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ABSTRACT
Piezoelectric devices offer numerous opportunities for sustainable harvesting of wasted mechanical
energy, leading to a significant interest in data-driven research on these materials. This study presents
the design of PiezoTensorNet, a comprehensive framework that encompasses a hierarchical classifica-
tion neural network for crystal point group determination and modular ensembles of regression-based
multi-dimensional models for predicting piezoelectric tensors. The machine learning models capable
of forecasting tensors for dopant element alloying and various crystallographic transformations is
integrated along with finite element analysis for electromechanical performance evaluation. The
efficacy of integrated toolkit is demonstrated through the computational design and discovery of
a lead-free microelectromechanical system based on AlN. The introduction of Boron and Erbium
dopants in AlN enhances its piezoelectric performance, particularly when the crystal undergoes
rotations along a preferred axis. Specifically, under a vertical loading of 5 × 10−5 N/m2 applied to
a cantilever beam, the preferentially oriented B0.3Er0.5Al0.2N material generates a power 9.96 times
larger than that of AlN ceramics.

1. Introduction
Energy harvesting has gained significant attention as a

crucial technology for applications including but not limited
to sensors and actuators [1], Internet of Things (IoT) [2], and
e-health [3, 4]. Main types of micro and nano energy har-
vesters include piezoelectric, triboelectric, electromagnetic,
electrostatic, and acoustic [5, 6]. Piezoelectric materials,
including single crystals, ceramics, composites, and films,
are indispensable components in electromechanical devices
[7]. These functional materials possess the capability for
efficient interconversion of mechanical and electrical energy
due to the linear coupling between mechanical stress and
electric polarization [8]. They manifest the direct piezoelec-
tric effect, where mechanical stress induces alterations in
surface charge density, as well as the inverse piezoelectric
effect, where electric fields elicit material deformation [8].
As polarization represents a vector and stress corresponds
to a second-rank tensor, the coupling phenomenon encom-
passes three distinct directions, thereby giving rise to a third-
rank piezoelectric tensor [9]. In a Euclidean crystal reference
frame because of the symmetricity, the piezoelectric tensor
is typically represented as a 3 × 6 matrix [10]. The concise
overview of the piezoelectric coefficients, their relations
with electric and mechanical terms, and corresponding ex-
pressions are provided in Supplementary Information S1.

The functional characteristics of these materials are di-
rectly linked with their non-centrosymmetric structures [11].
Perovskite-structured piezoelectric materials, including bar-
ium titanate, lead titanate, and lead zirconate titanate, show
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significant promise for a wide range of practical and indus-
trial applications [12]. The European Union has imposed
stringent restrictions on the utilization of lead-based materi-
als, thereby instigating scientific communities to seek lead-
free piezoelectric alternatives [13] that not only demonstrate
environmental compatibility but also exhibit exceptional
characteristics for the advancement of novel devices [14].
Unfortunately, the identification of suitable Pb-free substi-
tutes, capable of fulfilling the requisite criteria, continues to
elude the current state of research [15].

Several studies have made endeavors to apply machine
learning techniques in the pursuit of high piezoelectric co-
efficient lead-free materials, showcasing their potential in
this field [16, 17, 18]. These works have successfully im-
proved piezoelectric performance through the identification
of novel materials. However, a limitation of these studies
is that they solely rely only on specific components of the
piezoelectric tensor. Piezoelectric ceramics, characterized
by ∞mm symmetry [19], typically possess limited indepen-
dent piezoelectric coefficients, namely longitudinal mode
d33, transversal mode d31, and thickness-shear mode d15[20]. It is important to note that only these three coefficients
may not fully capture the polarization distribution, which can
be accurately represented by the entire tensor. The tensor
encompasses contributions from both ionic and electronic
sources, providing a more comprehensive understanding of
the material’s behavior [21, 22]. Moreover, studying crystal
rotation in such functional materials is challenging without
prior knowledge of the complete tensor elements [23].

The presence of a non-zero piezoelectric tensor in ma-
terials leads to a high electro-mechanical coupling polariza-
tion, which results in an increased figure of merit [24]. By in-
troducing quasi-symmetry breaking in metamaterial design,
it becomes possible to induce unconventional piezoelectric
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coefficients in perovskite ceramics. These unconventional
coefficients, referred to as "quasi-effective piezoelectric co-
efficients," when combined with conventional coefficients,
form a 3 × 6 matrix with technically all elements being non-
zero. This expanded coefficient matrix opens up a broader
range of possibilities for developing devices based on piezo-
electric ceramics [25, 26]. Hence, there is a need to develop
methods that can predict piezoelectric tensors, enabling a
more thorough investigation of polarization and facilitating
the study of crystal rotation effects and their advancement in
piezoelectric performance.

This study integrates alloying of base piezoelectric ma-
terials with crystallographic-supported data-driven compu-
tational modeling, incorporating the physics of crystal ro-
tations based on tensor mathematics. This comprehensive
approach offers a rapid screening tool for evaluating the
piezoelectric performance of materials by establishing a
link between the microscopic crystal structure and resulting
piezoelectric polarization. The effectiveness of this approach
is demonstrated using AlN-based materials in various sce-
narios, including pure AlN, single and paired dopant alloy-
ing, and crystal rotations along three Cartesian coordinate
axes. Energy generation in these scenarios is investigated,
and the machine learning-supported finite element method is
employed for energy harvesting modeling, aiming to design
materials that exhibit high voltage generation under similar
loading conditions. The findings showcase the extensive
capabilities of this integrated approach in piezoelectric ma-
terial design and engineering applications.

2. Methodology
2.1. Data Acquisition, processing and Analytics

The piezoelectric properties of training materials con-
sisting of 3301 were extracted from the Materials Project
(MP) [27, 28]. A dataset of 1354 piezoelectric materials
was used for machine learning model formulation. That
harvested dataset consists of piezoelectric properties for
various crystal structures. Selected materials comprising
367 cubic (23, 4̄2m), 152 tetragonal 4̄2m, 305 orthorhombic
222, and 195 hexagonal 6mm + tetragonal 4mm, and 335
orthorhombic mm2 piezoelectric materials were undertaken
for further data analysis and machine learning model train-
ing purpose. Numerical featurization of physical properties
played a pivotal role in the data-driven study. Therefore, the
assessment of numerical descriptors for structural, physical,
and thermo-mechanical characterization carries crucial in
data processing and analytics.

Featurization involved transforming materials-related
quantities into physically relevant numerical descriptors,
capturing complex relationships between inputs and targeted
piezoelectric tensors. Initial features were derived from
chemical composition formulas using Materials Agnostic
Platform for Informatics and Exploration (Magpie) [29].
While the Magpie featurization package includes 132 fea-
tures encompassing elemental properties and stoichiometric
attributes, it does not include thermodynamics, elastic, and

the structural properties described in [30]. Thus, Magpie
featurization is complemented by 13 additional descriptors
to account for missing descriptors.

Principal Component Analysis (PCA) was employed
for dimensionality reduction, compressing large feature sets
to streamline analysis and visualization. By decomposing
the data matrix into the direction and magnitude compo-
nents, PCA identified multiple data directions, eliminating
less relevant features. The retained information’s importance
was quantified using explained variance (EV). Incorporating
PCA-based feature selection enhanced analysis efficiency
and interpretability, focusing on impactful data aspects [31].
Detailed information regarding each component of the har-
vested data, including its visualization, numerical feature
calculations, and feature engineering, can be found in Sup-
plementary Information S3.
2.2. Crystal point group clustering based on

piezoelectric tensor symmetry
The lack of inversion symmetry in a crystal structure can

give birth to a variety of unique characteristics including
piezoelectricity [32]. Neumann’s symmetry principle eluci-
dates the profound interplay between the intrinsic symmetry
of a material’s structure and the resulting constraints im-
posed on tensors (a reference to the number of independent
components) characterizing its physical properties. This fun-
damental principle asserts that the properties of a material
cannot possess a symmetry lower than that exhibited by its
crystal structure. The choice of crystallographic unit cell
axes aligns with the principal symmetry elements, and basis
coordinate systems for tensors are established accordingly.
This alignment simplifies tensor descriptions by reducing
the number of independent components. Neumann’s princi-
ple highlights the interplay between crystal symmetry and
material properties [33].

Crystal symmetry classes categorize the symmetry ele-
ments and operations of crystals, enabling analysis of their
properties including impact on piezoelectric behavior [34].
Among 32 unique crystal classes, 20 point groups exhibit
piezoelectricity [19]. The higher symmetry crystals such
as cubic structures display simplified piezoelectric tensors
due to their symmetricity. This higher symmetry results in
a reduction in the number of independent non-zero piezo-
electric coefficients [35]. Conversely, crystals with lower
symmetry, as found in trigonal, tetragonal, or orthorhombic
crystal systems, exhibit more intricate piezoelectric tensor
forms. The number of independent piezoelectric coefficients
is determined by the crystal’s symmetry [36]. Supplemen-
tary Information S2 provides further elaboration on the
relationship between crystallography and piezoelectricity.

While symmetry considerations can identify the poten-
tial for piezoelectricity, their ability to fully capture the
magnitude and nature of the piezoelectric response is lim-
ited [37]. Incorporating all 20 point groups into a machine
learning model is not feasible first because of the classi-
fication of higher nodal targets and higher dimensions of
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Table 1
Crystallographic Impact on Piezoelectric Tensors: This table explores the relationship between crystallography and piezoelectric
tensors through symmetry constraints and graphical representations. The category class serves as a pseudo-grouping mechanism
in the hierarchical classification machine learning model, enhancing the efficiency of the parent classification process. Similar
tensor structures cluster point groups into PG1, PG2, PG3, PG4, and PG5. The symbol #eij denotes the number of independent
piezoelectric coefficients. Notably, the cubic (23, 4̄2m) and hexagonal 6mm + tetragonal 4mm point groups share the same tensor
structure, resulting in seven point groups represented by five sibling labels.

Category Crystal and Crystal Structure Piezoelectric tensor #eij Tensor visualizationa

Class Point groups representation

PG1
Cubic 23
Cubic 4̄3m

⎛

⎜

⎜

⎝

0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

⎞

⎟

⎟

⎠

1

Class A
PG2

Tetragonal 4̄2m

⎛

⎜

⎜

⎝

0 0 0 e14 0 0
0 0 0 0 e25 0
0 0 0 0 0 e36

⎞

⎟

⎟

⎠

3

PG3
Orthorhombic 222

⎛

⎜

⎜

⎝

0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e36

⎞

⎟

⎟

⎠

2

Class B
PG4

Hexagonal 6mm
Tetragonal 4mm

⎛

⎜

⎜

⎝

0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎞

⎟

⎟

⎠

3

PG5
Orthorhombic mm2

⎛

⎜

⎜

⎝

0 0 0 0 e15 0
0 0 0 e24 0 0
e31 e32 e33 0 0 0

⎞

⎟

⎟

⎠

5

aThe tensor visualization was performed using the following tensor component values: For Class A: e14 = 0.5. For Class B Hexagonal 6mm
and Tetragonal 4mm: e15 = 0.0743, e31 = 0.0588, e33 = −0.0983. For Class B Orthorhombic mm2: e15 = 0.015, e15 = 0.0081, e31 = 0.014,

e31 = 0.011, e33 = −0.02. The unit of these coefficients is C/m2.

piezoelectric component prediction. To address this con-
straint, the application of crystal symmetry-guided cluster-
ing becomes imperative. Initially, this involves excluding
monoclinic and triclinic crystals because of a higher number
of independent coefficients from the scope of the regression-
based ML model. Subsequently, the positions and structure
of non-zero elements are systematically grouped to form
distinct category classes. The organization of these classes
is informed by the collected piezoelectric data, resulting in
two main categories. These criteria capture the piezoelectric
behaviour of 7 crystal point groups.

The crystal symmetry-based grouping is included in
Table 1. In the first category, four crystal point groups
together form three distinct sub-categories. Conversely, the

second category comprises three point groups organized
into two sub-categories. This classification of crystal points
operates on multiple layers, forming sub-classes within an
overarching category class. Consequently, a data-driven ap-
proach necessitates a multi-level hierarchical classification
in a specific sequence that is explained in a subsequent
section.
2.3. Prognosticating Piezoelectric Tensors:

Introducing PiezoTensorNet.
The integration of neural networks and crystallography

discloses substantial potential for accelerated exploration
of optimum materials design [38, 39]. In this study, this
interdisciplinary fusion of pattern understanding ability of
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Figure 1: A hierarchical multi-scale ML framework for piezoelectric material design: a) The featurized piezoelectric database
undergoes preprocessing, which involves PCA for feature compression. This step achieves a 96% explained variance by selecting
28-32 features. b) The PiezotensorNet operates at two scales: i) The hierarchical multi-level classifier, HierCrystalNet, categorizes
materials in the initial layer into pseudo-parent classifications: class A or class B. Subsequent children’s classifications assign crystal
point groups, resulting in PG1, PG2, or PG3 for class A, and PG4 or PG5 for class B. ii) The regression-based ModularEnsembleNet
ultimately provides the independent non-zero piezoelectric coefficient (#eij) which is reordered into 3 × 6 tensor. The outputs
from HierCrystalNet activate distinct modules within an ensemble artificial neural network, ensuring accurate prediction of the
tensor.

ML with crystallographic insights is considered which lat-
ter will be assisted by crystal rotation and Finite Element
Analysis (FEM) in the design of functional material. The
schematic depiction of this process is elucidated sequentially
in Figure 1. The phenomenon of crystal point group clas-
sification unfolds within a two-tiered structure, activating a
module-based ensemble neural network exclusively tailored
for independent piezoelectric coefficient predictions. The
final output of theMLmodel is further restructured to form a
piezoelectric tensor in the 3×6 order. A detailed explanation
of the crystal point group classification and #eij predictionprocess is explained in a subsequent sub-section within this
section.
2.3.1. Hierarchical Multi-Level Classification of

Crystal Groups in Piezoelectric Materials
Multi-label classification poses significant benefits as

it involves the assignment of parent categories to closely
related labels [40]. In this investigation, a two-layer clas-
sification was employed, focusing on the consistent pat-
terns exhibited by mathematically homogeneous piezoelec-
tric tensors. It is noteworthy that the child group is a true
representation of the actual classification label which is the
primary objective of this classification model. On the other
hand, the parent groups are pseudo-clustering of the closely
related point groups in assisting multi-level classification.
The five sibling classes of seven crystal point groups are

characterized by their proximity to one another because of
the same mathematical piezoelectric tensor as represented
by piezoelectric tensor in Table 1. The initial step of the
process involves the preliminary classification of piezoelec-
tric materials, assigning them to either class A or class B.
This pseudo-parent assignment serves as the first layer of
classification, and the model achieves an accuracy of 68%.
Subsequently, the predictions from the first layer are utilized
in the second layer for specific point group classification.
In the second stage, when the first layer results in class A,
the focus of the classification process is on PG1, PG2, and
PG3. Sub-classification within class A is carried out with
an accuracy of 71.43%. Conversely, if the first layer results
in class B, the attention of the second stage shifts to the
classification of PG4 and PG5, achieving an accuracy of
82.22%, as illustrated in Fig. 1 b(i). This entails a finer level
of categorization based on the pseudo-parent classification
and then sibling point group recognition. The core of this
hierarchical methodology lies in the precise identification
of the material’s crystal point group. Upon completion of
the entire classification model, the ultimate outcomes are
the crystal point groups denoted as PG1, PG2, PG3, PG4,
and PG5. After the identification of the material’s crystal
point group, it serves as a trigger for activating the prediction
process of independent piezoelectric coefficients. This pre-
diction is accomplished through a multi-target regression-
based ModularEnsembleNet.
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2.3.2. Modular Ensemble Models to Foretell the
Piezoelectric Coefficients

After the two successive classifications, this work in-
troduces a well-engineered and intricate ensemble neu-
ral network model, comprising five meticulously designed
modules. Each of them comprises an ensemble of two
distinct ANN architectures. The collaborative synergy be-
tween these two ANN models involves arithmetic averag-
ing their predicted values. This ensemble approach con-
tributes to the generalization of the multi-dimensional re-
gression model, resulting in a compact modular block.
The multi-dimensional regression-based modular ensemble
ANN seamlessly integrates with hierarchical classification,
significantly improving the speed and efficiency of piezo-
electric performance design.

The fusion of multi-layered classification HierCrystal-
Net (Figure 1 bi ) and multi-dimensional regression Mod-
ularEnsembleNet ( Figure 1 b ii ) is achieved from the
unique activation mechanism of the ModularEnsembleNet
to activate the specific modules among five different module
set. This activation mechanism is designed to selectively
choose a specific module from a set of five different mod-
ules. The crystal point groups are identified through the
HierCrystalNet framework (Figure 1 b(i)). The activation of
one among the five different modules is contingent on the
outcome of the classification model, determining whether
the result corresponds to PG1, PG2, PG3, PG4, or PG5.
Given that a piezoelectric material possesses a unique point
group, only one module is activated. This unified framework
plays a crucial role in the model’s architecture, where hierar-
chical classification guides the activation of ANN modules,
as illustrated byModularEnsembleNet in Figure 1 b(ii). The
root mean squared error (RMSE) of each modular ensemble
network is: 0.65, 0.85, 0.53, 1.05, 1.02 for PG1, PG2, PG3,
PG4, and PG5 respectively. The outcome from the ML
model is the prediction of piezoelectric coefficients in a 1D
array having the same order as the #eij of the classified pointgroup. Subsequently, the predicted results are reorganized
into the format of a piezoelectric tensor with a 3×6 order.

By integrating the crystallography dominant HierCrys-
talNet into piezo-tensor focusedModularEnsembleNet frame-
work, a powerful and versatile tool called PiezoTensor-
Net [41] is forged. This integrative approach enhances
the model’s capacity to first classify crystal point groups
and then predict the piezoelectric coefficients, enhancing
the field of piezoelectric material design and facilitating
advancements in diverse scientific applications. For more
detailed information on the architecture of the machine
learning models, please refer to Supplementary Information
S4, Tables A3, A4 and A5.
2.4. Crystal transformation of Piezoelectric tensor

Piezoelectric tensors, as 3rd rank tensors follow specific
transformation laws. The orientation of a molecule or crys-
tallographic lattice in relation to the laboratory coordinate
system is determined by three Euler angles: �, �, and  as
visualized in Fig. 2. Two angles, � and �, specify a direction

in space, while fixes the orientation of the other two sets in
orthogonal axes. This can be visualized as three consecutive
rotations. The direction cosine matrix is commonly used to
derive the orientation of a general rotation.

a1 =
⎡

⎢

⎢

⎣

cos� sin� 0
− sin� cos� 0

0 0 1

⎤

⎥

⎥

⎦

a2 =
⎡

⎢

⎢

⎣

1 0 0
0 cos � sin �
0 − sin � cos �

⎤

⎥

⎥

⎦

a3 =
⎡

⎢

⎢

⎣

cos sin 0
− sin cos 0

0 0 1

⎤

⎥

⎥

⎦

(1)

The relationship between the eijk tensor in the laboratorycoordinate system obtained after eulerian rotation (�, �  )
of the eolmn tensor in the crystal coordinate system is given
by the transformation for 3rd rank tensor as follow: [42]

e′ijk = (a1)il (a2)jm (a3)kn eolmn (2)
where, [i, j, k, l, m, n] = 3

(a1)il (a2)jm (a3)kn are the direction cosines representing
both the coordinate systems. In the representation of 3rd rank
3 × 3 × 3 in 3 × 6 piezoelectric tensors, the new tensor after
transformation is given by [43]:

e′ij (�, �,  ) =Ail e
o
lm Nmj (3)

[i, l] = 3; [j, m] = 6.
The Cartesian tensor notation and Einstein summation con-
vention were used in the analytical solution of tensor mathe-
matics and performing crystal rotations. In these engineering
notations, repeated indices imply summation over those
indices. The convention also allows for partial differentiation
with respect to the coordinate associated with an index
[44, 45]. These notations provide a concise and precise way
to express and manipulate the piezoelectric tensors obtained
from the multi-scale machine learning models. Ail andNmjare 3 × 3 and 6 × 6 rotation matrix of direction cosines. The
analytical calculation of crystal rotation guided by tensor
mathematics can be found in Supplementary Information S5.

3. Discovering materials with enhanced
piezoelectric performance
This section showcases the potential of PiezoTensor-

Net in the rapid fine-tuning and discovery of piezoelectric
materials. Aluminum Nitride (AlN) is a commonly used
material in microelectromechanical systems (MEMS) due to
its advantages of high-temperature stability, better thermal
conductivity, and enhanced mechanical strength. However,
its low piezoelectric coefficient has prompted studies on
performance enhancement through alloying with transition
metals (TM) [46, 47]. Previous investigations in this area
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Figure 2: Crystallographic rotations for a crystal with three sets of Euler angles are described as follows: a) Counterclockwise
rotation (�) about the Z-axis, with a range of 0◦ to 360◦. b) Counterclockwise rotation (�) about the X’-axis, with a range of
0◦ to 180◦. c) Counterclockwise rotation ( ) about the Z”-axis, with a range of 0◦ to 360◦. The transformation of the tensor
by these rotations is given by a1, a2, and a3, respectively, where each of them represents a 3×3 matrix of direction cosines. It is
noteworthy that some of the zero value position of the piezoelectric coefficient transforms into non-zero coefficients.

have focused on a limited number of TM. For instance,
Uehara et al. [46] and Hirata et al. [47] explored the prepa-
ration and enhancement of AlN with specific TMs of a
small subset in their analysis. Zha et al. [48] expanded the
scope by investigating 28 sets of TM in AlN, alloying a
single TM at a time. Despite the comprehensive approach,
these studies lacked a data-driven methodology, resulting
in limitations such as a focus on fewer alloying metals and
primarily examining single alloying scenarios.

PiezoTensorNet is utilized in this study to investigate
the different scenarios starting from pure AlN which is
hexagolan 6mm crystal. The doping effect of foreign el-
ements, both single alloying and binary configurations as
visualized in Figure 3 (a) is done. Singular dopants [Ta,
Zr, Y, Hf, Nb, K] result in higher emod values compared
to pure AlN, with Hf and Nb showing significantly larger
3.35 and 3.41 C/m2 values at a doping composition of
0.525 and 0.725 respectively as represented in Figure 3
(b). This study focuses on observing the collective impact
of the longitudinal, transverse, and shear modes within the
piezoelectric coefficient. A statistical approach was imple-
mented to deduce the overall influence of these coefficients
by employing a reference coefficient modulus, denoted as
emod and explained by Eq. 4. The emod solely serve as a
criterion for selecting materials with superior longitudinal,
transverse, and shear modes of piezoelectric components.

emodi =

√

√

√

√

√

6
∑

j=1
e2ij

emod = max (emodi ) [i = 1 to 3]
(4)

Binary dopants exhibit superior piezoelectric modulus
values, and among the seven binary dopant pairs studied
[Zr, Hg], [Sc, Y], [Ti, Hf], [Zr, Hf], [Ta, Nb], [B, Er], and
[Nb, Sc] which is illustrated in Figure 3 (c). The [B, Er]

pair achieves the optimal emod values of 4.36 C/m2 (e33 4.36C/m2 and e31 0.09 C/m2) which is followed by 3.74 C/m2

(e33 3.54 C/m2 and e31 0.86 C/m2) for [Nb, Sc]. The ternary
surface representation in Figure 3 (d) demonstrates the dis-
tribution of modulus values across different compositions
of B, Er, and AlN, with a maximum value of 4.36 C/m2

attained at B0.3Er0.5Al0.2N. The doped piezoelectric mate-
rial is also analyzed for crystal transformation using Euler
angular transformations (�, �,  ) as discussed in Section 2.4.

The impact of angular variation is clearly encapsulated
by the plots of Figure 3 e) and f). It is noteworthy that the
variation of angle � shows no variation in tensor structure
whereas there was a significant variation of tensor com-
ponent diversification because of � and  . The angular
variations of  and � depict that distribution of maximum
values of all 18 components of the piezoelectric tensor falls
in 91.52o and 268.47o value of  in the Figure 3 e) which
is again validated from e∗′mod value lying for same values of
 of Figure 3 f). Also, the maximum modulus is achieved
for � values of 180o and 0o. This analysis yields valuable
insights into the comprehensive piezoelectric enhancement
of amalgamated materials under rotational transformations.

The piezoelectric tensors obtained from the sequence of
the above analysis will be used for the electro-mechanical
characterization in the microelectromechanical self-energy
sufficient system design.

eo =

[

0 0 0 0 −0.2893 0
0 0 0 −0.2893 0 0

−0.5801 −0.5801 1.461 0 0 0

]

e∗ =

[

0 0 0 0 0.2283 0
0 0 0 0.2283 0 0

0.0943 0.0943 4.363 0 0 0

]
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Figure 3: Rapid materials design and discovery for achieving optimum piezoelectric performance by strategic incorporation of
alloy doping and crystal rotation. a) The introduction of foreign elements, D1, D2, or a combination thereof, into the AlN base
material initiates the alloying process. b) The influence of single dopants (Ta, Zr, Y, Hf, Nb, K) on the reference modulus of
elasticity, emod, is visually elucidated. Remarkably, all dopants yield higher emod values compared to the base AlN, which itself
exhibits a value of 1.67 C/m2. c) Comparative plots of emod, e33, and e31 for various binary dopant combinations unveil the
superiority of the [B, Er] dopant pair, followed by [Nb, Sc], in terms of achieving elevated emod values. d) The distribution of
emod values across diverse compositions of B, Er, and the AlN ceramic material is visualized through a ternary surface heatmap.
Notably, a maximum value of 4.37 C/m2 is attained at a composition of 0.3 B and 0.5 Er. Crystal rotation analysis. e) is
conducted to investigate the impact of angular variations, specifically the  and � angles, on the 18 components of the rotated
piezoelectric coefficient tensor. The individual linear heatmap depicts the density distribution of each component as a function
of varying  angles, with dark curves representing the density distribution of maximum values observed. Intriguingly, the density
peaks at angles of 91.52o and 268.47o. f) Moreover, the interplay between e′mod and the angular variations of  and � is explored,
yielding valuable insights into the piezoelectric properties under rotational transformations.

e∗
′

1 =

[

0 0.08 0 −0.0808 0.459 −0.4554
−0.1882 −4.563 −4.3232 8.7947 −0.0807 0.146
0.1899 4.3775 4.3636 −8.6464 0 −0.0667

]

e∗
′

2 =

[

1.1354 0.947 0.9856 −1.825 −2.005 1.9339
0.9564 1.098 0.9799 −1.9783 −1.8336 1.93
−0.9946 −0.9778 −1.0156 1.9799 2.0 −1.838

]

Where,
eo = Piezoelectric tensor for pure AlN
e∗ = Piezoelectric tensor for alloyed AlN,

B0.3Er0.5Al0.2N

e∗
′

1 = Rotated piezoelectric tensor for alloyed AlN,
� = 0◦,  = 268.47◦, 91.52◦; 0◦ ≤ � ≤ 360◦

e∗
′

2 = Rotated piezoelectric tensor for alloyed AlN,
� = 180◦,  = 268.47◦, 91.52◦; 0◦ ≤ � ≤ 360◦

The tensor structure of pure AlN and doped material has
a similar structure with five non-zero elements and has
elevated piezoelectric effects because of a higher coefficient
of 4.363 C∕m2 in e∗ in comparison to 1.461 C∕m2 of eo.However, there is significant variation in tensor structure
because of crystal rotation. The surface plot in Figure 4 b)
illustrates the tensor components eo, e∗, e∗1, and e∗2 that are
utilized in the FEM analysis.
3.1. Finite element analysis for micro-sized beams

of ML-assigned piezoelectric tensors
With the in-silico toolkit to predict the piezoelectric

tensors from new composition information, it can be very
useful for beneficial applications if the properties can be
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tested for energy generation using finite element models [49,
50]. A microelectromechanical model of a cantilever beam
can be a substantially understandable and comprehensible
formulation for assessing the property-performance charac-
teristics of ML-designed novel piezoelectric materials. The
governing equations for polar materials can be expressed
with linear constitutive equations, which are close to those
presented in Ref. [51]. For steady-state conditions the stress
tensor ( Tij ) of a piezoelectric beam of Fig. 4(a) undergoing
elastic deformation is expressed by the equation 5,

−∇ ⋅ Tij = ⃖⃖⃗f b (5)
The deformation of the piezoelectric solid material is quanti-
fied in terms of displacement vector (�i), and it will be knownthat the stress tensor is a composite function of �i. The term
⃖⃖⃗f b in the right-hand side of the equation is the volumetric
body force vector.

Variation of electric field potential (�) in the micro-sized
piezoelectric beam is mathematically defined by the Poisson
equation 6:

−∇ ⋅ "∇� = � (6)
In Eq. 6, " is the permittivity of the piezoelectric material
constituting the loaded cantilever beam, whereas � is the vol-
umetric charge density in themedium. Electric field intensity
vector Ek for the computational domain is computed as the
gradient of the scalar field �.

The electro-mechanical characterization within the sim-
ulation domain involves the interaction between mechan-
ical stimuli (Eq. 5) and electrical response (Eq. 6). The
piezoelectric tensor plays the crucial role of representing the
tightly coupled physics of the electromechanical system such
as the piezoelectric beams. As shown in Eq. 7, the linear
piezoelectric constitutive equations are in the Stress-Electric
Displacement form with strain components and electric field
components as independent variables.

Tij = cijklSkl − ekijEk (7)
Di = eijkSkl + "ikEk (8)

In the equation, the strain tensor annotated as Skl, is a
function of displacement variables. cijkl is of fourth-orderstiffness tensor, ekij and eijk are third order piezoelectric
tensors, and the dielectric tensor "ik is of second order.
Applying materials symmetry conditions, the piezoelectric
tensors can be reduced into the form of eki and eij , andPiezoTensorNet is currently suited to work with the tensors
of this format. The 3D surface representation of eij ten-
sors for four types of considered piezoelectric materials are
graphically shown in Fig. 4(b). The tensor for undoped AlN
i.e. eo as visualized in b)(i) has its maximum peak value of
1.461 C/m2 andmaximum depth value of -0.5801 C/m2. The
corresponding tensors for the different doped variants are
presented graphically in b)(ii)- (iv). Without incorporating
the rotation effect, the doping of AlN with B and Er in
the composition B0.3Er0.5Al0.2N produces the 3D profile of
e∗ tensor of b)(ii). The maximum peak (maximum positive

valued coefficient = 4.363 C/m2 ) for this material is much
higher than that of undoped AlN. However, each of the
coefficients of the e∗ tensor is zero or larger, and so it loses
the merit associated with the depth of the surface. For doped
alloy (B0.3Er0.5Al0.2N), and rotated with  = 91.52◦ or
268.47◦ and � = 0◦, both the peak and depths are of larger
magnitudes. Referring to b)(iii), the maximum peak of e∗′1tensor is of 8.7947 C/m2 whereas the maximum depth is of
-8.6464 C/m2. When the rotational angle  is maintained
at 91.52◦ or 268.47◦ and � is changed to 180◦, the profile
of e∗′1 for B0.3Er0.5Al0.2N as shown in b) iv) has relatively
smaller peak values (largest positive value of 2.0 C/m2)
and shallower depth (most negative valued coefficient -2.005
C/m2). For the AlN ceramic materials and doped-materials,
the relative permittivity of 9.1 is utilized. As illustrated
earlier, the piezoelectric tensor for the 3D cantilever beam
of AlN ceramics or doped alloys is represented by 18 coef-
ficients in a 3 × 6 matrix. Applying symmetry conditions,
the stiffness matrix for isotropic and orthotropic 3D beam
materials can be represented with a 6 × 6 matrix with a total
of 36 elements.

For isotropic assumption, the following stiffness tensor
is used to represent the case of AlN piezoelectric material:

CAlNijkl = 1011 ×

⎡

⎢

⎢

⎢

⎢

⎣

3.54 1.12 1.12 0 0 0
1.12 3.54 1.12 0 0 0
1.12 1.12 3.54 0 0 0
0 0 0 1.21 0 0
0 0 0 0 1.21 0
0 0 0 0 0 1.21

⎤

⎥

⎥

⎥

⎥

⎦

N∕m2

Composition-based feature vector (CBFV) methodol-
ogy, illustrated in Poudel et al. [31] has been utilized to
compute the effective stiffness tensor for doped alloy. The
stiffness tensor for B0.3Er0.5Al0.2N alloy (annotated as d-
AlN) for elastic isotropy condition is:

Cd−AlNijkl = 1011 ×

⎡

⎢

⎢

⎢

⎢

⎣

2.65 0.84 0.84 0 0 0
0.84 2.65 0.84 0 0 0
0.84 0.84 2.65 0 0 0
0 0 0 0.91 0 0
0 0 0 0 0.91 0
0 0 0 0 0 0.91

⎤

⎥

⎥

⎥

⎥

⎦

N∕m2

The conditions for materials isotropy are utilized in this
section to highlight the sole effect of alteration in piezo-
electric coefficients in doped alloys. The values of Young’s
modulus (YE) and Poisson’s ratio � for AlN are 300 GPa
and 0.24 respectively. Whereas, for B0.3Er0.5Al0.2N the cor-
responding stiffness tensor indicates YE and � as 225 GPa
and 0.24 respectively. The FEM simulations corresponding
to orthotropic elasticity are presented in Supplementary
Information S6. The cantilever beam in Fig. 4(a) has a
dimension of l =200 �m, b = 50 �m and h = 5 �m. At the
end face of the beam (AlN ceramics or its doped versions)
attached to the fixed wall, fixed boundary condition (zero
displacement with �x = �y = �z = 0) is applied. At the
face at the opposite end of this piezoelectric beam, a surface
load (Fz) is applied in the downward direction. This stress
load is applied with constant values ranging from 1 × 10−5
to (Fz)max = 5 × 10−5 N/m2. The top and bottom faces
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Figure 4: Finite element analysis for micro-sized beams. a) The cantilever beam (200 x 50 x 5) �m is subjected to varying
loading conditions ranging from 1x 10−5 N∕m2 to a maximum (Fz)max = 5x 10−5 N∕m2. The dimensions are not according to
the scale. The top and bottom surfaces are electrically grounded for boundary conditions. b) Deformation, voltage generation,
and power results obtained from the electro-mechanical coupled FEA for five different loading conditions of four different tensor
properties. c) Results of deformation distribution along the z-axis (�z) for a load (Fz)max in the pure AlN and alloyed beam. d)
Electric potential (�) for (Fz)max showing the maximum value of 7.8 V for the corresponding maximum deformation of 0.97 �m.

of the beam are grounded electrically. With the materials
properties and boundary conditions, the set of Eqs. 5 and 6
is solved using finite element method in Elmer Multiphysics
software [52, 53].

As illustrated in Fig. 4 b), the potential distribution
and deformation variation for B0.3Er0.5Al0.2N alloy (with
the orientation described as  = 91.52◦ or 268.47◦ and
� = 0◦) are presented. With the matrix for e∗′1 tensor being
asymmetric, the voltage distribution pattern is characterized
by spatial anisotropy. For a stress load of (Fz)max, maximum
displacement with a magnitude of 0.97 �m is attained and
potential field with a maximum value of 7.8 V is generated
in this material type. It is further revealed from the curves of
Fig. 4(d) that the value of maximum � for this piezoelectric
material ( represented by the curve for Doped and rotated, e∗′1) is around 3.39 times that of the maximum value obtained
in the AlN beam ( material denoted by the curve named Pure
AlN, eo ) at the stress loading of (Fz)max. The maximum
value of potential in pure AlN for the above loading is 2.3
V. The maximum voltage for the other two variants of doped
alloys with piezoelectric tensors of e∗ and e∗′2 are 3.9 and
4.7 V respectively for the same loading. Thus, the doped
material in general offers better electromechanical merits

compared to the AlN beam. Moreover, the doped candidate
with rotation orientation resulting in e∗′1 is far superior to
any of the other three candidates. The results of voltage
and deformation distribution for a range of constant loads,
varying from 1×10−5 N∕m2 to 5×10−5 N∕m2, as presented
in Figure 4 (b) offer more insights than just the finetuning
of electric potential for a given mechanical loading. The
deformation curve for pure AlNmaterial is of visibly shorter
length than that of the other three variants all composed of
the same doped material (B0.3Er0.5Al0.2N). Due to the com-
positional differences between AlN and B0.3Er0.5Al0.2N,their stiffness tensors are distinct. This variation in elas-
tic response between the two materials leads to different
deformations in pure AlN and its doped variants. For the
vibrating beam of mass density (�) of 7500 Kg/m3 and
moment of inertia (I = bℎ3∕12), the natural frequency at
first mode is given as f = 1.8752

2�

√

YEI
�bℎl4 [54]. FromFig. 4 c),

Under (Fz)max, the curves demonstrate that a cantilever beam
composed of AlN ceramic exhibits a maximum vertical
displacement of only 0.73 �m at a first mode frequency of
629.11 kHz. In contrast, the B0.3Er0.5Al0.2N beams already
deform by 0.97 �m at 544.82 kHz.
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The average power (P) for the MEMS computed in ac-
cordance to the relation P= (2�f )CV2 [55].Where, f, C, and
V are the vibrational frequency of the beam, capacitance of
the connected capacitor, and generated voltage respectively.
For this system, considering the capacitance of 0.0492 pF
and for (Fz)max, the power is obtained as 2082.71 �W for
the rotated B0.3Er0.5Al0.2N (e∗′1 ) beam, whereas it is 209.1
�W for pure AlN (eo). This represents a 9.96-fold increase
compared to pure AlN. In the case of the other system, the
maximum power is 520.82 �Wfor e∗ and 756.19 �Wfor e∗′2 .In energy harvesting applications, the devices are designed
based on loading conditions so the inclusion of finite element
analysis will add to the flexibility of choosing the materials
that provide the optimum range of deflections for a given
applied force.

4. Conclusion
The integration of computational engineering, crystal-

lography, and electro-mechanical characterization in the de-
sign of piezoelectric materials is the focus of this study.
The introduced framework, PiezoTensorNet, is scientifically
robust and combines the interdisciplinary science of crystal
structure, tensor mathematics, and machine learning tech-
niques. It combines a hierarchical neural network-based
crystal point group classification with a modular ensemble
neural network for piezoelectric coefficient prediction. The
fusion of these interdisciplinary approaches results in an
efficient model that combines a multi-layer classification
model and a multi-dimensional regression-based modular
network. The crystal point group classification influences
the activation of specific blocks within the modular network.
This framework also incorporates the study of piezoelectric
behavior variations in the presence of single or binary for-
eign elements as dopants. Furthermore, it includes crystal
transformation and the enhancement of the piezoelectric
coefficient using Euler angular rotation by the combinations
of (�, �,  ). The application of tensormathematics supports
the physics of crystal rotation. This framework effectively
utilizes and enhances the piezoelectric response of the ma-
terial through electro-mechanical coupling. The integration
of computational engineering, crystallography, and electro-
mechanical characterization enables rapid design improve-
ments in piezoelectric materials.

In this research, themultidisciplinary integrated PiezoTen-
sorNet was applied to a MEMS based on Aluminum Nitride
(AlN). The study focused on the impact of singular and
binary foreign element dopants on the piezoelectric perfor-
mance of the system. It was determined that the composition
[B, Er] with a ratio of B0.3Er0.5Al0.2N exhibited optimal
piezoelectric properties. Using crystallography-guided ML
and FEM, the performance of a cantilever beam was an-
alyzed. The five different loading conditions which cause
varying deformation were studied. The results showed that
the power increased from 209.1 �W520.67 �W in the doped
system when subjected to a case of maximum deformation

of 0.97 �m. Furthermore, crystallography rotation was per-
formed on the doped alloy, and it was found that rotating the
crystal through 91.52o along the vertical axis (Z-axis) from
either direction resulted in the highest power generation,
reaching a value of 2082.71 �W. This study demonstrates
the scientific application of PiezoTensorNet in the field of
piezoelectric materials, specifically in the context of MEMS
based on AlN. By exploring the effects of dopants and
crystallography rotation, significant improvements in the
piezoelectric performance of the system were achieved.
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Appendix A. Supplementary Information
The SupplementaryMaterial to this article is a document

consisting of 6 different sections. The page numbers within
the supplementary information document are indicated us-
ing Roman numerals.

The following are the six sections of the supplementary
material, each of which will be described in detail later in
the document.

S1. Piezoelectric Coefficients: Mathematical Expres-
sions: contains Table A1, expressing piezoelectric coef-
ficients in terms of electric field, electric displacement,
mechanical stress, and strain.

S2. Crystal Point Group and Piezoelectricity: includes
Table A2, with noncentrosymmetric point groups and piezo-
electric tensor in 20 crystal classes.

S3. Data Visualization and Feature Engineering: com-
prises Table A3, Magpie Descriptors for Materials Analysis
with added complementing features, alongside Fig. A1, Vi-
sualization and feature engineering of collected Piezoelec-
tric datasets.
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S4. Machine Learning Descriptions: consists of Tables
A4, A5, and A6 detailing hyperparameter selection and ma-
chine learning descriptions, along with Fig. A2 presenting
learning curves for training and validation accuracy.

S5. Crystal Rotation Supported by Tensor Mathematics:
S6. FEM for Orthotropic Stiffness: features Fig. A3,

illustrating FEM results of generated voltage and corre-
sponding deformation for the orthotopic stiffness matrix.

Data Availability
The data used in this work is available in https://github.

com/Sachinscnpdl/PiezoTensorNet-Data. The graphical user
interface of PiezoTensorNet can be accessed via: https://
piezotensornet.streamlit.app/
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Appendix A. Supplementary Information:

PiezoTensorNet: Crystallography informed multi-scale hierarchical ma-
chine learning model for rapid piezoelectric performance finetuning

S1. Piezoelectric Coefficients: Mathematical Expressions
The piezoelectric response in a material is directly influenced by the piezoelectric tensors. In total, there are

four piezoelectric coefficients, dij , eij , gij , and ℎij , which is represented in Table A1 along with their corresponding
representations. The electric field strength, E, relates to the electric flux density, D, while the linearized strain, S, is
connected to the stress, T . In this study, the focus is on analyzing the piezoelectric stress tensor, eij , to understand and
study the piezoelectric response of the material. By examining this tensor, insights can be gained into the material’s
behavior and its ability to convert mechanical stress into electrical signals or vice versa.

Table A1: This table presents the four piezoelectric coefficients in terms of the electric field, electric displacement, mechanical
stress, and strain. The expressions for direct and indirect piezoelectric effects are included, along with their respective units. The
symbols have meaning throughout this article as electric field strength E, electric flux density D, the linearized strain S, stress T

Symbol Expression Units

dij

(

)Di
)Tj

)

E
[

C
N

]

( )Sj
)Ei

)

T
[

mV
N

]

eij
(

)Di
)Sj

)

E
[

C
m2

]

−
( )Tj
)Ei

)

S
[

N
V⋅m

]

gij −
(

)Ei
)Tj

)

D
[

V
m⋅N

]

( )Sj
)Di

)

T
[

m2

C

]

ℎij −
(

)Ei
)Sj

)

D
[

V
m

]

( )Tj
)Di

)

S
[

N
C

]

S2. Crystal point group and piezoelectricity
The relationship outlined by Neumann’s law connects a material’s physical characteristics to its crystallographic

point group symmetry. Among the 32 groups, only 21 lack a central inversion, facilitating piezoelectric behavior.
However, centrosymmetric structures, exemplified by point group 432, hinder odd-rank tensor properties, thereby elim-
inating piezoelectricity (Trolier-McKinstry (2008)). Conversely, the 20 noncentrosymmetric groups hold promise for
demonstrating piezoelectric properties. These groups encompass crystal systems with Laue class, noncentrosymmetric
point groups housing independent piezoelectric tensor elements across 20 crystal classes endowedwith piezoelectricity.
From a mathematical perspective, the crystal class is classified based on its correlation with the minimum number of
independent components required to fully characterize the material’s piezoelectric response. The numeric structure
of the piezoelectric tensor relies on the symmetry displayed by the crystal structure and its corresponding point
group symmetry (Prince (2004)). The crystal system with laue class and point group and the number of independent
piezoelectric coefficients is as tabulated in Table A2. It is to be noted that #eij represents the number of independent
coefficients from the tensor, for example in cubic crystal there are three non-zero coefficients and all are equal to e14,
so, cubic system will have 1 independent coefficient instead of 3.
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Table A2
Crystal systems with Laue class, noncentrosymmetric point group with independent piezoelectric tensor elements in 20
crystal classes with piezoelectric property. #eij indicates the number of independent coefficients in the fourth-order
piezoelectric tensor.

Crystal
Structure Laue class Noncentrosymmetric

Point group
#
eij

Cubic 2∕m3̄
4∕m3̄2∕m

23
4̄3m 1

Hexagonal

6∕m

6∕m2∕m2∕m.

6
6̄

622
6mm
6̄2m

4
2

1
3
1

Trigonal
3̄

3̄2∕m

3

32
3m

6

2
4

Tetragonal

4∕m

4∕m2∕m2∕m

4
4̄

422
4mm
4̄2m

4
4

1
3
2

Orthorhombic 2/m2/m2/m 222
mm2

3
5

Monoclinic 2∕m 2
m

8
10

Triclinic 1̄ 1 18

S3. Data visualization and Feature Engineering
The graph in Figure A1a provides a visual comparison of the occurrence frequencies for 58 unique elements in

the collected piezoelectric datasets. Each element is represented by a bar, and the length of each bar corresponds to
the number of times that element appears in the datasets. From the graph, it can be observed that 21 elements occur
less than 25 times, 20 occur between 25 to 75 times, and 17 elements occur more than 75 times. Notably, oxygen
exhibits the highest occurrence frequency among all the elements, indicating its significant presence in the collected
piezoelectric materials. Similarly, Figure A1b showcases the constituent piezoelectric alloys found in the datasets, with
each alloy represented by different numbers of elements. The data collected encompasses a wide range of elemental
compositions, varying from alloys consisting of a single element to those composed of up to six different elements.
Specifically, there are 3 alloys consisting of a single element, 190 alloys with 2 elements, 749 alloys with 3 elements,
339 alloys with 4 elements, 72 alloys with 5 elements, and 3 alloys with 6 elements. This representation highlights
the diversity in the compositions of piezoelectric materials and underscores the potential complexity involved in their
design and synthesis.

Magpie descriptors are a collection of composition-based materials attributes that encompass stoichiometric
attributes, elemental properties, electronic structure attributes, and ionic compound attributes. These descriptors
have found extensive usage in constructing machine learning models for predicting properties of composition-based
materials (Ward et al. (2016)). In our study, we have utilized the statistics of elemental properties as the foundational
dataset for predicting the space group and crystal system. The Magpie element property statistics consist of 22
features, including Atomic Number, Mendeleev Number, Atomic Weight, Melting Temperature, Periodic Table Row
and Column, Covalent Radius, Electronegativity, the number of Valence electrons in each orbital (s, p, d, f, total), the
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Figure A1: Visualization of Constituent Elements in the Collected Piezoelectric Datasets a) Graphical comparison depicting
the number of occurrences of 58 unique elements in the collected piezoelectric datasets. Oxygen exhibits the highest
frequency among the elements. b) Representation of the constituent piezoelectric alloys with varying numbers of elements.
The collected data encompasses elemental compositions ranging from one to six elements. c) The feature compression
with PCA and corresponding principal component for each model training.

number of unfilled electrons in each orbital (s, p, d, f, total), Ground State Volume, Ground State Band Gap Energy,
Ground State Magnetic Moment, and the Space Group Number of elements. The primary features of the Magpie
feature set are obtained by calculating the mean, average deviation, range, mode, minimum, and maximum of the
aforementioned elemental properties, with weights determined by the fraction of each element in the composition
(Li et al. (2021)). This transformation of raw materials data enables compatibility with machine learning algorithms.
Additionally, a new set of descriptors that contribute to the improvement of the piezoelectric system were introduced
to complement the magpie features.
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Table A3
Elemental Properties and Predictors in Magpie Descriptors for Materials Analysis and added feature to complement the
magpie features

Element Property statistics Added Predictors
of Magpie in this work

Atomic Number Average Atom Number

Mendeleev Number Average Thermal Conductivity

Atomic Weight Average Bulk Modulus

Melting Temperature Average Bulk Modulus Asymmetry

Periodic Table Average Shear Modulus
Row and Column

Covalent Radius Average Shear Modulus Asymmetry

Electronegativity Average Atomic Radius Difference

Number of Valence e in each Average Electronegativity
Orbital (s, p, d, f, total)

Number of unfilled e in each Average Melting Temperature
orbital (s, p, d, f, total)

Ground State Volume Average Melting Temperature Asymmetry

Ground State Band Gap Energy Valance Electron Concentration

Ground State Magnetic Moment Mixing of Entropy

Space Group Number Lambda Parameter in Entropy

Principal Component Analysis (PCA) was employed for feature selection in this study. PCA revealed the explained
variance and the number of features required to capture 96% of the explained variance. In the classification process,
1354 datasets were used for crystal point groups. Hierarchical classification determined that 29 principal components
captured 96% of the data variance. For modular tensor prediction, different crystal structures were considered,
with varying numbers of principal components selected. For the cubic structure (4̄2m), 33 principal components
accounted for 96% of the variance. For the tetragonal structure (4̄2m), 24 principal components were identified. The
orthorhombic structure (222) utilized 28 principal components, while the combined hexagonal (6mm) and tetragonal
(4mm) structures employed 30 principal components. The orthorhombic structure (mm2) also utilized 30 principal
components. Figure A1c illustrates the results of the feature selection and the corresponding variances.

S4. Machine Learning Descriptions
In our study, seven point groups are initially considered, and they are segmented into five distinct labels.

Recognizing the challenge posed by having multiple models and the associated complexity, we implemented a
clustering mechanism to group these labels into two category classes, namely Class A and B. This clustering helps
create a more manageable structure, improving the overall effectiveness of the fault classification. The classification
process begins by determining whether the piezoelectric material falls into Class A or B. Subsequently, based on this
outcome, the second layer is activated to further classify the material. The two-layer classification system focuses
on consistent patterns exhibited by mathematically homogeneous piezoelectric tensors. The first layer involves three
distinct children categories, while the second layer includes two children categories. An initial categorization of parent
groups is conducted before classifying the children. The hierarchical approach captures sibling crystal point group
relationships and structural inter-class dependencies, with child groups representing the actual crystal point groups
and parent groups serving as pseudo-clusters. The response emphasizes that this multi-layer classification approach
effectively identifies five distinct sibling crystal point groups.

The dataset is initially divided using the standard train-test split with a ratio of 90:10, allocating 90% of the data
for training and 10% for testing. Subsequently, within the training data, a further division is implemented, extracting
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Table A4
Hyper-parameters used to randomly tune for the best combination.

SN Hyper parameters
1 Epochs = [100, 150, 200]
2 batch size = [30, 40, 50, 60]
3 layers = [4,6]
4 neuron size = [8, 12, 16, 24, 32,48,64]
5 optimizer = [RMSprop, Adam, Nadam]
6 activation = [ReLU, selu,relu, PReLU, LeakyReLU]
7 loss function = [mse, msle]
8 drops = [0.05, 0.075, 0.08, 0.1]
9 learning rate = [0.0001, 0.0005,

0.001,0.005,0.01, 0.015, 0.031]

Figure A2: Learning curve for classification machine learning models

a portion for validation purposes in a 90:10 split. Throughout the training process, a sequential model architecture is
employed to train all of the models.

S4.1. Hyperparameter Tuning Description
In this section, we present the results of hyperparameter tuning for the neural network model. The hyperparameters

considered include batch size, optimizer, dropout rate, learning rate, weight initialization, and weight constraint. The
randomized search was conducted with 10 iterations and 10-fold cross-validation. The hyperparameter grid explored
during the randomized search is as in Table A4:

S4.2. Neural Network Model Architecture
The NN architecture for the HierCrystalNet is presented in Table A5. The classification model consists of numerous

layers on which the dense layer and dropout layer follow sequentially. The model is checked for accuracy metrics.
The loss function for two classifications like that of pseudo-parent is binary crossentropy and for actual sub-category
classification, it is categorical crossentropy. The learning curve of training versus validation accuracy is presented in
Fig. A2.
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Table A5
Hyperparameters of Classification Models: Multi-level hierarchical machine learning framework

Classification Model Hyperparameters

Pseudo-Parent:
Class A

or
Class B

Architecture: Sequential
Layers: Dense(32), Dropout, Dense(24), Dropout, Dense(16),
Dropout, Dense(12), Dropout, Dense(8), Dropout, Dense(1)
Dropout Rate: 0.05
Learning Rate: 0.005
Activation: selu, relu, LeakyReLU, PReLU, relu, softmax
Optimizer: adam
Loss Function: binary_crossentropy
Epochs: 200
Batch Size: 60

Class A:
PG 1
or
PG2
or
PG3

Architecture: Sequential
Layers: Dense(48), Dropout(0.05), Dense(16),
Dropout(0.05), Dropout(0.1), Dense(8), Dense(3)
Activation Functions: relu, relu, LeakyReLU, softmax
Optimizer: Adam
Learning Rate: 0.015
Loss Function: categorical_crossentropy
Epochs: 200
Batch Size: 50

Class B:
PG4
or
PG5

Architecture: Sequential
Layers: Dense(48), Dropout(0.08), Dense(16),
Dropout(0.08),Dense(8), Dense(2),
Activation Functions: relu, relu, LeakyReLU, softmax
Optimizer: Adam
Learning Rate: 0.031
Loss Function: categorical_crossentropy
Epochs: 200
Batch Size: 30

S5. Crystal rotation supported by tensor mathematics
Neumann’s principle asserts that the symmetry of a material’s structure limits the number of independent

components in tensors describing its physical properties. These properties cannot possess lower symmetry than the
crystal structure itself. In crystallography, the choice of standard unit cells and their axes is based on the principal
symmetry elements of the crystal system. The alignment of XYZ coordinates used for tensors is established in
accordance with the standard crystallographic unit cell axes (Newnham (2004)). Three angles (�, �,  ) are required
to specify the mutual orientation of two sets of orthogonal axes.

Piezoelectric tensors, being 3rd rank tensors, follow specific transformation laws. The orientation of a molecule or
crystallographic lattice in relation to the laboratory coordinate system is determined by three Euler angles: �, �, and
 . Two angles, � and �, specify a direction in space, while  fixes the orientation of the other two axes. This can be
visualized as three consecutive rotations. The direction cosine matrix is commonly used to derive the orientation of a
general rotation (Newnham (2004)).

1. First rotation: a counterclockwise rotation of (�) about Z:

a1 =
⎡

⎢

⎢

⎣

cos� sin� 0
− sin� cos� 0

0 0 1

⎤

⎥

⎥

⎦
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Table A6
Neural Network Architectures for five Different modular based ensemble models

ModularEnsembleNet Model I Architecture Model II Architecture

PG1
Dense(128, activation=’relu’)
Dense(64, activation=’relu’)
Dense(1)

Dense(32, activation=’relu’)
Dense(16, activation=’relu’)
Dense(1)

PG2
Dense(128, activation=’relu’)
Dense(64, activation=’relu’)
Dense(3)

Dense(32, activation=’relu’)
Dense(16, activation=’relu’)
Dense(3)

PG3
Dense(128, activation=’relu’)
Dense(64, activation=’relu’)
Dense(2)

Dense(32, activation=’relu’)
Dense(16, activation=’relu’)
Dense(2)

PG4
Dense(128, activation=’relu’)
Dense(64, activation=’relu’)
Dense(3)

Dense(32, activation=’relu’)
Dense(16, activation=’relu’)
Dense(3)

PG5

Dense(28, activation=’relu’)
Dense(18, activation=’LeakyReLU’)
Dropout(0.1)
Dense(12, activation=’selu’)
Dense(8, activation=’PReLU’)
Dense(6, activation=’relu’)
Dropout(0.1)
Dense(5)

Dense(30, activation=’relu’)
Dense(16, activation=’relu’)
Dropout(0.1)
Dense(12, activation=’selu’)
Dropout(0.1)
Dense(5)

2. First rotation: a counterclockwise rotation of (�) about X’:

a2 =
⎡

⎢

⎢

⎣

1 0 0
0 cos � sin �
0 − sin � cos �

⎤

⎥

⎥

⎦

3. First rotation: a counterclockwise rotation of ( ) about Z":

a3 =
⎡

⎢

⎢

⎣

cos sin 0
− sin cos 0

0 0 1

⎤

⎥

⎥

⎦

Aij = (aij) = a3 .a2 .a1

Aij = (aij) =

⎡

⎢

⎢

⎢

⎢

⎣

(cos� cos − cos � sin� sin ) (cos� sin − cos � cos� sin ) sin � sin 

(− cos � cos sin� − cos� sin ) (cos � cos� cos − sin� sin ) cos � sin 

sin � sin� −cos� sin � cos �

⎤

⎥

⎥

⎥

⎥

⎦

Nij =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a211 a221 a231 2a21a31 2a31a11 2a11a21
a212 a222 a232 2a22a32 2a32a12 2a12a22
a213 a223 a233 2a23a33 2a33a13 2a13a23
a12a13 a22a23 a32a33 a22a33 + a32a23 a12a33 + a32a13 a22a13 + a12a23
a13a11 a23a21 a33a31 a21a33 + a31a23 a31a13 + a11a33 a11a23 + a21a13
a11a12 a21a22 a31a32 a21a32 + a31a22 a31a12 + a11a32 a11a22 + a21a12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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The relationship between the eijk tensor in the laboratory coordinate system and the e0ijk tensor in the crystal
coordinate system (Kalinin et al. (2006)) is

e′ijk = Ail Ajm Akn e
0
lmn (1)

For the second rank 3×6 representations, the rotation relations is given by:

e′ij (�, �,  ) = Aik e
o
kl Nlj (2)

S5.1. Analytical tensor rotation illustration for cubic crystals
The analytical tensor rotation for the cubic system is represented here and all other remaining system follows a

similar approach. For a cubic system where the non-zero element in the laboratory coordinate system is e14 there is
only one set of (k, l) where k = 1, l = 4.

e′11 = A11 e
o
14 N41 e′12 = A11 e

o
14 N41 (3)

The Einstein summation convention simplifies the notation further by omitting the summation symbol (
∑

). In this
convention, when an index appears as both a subscript and a superscript, it indicates summation.

In the expression e′ij =
∑3
k=1

∑6
l=1 Aik ⋅ e

o
kl ⋅Nlj , the indices of A and N should be based on the indices of e′ij , e

o
kl,

and N.
For matrix A:
- The first index of A (i) corresponds to the first index of e′ij (i).
- The second index of A (j) corresponds to the first index of eokl (k).
For matrix N:
- The first index of N (l) corresponds to the second index of eokl (l).
- The second index of N (j) corresponds to the second index of e′ij (j).
The 3 × 6 piezoelectric tensor after crystal rotation is represented for each of the 18 components as below:

e′11 = A11 ⋅ e
o
11 ⋅N11 + A12 ⋅ e

o
12 ⋅N21 + A13 ⋅ e

o
13 ⋅N31 + A11 ⋅ e

o
14 ⋅N41 + A12 ⋅ e

o
15 ⋅N51 + A13 ⋅ e

o
16 ⋅N61

+ A11 ⋅ e
o
21 ⋅N11 + A12 ⋅ e

o
22 ⋅N21 + A13 ⋅ e

o
23 ⋅N31 + A11 ⋅ e

o
24 ⋅N41 + A12 ⋅ e

o
25 ⋅N51 + A13 ⋅ e

o
26 ⋅N61

+ A11 ⋅ e
o
31 ⋅N11 + A12 ⋅ e

o
32 ⋅N21 + A13 ⋅ e

o
33 ⋅N31 + A11 ⋅ e

o
34 ⋅N41 + A12 ⋅ e

o
35 ⋅N51 + A13 ⋅ e

o
36 ⋅N61

e′12 = A11 ⋅ e
o
11 ⋅N21 + A11 ⋅ e

o
12 ⋅N21 + A11 ⋅ e

o
13 ⋅N21 + A11 ⋅ e

o
14 ⋅N21 + A11 ⋅ e

o
15 ⋅N21 + A11 ⋅ e

o
16 ⋅N21

+ A12 ⋅ e
o
21 ⋅N21 + A12 ⋅ e

o
22 ⋅N21 + A12 ⋅ e

o
23 ⋅N21 + A12 ⋅ e

o
24 ⋅N21 + A12 ⋅ e

o
25 ⋅N21 + A12 ⋅ e

o
26 ⋅N21

+ A13 ⋅ e
o
31 ⋅N21 + A13 ⋅ e

o
32 ⋅N21 + A13 ⋅ e

o
33 ⋅N21 + A13 ⋅ e

o
34 ⋅N21 + A13 ⋅ e

o
35 ⋅N21 + A13 ⋅ e

o
36 ⋅N21

e′13 = A11 ⋅ e
o
11 ⋅N31 + A11 ⋅ e

o
12 ⋅N31 + A11 ⋅ e

o
13 ⋅N31 + A11 ⋅ e

o
14 ⋅N31 + A11 ⋅ e

o
15 ⋅N31 + A11 ⋅ e

o
16 ⋅N31

+ A12 ⋅ e
o
21 ⋅N31 + A12 ⋅ e

o
22 ⋅N31 + A12 ⋅ e

o
23 ⋅N31 + A12 ⋅ e

o
24 ⋅N31 + A12 ⋅ e

o
25 ⋅N31 + A12 ⋅ e

o
26 ⋅N31

+ A13 ⋅ e
o
31 ⋅N31 + A13 ⋅ e

o
32 ⋅N31 + A13 ⋅ e

o
33 ⋅N31 + A13 ⋅ e

o
34 ⋅N31 + A13 ⋅ e

o
35 ⋅N31 + A13 ⋅ e

o
36 ⋅N31

e′14 = A11 ⋅ e
o
11 ⋅N41 + A11 ⋅ e

o
12 ⋅N41 + A11 ⋅ e

o
13 ⋅N41 + A11 ⋅ e

o
14 ⋅N41 + A11 ⋅ e

o
15 ⋅N41 + A11 ⋅ e

o
16 ⋅N41

+ A12 ⋅ e
o
21 ⋅N41 + A12 ⋅ e

o
22 ⋅N41 + A12 ⋅ e

o
23 ⋅N41 + A12 ⋅ e

o
24 ⋅N41 + A12 ⋅ e

o
25 ⋅N41 + A12 ⋅ e

o
26 ⋅N41

+ A13 ⋅ e
o
31 ⋅N41 + A13 ⋅ e

o
32 ⋅N41 + A13 ⋅ e

o
33 ⋅N41 + A13 ⋅ e

o
34 ⋅N41 + A13 ⋅ e

o
35 ⋅N41 + A13 ⋅ e

o
36 ⋅N41

e′15 = A11 ⋅ e
o
11 ⋅N51 + A11 ⋅ e

o
12 ⋅N51 + A11 ⋅ e

o
13 ⋅N51 + A11 ⋅ e

o
14 ⋅N51 + A11 ⋅ e

o
15 ⋅N51 + A11 ⋅ e

o
16 ⋅N51

+ A12 ⋅ e
o
21 ⋅N51 + A12 ⋅ e

o
22 ⋅N51 + A12 ⋅ e

o
23 ⋅N51 + A12 ⋅ e

o
24 ⋅N51 + A12 ⋅ e

o
25 ⋅N51 + A12 ⋅ e

o
26 ⋅N51

+ A13 ⋅ e
o
31 ⋅N51 + A13 ⋅ e

o
32 ⋅N51 + A13 ⋅ e

o
33 ⋅N51 + A13 ⋅ e

o
34 ⋅N51 + A13 ⋅ e

o
35 ⋅N51 + A13 ⋅ e

o
36 ⋅N51

e′16 = A11 ⋅ e
o
11 ⋅N61 + A11 ⋅ e

o
12 ⋅N61 + A11 ⋅ e

o
13 ⋅N61 + A11 ⋅ e

o
14 ⋅N61 + A11 ⋅ e

o
15 ⋅N61 + A11 ⋅ e

o
16 ⋅N61

+ A12 ⋅ e
o
21 ⋅N61 + A12 ⋅ e

o
22 ⋅N61 + A12 ⋅ e

o
23 ⋅N61 + A12 ⋅ e

o
24 ⋅N61 + A12 ⋅ e

o
25 ⋅N61 + A12 ⋅ e

o
26 ⋅N61

+ A13 ⋅ e
o
31 ⋅N61 + A13 ⋅ e

o
32 ⋅N61 + A13 ⋅ e

o
33 ⋅N61 + A13 ⋅ e

o
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S6. FEM for orthotropic stiffness
Orthotropic materials exhibit unique and independent mechanical properties along three mutually perpendicular directions. This

study employs a stiffness matrix for the characterization of orthotropic materials, mirroring the considerations and setup outlined
in Section 3.1 of the main article. Specifically, a load of (Fz)max = 5x 10−5 N∕m2 is applied solely to investigate the piezoelectric
performance under orthotropic assumptions. Young’s modulus along the applied load i.e., along the z-axis (C33) from the orthotropic
stiffness matrix was used in frequency calculations. The stiffness Cd−AlN

ijkl is used for all three cases of alloyed and rotated crystals.
Figure A3 a) illustrates the voltage generation results in volts for four different tensors: pure AlN, doped B0.3Er0.5Al0.2N, doped

AlN with Type-1 rotation, and doped AlN with Type-2 rotation. For pure AlN, the deformation and first mode frequency are 0.79
�m and 70.71 kHz, respectively. Conversely, for B0.3Er0.5Al0.2N, these values are 0.88 �m and 56 kHz, as depicted in Fig A3 b).
The results encompassing power and voltage for all four setups are presented in Fig A3 c).

Tensor Values Used
Doped:B0.3Er0.5Al0.2N –> e∗

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0.2283 0

0 0 0 0.2283 0 0

0.0943 0.0943 4.363 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

Rotated- Type1 :( � = 0,  = 268.47, 91.52; 0 ≤ � ≤ 360) –> e∗′1

⎡

⎢

⎢

⎢

⎢

⎣

0 0.08 0 −0.0808 0.459 −0.4554

−0.1882 −4.563 −4.3232 8.7947 −0.0807 0.146

0.1899 4.3775 4.3636 −8.6464 0 −0.0667

⎤

⎥

⎥

⎥

⎥

⎦

Rotated-Type 2 :( � = 180,  = 268.47, 91.52; � = 0 ≤ � ≤ 360) –> e∗′2

⎡

⎢

⎢

⎢

⎢

⎣

1.1354 0.947 0.9856 −1.825 −2.005 1.9339

0.9564 1.098 0.9799 −1.9783 −1.8336 1.93

−0.9946 −0.9778 −1.0156 1.9799 2.0 −1.838

⎤

⎥

⎥

⎥

⎥

⎦

Orthotropic Stiffness matrix
Pure AlN: E1 = 275 GPa, E2 = 300 GPa, E3 = 325 GPa; �12 = 0.26, �23 = 0.24, �31 = 0.22

CAlN
ijkl =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3.24 1.17 1.15 0 0 0

1.08 3.57 1.21 0 0 0

0.972 1.12 3.79 0 0 0

0 0 0 1.31 0 0

0 0 0 0 1.13 0

0 0 0 0 0 1.19

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

× 1011N/m2

B0.3Er0.5Al0.2N: E1 = 250 GPa, E2 = 225 GPa, E3 = 275 GPa; �12 = 0.22, �23 = 0.24, �31 = 0.26

Cd−AlN
ijkl =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2.95 0.795 0.783 0 0 0

0.884 2.63 0.744 0 0 0

0.979 0.837 2.38 0 0 0

0 0 0 0.806 0 0

0 0 0 0 0.992 0

0 0 0 0 0 0.922

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

× 1011N/m2
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Figure A3: FEM results of generated voltage and corresponding deformation for the orthotopic stiffness matrix. The four
different tensors considered are pure AlN, doped B0.3Er0.5Al0.2N, doped AlN with Type-1 rotation, and doped AlN with
Type-2 rotation.
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