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Hybrid maximum principle for regional optimal control problems
with non-smooth interfaces

Térence Bayen∗ Anas Bouali† Florent Nacry‡

March 18, 2024

Abstract

In this paper, we consider a general Mayer optimal control problem whose dynamics is defined
regionally, and, additionally, we suppose that the interface between two regions is nonsmooth in the
sense that it is described by a locally Lipschitz continuous function. Our objective is to derive a hybrid
maximum principle in this setting. Doing so, we consider a sequence of mollifiers which allows us to
approximate uniformly the interface between two regions by a sequence of smooth functions. This makes
possible to apply the hybrid maximum principle on a sequence of approximated optimal control problems
involving the smooth interface in place of the nonsmooth one. By passing to the limit as the approximation
parameter tends to zero, we obtain the desired necessary optimality conditions in the form of a nonsmooth
hybrid maximum principle.

1 Introduction
The Pontryagin Maximum Principle (PMP in short) developed in the late 1950’s in [24] was a major
breakthrough in Mathematics particularly in terms of its many applications. It provides first order necessary
optimality conditions for optimal control problems governed by ordinary differential equations extending that
way the theory of calculus of variations. It has now been developed in other frameworks such as for problems
governed by partial differential equations, ordinary differential equations with delays, and hybrid control
systems, which is the main subject of this paper.

By hybrid control system, we mean a dynamical control system that has the particularity to be discontinuous
with respect to the state, i.e., the dynamics may change over the time frame. This discontinuity may have
several origins. It can be controlled by an automaton like for switched systems (see, e.g., [23]). In that case,
switchings of the dynamics occur at so-called switching times that can be controlled. Another important
framework where discontinuities of the dynamics arise is when the dynamical system is defined over a partition
of the state space into a countable number of open regions (see, e.g., [11]). The theory of hybrid systems
is very broad and we restrict our attention in this paper only to those hybrid control systems that enter
into the previous setting. In this context, the dynamics is thus discontinuous w.r.t. the state each time the
trajectory crosses an interface between two regions. In order to characterize optimal solutions to optimal
control problems governed by a hybrid control system, the PMP was extended to the hybrid setting leading
to the co-called Hybrid Maximum Principle (HMP in short), see, e.g., [15, 20, 28]. In the case where the
hybrid control system is defined over a partition of the state space (as what is considered in this paper), we
will refer to regional optimal control problems. For the derivation of the corresponding HMP in this context,
we can cite for instance [3, 4, 5, 19].

As a consequence of discontinuities (w.r.t. the state) arising in hybrid control systems, the covector in
the HMP is no longer absolutely continuous (as it is in the PMP), but only piecewise absolutely continuous.
More precisely, at each crossing time (between two regions), the covector has a discontinuity that is colinear
to the outward unit vector to the interface at the crossing point. This condition requires the boundary of the
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interface to be locally the graph of a C1 function (as it is usually done in this setting, see, e.g., [3, 4, 5, 19]) in
order to properly define the discontinuity condition of the covector. The objective of this paper is to address
the case of an interface between two regions that is nonsmooth in the sense that it coincides with the graph of
a locally Lipschitz continuous function (see, e.g., [10, 17, 18] in which related questions were studied for state
constraints optimal control problems). Our aim here is to provide the corresponding necessary optimality
conditions in this case. Regions with nonsmooth interfaces arise typically when a partition of the state space
consists of polyhedra or intersections of half spaces. In that case, a trajectory may leave a region at some
corner point, so that the HMP as developed for instance in [5] no longer applies.

To handle a nonsmooth interface between two regions, our methodology relies on a regularization technique
of the interface. We consider a sequence of C1 functions converging uniformly to the Lipschitz continuous
function describing a nonsmooth interface. This sequence is defined thanks to mollifiers following the approach
in [27]. Besides the uniform convergence, it is shown in [27] that subgradients of the original function can
be recovered as the convex envelope of the limit gradients of the approximated function (it is also called
gradient consistency, see [29]). This property is of utmost importance in our approach since it will allow us
to extend the discontinuity condition at some point of non-differentiability of the interface. Thanks to this
sequence that approaches the nonsmooth interface, we can associate a sequence of approximated optimal
control problems. We know that in this case, the HMP as in [5] can be applied on the approximated optimal
control problems. By letting the approximation parameter tends to zero, we obtain our main result (Theorem
4.1) which provides first-order necessary optimality conditions on an optimal control. It is obtained using
the gradient consistency property of the sequence of regularizing functions that provides the discontinuity
condition on the covector.

For proving Theorem 4.1, we use a strong transverse hypothesis on trajectories. Roughly speaking, this
hypothesis means that locally, every admissible trajectory crosses the interface transversally. We refer to [7]
for a detailed presentation of varied transverse hypotheses in the present hybrid setting. This assumption is
needed in particular to ensure that the structure of an optimal trajectory remains unchanged whenever the
nonsmooth interface is replaced by a smooth one (which is a non-evident issue as far as we know). There is
indeed in general no reason that the structure of an optimal trajectory remains the same whenever considering
(small) perturbations of the interface, but this property is kept under a strong transverse hypothesis as we
introduce in this paper.

In order to simplify the layout, we restrict our attention in this paper to the case of one nonsmooth
interface delimiting two open regions, but, we would like to emphasize that several possible extensions are
possible and that some of them (in particular when handling a partition involving a countable number
of regions) are presented at the end of the paper. The paper is organized as follows. In Section 2, we
introduce some notation and the hybrid optimal control problem. In Section 3, we introduce a sequence of
smooth functions that approaches the nonsmooth interface and we also define a sequence of optimal control
problems governed by a perturbed differential inclusion (defined thanks to the sequence of approximating
functions). We start by proving a stability result concerning solutions to these differential inclusions based
on graphical convergence of sets (without the use of a transverse hypothesis). Next, we prove that under a
strong transverse hypothesis, optimal solutions to the approximated optimal control problems converge (up
to a sub-sequence) to an optimal solution to the original optimal control problem. Finally, in Section 4, we
derive the nonsmooth HMP following [8] to address convergence of covectors (coming from the application
of the HMP to the sequence of approximated optimal control problems). The paper ends up with a list of
remarks on the employed methodology and perspectives.

2 Statement of the hybrid optimal control problem
We start by introducing some notation. The letter N stands for the set of natural integers starting from
0, that is, N = {0, 1, 2, . . .}. Let m,n ∈ N⋆ := N \ {0}. For any extended-real number q ∈ [1,∞] and any
real interval I ⊂ R, we denote by Lq(I,Rn) the usual Lebesgue space of q-integrable functions defined on I
with values in Rn, endowed with its usual norm ∥ · ∥Lq . A sequence (xk) of absolutely continuous functions
from [0, T ] into Rn is said to strongly-weakly converge (over the interval [0, T ]) to an absolutely continuous
function x⋆ : [0, T ] → Rn whenever (xk) converges to x⋆ in L∞(I,Rn) and (ẋk) weakly converges in L2(I,Rn)
to ẋ⋆. It will be convenient to denote (as usual) ẋk ⇀ ẋ⋆ the latter weak convergence. For convenience, we
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shall also note indifferently x or x(·) a function x : [0, T ] → Rn.
Next, B(x0, r) (resp. B[x0, r]) stands for the open (resp. closed) ball centered at x0 ∈ Rn with radius

r > 0. The closed unit ball B[0, 1] of Rn is denoted BRn . We also write · (resp. | · |) for the standard inner
product (resp. Euclidean norm) of Rn. For any subset X ⊂ Rn, we denote by ∂X the boundary of X defined
by ∂X := X\int(X), where X and int(X) stand respectively for the closure and the interior of X. Given a
function ρ : Rn → R, we define (as usual) its support as the closure of the set {ρ ̸= 0}. The convex hull of
the set X is denoted by co(X).

The Clarke subdifferential of a locally-Lipschitz continuous function f : Rn → R is given by

∂Cf(x) = co { lim
k→+∞

∇f(xk) : ∆f ∋ xk → x},

where ∆f denotes the set of points x ∈ Rn where the (Fréchet) gradient ∇f(x) exists. The Clarke normal
cone of a set S ⊂ Rn at x ∈ S is defined as the polar of the Clarke tangent cone TC(S;x), that is,

NC(S;x) :=
{
ζ ∈ H : ⟨ζ, h⟩ ≤ 0,∀h ∈ TC(S;x)

}
,

where
TC(S;x) := {h ∈ X : ∀S ∋ xn → x,∀tn ↓ 0,∃hn → h,∀n ∈ N, xn + tnhn ∈ S} .

The limit inferior (resp., limit superior) of a sequence (Sk) of sets in Rn is defined as

Lim inf
k→+∞

Sk := {x ∈ Rn : ∀ε > 0,∃K ∈ N,∀k ≥ K,Sk ∩B(x, ε) ̸= ∅} .

(resp.,
Lim sup
k→+∞

Sk := {x ∈ Rn : ∀ε > 0,∀K ∈ N,∃k ≥ K,Sk ∩B(x, ε) ̸= ∅}).

Whenever both sets coincides, one says that the sequence (Sk) Painlevé-Peano-Kuratowski converges. It
is well-known (and not difficult to check) that x ∈ Lim sup

k→+∞
Sk if and only if there exist a a sequence (xk)

converging to x and an increasing mapping s : N → N such that xk ∈ Ss(k) for all k ∈ N. Such a sequential
characterization of the upper-limit easily ensures ([27, Theorem 4.10]) that any (not necessarily closed) set
S ⊃ Lim sup

k→+∞
Sk satisfies for all real ρ > 0 and all real ε > 0, the existence of n0 ∈ N such that

Sn ∩ ρBRn ⊂ S + εBRn for all n ≥ n0. (2.1)

Let G : Rn ⇒ Rn be a multimapping. A sequence of multimappings (Gk) from Rn into itself graphically
converges to a multimapping G : Rn ⇒ Rn whenever the sequence of graphs (gphGk) Peano-Painlevé-
Kuratowski converges to gphG. One says that G is outer semicontinuous at x ∈ Rn if for every sequence
xk → x and every sequence yk → y such that yk ∈ F (xk) for all k ∈ N, then one has y ∈ F (x). Obviously,
the multimapping G is outersemicontinuous at each point of Rn if and only if its graph gphG := {(x, y) ∈
Rn × Rn ; y ∈ G(x)} is closed in Rn × Rn. One says that the multimapping M is upper semicontinuous at x
whenever for each open set V of Rn with G(x) ⊂ V there is a real ε > 0 such that

G
(
B(x, ε)

)
⊂ V.

Recall that (see, e.g., [30, Proposition 1.39]) the outer semicontinuity of G at x ∈ Rn is equivalent to its
upper semicontinuity at x provided that there are V a neighborhood of x in Rn and a compact K ⊂ Rn such
that M is closed-valued on V and M(V ) ⊂ K.

In the sequel, we consider two functions f1, f2 : Rn × Rm → Rn of class C1 (reprensenting the dynamics)
and a nonempty compact subset U of Rm. We suppose that for i = 1, 2 and that for every x ∈ Rn, the
velocity set

F̂i(x) := {fi(x, u) ; u ∈ U}

is a nonempty (compact) and convex subset in Rn. For technical reasons in the proof of the HMP (based
on an approximating sequence of the nominal control), we also suppose that for i = 1, 2 and for every
(x, p) ∈ Rn × Rn the set

Ĝi(x, p) := {Dxfi(x, u)
⊤p ; u ∈ U}
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is a nonempty compact convex subset in Rn where as usual Dxfi(x, u) stands for the Jacobian matrix of
fi(·, u) at x and where ⊤ denotes the transpose operator. Note that the preceding convexity hypotheses are
automatically verified by affine-control systems w.r.t. the control which already represent a large class of
control systems in application models. Additionally, we suppose (in order to prevent blow-up of trajectories)
that the function fi has a linear growth, i.e., there is some c ≥ 0 such that

|fi(x, u)| ≤ c(|x|+ 1) for all (x, u) ∈ Rn × U. (2.2)

Let also Γ be a subset of Rn for which there is a locally Lipschitz continuous function ψ : Rn → R such that
Γ is the zero level-set of ψ, i.e.,

Γ := {x ∈ Rn ; ψ(x) = 0}.

In what follows, we set X1 := {x ∈ Rn ; ψ(x) < 0} and X2 := {x ∈ Rn ; ψ(x) > 0}. We also consider a
function g : Rn → R of class C1 which represents in what follows the terminal pay-off and the admissible
control set is the set U that contains all measurable functions u : [0, T ] → Rn such that u(t) ∈ U for
a.e. t ∈ [0, T ]. Throughout this paper, we study the Mayer optimal control problem

inf
u∈U

g(x(T )), (2.3)

where T > 0 is given, x is a solution to the Cauchy problem{
ẋ(t) = f(x(t), u(t)) a.e. t ∈ [0, T ],
x(0) = x0,

(2.4)

with x0 ∈ X1 and where the hybrid dynamics f : Rn × Rm → Rn satisfies for every (x, u) ∈ Rn × Rm

f(x, u) :=

{
f1(x, u) if ψ(x) > 0,
f2(x, u) if ψ(x) < 0.

(2.5)

Note that f is not defined on Γ× Rm which has no importance when no sliding mode occurs (see [23]), i.e.,
typically, under a transverse hypothesis on trajectories. At this step, we do not consider such a hypothesis,
that is why, it is convenient to replace the preceding control system by the differential inclusion{

ẋ(t) ∈ F (x(t)) a.e. t ∈ [0, T ],
x(0) = x0,

(2.6)

where F : Rn ⇒ Rn is the Filippov multimapping associated with f which is defined for all x ∈ Rn by

F (x) :=


F̂1(x) if ψ(x) > 0,

F̂2(x) if ψ(x) < 0,

F̂1,2(x) if ψ(x) = 0,

(2.7)

where for all x ∈ Rn, the set F̂1,2(x) is the closed convex hull of F̂1(x) and F̂2(x). For more details on the
Filippov multimapping, we refer to [16]. It is an exercise (having in mind that the multimappings F̂1 and F̂2

are convex-valued) to check that

F̂1,2(x) := {θf1(x, u) + (1− θ)f2(x, v) ; θ ∈ [0, 1] ; u, v ∈ U}. (2.8)

It is readily seen that the F is with nonempty convex compact values. It is also not difficult to check that F
is outer semicontinuous, hence it is upper semicontinuous. This and the fact that the mapping F is with
linear growth allows us to get the existence of an absolutely continuous function x : [0, T ] → Rn satisfying the
Cauchy problem (2.6). We refer for instance to [1, Chapter 2-Theorem 3]) for more details on this point. In
the sequel, we denote by ST (x0) all solutions to (2.6). We can now state an existence result related to (2.3).

Proposition 2.1. There exists a solution to the optimal control problem

inf
x(·)∈ST (x0)

g(x(T )). (2.9)
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Proof. The existence of a solution to (2.9) follows from the continuity of g and [2, Theorem 19.2.3] (see also
[14, Theorem 1.11]) taking a minimizing sequence.

Our objective is to provide necessary optimality condition for (2.3). Since the function ψ is only Lipschitz-
continuous w.r.t. the state, we cannot directly apply the HMP as in [5] or in [19] (because if x ∈ Γ, ∂Cψ(x)
may not be a singleton). To derive a nonsmooth HMP (meaning that regions are with nonsmooth boundaries),
we will proceed in two steps. First, we introduce a regularization of Γ and we prove stability results of optimal
solutions to the auxiliary optimal control problems (Section 3) . Next, we apply the HMP on this sequence of
problems for which the boundary is smooth, and necessary optimality conditions for (2.3) will be obtained by
passing to the limit as the regularization parameter tends to zero (Section 4).

3 Regularization of the interface and convergence analysis

3.1 Approximated optimal control problems
In this section, we introduce a sequence of optimal control problems approaching (2.3) that are based on the
regularization of the function ψ describing the interface between X1 and X2. Doing so, let us start by recalling
a classical result concerning the convergence of the gradients of a sequence of smooth functions (defined by
convolution) approximating uniformly a locally Lipschitz-continuous function (see [27]). Let ρk : Rn → R+

be a sequence of bounded and continuous mollifiers1 satisfying
∫
Rn ρk(y) dy = 1 and supp(ρk) ⊂ B[0, εk] for

any k, where εk ↓ 0 as k → +∞. If ψk(x) :=
∫
Rn ψ(x− y)ρk(y) dy denotes the convolution of ψ with (ρk)k,

the following properties are satisfied (see [27, Theorem 9.67] or [29]):

• the sequence (ψk) uniformly converges to ψ over every compact subset of Rn ;

• the gradient consistency (allowing to obtain subgradients of ψ via mollifiers) holds true:

∂Cψ(x) = co

{
lim

k→+∞
∇ψk(xk) ; xk → x

}
. (3.1)

In order to approach (2.3) by a sequence of optimal control problems involving a smooth boundary, we
proceed as follows. For k ∈ N, define a smooth interface

Γk := {x ∈ Rn ; ψk(x) = 0},

as well as the set-valued map Fk : Rn ⇒ Rn

Fk(x) :=


F̂1(x) if ψk(x) > 0,

F̂2(x) if ψk(x) < 0,

F̂1,2(x) if ψk(x) = 0.

(3.2)

Similarly as for F , the set-valued map Fk is upper semi-continuous for every k ∈ N. In addition, for every
k ∈ N and for every x ∈ Rn, Fk(x) is a nonempty compact convex subset of Rn. Since Fk is with linear
growth (because of (2.2)), for every k ∈ N, the Cauchy problem{

ẋ(t) ∈ Fk(x(t)) a.e. t ∈ [0, T ],
x(0) = x0,

(3.3)

has an absolutely continuous solution over [0, T ] denoted by xk. Hence, using a similar argumentation as in
the proof of Proposition 2.1, for every k ∈ N, the optimal control problem

inf
x(·)∈Sk

T (x0)
g(xk(T )), (3.4)

has a solution x∗k where for any k ∈ N, the set Sk
T (x0) denotes all solutions to (3.3).

1e.g., ρk(y) := 1
εn
k
ρ( y

εk
) where ρ(y) := C exp(− 1

1−|y|2 ) for |y| < 1 and ρ(y) := 0 for |y| ≥ 1 with C > 0 such that
∫
Rn ρ = 1.
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3.2 A stability result for hybrid differential inclusions
In this section, we address the following question : given a sequence of solutions to (3.3), does there exist a
solution x to (2.6) such that, up to a sub-sequence, (xk) strongly-weakly converges to x? Such a problem
is developed in the literature through different approaches and under various assumptions. For the case
of one Cauchy problem in Rn, say Fk ≡ F , we refer the reader to the result [14, Chapter 4-Theorem 1.11]
(which is based on Arzelà-Ascoli theorem). In [26], the strong-weak convergence is studied in the context of a
general Banach space for a sequence of Cauchy problems under an appropriate Kuratowski-Mosco convergence
(namely, Fk(xk) → F (x) for every sequence (xk) which weakly converges to x). As far as we know, the
hypotheses required to apply [26] are not completely fulfilled by (Fk) and F as defined in (2.7) and (2.7).
Another possible way is to follow the approach in [21] based on graphical convergence of sets.

Definition 3.1. Let (Gk) be a sequence of multimappings from Rn into itself. The (graphical) upper limit of
the sequence (Gk) is the multimapping G# : Rn ⇒ Rn defined by

Graph(G#) := Lim sup
k→+∞

Graph(Gk),

According to the above sequential characterization of the upper-limit, it is readily seen that (x, y) ∈
Graph(G#) if and only if there are two sequences (xk) and (yk) satisfying xk → x, yk → y and an increasing
function s : N → N such that (xk, yk) ∈ gphFs(k) (or equivalently, yk ∈ Fs(k)(xk)) for all k ∈ N.

Proposition 3.1. Given a sequence (xk) such that xk ∈ Sk
T (x0) for every k ∈ N, there is x ∈ ST (x0) such

that, up to a sub-sequence, (xk) strongly-weakly converges to x.

Proof. Let (xk) be a sequence of functions from [0, T ] into Rn satisfying xk ∈ Sk
T (x0) for every k ∈ N. Thanks

to (2.2), there exists c′ ≥ 0 such that for all k ∈ N, one has

|ẋk(t)| ≤ c′ a.e. t ∈ [0, T ].

This implies that (xk) is uniformly bounded in L∞([0, T ],Rn). Using the Arzelà–Ascoli theorem, we can find
an absolutely continuous function x : [0, T ] → Rn such that (xk) uniformly converges to x and (ẋk) weakly
converges to ẋ in L2([0, T ],Rn). Pick any real ρ > 0 such that for all k ∈ N and for almost every t ∈ [0, T ]
one has (

xk(t), ẋk(t)
)
∈ gphFk ∩ ρBR2n .

Given any real ε > 0 we easily derive from the inclusion Lim sup
k→+∞

gphFk ⊂ gphF (see (2.1)) that

gphFk ∩ ρBR2n ⊂ gphF + εBR2n .

It remains to apply [1, Theorem 1, Chapter 1] to obtain the inclusion x ∈ ST (x0).

3.3 Convergence of optimal solutions to (3.4)
In this subsection, we provide sufficient conditions ensuring the convergence (up to a subsequence) of the
sequence (x∗k) to an optimal solution to (2.9). Doing so, we need to prove that every admissible solution x
of (2.6) can be approached by a sequence (xk) satisfying (3.3) (this point is proved in Proposition 3.2) For
proving this point, we introduce the following transverse hypothesis (which is also standard in the hybrid
setting [6, 7, 19]). Remind that since x0 and T > 0 are fixed and since the dynamics fi, i = 1, 2 is with linear
growth, there is R ≥ 0 such that for all x(·) ∈ ST (x0), for every t ∈ [0, T ], one has x(t) ∈ B[0, R].

Assumption 3.1. There is κ > 0 such that for every x ∈ Γ∩B[0, R], for every v ∈ ∂Cψ(x), for every u ∈ U ,
and for i = 1, 2:

v · fi(x, u) ≥ κ. (3.5)

Following [7], this assumption if called strong transverse hypothesis (see [7] for a discussion on various
transverse hypotheses in the hybrid setting). Note also that under such a hypothesis, then the differential
inclusion in (2.6) can be replaced by the control system in (2.4) since (3.5) excludes sliding modes. In
particular, (2.3) and (2.9) are equivalent. In the sequel, we suppose that this hypothesis is fulfilled.
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Definition 3.2. Given a solution x to the Cauchy problem (2.6), one says that a real τ ∈ (0, T ) is a crossing
time from X1 to X2 whenever there exists a real α > 0 (small enough) such that(

ψ(x(t))− ψ(x(τ))
)
(t− τ) > 0 for all t ∈ [τ − α, τ + α]\{τ}.

A similar definition with Γk and (3.3) in place of Γ and (2.6) is omitted. Obviously, if τ is a crossing time
of x(·) ∈ ST (x0), then, one must have ψ(x(τ)) = 0.

Lemma 3.1. Every admissible trajectory of (2.3) has at most one crossing time on Γ from X1 to X2.

Proof. First, every crossing time of an admissible solution x ∈ ST (x0) is isolated. Indeed, let τ ∈ (0, T ) be
a crossing time of x(·). We then have ψ(x(τ)) = 0. In addition, by composition, t 7→ ψ(x(t)) is absolutely
continuous, so for a.e. t, one has d

dtψ(x(t)) = ∇ψ(x(t)) · fi(x(t), u(t)) where i = 1, 2. Now, from (3.5), we get
the existence of η > 0 such that for a.e. t ∈ [τ, τ + η],

∇ψ(x(t)) · f2(x(t), u(t)) ≥
κ

2
.

Hence, t 7→ ψ(x(t)) is increasing in a right neighborhood of τ , whence the result. Suppose now that the
mapping x has a crossing time and set

τ := min{t ∈ [0, T ] ; ψ
(
x(t)

)
= 0}.

Suppose now that there is τ ′ ∈ (τ, T ) such that ψ(x(τ ′)) = 0 and x(t) ∈ X2 for t ∈ (τ, τ ′) so that ψ(x(t)) > 0
for every t ∈ (τ, τ ′). Take r > 0 small enough. We have (keeping in mind that ψ ◦ x is absolutely continuous
on [0, T ])

ψ
(
x(τ ′)

)
− ψk

(
x(τ ′ − r)

)
=

∫ τ ′

τ ′−r

∇ψ
(
x(t)

)
· ẋ(t) dt =

∫ τ ′

τ ′−r

∇ψ
(
x(t)

)
· f2(x(t), u(t)) dt.

On the one hand, for r small enough, the integral above is bounded below by a positive constant (using the
transversality condition and a continuity argumentation). On the other hand,

ψ(x(τ ′))− ψ(x(τ ′ − r)) = −ψ(x(τ ′ − r)) < 0,

for every r > 0 small enough. This is thus a contradiction which ends the proof.

The preceding property can be transferred to admissible trajectories of (3.4) for k large enough as we
show in the next lemma.

Lemma 3.2. For k large enough, every admissible solution of (3.3) has zero or one crossing time on Γk

from X1 to X2.

Proof. Suppose that for every k ∈ N, there are nk ∈ N, xnk
∈ Γnk

∩B[0, R], unk
∈ U such that

∇ψnk
(xnk

) · fi(xnk
, unk

) <
κ

2
,

where i = 1, 2 is fixed. Since U is compact, we may assume that (unk
) converges to some u ∈ U and that

(xnk
) also converges to some vector x̃ ∈ Γ. By using the gradient consistency property, we deduce that (up to

a sub-sequence), there exists v ∈ ∂Cψ(x̃) such that v = limk→+∞ ∇ψnk
(xnk

). It follows that v · fi(x̃, u) ≤ κ
2

which contradicts assumption 3.5. Hence, we deduce that there is k0 ∈ N such that for every k ≥ k0, one has:

∀x ∈ Γk ∩B[0, R], ∀u ∈ U, ∇ψk(x) · fi(x, u) ≥
κ

2
, (3.6)

for i = 1, 2. Let k ≥ k0 and x ∈ Sk
T (x0). Suppose that x has at least two crossing times τ < τ ′ (isolated

because of (3.6)) such that ψk(x(τ)) = ψk(x(τ
′)) = 0 so that x(t) ∈ X2 for t ∈ (τ, τ ′). We thus have

ψ(x(t)) > 0 for every t ∈ (τ, τ ′). By taking r small enough, we find that

∀k ≥ k0, ψk(x(τ
′))− ψk(x(τ

′ − r)) =

∫ τ ′

τ ′−r

∇ψk(x(t)) · f2(x(t), u(t)) dt ≥
rκ

4
> 0 .

But, in the preceding equality, one has ψk(x(τ
′))−ψk(x(τ

′−r)) = −ψk(x(τ
′−r)) < 0 which is a contradiction.

This ends the proof.
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Proposition 3.2. Up to a sub-sequence, (x∗k) strongly-weakly converges to an optimal solution x∗ of (2.3).

Proof. We know from Proposition 3.1 that there is an admissible solution x∗ to (2.3) such that, up to a
sub-sequence, (x∗k) strongly-weakly converges to x∗. Now, let us given an admissible solution x of (2.3)
associated with some control u ∈ U . We define xk : [0, T ] → Rn as the unique solution to the system{

ẋk(t) = f1(xk(t), u(t)) if ψk(xk(t)) < 0,
ẋk(t) = f2(xk(t), u(t)) if ψk(xk(t)) > 0,

(3.7)

such that xk(0) = x0. Let us prove that (xk) strongly-weakly converges to x over [0, T ]. If x has no crossing
time, the result is obvious. Suppose then that x has a (single) crossing time τ ∈ (0, T ). It follows from
Lemma 3.2 that for k large enough, xk also has a unique crossing time over (0, T ). Up to a sub-sequence, we
may assume that (xk) strongly-weakly converges to some absolutely continuous function x̂ over [0, T ] where
x̂ satisfies (2.6) (Proposition 3.1). By using (3.7), we easily get that x̂(t) = x(t) for every t ∈ [0, τ − α] for
every α > 0 small enough. It follows that x̂ = x over [0, τ ] (using the continuity of x and x̂ at t = τ−). Next,
x̂ and x satisfy the same ordinary differential equation over [τ, T ]. Since x̂(τ) = x(τ), we get that x̂ = x over
[τ, T ]. This proves that (xk) strongly-weakly converges to x over [0, T ].

To conclude the proof, take any admissible trajectory x of (2.3) and construct an admissible sequence
(xk) for (3.4) by (3.7). Since we have

g(x∗k(T )) ≤ g(xk(T ))

for every k ∈ N, we deduce that g(x∗(T )) ≤ g(x(T )) by letting k → +∞ and using the continuity of g. Since
x is any admissible trajectory of (2.3), the result follows.

4 Nonsmooth hybrid maximum principle
Our goal now is to exploit optimality conditions on (3.4) to deduce optimality conditions on Problem (2.3).
Let us then consider x∗ ∈ ST (x0) an optimal trajectory of (2.3). We suppose that x∗ has a single crossing
time τ∗ ∈ (0, T ) from X1 to X2 (remind Lemma 3.1). By using the results of the previous section, for every
k ∈ N, there exists a solution x∗k to (3.4) such that (up to a sub-sequence), (x∗k) strongly-weakly converges to
x∗. So, for every k ∈ N, there is an addmissible control u∗k ∈ U associated with x∗k. Our next step is to apply
the HMP from [5] on x∗k (for k large enough according to Lemma 3.2) which is possible since Γk is smooth.

4.1 Application of the HMP on (3.4) and consequences
Since x∗ has a single crossing time, for every k large enough, x∗k also has a single crossing time τk and by
uniform convergence of (x∗k), we get that τk → τ∗ as k → +∞. We can now straightforwardly apply the HMP
from [5] on (3.4) since it does not involve mixed initial-terminal constraints. For every k large enough, there
is a piecewise absolutely continuous function pk : [0, T ] → Rn (a covector) such that the following properties
are fulfilled:

(i) Adjoint equation :
ṗk(t) = −Dxf(x

∗
k(t), u

∗
k(t))

⊤pk(t) a.e. t ∈ [0, T ], (4.1)

(ii) Terminal condition :
pk(T ) = −∇g(x∗k(T )), (4.2)

(iii) Hamiltonian maximization condition :

u∗k(t) ∈ argmaxω∈U pk(t) · f(x∗k(t), ω) a.e. t ∈ [0, T ], (4.3)

(iv) discontinuity condition of the covector : there is νk ∈ R such that

p+k (τk)− p−k (τk) = νk∇ψk(x
∗
k(τk)). (4.4)

Observe that the adjoint equation (4.1) can be rewritten as{
ṗk(t) = −Dxf1(x

∗
k(t), u

∗
k(t))

⊤pk(t) for a.e. t ∈ (0, τk),

ṗk(t) = −Dxf2(x
∗
k(t), u

∗
k(t))

⊤pk(t) for a.e. t ∈ (τk, T ).
(4.5)
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Finally, the Hamiltonian function t 7→ pk(t) · f(x∗k(t), u∗k(t)) is constant almost everywhere from [5] so that
there is ck ∈ R such that

pk(t) · f1(x∗k(t), u∗k(t)) = pk(t
′) · f2(x∗k(t′), u∗k(t′)) = ck, (4.6)

for a.e. (t, t′) ∈ (0, τk)× (τk, T ). The main issue now is to prove the uniform boundedness of (pk) in order
to prove the existence of a covector associated with x∗ that satisfies the adjoint equation together with a
discontinuity condition at the crossing time.

Proposition 4.1. The sequence (νk) is bounded.

Proof. By contradiction, suppose that |νk| → +∞. Observe first that the sequences (g(xk(T ))) is bounded.
It follows using (4.1) backward in time together with (4.2) that (pk(τ

+
k )) is also bounded. We also deduce

that there is a constant M ≥ 0 such that

∀k ∈ N, ∀t ∈ [0, τk], |pk(t)| ≤M. (4.7)

Now, from the uniform convergence of (x∗k) to x∗ over [0, T ], we get that ψ(x∗k(τk)) → ψ(x∗(τ∗)) as k → +∞.
Using the gradient consistency property (3.1), we may assume that there exists v ∈ ∂Cψ(x

∗(τ∗)) such that

∇ψk(x
∗
k(τk)) → v,

as k → +∞ (extracting a sub-sequence if necessary). Let us now prove that the sequence (pk(τ
−
k )) is

unbounded. By contradiction, if (pk(τ−k )) is bounded, then, dividing (4.4) by νk and letting k → +∞ yields
that v = 0. Since x∗(τ∗) ∈ Γ, this contradicts (3.5), hence, (pk(τ−k )) is unbounded so that we may assume
that |pk(τ−k )| → +∞ as k → +∞ (extracting a sub-sequence if necessary). For every k ∈ N, the sequence
(pk(τ

−
k )/|pk(τ−k )|) belongs to the unit sphere of Rn so that (extracting a sub-sequence if necessary), we may

assume that there is ξ ∈ Rn such that |ξ| = 1 and pk(τ−k )/|pk(τ−k )| → ξ as k → +∞. Dividing now (4.4) by
|pk(τ−k )| yields

pk(τ
+
k )

|pk(τ−k )|
−

pk(τ
−
k )

|pk(τ−k )|
=

νk

|pk(τ−k )|
∇ψk(x

∗
k(τk))

Since the left member of the preceding equality goes to −ξ and ∇ψk(x
∗
k(τk)) → v as k → +∞, we obtain

that the sequence (νk/|pk(τ−k )|) is bounded. Hence, extracting a sub-sequence if necessary, we may suppose
that there is r ∈ R such that (νk/|pk(τ−k )|) → r as k → +∞. It follows that

− ξ = rv. (4.8)

On the other hand, for all k ∈ N, t 7→ u∗k(t) is a Lebesgue measurable function such that u∗k(t) ∈ U for
a.e. t ∈ [0, T ]. Since U is bounded, u∗k ∈ L1([0, 1],Rm), thus, almost every point of [0, T ] is a Lebesgue
point of u∗k. It follows that for every k ∈ N, there exists tk ∈ (0, τk) such that tk is a Lebesgue point of u∗k,
uk(tk) ∈ U , and moreover, we may suppose that |tk − τk| → 0 as k → +∞. Now, observe that one has:

ck

|pk(τ−k )|
=

pk(tk)

|pk(τ−k )|
· f1(x∗k(tk), u∗k(tk))

=
(pk(tk)− pk(τ

−
k ))

|pk(τ−k )|
· f1(x∗k(tk), u∗k(tk)) +

pk(τ
−
k )

|pk(τ−k )|
· f1(x∗k(tk), u∗k(tk)). (4.9)

Next, ck = pk(t) · f2(xk(t), u∗k(t)) for a.e. t ∈ (τk, T ). Hence, taking for every k ∈ N a Lebesgue point of u∗k in
(τk, T ) such that u∗k(t) ∈ U and using (4.7), we deduce that the sequence (ck) is bounded. Additionally, by
using (4.1) backward in time and Gronwall’s Lemma, it follows that

∀t ∈ [0, τk], |pk(t)| ≤ c1|pk(τ−k )|,

where c1 ≥ 0 is a constant. We deduce from (4.1) that |ṗk(t)| ≤ c′1|pk(τ−k )| for every t ∈ [0, τk] where c′1 ≥ 0
is a constant. Finally, we get that

|pk(tk)− pk(τ
−
k )| ≤ c′1|pk(τ−k )||tk − τk|.

9



Combining the preceding inequality with (4.9), we obtain that

pk(τ
−
k )

|pk(τ−k )|
· f1(x∗k(tk), u∗k(tk)) = o(1),

where o(1) → 0 as k → +∞. Extracting a sub-sequence if necessary (remind that U is compact), we may
suppose that there is ω ∈ U such that u∗k(tk) → ω as k → +∞. Hence, we get that

ξ · f1(x∗(τ∗), ω) = 0. (4.10)

Combining (4.8) and (4.10), we find that v · f1(x∗(τ∗), ω) = 0. This equality is a contradiction with the
transverse hypothesis (3.5) since v ∈ ∂Cψ(x

∗(τ∗)). This ends the proof.

Remark 4.1. This proof mainly relies on the (strong) transverse hypothesis (3.5) made on the dynamics
at the interface Γ. The main difficulty is that we cannot handle fi(x∗k(τk), u

∗
k(τk)) for i = 1, 2 since u∗k is

defined almost everywhere. Our methodology consists in considering an optimal solution to (3.4), but we have
a priori no information on the regularity of the control u∗k which is a drawback of this approach. But, note
that if u∗k is right and left continuous at t = τk, then, following [5], one can show that

νk =
p+k (τk) · (f(x∗k(τk), u∗k(τ

−
k ))− f(x∗k(τk), u

∗
k(τ

+
k )))

∇ψk(xk(τk)) · f(x∗k(τk), uk(τ
−
k ))

.

Combining this expression together with the transverse hypothesis, we would more easily deduce that (νk) is
bounded. Unfortunately, our approach does not allow us a priori to use this expression since we do not know
in advance if u∗k is defined at t = τ±k .

We can now prove the following convergence result on the sequence (pk).

Proposition 4.2. There exists a function p : [0, T ] such that its restriction to [0, τ), resp. to (τ, T ] can be
extended to an absolutely continuous function over [0, τ ], resp. over [τ, T ]. Additionally, up to a sub-sequence,
(pk) strongly-weakly converges to p over every set [0, τ − α] ∪ [τ + α, T ] (for α small enough). Finally, p
satisfies {

ṗ(t) = −Dxf1(x
∗(t), u∗(t))⊤p(t) for a.e. t ∈ [0, τ∗],

ṗ(t) = −Dxf2(x
∗(t), u∗(t))⊤p(t) for a.e. t ∈ [τ∗, T ].

(4.11)

Proof. The proof of this result is done in four steps:
Step 1. Definition of auxiliary trajectories and covectors. First, let us denote by ũ∗ the optimal
control corresponding to the optimal trajectory x∗ of Problem (2.3). Then, given η > 0, let us define an
auxiliary trajectory x∗1 as the unique solution to the following Cauchy problem:{

ẋ∗1(t) = f1(x
∗
1(t), ũ

∗(t)), for a.e. t ∈ [0, τ∗ + η],

x∗1(0) = x0,

As well, we can define an auxiliary trajectory x∗2 as the unique solution to the following Cauchy problem:{
ẋ∗2(t) = f2(x

∗
2(t), ũ

∗(t)), for a.e. t ∈ [τ∗ − η, T ],

x∗2(T ) = x∗(T ).

Note that the existence of η > 0 (such that τ∗ − η ≥ 0 and τ∗ + η ≤ T ) is guaranteed by Cauchy-Lipschitz’s
Theorem. Furthermore, we can define p2 as the unique solution to the following Cauchy problem:{

ṗ2(t) = −Dxf2(x
∗
2(t), ũ

∗(t))⊤p2(t), for a.e. t ∈ [τ∗ − η, T ],

p2(T ) = −∇g(x∗(T )),

and, similarly p1 is defined as the unique solution to the Cauchy problem:{
ṗ1(t) = −Dxf1(x

∗
1(t), ũ

∗(t))⊤p1(t), for a.e. t ∈ [0, τ∗ + η],

p1(τ
∗) = p2(τ

∗)− νv,
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where ν ∈ R and v ∈ ∂Cψ(x
∗(T )) are limits (up to a subsequence) of the sequences (νk) and (∇ψk(x

∗
k(τk)))

respectively. Note that the restriction of x∗1 and p1, resp. x∗2 and p2, coincides with x∗ and p over [0, τ∗],
resp. over [τ∗, T ]. Now, let us define x∗k,1 as the unique solution to the following Cauchy problem:{

ẋ∗k,1(t) = f1(x
∗
k,1(t), u

∗
k(t)), for a.e. t ∈ [0, τ∗ + η],

x∗k,1(0) = x0,

and similarly, x∗k,2 is defined as the solution to the following Cauchy problem:{
ẋ∗k,2(t) = f2(x

∗
k,2(t), u

∗
k(t)), for a.e. t ∈ [τ∗ − η, T ],

x∗k,2(T ) = x∗k(T ).

Furthermore, we define pk,2 as the unique solution to the following Cauchy problem:{
ṗk,2(t) = −Dxf2(x

∗
k,2(t), u

∗
k,2(t))

⊤pk,2(t), for a.e. t ∈ [τ∗ − η, T ],

pk,2(T ) = −∇g(x∗k,2(T )),

and pk,1 as the unique solution to the following Cauchy problem:{
ṗk,1(t) = −Dxf1(x

∗
k,1(t), u

∗
k,1(t))

⊤pk,1(t), for a.e. t ∈ [0, τ∗ + η],

pk,1(τk) = pk,2(τk)− νk∇ψk(xk,2(τk)).

By using a standard argumentation (based on the boundedness of U , the boundedness of the sequence (xk)
for the L∞-norm, and the continuity of fi and Dxfi), we deduce that there exists k0 ∈ N∗ such that x∗k,1 and
pk,1, resp. x∗k,2 and pk,2, are well defined over [0, τ∗ + η], resp. over [τ∗ − η, T ], for all k ≥ k0.
Step 2. Convergence over [τ∗ − η, T ]. One can see that the pair zk,2 := (x∗k,2, pk,2) satisfies the following
differential inclusion

żk,2(t) ∈ H2(zk,2(t)) a.e. t ∈ [τ∗ − η, T ],

where H2 : B(0, R)× Rn ⇒ Rn × Rn is defined as H2(z) := F̂2(x̃)× Ĝ2(z) for every z := (x̃, p) ∈ Rn × Rn.
From the hypotheses on the velocity sets, we check that for each z ∈ B(0, R)× Rn, H2(z) is with nonempty
compact and convex values. In addition, H2 is also with linear growth (using the linearity of the adjoint
equation, the fact that x ∈ B(0, R) and the compactness of U). Moreover, from the compactness of U and the
uniform continuity of the mapping (x, u, p) 7→

(
f2(x, u),−Dxf2(x, u)

⊤p
)

over compact sets one can deduce
that H2 upper semi-continuous at each (x, p) ∈ B(0, R) × Rn. Hence, we are in a position to apply [14,
Theorem 1.11]. It follows that there is an absolutely continuous function z2 = (x∗2, p2) : [τ

∗− η, T ] → Rn×Rn

satisfying
ż2(t) ∈ H2(z2(t)) a.e. t ∈ [τ∗ − η, T ],

such that (zk,2) strongly-weakly converges to z2 over [τ∗ − η, T ]. Moreover, one also gets x2(T ) = x∗(T )
and p2(T ) = −∇g(x∗(T )). From the uniform convergence of x∗k,2 towards x∗2 and the definition of auxiliary
trajectories we get x∗2 = x∗ over [τ∗, T ]. Furthermore, from the Filippov selection Lemma, there exists an
admissible control u∗2 such that

ẋ∗2(t) = f2(x
∗
2(t), u

∗
2(t)), ṗ2(t) = −Dxf2(x

∗
2(t), u

∗
2(t))

⊤p2(t),

for almost every t ∈ [τ∗ − η, T ].
Step 3. Convergence over [0, τ∗ + η]. Similarly, one can see that the pair zk,1 := (x∗k,1, pk,1) satisfies the
following differential inclusion

żk,1(t) ∈ H1(zk,1(t)) a.e. t ∈ [0, τ∗ + η],

where H1 : B(0, R)× Rn ⇒ Rn × Rn is defined as H1(z) := F̂1(x̃)× Ĝ1(z) for every z := (x̃, p) ∈ Rn × Rn.
Using similar arguments as in Step 2, it follows that there is an absolutely continuous function z1 = (x∗1, p1) :
[0, τ∗ + η] → Rn × Rn satisfying

ż1(t) ∈ H1(z1(t)) a.e. t ∈ [0, τ∗ + η],
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such that (zk,1) strongly-weakly converges to z1 over [0, τ∗ + η]. Moreover, one also gets x1(0) = x∗(0) = x0
and p1(τ∗) = p2(τ

∗)− νv. From the uniform convergence of x∗k,1 towards x∗1 and the definition of auxiliary
trajectories we get that x∗1 = x∗ over [0, τ∗]. Furthermore, from the Filippov selection lemma, we get the
existence of an admissible control u1 such that

ẋ∗1(t) = f1(x
∗
1(t), u

∗
1(t)), ṗ1(t) = −Dxf1(x

∗
1(t), u

∗
1(t))

⊤p1(t),

for almost every t ∈ [0, τ∗ + η].
Step 4. Definition of the covector p. Finally, we define u∗ and p as follows

u∗(t) :=

{
u∗1(t) a.e. t ∈ [0, τ∗],
u∗2(t) a.e. t ∈ [τ∗, T ].

and
p(t) :=

{
p1(t) for all t ∈ [0, τ∗),
p2(t) for all t ∈ (τ∗, T ].

One can note that u∗ is a corresponding control to the optimal trajectory x∗. Moreover, we get that the
covector p (that is piecewise absolutely continuous) satisfies (4.11) which completes the proof.

4.2 Derivation of a nonsmooth HMP
In this section, we provide necessary optimality conditions for an optimal solution to (2.3) in terms of a
nonsmooth hybrid maximum principle. Our main result is as follows.

Theorem 4.1. Suppose that the hypotheses in Section 2 and Assumption 3.1 are fulfilled. Let x∗ ∈ ST (x0)
be an optimal solution to (2.3) and u∗ ∈ U the associated optimal control. Then, x∗ has zero or one crossing
time and there is a piecewise absolutely continuous function p : [0, T ] → Rn satisfying:
(i) the adjoint equation

ṗ(t) = −Dxf(x
∗(t), u∗(t))⊤p(t) a.e. t ∈ [0, T ],

(ii) the terminal condition
p(T ) = −∇g(x∗(T )),

(iii) the Hamiltonian maximization condition

u∗(t) ∈ argmaxω∈U p(t) · f(x∗(t), ω) a.e. t ∈ [0, T ],

(iv) the discontinuity condition
p+(τ)− p−(τ) = νv, (4.12)

where ν ∈ R and v ∈ ∂Cψ(x
∗(τ∗)) if x∗ has a crossing time τ∗ ∈ (0, T ) (otherwise p has no discontinuity),

(v) the Hamiltonian constancy : there is c̃ ∈ R such that for a.e. (t, t′) ∈ (0, τ∗)× (τ∗, T )

p(t) · f1(x∗(t), u∗(t)) = p(t′) · f2(x∗(t′), u∗(t′)) = c̃.

Proof. We prove each item step by step.
(i) Adjoint equation : the existence of a piecewise absolutely continuous function p : [0, T ] → Rn satisfying
the adjoint equation follows from Proposition 4.2.
(ii) Terminal condition : since for all k ∈ N, pk(T ) = −∇g(xk(T )), the result follows from Proposition 4.2
letting k → +∞.
(iii) Hamiltonian maximization condition : from (4.3), we get

pk(t) · f(x∗k(t), ω) ≤ pk(t) · f(x∗k(t), u∗k(t)) a.e. t ∈ [0, T ].
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Fix t0 ∈ (0, T )\{τ∗} and ε > 0. It follows that

1

ε

∫ t0+ε

t0

pk(t) · f(x∗k(t), ω) dt ≤
1

ε

∫ t0+ε

t0

pk(t) · ẋ∗k(t) dt.

By using the uniform convergence of (xk) to x∗ over [0, T ], the uniform convergence of (pk) to p over every
compact subset of [0, τ∗) ∪ (τ∗, T ], and the weak convergence of ẋ∗k to ẋ∗, we find that

1

ε

∫ t0+ε

t0

p(t) · f(x∗(t), ω) dt ≤ 1

ε

∫ t0+ε

t0

p(t) · ẋ∗(t) dt.

Letting ε ↓ 0, we obtain the Hamiltonian maximization condition (ii) since almost every point of [0, T ] is a
Lebesgue point of u∗.
(iv) Discontinuity condition. Suppose that x∗ has a crossing point at some time τ∗. From Lemma 3.1, we
know that τ∗ is unique. Now, for every k ∈ N large enough, one has pk(τ∗k ) − pk(τ

−
k ) = νk∇ψk(xk(τk)).

Remind that the sequence (νk) is bounded, so, extracting a sub-sequence if necessary, we may assume that
νk → ν as k → +∞ where ν ∈ R. From the gradient consistency, there is v ∈ ∂Cψ(x

∗(τ∗)) such that (up to
a sub-sequence), ψk(xk(τk)) → +∞ as k → +∞. Hence, by passing to the limit as k → +∞, we find that
p+(τ∗)− p−(τ∗) = νv, whence the result.
(v) Since (ck) is bounded, we may assume that there is c̃ ∈ R such that, up to a subsequence, one has ck → c̃
as k → +∞. Next, we proceed as for proving (iii). Let t0 ∈ (0, τ)\{τ∗} be a Lebesgue point of u∗ such
that u∗(t0) ∈ U (we know that a.e. point of (0, T ) satisfies this property since u∗ is a measurable (bounded)
function such that u∗(t) ∈ U for a.e. t ∈ [0, T ]). We get for ε > 0 small enough

1

ε

∫ t0+ε

t0

pk(t) · ẋ∗k(t) dt = c̃k.

As for proving (iii), we let k → +∞ (using weak convergence of (x∗k)) and then ε ↓ 0, and we obtain the result
over (0, τ∗). Next, the same reasoning is done over (τ∗, T ) which ends the proof.

Remark 4.2. Whenever ν ≥ 0, (4.12) becomes

p+(τ∗)− p−(τ∗) ∈ NC(X1;x
∗(τ∗)).

Indeed, in that case, one has NC(X1;x
∗(τ∗)) = R+∂Cψ(x

∗(τ∗)) since 0 /∈ ∂Cψ(x
∗(τ∗)) because of the

transversality condition (3.5).

We end-up this section by giving a simple example highlighting the application of the nonsmooth HMP.
Consider the Lipschitz-continuous function ψ : R2 → R defined by

ψ(x1, x2) := max(x1, x1 + x2 − 1),

so that Γ = {(x1, x2) ∈ R2 ; ψ(x1, x2) = 0}. It is easily seen that at the point (0, 1) the sub-differential of ψ
is the convex combination of the gradients of the maps (x1, x2) 7→ x1 and (x1, x2) 7→ x1 + x2 − 1, hence

∂Cψ(0, 1) = {(1, θ) ; θ ∈ [0, 1]}.

Now, we consider the hybrid control system{
ẋ1 =

√
3
2 (1− u)

ẋ2 = 1
2 (1− u)

if ψ(x1, x2) < 0 and

{
ẋ1 = x2
ẋ2 = u

2

if ψ(x1, x2) > 0,

together with the initial condition x(0) = (−
√
3, 0) and the optimal control problem

−x1(2) → min

13



where the minimimum is taken w.r.t. measurable control functions u : [0, 2] → [−1, 12 ]. We see that every
admissible trajectory crosses the interface at the point (0, 1). Hence, the transverse condition needs only to
be verified at the point (x1, x2) = (0, 1). For all θ ∈ [0, 1] and all u ∈ [−1, 12 ], one has

(√3(1− u)

2
,
1− u

2

)
· (1, θ) = (1− u)

2
(
√
3 + θ) ≥

√
3

4
;
(
1,
u

2

)
· (1, θ) = 1 +

uθ

2
≥ 1

2
,

so that the transverse condition is verified. Now, since the objective is equivalent to maximize x1(2), an
optimal control will necessarily be such that u(t) = −1 as long x(t) ∈ X1 (where X1 = {x ∈ R2 ; ψ(x) < 0}).
We thus get that an optimal trajectory has a single crossing time at τ = +1. If we write the HMP, we
introduce the (conserved) Hamiltonian

H =

√
3

2
p1(1− u) +

1

2
p2(1− u) = q1x2 + q2

u

2
,

where (p1, p2) is the covector over [0, 1] such that ṗ1 = ṗ2 = 0 over [0, 1] (hence, (p1, p2) is constant) and
where (q1, q2) is the covector over [1, 2] such that q̇1 = 0 and q̇2 = −1. Additionally, the terminal condition
gives us q1(2) = 1 and q2(2) = 0 so that q1(t) = +1 and q2(t) = 2− t for t ∈ [1, 2] and consequently u(t) = 1

2
a.e. over [1, 2] (using the maximization condition). If we write the jump condition and the conservation of the
Hamiltonian, we get the three equalities

q1 − p1 = ν
q2(τ)− p2 = νθ√
3p1 + p2 = 2

⇒
1− p1 = ν
1− p2 = νθ√
3p1 + p2 = 2

where unknown parameters are p1, p2, ν ∈ R and θ ∈ [0, 1]. This gives the relations p2 = 2 −
√
3p1 and

p1 = 1 − ν so that p2 = 2 −
√
3(1 − ν) = 1 − νθ. Finally, we get (

√
3 + θ)ν =

√
3 − 1. We thus deduce

from the preceding equality that ν cannot be null. Hence, ν is necessarily such that ν ̸= 0 so that the
covector is necessarily discontinuous at the crossing time (it has a jump). In addition, to ensure that u = −1

over [0, 1], one must have
√
3
2 p1 +

1
2p2 > 0 from the maximization condition. We see that it is possible to

choose adequately the pair (ν, θ) ∈ R∗ × [0, 1] to fulfill this constraint. For instance, taking θ = 0 gives us
ν = 1− 1/

√
3 , p1 = 1/

√
3 and p2 = 1 so that (

√
3/2)p1 + p2/2 > 0 as wanted.

In conclusion, this example highlights the fact that (depending on the problem) the covector must have a
jump at the crossing time but the direction of the jump in the subdifferential of ψ may be non-unique.

5 Discussions and conclusion
In this paper, we have given a so-called nonsmooth HMP for a Mayer optimal control problem governed
by a hybrid control system defined regionally. Additionally, we supposed the partition of Rn to have two
regions delimited by a nonsmooth interface. This framework has been made simple in order to avoid further
technical issues and also to highlight the possibility of using the "classical" HMP (valid for regions with
smooth boundaries). The nonsmooth HMP was obtained thanks to the gradient consistency property arising
from the regularization of a locally Lipschitz continuous function via mollifiers. The resulting discontinuity
condition naturally generalizes the one encountered in the hybrid setting when interfaces between regions are
smooth, see, e.g., [5, 19]. It is also in line with the one in [13, Theorem 22.20] which (as far as we know) is
valid only for temporally hybrid optimal control problems (in the sense that no partition of the state space is
considered and the change of dynamics occurs at free instants).

We are confident that our approach could be re-employed in a more general setting such as when the
partition of the state space has a countable number of regions, i.e., Rn = ∪i∈IXi, when the system involves
mixed initial terminal constraints ϕ(x(0), x(T )) ∈ C, a Bolza cost and a free terminal time. Note that when
handling mixed initial terminal constraints, controllability hypotheses should probably be added in order
to guarantee that one can approach any admissible trajectory to the original optimal control problem by
an admissible trajectory solution to the approximated optimal control problems. This point is crucial in
order to make this approach possible (note that here, no terminal constraints were considered, that is why
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we did not need such hypothses in Proposition 3.2). Next, the two main issues will be first to approach
any admissible trajectory solution to the original optimal control problem and then to give bounds on the
sequence (νk) arising in the discontinuity condition of the covector pk. This will be made possible thanks to
a strong transverse hypothesis similar to our but at every interface between two regions.

Note that our methodology differs from other approaches like the augmentation technique as in [5] or the
sensitivity analysis as it is done in [4, 19] (which follows the standard techniques based on the variation vector
for proving the PMP, see [24]). At first glance, our approach seems rather straightforward, however, when
introducing an approximated optimal control problem, we have in general no information on the regularity of
the approximated optimal control (such as right and left continuity at a crossing time). This is a difficulty
that is inherent to this methodology. As far as we know, we can point out a similar difficulty if Ekeland’s
variational principle is applied on some (regional) hybrid optimal control problem involving mixed initial
terminal constraints. Indeed, in that case, no information on the regularity of an approximated control (lie
right and left continuity at a crossing time) follows from the application of this principle. Overcoming such
difficulties seems an interesting (but difficult) question.

Finally, another possible way to derive a nonsmooth HMP in our setting could be to follow [5] and to
use a nonsmooth PMP (in place of the usual one) on some augmented optimal control problem involving
nonsmooth data (since the interface is nonsmooth). This could also be an interesting perspective for future
works on the subject. As well, it could be interesting to pursue the analysis made in this work, but under a
weak transverse hypothesis at the interface (see [7]).
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