc

in the projective line PG(1, qh). Thus, the code C is an MDS code, and its minimum distance is
N−1. Since adding points with multiplicity to the projective system can only increase the minimum
distance of the associated code, any outer minimal [N, 2]qh code has distance at least

min{R ∈ N : there exists an outer strong blocking set in PG(1, qh) of size R} − 1.

We will see in the next section (Remark 4.8) that this is equal to
{

3 if q > 2,

2 if q = 2.

Thus, for K = 2 the lower bound of Theorem 3.13 is attained only for q = 2.
If we consider the case K = 3 and h = 2, from Theorem 3.13 we get that the minimum distance

of an outer minimal [N, 3]q2 code C is at least

⌈
5(q − 1) + 1

(q − 1) + 1

⌉

=







5 if q > 4,

4 if q ∈ {3, 4},

3 if q = 2.
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For q > 2, the construction in [7, Theorem 3.15], provides an outer minimal [7, 3, 5]q2 code; see also
Theorem 5.2. Thus, when K = 3 and h = 2, the bound of Theorem 3.13 is attained for every q > 4.

4. Bounds of the Size of Outer Strong Blocking Sets

Adding a point to an outer strong blocking set gives a larger outer strong blocking set. For this
reason, it is natural to look for small sets with this property. In particular, in this section we will
present lower and upper bounds on the cardinality of the smallest outer strong blocking sets for a
given dimension and ground field.

4.1. Lower Bound. We start by introducing a general property on a set of subsets of PG(k−1, q)
such that their union is a strong blocking set. This is a generalization of the property on sets of
lines given by Fancsali and Sziklai in [18, Theorem 11].

Definition 4.1. Let U1, . . . , UN be subsets of PG(k− 1, q) and let (hi− 1) = dim(〈Ui〉) for i ∈ [N ].
We say that the collection {U1, . . . , UN} has the avoidance property if there exists no codimension
2 subspace Λ of PG(k − 1, q) such that

dim(〈Λ ∩ Ui〉) ≥ hi − 2, for every i ∈ [N ].

Theorem 4.2. If {U1, . . . , UN} is a collection of subsets of PG(k − 1, q) having the avoidance

property, then U :=
N⋃

i=1
Ui is a strong blocking set.

Proof. Let hi − 1 = dim(〈Ui〉) for i ∈ [N ]. Let H be a hyperplane in PG(k − 1, q). Assume by
contradiction that H ∩ U is contained in a (k − 3)-dimensional subspace Λ of PG(k − 1, q). Then,
Λ contains each 〈H ∩ Ui〉. However, dim(〈H ∩ Ui〉) ≥ dim(〈Ui〉)− 1 = hi − 2 for each i ∈ [N ], and
this contradicts the hypothesis of {U1, . . . , UN} having the avoidance property. �

Now, we will restrict our study to the case of collections of subspaces with the same dimension.
Moreover, we will distinguish between collections of subspaces of PG(k− 1, q) having the avoidance
property and those not having this property, but whose union is anyway a strong blocking set.
In both cases, we will give a lower bound on their size, by generalizing the arguments given in
[18, Theorem 14]. In particular, the following two results are a generalization of [18, Lemma 12]
and [18, Lemma 13], respectively.

Lemma 4.3. Let {U1, . . . , UN} be a collection of (h− 1)-dimensional subspaces of PG(k− 1, q) not

satisfying the avoidance property. If U :=
N⋃

i=1
Ui is a strong blocking set, then N ≥ q + 1.

Proof. Since {U1, . . . , UN} does not have the avoidance property, there is a codimension 2 subspace
Λ of PG(k − 1, q) such that

dim(Λ ∩ Ui) ≥ h− 2, for every i ∈ [N ].

Let ℓ = {P1, . . . , Pq+1} be a line disjoint from Λ. For any i ∈ [q + 1], consider the hyperplane Πi

spanned by Λ and Pi. Since U is a strong blocking set, there exists a point Qi such that

Qi ∈ (Πi ∩ U) \ Λ.

Hence, there exist si ∈ [N ], such that Qi ∈ Usi \ Λ. Therefore, Usi ⊆ Πi, but Usi 6⊆ Λ. Now, for
j ∈ [q + 1] with j 6= i, observe that Usj ⊆ Πj and Usj 6⊆ Λ = Πi ∩Πj . Thus, necessarily Usi 6= Usj ,
and N has to be at least the number of points in ℓ, i.e. q + 1. �

Theorem 4.4. The number of (h − 1)-dimensional subspaces in PG(k − 1, q) whose union is a
strong blocking set is at least

min

{⌊
k − 1

h

⌋

+

⌊
k − 2

h− 1

⌋

+ 1, q + 1

}

.
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Proof. Consider the set U =
{

U1, . . . , U⌊ k−1
h ⌋, U⌊ k−1

h ⌋+1, . . . , U⌊ k−1
h ⌋+⌊ k−2

h−1⌋

}

consisting of (h − 1)-

dimensional subspaces of PG(k − 1, q) whose union is a strong blocking set. By an easy dimension
argument, we can deduce that there exists a hyperplane Π of PG(k−1, q) containing U1, . . . , U⌊ k−1

h ⌋.

For i ∈
[⌊

k−2
h−1

⌋]

, let

Wi ⊆ Π ∩ U⌊ k−1
h ⌋+i

be an (h− 2)-dimensional subspace. Again by an easy dimension argument, there exists H ⊆ Π of
dimension k−2 containing each Wi. SinceH is a hyperplane in Π, it intersects each Uj, j ∈

[⌊
k−1
h

⌋]
,

in a space of dimension at least h− 2. Moreover, it intersects all the others in a space of dimension
at least h− 2 by construction. So U does not satisfy the avoidance property. Hence, its cardinality
must be greater than q + 1 by Lemma 4.3. �

The following is a generalization of [21, Theorem 3.12]. However, in contrast to the latter, we do
not make use of the Jamison’s bound [22] on the cardinality of affine blocking sets, since it gives a
weaker result.

Theorem 4.5. The number of (h − 1)-dimensional subspaces in PG(k − 1, q) whose union is a
strong blocking set is at least

⌊
k − 1

h

⌋

+

⌈
k

h

⌉

.

Proof. Let S be a set of (h − 1)-dimensional subspaces of PG(k − 1, q) whose union is a strong
blocking set and suppose that a hyperplane H ⊆ PG(k− 1, q) contains t many (h− 1)-dimensional
subspaces of S. Let us call T the set of such t many (h−1)-dimensional subspaces. Let S :=

⋃

s∈S s.
Then S \ H is an affine blocking set in PG(k − 1, q) \ H ∼= AG(k − 1, q). Moreover, since every
(h− 1)-dimensional subspace in T is entirely contained in H we have

S \H =
( ⋃

s∈S\T

s
)

\H =
⋃

s∈S\T

(s \H).

Thus, S \ H is an affine blocking set consisting of the union of |S \ T | = |S| − t many (h − 1)-
dimensional affine subspaces. Since an affine blocking set cannot be contained in an affine hyperplane
of AG(k − 1, q), we need at least ⌈kh⌉ many (h − 1)-dimensional affine subspaces. This means

|S|−t ≥ ⌈kh⌉. As t many (h−1)-dimensional subspaces span a subspace of dimension at most th−1,

we can find a hyperplane H which contains at least
⌊
k−1
h

⌋
many (h − 1)-dimensional subspaces of

S (note that we need |S| ≥
⌊
k−1
h

⌋
but this is clear because S cannot be contained in a hyperplane).

Therefore, putting everything together, we obtain

|S| = t+ |S \ T | ≥

⌊
k − 1

h

⌋

+

⌈
k

h

⌉

. �

Remark 4.6. Let us underline that the results obtained so far in this section, are valid for ge-
neral sets of (not necessarily disjoint) subspaces of PG(k − 1, q) and not only those belonging to a
Desarguesian spread, that is, those coming from the field reduction map from PG

(
k
h − 1, qh

)
.

The correspondence between outer strong blocking sets and outer minimal codes implies the
following corollary.

Corollary 4.7. The cardinality N of an outer strong blocking set in PG(K − 1, qh), or equiva-
lently the length N of a K-dimensional outer minimal code defined over Fqh , satisfies the following
inequality

N ≥ max

{

min

{

2K +

⌊
K − 2

h− 1

⌋

, q + 1

}

, 2K − 1

}

.
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Remark 4.8. The bound in Corollary 4.7 for K = 2 is tight for every q. Indeed, in this case we
have that an outer strong blocking set in PG(1, qh) (equivalently, an outer minimal [N, 2]qh code)
has size (respectively, length) at least

N ≥

{

4 if q > 2,

3 if q = 2.

For q > 2, the construction given in [2, Theorem 4.2] (see Theorem 5.1 for a concrete explanation)
provides an outer strong blocking set consisting of 4 points. Furthermore, when q = 2, it can
be shown that any 3 points in PG(1, 2h) form an outer strong blocking set. Indeed, every set of
three points in PG(1, 2h) is PGL(2, 2h)-equivalent to {[1 : 0], [0 : 1], [1 : 1]}, and it can be verified
straightforwardly that their field reduction is

{[a : 0] : a ∈ PG(h− 1, 2)} ∪ {[0 : a] : a ∈ PG(h− 1, 2)} ∪ {[a : a] : a ∈ PG(h− 1, 2)},

and it is a strong blocking set in PG(2h − 1, 2).

4.2. Existence Results. We recall that, by Proposition 3.9, a code is outer minimal if and only
if all its nonzero codewords are outer minimal. We will use this property to get an upper bound on
the length of the shortest outer minimal code for given dimension and ground field. As a byproduct,
we will get the best-known general upper bound on the cardinality of the smallest strong blocking
set. We would like to emphasize that our proof is genuinely coding-theoretical and it improves on
previous results proved with geometric arguments in [21]. The proof of the following theorem is
inspired by [11].

Theorem 4.9. If
(
N − 2

K − 2

)

qh
·

N∑

i=1

(
N

i

)

(qh − 1)i
(
qi − q

)
<

(
N

K

)

qh
,

then there exists an [N,K]qh outer minimal code. In particular, [N,K]qh outer minimal codes exist
whenever

N ≥







2

logqh
(

q2h

qh+1−q+1

) ·K







Proof. A nonzero codeword c ∈ C ⊆ F
N
qh

is not outer minimal if there exists c′ ∈ C such that

(3) c′ 6= λc, ∀λ ∈ Fq ∧ σ(c′) ⊆ σ(c) ∧ ∀i ∈ σ(c), ∃λi ∈ Fq s.t. c′i = λici.

Let us define

B =
{

(c, c′) ∈ F
N
qh × F

N
qh : c 6= 0 and (3) holds

}

.

The cardinality of B is given by

|B| =

N∑

i=1

(
N

i

)

(qh − 1)i
(
qi − q

)
.

Since the 2-dimensional subspace generated by each pair in B is contained in exactly
(N−2
K−2

)

qh

codes of dimension K in F
N
qh

and the total number of [N,K]qh codes is
(N
K

)

qh
, we have that if

(N−2
K−2

)

qh
· |B| <

(N
K

)

qh
then there exists an [N,K]qh code C which does not contain any 2-dimensional

subspace generated by an element of B. Therefore, C is outer minimal.

To obtain the second inequality, it is enough to observe that

|B| < (1 + (qh − 1)q)N
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and
(
N
K

)

qh
(
N−2
K−2

)

qh

=
(qNh − 1)(qNh − qh)

(qKh − 1)(qKh − qh)
> q2h(N−K).

�

Due to the connection between outer minimal codes and outer strong blocking sets, we get
immediately the following.

Theorem 4.10. There exist 





2

logqh
(

q2h

qh+1−q+1

) ·K







many (h − 1)-dimensional subspaces of PG(Kh − 1, q) whose union is a strong blocking set. In
particular

m(Kh, q) ≤







2

logqh
(

q2h

qh+1−q+1

) ·K







·m(h, q)

and for k even

m(k, q) ≤







2k

logq

(
q4

q3−q+1

)







· (q + 1).

Remark 4.11. Considering quadratic extensions of Fq, we get that there exist






1

logq2
(

q4

q3−q+1

) · 2K







many lines in PG(2K− 1, q) whose union is a strong blocking set, or, equivalently, the length of the
shortest minimal code of even dimension k over Fq satisfies

m(k, q) ≤







1

logq2
(

q4

q3−q+1

) · k







· (q + 1).

For odd dimensions, it is enough to shorten the code on a coordinate to get essentially the same
bound. Note that

1

logq2
(

q4

q3−q+1

) <
2

1 + 1
(q+1)2 ln q

.

Indeed, the above inequality is equivalent to

ln

(

1 +
q − 1

q3 − q + 1

)

>
1

(q + 1)2
,

which is true for any q ≥ 2 using the fact that ln(1 + x) > x/(x+ 1) for x > −1 and x 6= 0.
Hence, for k large enough and q 6= 2, our bound is better than those proved in [11,21] and it is then,
to the best of our knowledge, the best-known upper bound on the cardinality of the smallest strong
blocking set in PG(k − 1, q).

Remark 4.12. Independent of our work, Bishnoi, D’haeseleer, Gijswijt and Potukuchi have ob-
tained the same upper bound in [9]. Moreover, one of the authors of [21] pointed out to us that
this bound could be derived from their paper as well, using different methods.
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4.3. Small (k-2 )-saturating sets. As we mentioned already, strong blocking sets have been in-
troduced in [14] to construct small saturating sets. In this short subsection, we highlight the
consequences of the bounds proved above on saturating sets.

Definition 4.13. A set of points S ⊆ PG(k − 1, q) is ρ-saturating if any point Q ∈ PG(k − 1, q)
belongs to the space generated by ρ+ 1 points of S and ρ is the smallest value with this property.
We denote sq(k − 1, ρ) the smallest size of a ρ-saturating set in PG(k − 1, q).

Clearly every strong blocking set is also (k−2)-saturating but this gives in general large saturating
sets. A refined connection between strong blocking sets and (k− 2)-saturating sets is the following.

Theorem 4.14 ([14, Theorem 3.2]). Any strong blocking set in a subgeometry PG(k − 1, q) of
PG(k − 1, qk−1) is a (k − 2)-saturating set in PG(k − 1, qk−1).

Recent improvements on the upper bound on the minimum size of a ρ-saturating set have been
obtained in [15,16]. However, for ρ = k− 2, the best-known results are given by [21, Corollaries 6.4
and 6.7]. The following is an improvement on the previous results for k large and q 6= 2.

Corollary 4.15. Let j = 0 if k is even and j = 1 otherwise. Then

sqk−1(k − 1, k − 2) ≤







1

logq2
(

q4

q3−q+1

) · (k + j)







· (q + 1).

5. Characterization and Construction of Outer Strong Blocking Sets

This section is dedicated to constructing outer minimal codes by iterative concatenations. We
do it geometrically, constructing outer strong blocking sets. At each step we start with a strong
blocking set over an extension field, and we select a special subset that will result in an outer strong
blocking set. The main idea is that at each step, we select a strong blocking set given as union of
projective subspaces. Note that we do not require it to satisfy the avoidance property. In order to
do so, we first recall two results, one from [2] and one from [7], and then generalize the latter.

The first idea is the following. Given a union of subsets which forms a strong blocking set, one
can consider for each subset its projective span, and take inside it a strong blocking set. The union
will be a strong blocking set, as shown in Lemma 3.4.

The second idea is given in the following result, which provides a general construction of outer
strong blocking sets starting from a strong blocking set as union of lines. This can be straightfor-
wardly deduced from [2]; see also [14, Theorem 3.7] for the special case h = 2 and K = 2.

Theorem 5.1 ([2, Theorem 4.2]). Let L = {ℓ1, . . . , ℓr} be a set of lines of PG(K − 1, qh) whose

union is a strong blocking set. For each i ∈ [r], let α
(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 be four points of ℓi not lying

on a proper subline. Then,
r⋃

i=1

{α
(i)
1 , α

(i)
2 , α

(i)
3 , α

(i)
4 }

is an outer strong blocking set.

When h = 2, an example of outer blocking set of PG(2, q2) was found in [7]. Here we give a more
general statement, that combines the result in [7, Theorem 3.15] with Lemma 3.4.

Theorem 5.2 ([7, Theorem 3.15]). Let {Π1, . . . ,Πr} be a set of planes in PG(K − 1, q2) whose

union is a strong blocking set. Then there exist seven points {β
(i)
1 , . . . , β

(i)
7 } on each plane Πi such

that
r⋃

i=1

{β
(i)
1 , . . . , β

(i)
7 }

is an outer strong blocking set.
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5.1. The Avoidance Property: Linear Sets and Hermitian Varieties. In this subsection,
we generalize the results of Theorem 5.2 ([7, Theorem 3.15]) for general sets of subspaces and over
general degree h extensions. We are not able to provide an existence result, but we give an equivalent
characterization on a set of points satisfying the avoidance property, involving q-systems, linear sets
and (degenerate) Hermitian varieties.

Definition 5.3. An [n,K]qh/qsystem V is an n-dimensional Fq-subspace of F
K
qh

such that 〈V 〉F
qh

=

F
K
qh
. When we do not care about the parameters, we simply refer to V as a q-system.

From a geometric point of view, q-systems define linear sets. These are well-studied objects
in finite geometry, which generalize the concept of subgeometry. Their name was introduced by
Lunardon in [24], where linear sets are used for special constructions of blocking sets. The interested
reader is referred to [25] for a survey on linear sets.

Definition 5.4. Let V be an [n,K]qh/q system. The linear set associated to V is a pair (LV ,wtV ),
with

LV = {〈v〉F
qh

: v ∈ V } ⊆ PG(K − 1, qh),

and wtV – called the weight function – defined as

wtV : PG(K − 1, qh) −→ N

P = 〈u〉F
qh

7−→ dimFq(V ∩ 〈u〉F
qh
).

The rank of (LV ,wtV ) is dimFq (V ) = n.

With these notions in mind, we can give a new characterization of outer strong blocking sets, in
terms of linear sets. The following is a generalization of [7, Lemma 3.8]. This will be clearer by
reading the result afterwards.

Theorem 5.5. Let P = {P1, . . . , PN} ⊆ PG(K − 1, qh) be a set of points. The following are
equivalent.

(a) {Fq(P1), . . . ,Fq(PN )} has the avoidance property.
(b) {P1, . . . , PN} is not contained in any hyperplane, and there is no linear set (LV ,wtV ) of

rank Kh− 2 in PG(K − 1, qh) such that wtV (Pi) = dimFq (V ∩Pi) ≥ h− 1 for each i ∈ [N ].

Proof. {Fq(P1), . . . ,Fq(PN )} has the avoidance property if and only if each codimension 2 subspace
in PG(Kh − 1, q) does not meet all the (h − 1)-dimensional spaces Fq(Pi) in at least an (h − 2)

space. By first translating this property in PG(K − 1, qh) and then going to the vectorial setting
F
K
qh
, this means that there is no codimension 2 Fq-subspace V , meeting 〈vi〉F

qh
in at least an (h−1)-

dimensional Fq-subspace. We conclude by observing that, for h = 2, a codimension 2 Fq-subspace
of FK

q2 is either an Fq2-hyperplane or a [2K − 2,K]q2/q system, while, for h > 2, a codimension 2

Fq-subspace of FK
q2 can only be a [2K − 2,K]q2/q system. �

Remark 5.6. Observe that a generalization of [7, Theorem 3.15] has been pointed out by Denaux
in [17, Theorem 16]. His result states that if a set of points {P1, . . . , PN} ⊆ PG(K − 1, qh) is not
contained in any Fq-linear set, then its field reduction Fq(P1) ∪ . . . ∪ Fq(PN ) is a strong (h − 1)-
blocking set, that is a set of points whose intersection with every codimension (h − 1) space
generates the space itself. This result is however different from Theorem 5.5, even though they
coincide for h = 2. We will now study this case in more detail.

For the special case when h = 2, we can reformulate Theorem 5.5, and obtain also a connection
with degenerate Hermitian varieties.

We recall that an Hermitian variety in PG(K − 1, q2) is a set of the form

VH := {x ∈ PG(K − 1, q2) : xHσ(x)⊤ = 0},
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where σ is the (component-wise) q-Frobenius automorphism of Fq2 , such that σ(α) = αq for every

α ∈ Fq2 , and H ∈ F
K×K
q2

is an Hermitian matrix, that is, H = σ(H)⊤. The rank of VH is the

rank of the matrix H. If the rank of H is smaller than K, the Hermitian variety is said to be
degenerate.

Note that, a rank-1 degenerate Hermitian variety is just a hyperplane of PG(K − 1, q2), while a
rank 2 degenerate Hermitian variety is a cone with as vertex a (K − 3) dimensional subspace and
base a Baer subline. In other words, it is PGL(K, q2)-equivalent to the rank (2K − 2) linear set
(LV ,wtV ), with

V = {(α1, . . . , αK) : αi ∈ Fq2 for each i ∈ [K − 2], αK−1, αK ∈ Fq}.

Theorem 5.7. Let P = {P1, . . . , PN} ⊆ PG(K − 1, q2) be a set of points not all lying on the same
hyperplane. The following are equivalent.

(a) {Fq(P1), . . . ,Fq(PN )} has the avoidance property.
(b) There is no linear set (LV ,wtV ) of rank 2K−2 in PG(K−1, q2) such that Pi ∈ LV for each

i ∈ [N ].
(c) P1, . . . , PN are not contained in the same rank 2 degenerate Hermitian variety in PG(K −

1, q2).

Proof. The equivalence between (a) and (b) follows from Theorem 5.5, observing that, for any linear
set (LV ,wtV ), wtV (Pi) ≥ 1 if and only if Pi ∈ LV . Furthermore, using a dimension argument, every
[2K − 2,K]q2/q system V ′ is GL(K, q2)-equivalent to a space of the form

{(α1, . . . , αK) : αi ∈ Fq2 for each i ∈ [K − 2], (αK−1, αK) ∈ T},

for some [2, 2]q2/q system T . However, any [2, 2]q2/q system is GL(2, q2)-equivalent to F
2
q and thus

the linear set associated to V ′ is equivalent to a rank 2 degenerate Hermitian variety. �

Note that, for K = 3, the above result was indeed proved in [7].
As a byproduct, we derive a lower bound on the minimum number of points not contained in a

degenerate rank r variety with 1 ≤ r ≤ 2.

Corollary 5.8.

(1) The smallest size of an outer strong blocking set in PG(K − 1, q2) is at most the minimum
number of points in PG(K − 1, q2) which are not contained in a hyperplane nor in a rank 2
degenerate Hermitian variety.

(2) Every set of 3K − 3 points in PG(K − 1, q2) is contained in a degenerate rank r Hermitian
variety with 1 ≤ r ≤ 2.

Remark 5.9. It was shown in [26] that q-systems correspond to nondegenerate rank-metric codes.
An [n, k]qh/q rank-metric code is an Fqh-linear subspace C ⊆ F

n
qh

of dimension k, endowed

with the rank distance, defined as drk(u, v) := rk(u − v) for every u, v ∈ F
n
qh
, where rk(v) :=

dimFq〈v1, . . . , vn〉Fq for v = (v1, . . . , vn) ∈ F
n
qh
. A generator matrix of an [n, k]qh/q rank-metric

code is a matrix G ∈ F
k×n
qh

whose rows generate C as an Fqh-linear space. C is said to be non-
degenerate if the columns of one (and hence all) generator matrix are linearly independent over
Fq. For a vector v ∈ F

n
qh

and an ordered basis Γ = {γ1, . . . , γh} of the field extension Fqh/Fq, let

Γ(v) ∈ F
n×h
q be the matrix defined by

vi =

h∑

j=1

Γ(v)ijγj .

The support of v is the column space of Γ(v) for any basis Γ and we denote it by σrk(v). The support
of C, denoted by σrk(C) is the subspace sum of the supports of its codewords. The correspondence
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between rank-metric codes and q-systems works as follows. Let C be an [n, k]qh/q nondegenerate

rank-metric code with generator matrix G. Then, the Fq-span V of the columns of G is an [n, k]qh/q
system. Conversely, if V ⊆ F

k
qh

is an [n, k]qh/q system and G ∈ F
k×n
qh

is a matrix whose columns

form a basis of V , then, clearly, the rows of G generate an [n, k]qh/q rank-metric code. Considering
this relation, we can re-interpret Theorems 5.5 and 5.7 in coding theoretical terms. In particular,
items (a) and (b) of Theorem 5.5 are equivalent to

(c) There is no generator matrix G ∈ F
K×(Kh−2)

qh
of a nondegnerate [Kh − 2,K]qh/q rank-

metric code such that dimFq(σrk(rowsp(AiG))) ≤ (K − 1)h − 1 for each i ∈ [N ], where

rowsp(Ai) = v⊥i and Pi = 〈vi〉F
qh
.

Items (a), (b) and (c) from Theorem 5.7 are equivalent to

(d) There is no generator matrix G ∈ F
K×(2K−2)
q2

of a nondegnerate [2K − 2,K]q2/q rank-metric

code such that dimFq(σrk(rowsp(AiG))) ≤ 2K − 3 for each i ∈ [N ], where rowsp(Ai) = v⊥i
and Pi = 〈vi〉F

q2
.

5.2. Iterative Super Construction. In this section we illustrate an explicit inductive construc-
tion of strong blocking sets in PG(k − 1, q) – and hence k-dimensional minimal codes over Fq –
which relies on the following three ingredients: the construction of a rational normal tangent set,
Theorem 5.1 and Lemma 3.4. The size of the obtained strong blocking sets is almost linear in
k, in a sense that will be clarified with Theorem 5.10. However, compared to the known explicit
constructions of families of strong blocking sets whose size is linear in k [3,6], there is a significant
gain in the computational cost needed for their construction.

We start as a base step with the only strong blocking set of the projective line B0 = PG(1, q).
The inductive step of this construction is based on the following argument. Suppose that we want
to construct a strong blocking set in PG(k − 1, q). Let

j := min
{

s ∈ N : s | k,
2k

s
− 3 ≤ qs

}

.

Then, we can construct a strong blocking set B ⊆ PG(kj − 1, qj) as a rational normal tangent set,

that is the union of
(

2k
j − 3

)

lines. Thus, by Theorem 5.1, we can select four suitable points from

each line (that is, not belonging to any proper subline), obtaining an outer strong blocking set in
PG(kj − 1, qj). Then, using field reduction, we get a strong blocking set in PG(k − 1, q) formed

by the union of (j − 1)-dimensional subspaces, and taking in each of them an isomorphic copy of
a strong blocking set in PG(j − 1, q), we obtain a smaller a strong blocking set in PG(k − 1, q),
by Lemma 3.4. Observe that this last step is equivalent to concatenate the corresponding outer
minimal [4(2k

j − 3), kj ]qj code with a minimal [n, j]q code.

In the following, we explain a concrete construction of strong blocking sets for a special sequence
of dimensions.

Construction A. For odd q, we construct a sequence of strong blocking sets Bi ⊆ PG(ki − 1, q)
using the arguments above, where {ki}i∈N is defined as







k0 = 2,

ki+1 =
ki(q

ki + 3)

2
.

We start with B0 = PG(1, q). By induction, from the strong blocking set Bi ⊆ PG(ki − 1, q), we
construct Bi+1 ⊆ PG(ki+1 − 1, q) as follows.
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(1) We work in PG(
ki+1

ki
− 1, qki) = PG( q

ki+3
2 − 1, qki). In this space, we take a rational normal

tangent set

Di =

qki
⋃

j=1

ℓj.

(2) For each line ℓj , we select 4 points {α
(j)
1 , α

(j)
1 , α

(j)
1 , α

(j)
1 } not belonging to the same proper

subline.
(3) The field reduction Fq(α

(j)
t ) of each of the 4qki points selected before is a (ki−1)-dimensional

subspace. In each of these (ki − 1)-dimensional space we select an isomorphic copy of Bi.
We define Bi+1 to be their union.

The following result shows that we are indeed producing a sequence of strong blocking sets, whose
size is linear in q and almost linear in k. In particular, it depends on the iterated logarithm in
base q, which is defined over the reals as

log∗q n :=

{

0 if n ≤ 1;

1 + log∗q(logq n) if n > 1.

Theorem 5.10. For every i ∈ N, the set Bi given in Construction A is a strong blocking set in
PG(ki − 1, q), whose size is upper bounded by

|Bi| ≤
8log

∗

q(ki)

2
ki(q + 1).

Proof. We show that Bi is a strong blocking set in PG(ki − 1, q) by induction on i. For i = 0 it is
clear, since B0 = PG(k0 − 1, q) = PG(1, q).

Now, assume that Bi is a strong blocking set in PG(ki − 1, q). First of all, the rational normal

tangent set Di constructed at step (1) is a strong blocking set in PG( q
ki+3
2 − 1, qki), and it is taken

as union of lines. Furthermore, by Theorem 5.1, the set

qki
⋃

j=1

4⋃

t=1

Fq(α
(j)
t )

is a strong blocking set, and it is obtained as union of (ki − 1)-dimensional subspaces. Finally,
Bi+1 is obtained as the union of an isomorphic copy of a strong blocking set Bi in each of the
(ki − 1)-dimensional subspaces. By Lemma 3.4, this is a strong blocking set.

Let ni = |Bi|. It is immediate to see that the sequence {ni}i∈N satisfies the following recurrence
relation: 





n0 = q + 1,

ni+1 = 4
(

2
ki+1

ki
− 3

)

ni = 4qkini.

The inverse of the rate Ri of the corresponding minimal [ni, ki]q code is therefore given by






R−1
0 =

n0

k0
=

q + 1

2
,

R−1
i+1 =

ni+1

ki+1
=

8qkini

ki(qki + 3)
.

We can immediately see that R−1
i+1 ≤ 8R−1

i . Thus, the sequence of inverses of rates is upper bounded
by

R−1
i ≤

q + 1

2
8i.
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and the size of Bi is upper bounded by

|Bi| = ni = R−1
i ki ≤

q + 1

2
8iki.

In the above formula, i = Υ−1(ki), where we simply put Υ(i) = ki. Note that, since ki+1 ≥ qki , we
have that the map Υ grows at least as fast as the tetration in base q, that is defined as

iq := qq
·
·
q

︸︷︷︸

i times

.

Thus, the inverse of Υ grows at most as fast as the inverse of the tetration, which has the same
behavior as the iterated logarithm. Therefore, we can conclude that our construction of strong
blocking sets B ⊆ PG(k − 1, q) has size

|B| ≤ 8log
∗

q(k)k(q + 1).

�

Remark 5.11. We can easily adapt Constraction A to even q case. We consider the sequence of
dimensions {ki}i∈N as







k0 = 2,

ki+1 =
ki(q

ki + 2)

2
.

All the other arguments are similar, and we obtain strong blocking sets in PG(k − 1, q) whose size

is again at most 8log
∗

q(k)k(q + 1).

Remark 5.12. We want to highlight the fact that we can generalize Construction A to many more
sequences of dimensions {ki}i∈N . Let q be odd and let s > 1 be a positive integer coprime with
q. Moreover, let t = ord(Z/sZ)∗(q) be the multiplicative order of q in (Z/sZ)∗. Let us assume that
we can construct a strong blocking set B0 ⊆ PG(t − 1, q). Then, using the exact same argument
as in Construction A, we can iteratively construct a strong blocking set Bi ⊆ PG(ki − 1, q) for the
sequence of dimensions {ki}i∈N , defined via







k0 = t,

ki+1 =
ki(q

ki − 1)

s
.

This ensures that for each i ∈ N we have ki ≡ 0 (mod t) and hence ki+1 is divisible by ki. The size
of the strong blocking set Bi ⊆ PG(ki − 1, q) follows the recursive law

|Bi+1| = 4

(
2(qki − 1)

s
− 3

)

|Bi|,

yielding

|Bi| ≤
8log

∗

q(ki)

t
ki|B0|.

Remark 5.13. Using the method of diverted tangents described in [18, Section 3.2], here we con-
cretely illustrate how Construction A works. Suppose that we have constructed the i-th code Ci
associated to the strong blocking set Bi ⊆ PG(ki − 1, q). Define

ai(λ) =
(

1, λ, λ2, . . . , λ
ki+1
ki

−1
)

, bi(λ) =
(

0, 1, ϕi(2)λ, ϕi(3)λ
2, . . . , ϕi

(ki+1

ki
− 1

)
λ

ki+1
ki

−2
)

,
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where ϕi : {0, . . . , q
ki − 1} −→ Fqki is any bijection such that ϕi(0) = 0 and ϕi(1) = 1. Take now

the projective [4qki , ki+1

ki
]qki system

Xi :=
⋃

λ∈F
qki

{[ai(λ)], [bi(λ)], [ai(λ) + bi(λ)], [ai(λ) + ωibi(λ)]},

where ωi ∈ Fqki is not contained in any proper subfield (e.g. we can take a primitive element of

Fqki ), and let Ri be the code associated to Xi. Then, Ci+1 = Ci�Ri is the minimal [ni+1, ki+1]q
code associated to the strong blocking set given in Construction A.

We conclude this section by analyzing the computational cost of Construction A.

Proposition 5.14 (Computational cost). The strong blocking sets in PG(k − 1, q) given in Con-
struction A can be constructed with

O(k logω(k)8log
∗

q(k))

operations over Fq, where ω ≤ 2.371552 is the matrix multiplication exponent.

Proof. Constructing the strong blocking set Bi+1 described in Construction A is equivalent to con-
structing a generator matrix for the associated code Ci+1. In order to do that, we need to compute
the matrix in (1), where the generator matrix GC of the outer code is obtained by putting the
coordinates of the points in Xi as columns, and the generator matrix of the inner code is already
obtained at the previous step. This is done by first computing the powers of every element λ ∈ Fqki

up to the ki+1

ki
-th power and any bijection ϕi : {0, 1, . . . , q

ki − 1} → Fqki , so that we can compute

ai(λ) and bi(λ) for every λ ∈ Fqki . The cost of doing so is O(ki+1) multiplications over Fqki , that

is O(ki+1 log(ki+1)) operations over Fq. Since the matrix we need to compute is given by (1) and

the matrices of the form A(α) are at most qki , that is the cardinality of Fqki
, in order to compute

the generator matrix of Ci+1 we only need to perform qki matrix multiplications between a ki × ki
matrix and a ki × ni matrix. Since ni ∈ O(ki8

log∗q ki) and log∗q(ki) ≤ log∗q(ki+1) − 1, this leads to a
computational cost of

O(ki+1k
ω
i 8

log∗q(ki)) = O(ki+1 log
ω(ki+1)8

log∗q(ki+1))

operations over Fq. Hence, this is the dominant part of the total cost. �

Remark 5.15. Let us compare Construction A with two of the most relevant constructions of small
strong blocking sets whose size is linear in k. In [6] a construction of small strong blocking set has
been illustrated, whose linear in k and quartic in q. Another very recent explicit construction is
based on expander graphs, and its size is linear in both k and q; see [3].

Even though Construction A is not linear in k – and hence does not define a family of asymp-
totically good minimal codes – it has a clear advantage in terms of computational cost. Indeed,
both the constructions in [6] and in [3] rely on the celebrated constructions of asymptotically good
algebraic geometry codes beating the Gilbert-Varshamov bound [19,20,30]. The fastest algorithm
for constructing such codes can be found in [27] where it is shown that its cost is of the order of

O(k3 log3(k)),

yielding a much higher complexity. The price that we have to pay with our construction is in terms
of the size, but it is very little, since the iterative logarithm is almost negligible. Indeed, for any
practical purpose, log∗q(a) can be considered as a constant.
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