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This paper proposes a novel framework for modelling
the spread of financial crises in complex networks,
combining financial data, Extreme Value Theory
and an epidemiological transmission model.
We accommodate two key aspects of contagion
modelling: fundamentals-based contagion, where
the transmission is due to direct financial linkages,
and pure contagion, where a crisis might trigger
additional crises due to global effects. We use stock
price, geographical location and economic sector data
for a set of 398 companies to construct multiplex
networks of four layers, on which a Susceptible-
Infected-Recovered transmission model is defined, in
order to model the spread of financial shocks between
companies by accounting for their interconnected
nature. By utilizing stock price data for the 2008
and 2020 financial crises, we investigate and assess
the effectiveness of our model in forecasting the
propagation of financial shocks through the network,
where a shock is detected by measuring stock price
volatility. The results suggest that the proposed
framework is effective in predicting the spread
of financial crises. Our findings demonstrate the
significance of each layer of the multiplex network
structure, which differentiates between various
transmission pathways, for predicting the number of
affected companies, as well as for company-, sector-
or location-specific predictions.
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1. Introduction
Global financial stability has become one of the key concerns of economic policy-makers and
decision-makers due to the increasing frequency, magnitude and international scope of financial
crises [1]. Interconnectedness is a key feature of the global financial system, in which companies
can be connected in multiple ways, such as via their claims and obligations towards one another
[2], or through transactions between them [3], forming a network structure. Understanding how
financial crises experienced by certain companies or sectors can spread, potentially leading to
wider crises, is self-evidently of interest to policy-makers, investors and business owners, as even
minor disruptions in a single company can result in long-term issues and losses, as well as a
global financial crisis [4]. The network structure is crucial in determining how the initial shock
spreads across the system. Therefore, rather than being viewed as a standalone entity, a company
and the risk it confronts should be assessed in conjunction with the network of companies with
which it interacts and the wider financial environment in which it operates. Allen and Gale [5]
explore the influence of network topology on the propagation of risk in financial systems and
they emphasize that the existence of network connections can generate channels for the spread
of contagion, leading to an increased probability of risk transmission within the network. Since
the publication of this seminal paper, network models have become increasingly common in
theoretical and empirical studies of financial contagion.

The term ‘financial contagion’ first appeared in 1997 during the Asian crisis, alongside which,
the Russian Default of 1998, and the Global Financial Crisis of 2008 are among the recent events
that are thought to be results of contagion spread [6]. There are various methods that have been
proposed to model the spread of financial contagion in networks; popular approaches include
random graph models as well as those in which correlations (such as Pearson correlation) in
financial data are used to build complex financial networks. In the former, the employed network
structure may not reflect the real-world structure of financial networks since the latter are often
characterized by a high degree of clustering and heterogeneity [7], which are not captured
by many random graph models. The Pearson correlation coefficient, meanwhile, is unable to
represent nonlinear dependencies between risky asset returns or tail dependence in the data. As
an alternative, Extreme Value Theory-based (EVT-based) approaches enable the measurement of
non-linear dependence in the tail of the distributions. One of the most common statistical concepts
for computation of extreme risk in EVT is extremal dependence, for example through the tail
dependence coefficient [8,9].

In their comprehensive review [10], the authors show that methodologies from disciplines
such as physics and engineering can be employed to study various fields, including urban
development, financial markets, cooperation and social networks. They provide an in-depth
study of how econophysics employs the particle model from statistical physics to depict agent
behavior, demonstrating its effectiveness in modeling diverse financial interactions, including
those found in financial markets and international trade. Another commonly employed method
involves using epidemic models to study complex financial systems. For instance, Lazebnik et
al. [11] develop a mathematical model integrating epidemiological, social, and economic factors
to assess policies like work-from-home and vaccination during pandemics. Unlike our focus on
financial contagion within companies, this research examines social behavior and supply-chain
networks. Results suggest vaccination significantly reduces output loss, especially in industries
with close contacts. Other works employ Susceptible-Infected-Recovered (SIR) epidemic models
to study financial contagion in the banking sector [12] and between countries [1].

Many of these studies use monolayer networks (i.e., networks in which all the edges represent
the same type of connection between the nodes). In contrast, multilayer networks can more
accurately represent interconnected structures [13,14], being able to describe separately different
kinds of entities, connections, and relationships in each network layer. In such networks, there
are two types of edges: intra-layer edges, that connect nodes within the same layer, and inter-
layer edges, which connect nodes in different layers. A multiplex network is a restriction of this
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more general class, where inter-layer links connect instances of the same node in each layer.
Recently, multiplex networks have found many applications in finance. For example, the authors
of [15] suggest that accounting for both intralayer and interlayer propagation of contagions in
a multiplex structure of financial assets is important for understanding interconnected financial
systems of countries. In addition, [16] introduces a multilayer network model to analyse systemic
risk in China’s financial system, examining liability and cross-shareholding among institutions to
demonstrate how the network’s non-linear dynamics impact risk spreading and the connection to
systemic risk. Other applications of multiplex network are reviewed in detail in [10,14,17], which
delve deeper into the intricacies of multilayer network theory.

In this paper we propose a novel framework for modelling financial contagion that is based
on an SIR epidemic model defined on a multiplex network constructed from financial data. We
employ a stochastic epidemic transmission mechanism in which financial crises can spread locally
(to network neighbours) as well as globally (to any company). Then, by considering their local
and global connectivity, we simulate how a financial shock spreads from the original infected
companies to the others. To demonstrate our approach we construct two multiplex networks,
representing the financial dependence of 398 companies in the 2008 and the 2020 financial crises,
where each node represents a company and each layer represents a different type of connection
between the companies. Both networks consist of four layers: a tail dependence network layer,
a continents layer, a sectors layer and a global layer. The tail dependence layer measures the
strength of dependence between two companies using tail dependence coefficients, which are
calculated using daily stock price data. This weighted (complete) network is filtered via the
Planar Maximally Filtered Graph (PMFG) method [18], to remove weak and potentially spurious
links. The continents and sectors layers, respectively, connect companies under the assumption
that companies in the same continent or sector are more likely to be affected by a financial
crisis simultaneously. Finally, the global layer is a complete network, in which each company
is connected to every other company. This layer corresponds to the ‘pure contagion’ assumption
that a crisis in any company may trigger a crisis in any other company. In addition, in our model,
a company may experience a financial shock not just as a result of direct linkages to the initially
infected company, but also as a result of indirect connections within the network of companies,
amplifying the spread and impact of the financial shock. As a result, we allow for the so-called
‘cascading effect’, a phenomenon where the impacts of a financial crisis spread and intensify
through interconnected channels, resulting in a broader and more severe contagion than initially
anticipated [19], which is commonly overlooked in the literature.

We apply the model to the recent 2008 and 2020 financial crises and evaluate its utility in
predicting the spread of financial shocks across the network. We first identify which companies
have been ‘infected’ in each of the two crises using stock price volatility. We then study how
using data from the previous n crisis days to parametrise the transmission model can be used
to predict the infections in the future k days for different combinations of n and k. The results
suggest that for each crisis a different combination of n and k gives the most accurate predictions.
The proposed model outperforms the homogeneous mixing population approach in predicting
the number of infected companies, the continents and economic sectors that will be most affected,
and the sets of specific companies that will be infected during the future crisis days for both crises.

The remainder of the paper is organized as follows. Section 2 describes the data set. Then,
in Section 3 we describe the two parts of the modelling framework: the multiplex network
construction procedure and the transmission mechanism. In Section 4 we apply the model to
the 2008 and the 2020 financial crises. We first define the concept of infection in a financial context
and then we study how the model can be used to predict future infections in each of the two
crises, using past data. Finally, we assess the significance of each layer within our multiplex by
conducting a comparative analysis of its predictive accuracy on omission of various subsets of
its layers. Section 5 concludes and discusses our findings, the limitations of our approach as well
as avenues for further research. We defer additional explanation of our estimation approach and
further descriptive and predictive statistical results to the Supplementary Material.
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2. Data
The analysis in this paper is based on the closing daily stock price of 398 companies from
17/01/2002 to 18/07/2022 (inclusive), representing n= 5229 trading days. The data are collected
from https://finance.yahoo.com/ and the companies are selected such that for each
company there are consistent data going back as far as 17/01/2002, covering a sufficient
time period before the 2008 financial crisis. We separate the companies into groups, based on
the Bureau van Dijk1 company database. Firstly, we group the companies according to the
geographical location of their headquarters, resulting in six groups: Africa (2), Asia (77), Europe
(115), North America (194), Oceania (9) and South America (1). The disparity in geographical
representation arises from the distribution of available data meeting our date span criteria.
North America, for example, has a highly developed and mature financial market and hosts
numerous publicly traded companies, many of which have extensive historical data available.
This makes it easier to find companies with consistent data spanning back to 2002. In contrast,
some regions, especially emerging markets in Africa or South America, may have fewer publicly
traded companies or less robust historical financial data, making it more challenging to include
a comparable number of companies from those regions in the dataset. Secondly, we separate the
companies into 13 groups based on their primary economic sector, as defined by the Bureau van
Dijk dataset: Finance (47), Oil and gas industry (36), Pharmaceutical industry (36), Automotive
industry (35), Airline industry (17), Food industry (23), Mining activities (20), Electricity (17),
Software industry (38), Electronics (58), Telecommunications (10), Chemicals (8) and Others (53).

The stock price returns for each company i at day t for 2≤ t≤ 5229 are calculated by taking
the logarithmic difference of successive closing prices as follows:

xi,t = ln(pi,t)− ln(pi,t−1), (2.1)

where pi,t denotes the closing stock price of company i at day t for 1≤ t≤ 5229. Tables 1 and 2 in
the Supplementary Material show the characteristics of the studied data for the periods prior to,
and after, the 2008 financial crisis.

Our objective is to model financial contagion using two different data sets: daily stock prices
from the period 17/01/2002 to 30/06/2007, to model contagion during the 2008 financial crisis,
and from 17/01/2002 to 29/02/2020 to do so in the 2020 crisis following the onset of the COVID-
19 pandemic. We emphasise that here, and in all subsequent occurrences, datasets defined over
stated date ranges are understood to be inclusive of start and end dates. The following section
gives a thorough explanation of the network construction approach used in our analyses.

3. Model formulation
Our modelling framework comprises two main parts. We first build a multiplex financial
network, where the nodes correspond to companies and the edges in each layer represent
different types of connections between companies. By incorporating multiple network layers, we
can capture the various ways in which financial contagion may spread between companies. We
then employ an SIR epidemic model on each network layer. The model’s key parameters are
the transmission probabilities (i.e., the probability of an infected node transmitting the infection
to a susceptible node on a given day) and the recovery probabilities (i.e., the probability that
an infected node becomes recovered on a given day), which we estimate using a maximum
likelihood approach by fitting the model to past crisis data. Then, by simulating the spread of
financial contagion using the SIR model with the estimated parameters, we can identify the
companies, financial sectors, and continents that are predicted to be most vulnerable to future
contagion events.

1A significant business information publisher, Bureau van Dijk specialises in private corporate data together with software
for searching and analysing businesses.

https://finance.yahoo.com/
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(a) Network model
We construct a multiplex network, where each node represents a company and each layer
represents a different type of connection between the companies. We construct four layers: a tail
dependence network layer, a continents layer, a sectors layer and a global layer. The motivation
for, and method for construction of, these networks are detailed in the following subsections.

(i) Tail dependence network layer

The relationship between tail dependence and the propagation of financial crisis risk is
highlighted by a number of studies [6,20,21]. Tail dependence is used to study the likelihood
of joint tail events, where the occurrence of extreme movements in one asset’s return is associated
with a higher likelihood of extreme movements in another. This phenomenon reflects the
interconnectedness of financial markets, whereby shocks or disruptions in one asset class or
market segment can trigger correlated movements in other assets. The tail dependence coefficient
is a common measure of financial dependence between two companies. For example, the concept
of marginal expected shortfall (MES), a widely recognized risk measure that evaluates the
potential losses of a company given that another experiences an extreme loss, is intricately
linked to tail dependence coefficients, thereby underscoring the relevance of tail dependence
in capturing the tail behavior of financial assets [22]. To study how likely it is that two
companies experience extreme losses together we construct complex financial networks, via the
following two-step process. Firstly, we calculate the tail dependence strength between each pair of
companies’ stock returns. Secondly, we filter the edge information required for network building
using the PMFG (Planar Maximally Filtered Graph) approach.

Tail dependence estimation

Let {(−xi,t,−xj,t) : t= 1, 2, . . . N} be the realisations of the bivariate negative stock return
(Xi, Xj), where xi,t is as defined in (2.1). We assume throughout that Xi and Xj have continuous
distribution functions. For each pair of negative stock returns (Xi, Xj) of companies i and j, the
marginal aspects of the joint distribution can be removed by transforming the bivariate negative
returns into unit Fréchet marginals (Si, Sj) by using the following transformation:

Si =−1/ lnFi(Xi) and Sj =−1/ lnFj(Xj), (3.1)

where Fi and Fj are the marginal distribution functions of Xi and Xj , respectively. In practice, the
functions Fi and Fj used in (3.1) are estimated by the empirical marginal distribution functions
of the two random variables. This transformation does not affect the dependence structure of the
bivariate joint distribution, so (Si, Sj) possesses the same dependence structure as (Xi, Xj).

Since we are interested in the probability that one company experiences an extreme financial
loss, given an extreme loss in another (the likelihood of crisis transmission), for each pair (Si, Sj)

we estimate the upper tail dependence coefficient (upper TDC) χU
i,j , defined as:

χU
i,j = lim

q→1−
P(Fj(Sj)> q | Fi(Si)> q).

Hence the upper TDC corresponds to the likelihood that one margin will surpass a high threshold
if the other margin also exceeds this threshold. The coefficient χU

i,j takes values in the range [0, 1],
describing the strength of the tail dependence between Si and Sj : χU

i,j = 0 means that the two
variables Si and Sj are upper tail independent and χU

i,j > 0 indicates upper tail dependence.
The TDC can also be defined using the concept of a copula, introduced in [23]. A fundamental

result shown by Sklar [23] states that Fi,j , the joint distribution function of (Xi, Xj), can be
represented as Fi,j(si, sj) =Ci,j(Fi(si), Fj(sj)), where Ci,j is a copula function (a bivariate
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distribution function with uniform margins). Then, as shown in [24],

χU
i,j = lim

q→1−

1− 2q + Ci,j(q, q)

1− q
.

In practice we estimate the strength of tail dependence for each pair (Si, Sj) and threshold q ∈
(0, 1) as follows:

χ̂U
i,j = χ̂U

i,j(q) =
1− 2q + Ĉi,j(q, q)

1− q
, (3.2)

where Ĉi,j , the empirical counterpart of Ci,j , is computed via

Ĉi,j(u, v) =
1

N

N∑
n=1

1
(
rni ≤N − ⌊N(1− u)⌋, rnj ≤N − ⌊N(1− v)⌋

)
.

Here, rni and rnj are the ranks (the index of the element in an ascending list) of the nth observations
of Si and Sj , respectively. Note that the transformation in (3.1) is monotonically increasing, so that
the rank of an observation from Si is the same as that for the corresponding Xi.

The analysis in the remainder of the paper is based on the estimated upper tail dependence
coefficients χ̂U

i,j(0.95); i.e., with threshold q= 0.95, this choice being consistent with the existing
literature using tail dependence to build financial networks [25–27]. Moreover, in this paper we
construct separate networks employing all the data in our set prior to the 2008 and to the 2020
crises, respectively. The upper TDC values between each pair of companies i and j are used to
measure the strength of dependence between the companies in our dataset, and are key to our
construction of complex financial networks and our SIR model for financial contagion: the higher
the TDC between two companies, the higher the probability of crisis transmission.

Planar Maximally Filtered Graph

The Planar Maximally Filtered Graph (PMFG) method was first introduced in [18]. The primary
goal is to filter complex networks by retaining only the most important links in a way that does not
break planarity (i.e., the property of a graph being embeddable in a plane without any intersecting
edges) [28]. By doing so PMFGs can assist with eliminating spurious (weak) connections, thereby
emphasizing topological properties such as communities and easing computational burden.
Planarity also permits more straightforward network visualisation and, being maximally filtered,
they are constructed in such a way that the number of connections between nodes is maximized
while still maintaining planarity.

PMFGs constructed from financial datasets have been used to detect fundamental market
changes and community structures [29], to study the spread of financial risk [30] and to analyse
financial networks describing correlations (or other dependencies) between financial assets [31].
In addition, PMFGs can be used to reduce the complexity and dimensionality of financial
networks, while retaining the clustering structure [32]. Prior to the study of [32], the two most
popular tools for filtering the edge information in complex financial networks were the Minimum
Spanning Tree (MST) algorithm [33] and the Correlation Coefficient Threshold method [34].
However, the latter is extremely dependent on the threshold decision [35]; for the former, the
key advantage of the PMFG algorithm is that it preserves more information: the MST has n− 1

edges, while the PMFG has 3(n− 2) edges (compared to n(n− 1)/2 of the complete network with
n nodes). Furthermore, the PMFG always contains the MST, so it is a connected network.

(ii) Additional layers

In addition to the tail dependence network layer (hereafter denoted PMFG layer for brevity), we
include layers to incorporate other known relations between the companies and describe other
possible crisis transmission channels.
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Sector and continents layers

The 2008 financial crisis demonstrated the importance of interconnectedness as it quickly spread
from the subprime mortgage market in the United States to the wider financial sector, causing
significant losses for institutions, leading to a decline in consumer spending and demand for
goods and services. On the other hand, sectors such as healthcare and technology did relatively
well [36]. In addition, the 2008 global financial crisis impacted continents differently, with Europe,
Asia, and Latin America experiencing varying degrees of economic slowdown and challenges.
During the 2020 financial crisis, initiated by the COVID-19 pandemic, the healthcare sector was
the most directly affected, due to increased demand, while travel and tourism suffered from
restrictions. As the pandemic continued to spread, other sectors such as retail, airline industry
and manufacturing industries were impacted, facing declines in employment and demand [37].
The 2020 financial crisis had varying effects on different continents, unfolding over different time
periods. The epidemic started in Asia, then it hit Europe and finally it spread to the Americas.

To account for these features, we add undirected ‘sectors’ and ‘continents’ layers in which
companies are connected if they are in the same sector or continent, respectively. Hence, each
connected component in the sector and continents layers is a complete network.

Global layer

In addition to the ‘fundamentals-based contagion’ embedded in the above network layers,
we allow for ‘pure contagion’, whereby crises may spread due to global effects not explicitly
accounted for so far.

(b) Contagion Model
We employ a discrete-time SIR epidemic model defined on the network of n companies to
simulate financial crisis propagation. At each time step a company is either susceptible (S),
infected (I) or recovered (R). Let the integer-valued functions S, I and R represent the number
of companies that are in the state S, I and R, respectively, at time t.

The process starts at day t= 0, with m≥ 1 initially infected companies (I(0) =m) and the
remainder being susceptible (S(0) = n−m, R(0) = 0). Then at each day t= 1, 2, 3, ..., an infected
company i infects each susceptible neighbour j on layer α independently with probability w

[α]
i,j ,

after which each infected company i recovers independently with probability p. Once recovered,
a company cannot be reinfected again. Infection or recovery of a node occurs simultaneously on
all layers. The process continues until there are no more infected companies.

We model the transmission probabilities per edge (i, j) in each layer α∈ {1, 2, 3, 4}, where the
values α= 1, 2, 3, 4 correspond to the PMFG, continents, sectors and global layers respectively, as:

w
[α]
i,j =

{
χ̂U
i,j × β1, α= 1,

βα, α∈ {2, 3, 4},
(3.3)

where χ̂U
i,j is defined in (3.2) and βα for 1≤ α≤ 4 are parameters to be estimated (see

Section 4(b)ii). The definition of ‘infection’ in a financial context is provided in Section 4(a).

4. Application to financial crises
In this section we fit the model to the 2008 and the 2020 financial crises. In Section 4(a), we
define what is meant for a company in the data set to be ‘financially infected’. We then build and
compare two different networks representing the financial dependency between the companies
in the periods prior to the 2008 financial and 2020 financial crises. We study how the model can
be used to predict future infections in each case, using recent infection data. We finally assess the
importance for predictive accuracy of each layer within our network.
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(a) Infection
We define a company in the data set to be infected whenever the volatility of its stock returns
over a given period exceeds a predetermined threshold (meaning that the company’s stock price
is unstable) and its average stock return for the same period is negative.

The volatility for a time horizon T > 1 of company i at day t is defined as the standard
deviation of the stock returns in the prior T trading days and is calculated as follows:

Vi,t =

√√√√ 1

T

t−1∑
j=t−T

(xi,j − µi,t)2, (4.1)

where µi,t is the mean stock return over the same period and xi,j is defined in (2.1). Hence,
company i is defined to be infected at day t whenever Vi,t ≥ σi and µi,t < 0. In the following
analysis we use T = 21 trading days (one trading month) and the threshold σi to be the 90%
quantile of the (empirical) volatility distribution for each company.

Using a rolling window of historical returns over the past 21 days is common in risk analysis
[38–40] and suitable for estimating volatility for daily data because it strikes a balance between
capturing recent changes in volatility and incorporating sufficient historical data to generate a
stable estimate. This balance is especially important given our focus of identifying ‘infection’:
longer periods could include stock price fluctuations whose effect on the market has passed, while
short periods are likely to be sensitive to noise. Our choice of σi is determined by the 90% quantile
of the (empirical) volatility distribution; however, it should be acknowledged that in practice,
determining this threshold at a specific time without knowledge of future volatility values may
not be feasible. Therefore, the quantile threshold is primarily used as a benchmarking tool to
compare and analyse volatility levels across companies in a historical context.

Once we have determined at which day each company has been infected for those that become
infected, we count the number of infected companies per day. Figures 1a and 1b illustrate the
number of infected companies in the 2008 and 2020 crises, respectively, along with significant
events that occurred during these periods. It can be seen that in the 2008 crisis after the Lehman
Brothers bankruptcy in September 2008 (red vertical line on Figure 1a), there is a substantial
increase in the number of infected companies. Subsequently, after the TARP (Troubled Asset
Relief Program) was implemented in October 2008, the rate at which the companies become
infected decreases (purple vertical line on Figure 1a) and after the ARRA (American Recovery and
Reinvestment Act) was signed into law in February 2009, the companies start recovering (green
vertical line on Figure 1a). In the 2020 crisis, shortly after the WHO (World Health Organization)
declared a global health emergency in March 2020 (blue vertical line on Figure 1b), accompanied
by national lockdown measures in many countries2, the number of infected companies increases
sharply in a short time period. When the USA and UK governments started offering stimulus
packages3, the rate at which the infections spread declined (around the red vertical line on Figure
1b). Finally, in most of the countries the lockdown restrictions were eased between June and July
2020 (the period around the purple vertical line on Figure 1b), leading to recoveries. However, a
month later (green vertical line on Figure 1b), COVID-19 cases started increasing worldwide4. In

2National emergency was declared in the US on March 13, 2020; the United Kingdom went into lockdown on March 23, 2020;
a national lockdown in Italy was imposed on March 9, 2020; nationwide lockdown in France started on March 17, 2020; from
March 13, 2020, German states mandated school and kindergarten closures and travel restrictions were put in place in Austria,
Denmark, France, Luxembourg and Switzerland; Japan officially declared the COVID-19 outbreak as a national emergency
on March 19, 2020.
3The Main Street Lending Program (April 9, 2020), Primary Market Corporate Credit Facility (March 23, 2020), CARES
Act (March 27, 2020), and Paycheck Protection Program Liquidity Facility (April 9, 2020) were launched in the USA;
the Coronavirus Job Retention Scheme (March 1, 2020), Self-Employment Income Support Scheme (March 26, 2020), and
Coronavirus (Large) Business Interruption Loan Scheme (March 23, 2020) were launched in the UK
4The US confirms more than 50,000 new COVID-19 cases in one day for the first time, the Australian city of Melbourne goes
back into lockdown for six weeks after a second outbreak, Florida reports a record 11,458 daily COVID-19 cases, Texas records
more than 10,000 daily cases of COVID-19 for the first time, India becomes the third country to record one million cases of
COVID-19, the WHO says the Middle East is at a ‘critical threshold’ with COVID-19 cases over one million.
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Figure 1: The total number of infected companies within our dataset, as defined in Section 4(a),
during (a) the 2008 financial crisis and (b) the 2020 financial crisis. The vertical lines show the
dates of significant events during each crisis.

summary, the analysis of Figures 1a and 1b reveals the impact of these events on the spread and
recovery of infected companies during the 2008 and 2020 crises, and indicates the suitability of
our empirical definition of ‘infection’.

(b) Predicting future infections
It is of key importance to be able to predict future infections, given past data, for risk prevention
and mitigation purposes. This in turn is crucial for ensuring the stability and health of the global
financial system as a way to protect investors and sustain economic growth. Here we examine
the accuracy of our model to estimate the number of infected companies in the future, given data
from the past n days of each crisis. We evaluate the accuracy of predictions in terms of the total
number of infected companies, the number per sector and continent, and identifying the specific
companies most likely to be affected.

We construct and compare two distinct networks, one for the 2008 and one for the 2020
financial crises, that represent the dependence structure preceding each crisis, as described in
Section 4(b)i. These networks are then used to simulate future infections during the corresponding
crises, and we analyse the empirical results in Sections 4(b)ii, 4(b)iii and the Supplementary
Material.

(i) The 2008 and the 2020 financial networks

The first network is constructed using all available data before the 2008 financial crisis, which
includes the data from 17/01/2002 to 30/06/2007. The second network employs all available data
before the 2020 financial crisis, i.e., from 17/01/2002 to 29/02/2020.

We now compare the community structure of the two PMFG networks. For each of the
networks we divide the nodes into communities by maximizing the modularity [41] of the
network via the Louvain algorithm [42]. Then, for the two sets of communities we estimate the
similarity between them using the adjusted mutual information (AMI) score [43]. The AMI takes
a value of 1 when the two partitions are identical (perfectly matched),while random partitions,
having an expected AMI around 0 on average, can occasionally yield negative values (See
Supplementary Material). The AMI score between the clusterings of the two networks is 0.2568,
suggesting that the community structures of the two graphs are substantially different.

We then perform a clique analysis by adopting the n-clique algorithm of [44] to analyse the
community structures. A clique in a graph G is a complete subgraph of G. A clique, in other
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Figure 2: PMFG (tail dependence network) layers in the (a) 2008 and (b) 2020 financial networks,
where the companies are coloured by continent. The two networks are constructed by the
procedure described in Section 4(b)i using stock price data for the periods from 17/01/2002 to
30/06/2007 and from 17/01/2002 to 29/02/2020, respectively.

words, is a subset of a network in which the nodes are more intensively linked to one another than
to other members of the network. The maximal clique in the PMFG layer consist of 4 nodes, and
is also called a 4-clique. By detecting cliques, we can uncover natural clusters or communities of
companies that have strong connections or similarities. Table 1 shows the structure of the different
3- and 4-cliques in the two PMFGs based on companies’ continents and sectors, respectively. The
analysis shows that in both networks communities based on continents are more likely to form
than communities based on sectors. In addition, the high number of 3- and 4-cliques in which
all the companies are in the same continent indicates a strong tendency for continent-based
communities. Figures 2a and 2b illustrate the PMFG networks for the 2008 and 2020 financial
crises, respectively, where the companies are coloured by continent. On both figures it can be
seen that companies in the same continents tend to form clusters, indicating that the local level
transmission is more likely to happen between companies in the same continent. The analysis of
these data also suggests that communities based on sectors are more likely to form in the 2020
PMFG than in the 2008 PMFG, due to the higher occurrence of 4-cliques with all nodes in the
same sector or three of the nodes in the same sector.

Clique type
Continents Sectors

2008 2020 2008 2020

3-cliques

total number of 3-cliques 25 4 25 4
all nodes in same continent/sector 14 4 4 0

two nodes in same continent/sector 11 0 10 2
all nodes in different continent/sector 0 0 11 2

4-cliques

total number of 4-cliques 372 392 372 392
all nodes in same continent/sector 174 252 24 58

three nodes in same continent/sector 133 93 53 91
two nodes in same continent/sector 63 47 194 162

all nodes in different continent/sector 2 0 101 81

Table 1: Clique analysis of the PMFG networks showing the cliques structure based on the sector
or continent in which each company is based.
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(ii) Prediction of the number of infected companies

We now evaluate the model’s accuracy in predicting the number of companies that will be
infected or recovered in the future k crisis days, based on the infection data from the past n

days, utilizing a ‘sliding window’ technique. Firstly, we fit the model to the initial data window
(data window 1), comprising data from day 1 to n, obtaining maximum likelihood estimates β̂i
of the layer transition probabilities βi for 1≤ i≤ 4 and p̂ for the recovery rate p (refer to the
Supplementary Material for further details). Next, we simulate N = 10,000 realisations of the
estimated SIR model for the upcoming k days (from day n+ 1 to day n+ k, denoted prediction
window 1), with the initial data being that from day n. After each simulation, we record the
total number of infected companies, the number of newly infected companies, and the number of
newly recovered companies, and calculate the mean of all simulations as the prediction. We then
‘slide the window’ forward by one day and refit the model to the period from day 2 to day n+ 1

of the crisis (data window 2), re-estimating β̂i for 1≤ i≤ 4 and p̂ for the new window. We repeat
the above steps for each subsequent data window, with the final prediction window covering the
period from day L− k to L, where L is the length of the crisis in days.

Figure 3 displays the model predictions (coloured lines) alongside the observed infections
(black lines) at selected time points. Predictions are computed from the mean of all N = 10,000

simulations for the future k ∈ {10, 30} days of each crisis, given infection data on the previous
n∈ {1, 30} days. In both figures it can be seen that fitting the model to the previous n= 1

crisis days gives the largest error between the actual and the predicted total number of infected
individuals after k days for both values of k. For choices of n> 1, with greater prediction accuracy,
we nevertheless observe large errors at those time points where significant changes in infection
or recovery occur. This is natural since predictions are based on data prior to these change-
points; it is important to note, however, that such events are often due to extrinsic factors, such
as government intervention that could in principle be accommodated within the model. For
example, substantial errors are observed in recovery prediction during periods associated with
ARRA (2008; cf. Figs 1a, 3) and stimulus packages and lockdown restrictions (2020; cf. Figs 1b, 3).
For all other periods in both crises, we obtain good prediction accuracy for suitable choices of k
and n, as confirmed by further analysis. For completeness, the Supplementary Material presents
additional predictions for k= 20 in each crisis. The most precise forecasts were observed with
k= 10, while the least precise predictions were observed with k= 30.

In order to compare the predicted and actual numbers of newly infected, total infected and
newly recovered companies for each sliding window i (where 1≤ i≤L− k − n), we calculate
the absolute difference between the predicted and actual values in each simulation and then we
take the average. To ensure accurate evaluation of the model’s performance in predicting the
number of newly infected (recovered, respectively) companies, we focus exclusively on suitable
time periods. Specifically, we consider the period encompassing newly infected (recovered)
companies, which corresponds to the time before (after) day 600 during the 2008 financial crisis,
and before (after, respectively) day 120 in the case of the 2020 financial crisis. The results are shown
in Figure 4, which displays the distribution of the absolute difference between the predicted
and actual number of total infected (row 1), newly infected (row 2) and newly recovered (row
3) companies when the model is fitted to the 2008 financial crisis (left column) or the 2020
financial crisis (right column). The white dots connected by white lines indicate the mean absolute
difference over all sliding windows. For brevity, we present results for a prediction horizon of
k= 30 days; those for k= 10 and k= 20 can be found in the Supplementary Material and show
that the trends in mean accuracy are similar for all choices of k.

The results indicate that the optimal window size for predicting future infections varies
depending on the crisis being analysed. Specifically, for the 2008 financial crisis, the optimal
window size is n= 10 for predicting both the future total number of infected and number of
newly infected companies after k days, while for the 2020 financial crisis, the optimal window size
is n= 3 for predicting the future total number of infected companies, and n= 10 for predicting
the future number of newly infected companies. In contrast, a window size of n= 1 day for the
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Figure 3: The curves (in colours) show the predicted mean total number of infected companies
for each sliding window for the next k days over N = 10,000 simulations, fitting the model to
the previous n crisis days for the 2008 financial crisis (left column) and 2020 financial crisis
(right column), respectively. The black lines show the observed number of infected companies
as determined in Section 4(a), providing a reference for comparison with the model predictions.

2008 crisis and a window size of n= 30 days for the 2020 crisis result in the worst predictions.
Interestingly, when predicting the number of newly recovered companies in the future k days,
for both crises, the worst predictions are obtained when the window size is the largest, i.e. n= 30,
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while the best predictions are obtained when the window size is the smallest, i.e. n= 1; we note,
however, that the variation with n is not large.

2008 financial crisis 2020 financial crisis
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Figure 4: Heatmaps showing the distribution of the absolute difference between predicted and
actual total number of infected companies (top row), number of newly infected companies
(middle row) and number of newly recovered companies (bottom row) for the 2008 (left column)
and the 2020 (right column) financial crises, using the infections data from the previous n days
and at a prediction horizon of k= 30 days. The white dots indicate the mean absolute difference
over all sliding window predictions.

(iii) Geographic- and sector- specific prediction

In this section, we investigate the model’s ability to predict the geographical location and
economic sector of the infected companies in the next k days, based on the previous n days’
infection data. Rather than counting the number of infected companies, for each simulation we
construct a multiset (i.e., a set allowing for multiple instances of each of its elements) that includes
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the continents or sectors corresponding to the predicted infections in that simulation. We then
compare each multiset to the observed continents or sectors multiset using the Sørensen–Dice
similarity coefficient for multisets, defined as:

D(A,B) =
2|A ∩B|
|A|+ |B| . (4.2)

Here A and B are multisets, not both empty, |A| and |B| denote the number of elements in A and
B, respectively, and if an element appears in both A and B, it is included in the intersection A ∩B

with its minimal number of occurrences observed in A and B. The Sørensen–Dice coefficient takes
values D ∈ [0, 1] with D= 1 indicating identical multisets, and D= 0 complete dissimilarity.

By calculating the mean Sørensen–Dice coefficient from all simulations we obtain a measure
of performance that reflects the overall effectiveness of the method for each prediction. Figure 5
shows the distribution of Sørensen–Dice coefficients when comparing the predicted and actual
continents and economic sectors of newly infected companies in the future k= 30 days, for
different values of n, when the model is fitted to the 2008 (left column) and the 2020 (right column)
financial crises. The results in each case indicate rather different optimal choices: for 2008, the least
accurate predictions are obtained when using only the most recent data (n= 1), while for the
2020 crisis, smaller windows are in general preferable with n= 30 giving the worst predictions.
However, apart from these worst cases, the dependence on n is not strong: for the 2008 data, very
little variation in prediction accuracy as a function of n is observed, while for 2020, all choices
1≤ n≤ 10 give similar results. The results for the values of k= 10 and k= 20 are similar (see the
Supplementary Material), indicating that the model’s ability to predict future infected continents
and sectors remains stable for most values of the size n of the sliding window.
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Figure 5: Heatmap for the distribution of the mean Sørensen–Dice coefficient between predicted
and actual continents (top row) and sectors (bottom row) of newly infected companies in the
future k= 30 days for the 2008 (left column) and the 2020 (right column) financial crises, using
the infections data from the previous n days. The white dots indicate the mean over all sliding
window predictions.
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(c) Assessing the importance of the layers

In this section we study the importance of each layer within our model, as defined by w
[α]
i,j , α∈

{1, 2, 3, 4} in (3.3). We compare the performance of six different networks: (i) the full network,
comprising the PMFG, continents, sectors and global layer; (ii) the network without PMFG, i.e.,
α∈ {2, 3, 4}; (iii)–(v) duplex networks comprising the global layer and one other, i.e., α∈ {1, 4},
α∈ {2, 4}, or α∈ {3, 4}; (vi) the global layer only, i.e., α= 4. We remark that the latter corresponds
to the homogeneous mixing population case, which assumes that the probability of transmission
is the same between all companies.

We first compare in Figure 6 how the different multiplex networks perform, compared to the
global layer only, in predicting the total number of infected companies in the future k= 30 days.
For each of the six networks, we compute the average difference between the predicted and
actual total number of infected companies after k= 30 days. The calculation is performed across
different values of n. To assess the ‘improvement’ achieved by each network in comparison to the
homogeneous mixing population model (which consists of only the global layer), we calculate the
difference of the average differences between the predicted and actual total number of infected
companies for each n between the global layer network and each of the other five networks.
Our results demonstrate that for both financial crises the full network outperforms the other
network structures and gives the highest improvement in predicting the total number of infected
companies after k= 30 days, compared to the homogeneous mixing population model. Using the
global layer alone (homogeneous mixing population model) gives the least accurate predictions
since each other network produces positive improvements. Moreover, the second best results
are achieved when using the network comprising of the global and PMFG layers, indicating the
importance of the PMFG layer. We remark that the six network models display similar accuracy
of prediction in the case of new-recoveries, as is to be expected, since the recovery probability is
independent of network structure (data not shown).

2008 financial crisis 2020 financial crisis

To
ta

li
nf

ec
ti

on
s

1 2 3 4 5 6 7 8 9 10 20 30
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n 
im

pr
ov

em
en

t t
o 

th
e 

gl
ob

al
 la

ye
r

1 2 3 4 5 6 7 8 9 10 20 30
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

M
ea

n 
im

pr
ov

em
en

t t
o 

th
e 

gl
ob

al
 la

ye
r

Figure 6: Comparison between the total number of infected companies at a prediction horizon of
k= 30 days for the 2008 financial crisis (left column) and the 2020 financial crisis (right columns),
using the infections data from the previous n days, in comparison to the homogeneous mixing
population model.

We then employ the same methodology as described in Section 4(b)iii and compare accuracy
of the results obtained from fitting all six models, according to the Sørensen–Dice coefficient.
Figure 7 illustrates the comparison between the mean Sørensen–Dice coefficient over all sliding
windows between predicted and actual continents (top row) and sectors (bottom row) of newly
infected companies in the future k= 30 days for both the 2008 (left column) and the 2020 (right
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column) financial crises. The results demonstrate that for all studied values of k and n, the full
model, containing all four layers, consistently yields the highest mean Sørensen–Dice coefficient
for predicting both the continents and sectors in which newly infected companies will emerge.
Conversely, employing only the global layer produces the lowest mean Sørensen–Dice coefficients
across all combinations of n and k. Furthermore, the second-best results for all combinations of
n and k are consistently observed when utilizing the network comprising only the global and
PMFG layers. Adding each of the continents and sectors layers, in addition to the global layer,
improves the quality of the predictions. This means that each of the layers within our model, and
particularly the PMFG layer, includes information which improves the model’s predictive power.
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Figure 7: Comparison between the mean Sørensen–Dice coefficient, averaged over all prediction
windows, between predicted and actual continents (top row) and sectors (bottom row) of newly
infected companies in the future k= 30 days for the 2008 (left columns) and the 2020 (right
column) financial crises, using the infections data from the previous n days when using six
different network models.

Section 5 of the Supplementary Material offers a thorough examination of the model’s
predictive accuracy concerning the identification of specific companies likely to be affected in
the upcoming k days. Here, we restrict attention to the performance for different values of n

when k= 30, quantified by two metrics: Accuracy and F1-score. In brief, the former describes the
ratio of correct predictions to the total observations, while the latter is a commonly-used measure
that balances correct identification with minimising false positives. The results shown in Figure 8
demonstrate that the full model consistently outperforms the homogeneous mixing population
model in all scenarios. In particular, when examining the 2020 financial crisis, the full model’s
Accuracy surpasses that of the homogeneous mixing population model by nearly 10%.
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Similar trends are observed when examining the mean F1-score. Specifically, in the 2008
financial crisis the mean F1-score of the full model improves that of the random model by around
5%, while an increase of nearly 10% is observed in the 2020 financial crisis. Furthermore, the
network’s performance is substantially improved when the model includes both the global and
PMFG layers, resulting in the second highest scores. The results for k= 10 and k= 20, shown
in the Supplementary Material, are consistent with the ones for k= 30, which demonstrates the
superiority of the full model over the homogeneous mixing population model, but also highlights
the importance of incorporating the PMFG network for achieving more accurate predictions.
The maximum F1-score attained for the 2008 financial crisis is 0.08, whereas during the 2020
financial crisis, it reaches 0.24. These values are, of course, too low for practical prediction:
our work constitutes a proof-of-concept rather than an immediately applicable method in
this context. In addition, the observed improvements in Accuracy and F1-score suggest that
the additional information incorporated through the multilevel structure holds potential for
enhancing predictive models in future research efforts.
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Figure 8: Comparison between the mean a) Accuracy and b) F1-score in the future k= 30 days
for the 2008 financial crisis (left column) and the 2020 financial crisis (right column), using the
infections data from the previous n days to predict the set of individual infected companies when
using six different network models. See the Supplementary Material for more details.

5. Discussion and conclusion
This paper proposes a novel framework to analyse the spread of financial crises. We integrate
stock price, geographical, and economic sector data to provide a four-layer multiplex network on
which a discrete-time SIR model is simulated, so as to predict the spread of financial risk through
interconnections between companies. Specifically, by fitting infection and recovery parameters on
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each layer of our network to historic stock data through a maximum likelihood approach, we seek
to predict future infection dynamics.

We investigate and evaluate the utility of our approach through application to two recent
financial crises: the 2008 crisis, initiated by the subprime mortgage market and the 2020 crisis,
associated with the COVID-19 pandemic. In each case, we examine the ability of our model
to estimate dynamically future infection risk over a horizon of k days, given data from the
prior n days. Using a range of accuracy measures, we analyse the dependence of prediction
accuracy on k and n, in terms of total number of infections, as well as sector- and location-
specificity. Thereby we demonstrate that interactions among companies within and across sectors
and continents in the financial network plays a substantial role in the spread of financial crises
and their incorporation into the model improves the prediction of future outbreaks of financial
distress. By comparison with a homogeneous mixing assumption in particular, we highlight
the importance of understanding and accounting for the complex interdependencies between
companies in financial systems for risk prediction.

While our model offers valuable insights into the spread of financial crises, it is essential to
recognize its limitations and constraints. One significant limitation of our model is its reliance
on historical stock price data, which only gives an incomplete view of the financial stability of a
company. The accuracy and reliability of our predictions heavily depend on the availability and
quality of the data, which may vary across different companies, sectors, and regions. Moreover,
our model operates under several basic assumptions, such as the division into susceptible,
infected, and recovered companies. While these assumptions simplify the complexity of financial
contagion dynamics, they also impose constraints on the model’s applicability and may not fully
capture the nuances of real-world scenarios. Despite incorporating multiple layers representing
stock prices, geographical locations, and economic sectors, our model overlooks other potentially
important factors influencing financial contagion, such as macroeconomic indicators, regulatory
policies, investor sentiment, and systemic risk factors. We emphasize that the primary goal
of this research is to present our novel framework combining extreme value theory, financial
network construction and SIR modeling for the spread of financial risk in networks rather
than to undertake comprehensive prediction. Despite its limitations, the incorporation of the
multilevel network structure has shown potential in enhancing prediction power and capturing
the interdependencies among companies driving financial contagion dynamics.

Overall, our results suggest that the proposed framework, which updates in real time as
new data become available, is effective in predicting risk spread, this information potentially
being useful in terms of risk prevention and mitigation. In addition, our results agree with
the existing research which consistently shows the importance of including economic sector
[45] and geographical location [46] information in predicting a company’s future performance.
However, [47] suggests that industry-level analysis may not always provide a quantity of
information that results in substantial improvement of future profitability, therefore suggesting
that efficiently incorporating further, more granular information might be difficult. In [48] the
authors examine the macroeconomic consequences of firm- or industry-level shocks, and use
a model that differentiates between supply-side shocks and demand-side shocks. It would
therefore be interesting to see how the results of our analysis change when transmission rates
are set according to directed rather than undirected graphs. Moreover, since predictive accuracy
suffers during periods of rapid change, natural future work includes dynamic updating of the
multiplex connectivity structure and model infection parameters, though this is likely to result
in a significant increase in computational complexity. We note, however, that such events are
typically associated with extrinsic factors, such as government financial stimulus packages or
lockdown periods. The incorporation of such additional information provides a route to suitable
parameter updates to accommodate such change points.
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B, Wang L, Luo W, Klanjšček T, Fan J, Boccaletti S, Perc M. 2022 Social physics. Physics Reports
948, 1–148.

11. Lazebnik T, Shami L, Bunimovich-Mendrazitsky S. 2023 Intervention policy influence on the
effect of epidemiological crisis on industry-level production through input–output networks.
Socio-Economic Planning Sciences p. 101553.

12. Huaihu C, Jianming Z. 2012 Research on banking crisis contagion dynamics based on the
complex network of system engineering. Systems Engineering Procedia 5, 156–161.

13. Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. 2014 Multilayer
networks. Journal of Complex Networks 2, 203–271.

14. Aleta A, Moreno Y. 2019 Multilayer networks in a nutshell. Annual Review of Condensed Matter
Physics 10, 45–62.

15. del Rio-Chanona RM, Korniyenko Y, Patnam M, Porter MA. 2020 The multiplex nature of
global financial contagions. Applied Network Science 5, 1–23.

16. Cao J, Wen F, Stanley HE, Wang X. 2021 Multilayer financial networks and systemic
importance: Evidence from China. International Review of Financial Analysis 78, 101882.

17. De Domenico M. 2023 More is different in real-world multilayer networks. Nature Physics 19,
1247–1262.

18. Tumminello M, Aste T, Di Matteo T, Mantegna RN. 2005 A tool for filtering information in
complex systems. Proceedings of the National Academy of Sciences 102, 10421–10426.

19. Glick R, Rose AK. 1999 Contagion and trade: Why are currency crises regional?. Journal of
International Money and Finance 18, 603–617.

20. Tiwari AK, Abakah EJA, Yaya OS, Appiah KO. 2023 Tail risk dependence, co-movement and
predictability between green bond and green stocks. Applied Economics 55, 201–222.

21. Ahnert T, Georg CP. 2018 Information contagion and systemic risk. Journal of Financial Stability
35, 159–171.

22. Cai JJ, Einmahl JHJ, de Haan L, Zhou C. 2015 Estimation of the marginal expected shortfall:
the mean when a related variable is extreme. Journal of the Royal Statistical Society: Series B 77,
417–442.

23. Sklar M. 1959 Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut
Statistique de l’Université de Paris 8, 229–231.

24. Coles S, Heffernan J, Tawn J. 1999 Dependence measures for extreme value analyses. Extremes
2, 339–365.



20

royalsocietypublishing.org/journal/rspa
P

roc
R

S
oc

A
0000000

..................................................................

25. Le TH, Do HX, Nguyen DK, Sensoy A. 2021 Covid-19 pandemic and tail-dependency
networks of financial assets. Finance Research Letters 38, 101800.

26. Chen Q, Giles DE, Feng H. 2012 The extreme-value dependence between the Chinese and
other international stock markets. Applied Financial Economics 22, 1147–1160.

27. Singh AK, Allen DE, Powell RJ. 2017 Tail dependence analysis of stock markets using extreme
value theory. Applied Economics 49, 4588–4599.

28. Nishizeki T, Chiba N. 1988 Planar graphs: Theory and algorithms. Elsevier.
29. Musmeci N, Aste T, Di Matteo T. 2015 Relation between financial market structure and the

real economy: comparison between clustering methods. PloS one 10, e0116201.
30. Pozzi F, Di Matteo T, Aste T. 2013 Spread of risk across financial markets: better to invest in

the peripheries. Scientific Reports 3, 1–7.
31. Fiedor P. 2014 Networks in financial markets based on the mutual information rate. Physical

Review E 89, 052801.
32. Song WM, Di Matteo T, Aste T. 2012 Hierarchical information clustering by means of

topologically embedded graphs. PloS ONE 7, e31929.
33. Mantegna RN. 1999 Hierarchical structure in financial markets. The European Physical Journal

B-Condensed Matter and Complex Systems 11, 193–197.
34. Bonanno G, Caldarelli G, Lillo F, Mantegna RN. 2003 Topology of correlation-based minimal

spanning trees in real and model markets. Physical Review E 68, 046130.
35. Yan X, Jeub LG, Flammini A, Radicchi F, Fortunato S. 2018 Weight thresholding on complex

networks. Physical Review E 98, 042304.
36. Taylor JB. 2009 The financial crisis and the policy responses: An empirical analysis of what

went wrong. Technical report National Bureau of Economic Research, Working Paper 14631.
37. Pak A, Adegboye OA, Adekunle AI, Rahman KM, McBryde ES, Eisen DP. 2020 Economic

consequences of the COVID-19 outbreak: the need for epidemic preparedness. Frontiers in
Public Health 8, 241.

38. Alexander C. 2008 Market risk analysis, pricing, hedging and trading financial instruments. John
Wiley & Sons.

39. Schwert GW. 2002 Stock volatility in the new millennium: how wacky is Nasdaq?. Journal of
Monetary Economics 49, 3–26.

40. Kristjanpoller W, Fadic A, Minutolo MC. 2014 Volatility forecast using hybrid neural network
models. Expert Systems with Applications 41, 2437–2442.

41. Newman ME. 2006 Modularity and community structure in networks. Proceedings of the
National Academy of Sciences 103, 8577–8582.

42. Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP. 2010 Community structure in time-
dependent, multiscale, and multiplex networks. Science 328, 876–878.

43. Xuan N, Julien V, Wales S, Bailey J. 2010 Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal of Machine
Learning Research 11, 2837–2854.

44. Palla G, Derényi I, Farkas I, Vicsek T. 2005 Uncovering the overlapping community structure
of complex networks in nature and society. Nature 435, 814–818.

45. Marfatia H. 2023 The financial market’s ability to forecast economic growth: information from
sectoral movements. Journal of Economic Studies 50, 1467–1484.

46. Chang X, Li J. 2019 Business performance prediction in location-based social commerce. Expert
Systems with Applications 126, 112–123.

47. Fairfield PM, Ramnath S, Yohn TL. 2009 Does industry-level analysis improve profitability
and growth forecasts?. Journal of Accounting Research 47, 147–178.

48. Acemoglu D, Akcigit U, Kerr W. 2016 Networks and the Macroeconomy: An Empirical
Exploration. NBER Macroeconomics Annual 30, 273–335.


	1 Introduction
	2 Data
	3 Model formulation
	(a) Network model
	i Tail dependence network layer
	ii Additional layers

	(b) Contagion Model

	4 Application to financial crises
	(a) Infection
	(b) Predicting future infections
	i The 2008 and the 2020 financial networks
	ii Prediction of the number of infected companies
	iii Geographic- and sector- specific prediction

	(c) Assessing the importance of the layers

	5 Discussion and conclusion
	References

