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Abstract In this paper, we provide a retrospective
examination of the developments and applications of
the extended finite element method (X-FEM) in com-
putational fracture mechanics. Our main attention is
placed on the modeling of cracks (strong disconti-
nuities) for quasistatic crack growth simulations in
isotropic linear elastic continua. We provide a histori-
cal perspective on the development of the method, and
highlight the most important advances and best prac-
tices as they relate to the formulation and numerical
implementation of the X-FEM for fracture problems.
Existing challenges in the modeling and simulation
of dynamic fracture, damage phenomena, and captur-
ing the transition from continuum-to-discontinuum are
also discussed.

Keywords Elastic fracture · Strong discontinuities ·
Singularities · Cracks · Partition-of-unity enrichment ·
X-FEM

N. Sukumar (B)
Department of Civil and Environmental Engineering,
University of California, Davis, CA 95616, USA
e-mail: nsukumar@ucdavis.edu

J. E. Dolbow
Department of Civil and Environmental Engineering, Duke
University, Durham, NC 27708, USA
e-mail: jdolbow@duke.edu

N. Moës
GeM Institute, Ecole Centrale de Nantes, 44321 Nantes,
France
e-mail: nicolas.moes@ec-nantes.fr

1 Introduction

The extended finite element method (X-FEM) was
introduced in Moës et al. (1999) as a new approach to
represent fracture surfaces and to capture their evolu-
tion within a standard Galerkin-based method. Since its
inception, the method has experienced dramatic growth
and development. This is due to many factors, not the
least of which is the potential of the X-FEM to cir-
cumvent long-standing issues in finite element mesh
generation and adaptation for fracture problems. More-
over, even though there are many alternative numerical
methods for fracture, none of them offer the combi-
nation of features that the X-FEM affords: extension
to nonlinear problems, relative ease of implementa-
tion, robustness, efficiency and accuracy. In this paper,
our intent is not to provide an exhaustive overview
of the X-FEM; many such reviews are already avail-
able in the literature (Belytschko et al. 2009; Fries
and Belytschko 2010). Rather, we aim to provide an
appraisal of the method for fracture problems: dis-
cussing the key advances, unifying and providing con-
nections between previous contributions, and estab-
lishing best practices as they relate to the formula-
tion and implementation of the method. We highlight
the strengths and weaknesses of the method, and dis-
cuss missing gaps that can form the subject for future
research.

The field of computational fracture mechanics is rel-
atively mature, and many advances have been made
with finite elements and boundary element methods.
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Nevertheless, fracture remains a challenging problem,
and new methods continue to arise. With the standard
finite element method, cracks are viewed as internal
boundary surfaces that are explicitly meshed. The X-
FEM is an advance in element technology — it allows
for strong discontinuities (discrete cracks) to arbitrar-
ily cut through elements. Prior to its introduction, there
were many other approaches that addressed this chal-
lenge, among which, enhanced assumed strain (Simo
et al. 1993) and meshfree methods (Belytschko et al.
1996) are prominent.

Simo et al. (1993) considered embedded disconti-
nuities from the viewpoint of the constitutive relation-
ship. A local crack initiation criterion is posited within
each element based on the loss of ellipticity (singular-
ity of the acoustic tensor), and then the kinematics are
enhanced in each element to accommodate this discon-
tinuity. Due to the element-level nature of the formu-
lation, this method leads to a nonconforming displace-
ment approximation across element boundaries (com-
patibility of the strain field is weakly enforced). Fur-
thermore, the initial approach did not ensure a contin-
uous crack surface, which was subsequently corrected
by incorporating linear interpolation between adjacent
elements (Linder and Armero 2007). For a discussion
of various early finite element methods that embed dis-
continuities, we direct the reader to the work of Jirásek
(2000).

The partition-of-unity finite element method
(PUFEM) (Melenk and Babuška 1996; Babuška and
Melenk 1997) permits local asymptotic crack solu-
tions (enrichment functions) to be incorporated within
a finite element (FE) setting. This notion of augmenting
the standard FE approximation by known asymptotic
solutions is not new (Fix et al. 1973; Strang and Fix
1973; Benzley 1974); however, in these prior studies,
the additional functions are added globally to the finite
element approximation. Moreover, these approaches
are in stark contrast to the PUFEM, where the finite
element basis functions are used to partition the enrich-
ment function so that all basis functions are compactly-
supported. The resulting stiffness matrix is symmetric
and banded, and its sparsity is not significantly com-
promised. Another instance of the PUFEM is the gener-
alized finite element method (GFEM), in which hand-
book solutions and eigenfunctions for corner singular-
ities and crack problems in elasticity are selected as
enrichment functions (Duarte et al. 2000; Strouboulis
et al. 2001).

On using finite elements to form the partition-of-
unity functions as introduced in the PUFEM,
Belytschko and Black (1999) adopted a local or min-

imal enrichment perspective to enrich the finite ele-
ment approximation with the asymptotic crack-tip
basis functions (Fleming et al. 1997) to model two-
dimensional cracks (crack interior and crack tips),
which were represented by the union of piecewise lin-
ear segments. This required a series of mappings to
describe such a crack. On using a discontinuous (gen-
eralized Heaviside) enrichment function, a much sim-
pler approach to model the crack interior was realized
by Moës et al. (1999), and this method was coined as
the extended finite element method (X-FEM) (Daux
et al. 2000). For modeling cracks, discontinuous enrich-
ment is now also adopted in the GFEM (Simone et al.
2006; Duarte and Kim 2008), and hence for fracture
problems, the X-FEM and the GFEM are practically
indistinguishable.

In the X-FEM, crack discontinuities are incorpo-
rated via the kinematics: the displacement field is
enriched with discontinuous and crack-tip asymptotic
functions. The X-FEM permits simple meshes to be
used that need not conform to the crack geometry,
thereby avoiding the need to remesh for crack propaga-
tion simulations. For crack modeling and crack growth
problems in isotropic linear elastic fracture mechanics,
the advantages of the X-FEM over C0 Lagrange finite
elements have been well-established. In this paper, our
main emphasis is on the modeling of elastic fracture
with the X-FEM. In Sect. 8, we also share our perspec-
tives on using the X-FEM and other emerging methods
for the modeling of dynamic fracture, damage and other
challenging problems in inelastic fracture mechanics.

2 Formulation

Consider a homogeneous linear elastic body that occu-
pies the domain Ω ⊂ Rd (d = 2, 3) with an internal
traction-free crack. The boundary Γ = Γu ∪ Γt ∪ Γc

with Γu ∩ Γt = ∅ (see Fig. 1). Displacement bound-
ary conditions are prescribed on Γu , and tractions are
imposed on Γt . The crack domain is Γc, and we denote
the crack front (crack tip in R2) by Λc. The governing
equations for elastostatics in the absence of body forces
are:

∇ · σ = 0 in Ω, (1a)

σ = C : ε, (1b)
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Fig. 1 Elastostatic boundary-value problem with an embedded
traction-free crack

ε = ∇s u, (1c)

where σ is the Cauchy stress tensor, u is the displace-
ment field, ε is the small-strain tensor, ∇s is the sym-
metric gradient operator, and C is the material moduli
tensor for a homogeneous linear elastic isotropic mate-
rial. The essential and natural boundary conditions are:

u = ū on Γu, (2a)

σ · n = t̄ on Γt , (2b)

σ · n = 0 on Γc, (2c)

where n is the unit outward normal on a boundary, and
ū and t̄ are the prescribed displacements and tractions
on Γu and Γt , respectively.

The weak form of the boundary-value problem
posed in (1) and (2) is: find u ∈ U such that

a(u, δu) = ℓ(δu) ∀δu ∈ U0, (3a)

a(u, δu) :=
∫

Ω

σ : δε dx, ℓ(δu) :=
∫

Γt

t̄ · δu d S,

(3b)

where U and U0 are the trial space for the displacement
field and the test space (virtual displacements), respec-
tively. The trial and test spaces admit functions that are
discontinuous across Γc.

3 Displacement approximation

To discretize the weak form in (3), we require trial and
test approximations for the displacement field. Con-
sider a finite element mesh that discretizes the two-
dimensional domain (without considering Γc) shown
in Fig. 1. The embedded crack shown in Fig. 2 has two

i

i

2

1

ω

Fig. 2 Enriched nodes for an embedded crack. The crack-tips
are labeled as 1 and 2. The nodes that are enriched with the
discontinuous function are shown by open-circles, whereas those
that are enriched with the asymptotic near-tip crack functions are
shown by filled-circles. The shaded region is the support ωi of
the nodal finite element basis function for node i

crack tips. Let the number of nodes of a given finite ele-
ment be nen, and the index set I := {1, 2, . . . , nen}.
Now, the two-dimensional extended finite element
displacement approximation in an element takes the
form (Moës et al. 1999):

u
h
e (x) =

∑

i∈I

Ni (x)ui

︸ ︷︷ ︸

standard FE

+
∑

j∈J⊆I

N j (x)ϕ(x)a j

︸ ︷︷ ︸

discontinuous contribution

+
2

∑

t=1

∑

k∈Kt ⊆I

Nk(x)

4
∑

α=1

Fαt (x)bkαt

︸ ︷︷ ︸

crack-tip contribution

, (4a)

with

Fαt (x) =
√

r sin
θ

2
, cos

θ

2
, sin

θ

2
sin θ, cos

θ

2
sin θ

}

,

(4b)

where J is the index set of nodes whose basis func-
tion support is cut by the interior of the crack Γc, and
K1 and K2 are the index sets of nodes whose basis
function support contains the crack-tips Λ1

c and Λ2
c ,
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respectively. In addition, Ni (x) are the finite element
shape functions, ϕ(x) is a discontinuous (generalized
Heaviside) function that is defined with respect to the
crack, and Fαt (x) in (4b) are the crack-tip asymptotic
functions defined with respect to a polar coordinate
system (r, θ) with origin at the crack-tip t . If the crack-
tip is located inside a finite element, then crack-tip
enrichment is needed to represent the crack; enriching
with the functions in (4b) also significantly improves
the accuracy of the stress intensity factors in extended
finite element computations. The unknown coefficients
in (4a) corresponding to the standard FE, discontinu-
ous, and near-tip basis functions are ui , a j , and bkαt ,
respectively. The enriched nodes contained in I, J and
Kt (t = 1, 2) are shown in Fig. 2.

Arguably the most successful and widely-
implemented aspect of the approximation (4) is the
generalized Heaviside enrichment — ϕ(x) := H(x),
where given the orientation of the crack, H(x) assumes
a value +1 above the crack and a value −1 below it.
This may be due to several factors. Whereas the near-
tip enrichment functions are specifically designed for
problems in linear elastic fracture mechanics, the Heav-
iside enrichment suffers no such limitations. It has been
applied in a wide range of contexts, including finite
deformation problems and inelasticity. It is also the
simplest aspect of the approximation to implement, as
it only requires knowledge of which side of the discon-
tinuity a material point resides.

Another component to the success of Heaviside
enrichment concerns the work of Hansbo and Hansbo
(2004). Consider an element that is separated into two
distinct material regions by a crack geometry. Instead of
using enrichment to capture the discontinuity, Hansbo
and Hansbo (2004) proposed an approach that creates
two partial elements, one for each side of the crack.
Earlier, Jirásek and Belytschko (2002) had illustrated
the same idea for a discontinuity in one dimension.
For each partial element, newly defined shape func-
tions are associated with all the nodes of the element.
Furthermore, for each component of the displacement
approximation, double the number of shape functions
contribute in the element. The standard nodal Lagrange
finite element shape function is decomposed into the
sum of two discontinuous functions, which serve as
the two new nodal shape functions — each is nonzero
on one of the partial elements and is identically zero on
the other. In a subsequent work, Areias and Belytschko
(2006) illustrated how the kinematics that are enabled

by this approach are in fact identical to what can be
achieved via Heaviside enrichment. Implementations
of both approaches can be found in modern produc-
tion codes. The particular choice largely depends on
the structure of the code and the ease of implemen-
tation (see Sect. 3.4). We point out that the approach
of Hansbo and Hansbo (2004) is sometimes referred to
as the phantom-node method (Song et al. 2006).

Over the past decade, several other modifications
to the approximation (4) and enrichment functions
have been proposed. Perhaps the most important is
the concept of geometric enrichment (Laborde et al.
2005; Béchet et al. 2005). For the initially proposed
extended finite element approximation in (4a), the set
Kt of nodes with near-tip enrichment was limited to
those nodes whose basis function support contained
a crack-tip. This is often referred to as topological

enrichment. With topological enrichment, the square
root crack-tip singularity limits the convergence rate,
and O(h1/2) decay in the energy seminorm of the error
is realized, which matches the convergence rate that is
obtained using quarter-point finite elements. With geo-
metric enrichment, the enriched nodal set is expanded
to all nodes within a specified distance from a crack-tip.
This permits near-tip enrichment to be active over the
entire region where the asymptotic fields dominate the
solution, which translates to significant improvements
in accuracy. Moreover, this radius of influence is taken
to be independent of the mesh, such that the cardinal-
ity of Kt increases with refinement. Even though the
stress field is singular, geometric enrichment allows the
method to yield the same rates of convergence that are
available for smooth problems (Strang and Fix 1973;
Nicaise et al. 2011). The drawback to this approach
is that it increases the system size and impacts condi-
tioning, but the latter can be addressed with suitable
preconditioners (see Sect. 5).

We also discuss blending elements (elements that
have partially enriched nodes) (Chessa et al. 2003) and
the use of shifted enrichment functions. The former
is especially pertinent for material interface problems,
in which use of the distance function as the enrich-
ment led to suboptimal rates of convergence (Sukumar
et al. 2001). For this choice of the enrichment func-
tion, the extended finite element approximation can-
not pass the patch test (affine field on either side of
a rectilinear interface) for a bimaterial interface prob-
lem. A subsequent advance — use of the ridge enrich-
ment function (Moës et al. 2003) for material interfaces
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(i)
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φ2(x)
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(k)

[H(x) − H(x2)]φ2(x)

x1 x2ξ

(l)

Fig. 3 Basis functions for a discontinuity in one dimension. a–d X-FEM with generalized Heaviside enrichment. e–h Approach
of Hansbo and Hansbo (2004); and i–l Shifted Heaviside enrichment

— yielded optimal convergence rates without the pres-
ence of blending elements. However, it is noteworthy
to point out that the presence of blending elements does
not compromise the convergence rates for crack prob-
lems with near-tip enrichment, provided that geometric
enrichment is adopted (Béchet et al. 2005; Fries and
Belytschko 2010; Nicaise et al. 2011).

The use of a shifted enrichment function (Zi and
Belytschko 2003) was introduced in part to facilitate
plotting and to avoid the presence of blending elements
when certain enrichment functions are used. A shifted
enrichment simply adjusts the enrichment functions so
that they vanish at the nodes; fundamentally, it does
not change the approximation. A shifted enrichment
ensures that the extended FE approximant becomes a
nodal interpolant; however, this alone does not provide
a means to impose Dirichlet boundary conditions. Fur-
thermore, if a node with coordinate xi lies on a crack,
then H(xi ) is multi-valued and then a consistent choice
for H(xi ) needs to be made. We also note that while

this shifting might appear to facilitate plotting, such an
approach effectively hides the singularity and discon-
tinuity, both of which are vital to accurately displaying
field quantities near the crack for fracture problems.

As an aid to understanding the basis functions in
the different approaches, we present a one-dimensional
example. Consider a one-dimensional domain that is
discretized by linear finite elements, which must permit
a discontinuity in the field variable at x = ξ , where
ξ ∈ Ωe = (x1, x2). Let the node at x = x1 be labeled
as 1 and the node at x = x2 be labeled as 2. We consider
all the basis functions that are associated with nodes 1
and 2; the support of these basis functions intersect
Ωe. The basis functions in the X-FEM, those obtained
using the approach of Hansbo and Hansbo (2004), and
the basis functions using shifted Heaviside enrichment
are shown in Fig. 3.

Referring to Fig. 3, we can write down the extended
finite element basis functions in terms of those in
Hansbo and Hansbo (2004) as:
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φ1(x) = φH
11(x) + φH

12(x),

H(x)φ1(x) = φH
11(x) − φH

12(x),

φ2(x) = φH
21(x) + φH

22(x),

H(x)φ2(x) = φH
21(x) − φH

22(x),

which shows that the two sets of basis functions span
the same discrete space.

3.1 Branched and intersecting cracks

The geometry of a crack or system of cracks can of
course be much more complex than that shown in Fig. 2.
For example, a rapidly propagating crack can undergo
a bifurcation and branch dynamically, splitting into two
new crack fronts. More generally, multiple crack fronts
can exist at one point in time and subsequently inter-
act, potentially merging. Although multiple crack tips
in close proximity do present their own set of chal-
lenges for asymptotic enrichment, most of the research
effort has been focused on strategies to handle the inte-

rior of the crack network. In other words, the emphasis
has once again been on enhancing the approximation
such that the kinematics associated with a network of
cracks (intersecting and/or branched) are properly rep-
resented.

Early work along these lines by Daux et al. (2000)
considered cracks with multiple branches and the need
for additional types of enrichment functions for the
interior. Consider, for example, the case of two inde-
pendent cracks that cross each other. At their crossing
point, or junction, a naive approach is to simply enrich
each crack with its own Heaviside function. Through
comparison with an analogous system that is explicitly
meshed, it is shown in Daux et al. (2000) that these
two enrichment functions are not sufficient to repre-
sent all the kinematics that ensue due to two cracks
crossing. There are additional opening modes that need
to be captured. This was resolved by identifying a
main crack and any associated branches, and by adding
junction enrichment functions that exhibited disconti-
nuities across both the main crack and their respec-
tive branches. An improvement for junction enrichment
that applies in two and three dimensions was proposed
by Simone et al. (2006).

Alternative strategies have also been developed by
the computer graphics community. The virtual node
algorithm developed by Molino et al. (2004) can be

viewed as an extension of the Hansbo-Hansbo approx-
imation for multiple cracks. Each partial element is
viewed as consisting of physical and virtual nodes.
In this approach, virtual nodes are created based on
the number of unique partitions (by crack geometry)
formed in the region defined by the support of the
first-order nodal basis functions (nodal one-rings). New
partial elements are then created based on the topol-
ogy and connectivity of the physical and virtual nodes.
This approach naturally handles the case when a crack
branches within an element, and it generalizes to three-
dimensional problems. It bears emphasis that the result-
ing kinematics are identical to what can be obtained
through Heaviside and junction enrichment.

More recently, Richardson et al. (2011) proposed a
method for geometrically elaborate cracks. In contrast
to the nodal-based approach of Molino et al. (2004),
this is an element-based approach to creating new par-
tial elements. The first step is to identify all distinct
material regions in each element as dictated by the frac-
ture geometry. In an intermediate step, partial elements
are generated for each of the material regions in each of
these elements. The final step reconnects these partial
elements and collapses degrees of freedom based on
common material regions at element edges (or faces in
three dimensions). As pointed out by Richardson et al.
(2011), in some cases this approach results in element
kinematics that are distinct from what can be achieved
via traditional enrichment algorithms.

3.2 Adaptivity

The basic approximation (4a) of the X-FEM is con-
structed using both standard finite element and enriched
basis functions. Both these classes of basis functions
rely on an underlying finite element mesh. While such
an FE mesh can be constructed independent of the crack
geometry, it nonetheless impacts the accuracy of the
fracture simulation. In general, the accuracy of a given
extended FE simulation is governed by the structure
of the FE mesh and the form of the near-tip enrich-
ment (geometric or topological). In order to ensure a
desired level of accuracy, the background mesh will
usually need to be adaptively refined or some form
of r -adaptivity will be required to construct a suitable
mesh. However, irrespective of the choice made, it is
important to emphasize that the process of adaptivity is
greatly simplified since the mesh need not conform to
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the crack geometry. It is much simpler to locally refine
a mesh in a region to some specific level of resolution
than it is to construct a mesh that conforms to a crack,
and this is especially so in three dimensions.

Adaptivity with the X-FEM can be driven by sev-
eral considerations. In particular, we focus on the rep-
resentation of the crack geometry, the accuracy of the
approximate displacement field, and the extraction of
stress intensity factors. The first two are intimately
related. On the one hand, the geometry of a crack or
fracture network can be captured by adapting the inte-
gration cells within elements that contain cracks. When
Heaviside enrichment is then added to the standard FE
approximation, the kinematics of the crack geometry
can be captured by the displacement approximation,
albeit with some caveats. For example, a single Heav-
iside function cannot capture multiple cracks that pass
through a single element, and perhaps more impor-
tantly, it cannot capture cracks that terminate inside ele-
ments. The use of Heaviside enrichment alone implies
that crack tips terminate on element edges, which is
limiting for many fracture applications.

Near-tip enrichment not only allows a more pre-
cise representation of the crack-tip geometry, it also
improves the accuracy of the displacement approxi-
mation by introducing singular fields. But here too,
there are limits to the basic extended finite element
approximation (4a) as discussed in Bellec and Dolbow
(2003). For cracks that are sufficiently small relative to
the mesh size, the near-tip enrichment functions cease
to be appropriate. In these limiting cases, discontinu-
ities in near-tip enrichment functions can extend too
far, beyond the end of the crack on the other side. To
some degree, accuracy can be recovered by modifying
the near-tip enrichment to account for both tips.

Regarding stress intensity factors, if several crack
tips or fronts lie within the same element, it is diffi-
cult to separate contributions from each of them using
domain and interaction integrals. It is thus reasonable to
adaptively refine meshes so that several elements sepa-
rate distinct tips and fronts whenever possible. Such
heuristics are less than satisfactory. More generally,
the appropriate level of mesh refinement needs to be
analyzed through a posteriori error estimation tech-
niques. Such error estimation tools for the X-FEM have
been designed, for example, see Rodenas et al. (2008)
and Duflot and Bordas (2008).

An interesting two-scale approach has been pro-
posed by Duarte and Kim (2008) for static cracks and

extended to propagating cracks in Pereira et al. (2011).
The idea is to use a fixed global mesh with finer, nested
meshes to obtain accurate fields near crack fronts. The
macro problem on the global mesh uses enrichment
functions that are computed on the fine local grids using
boundary conditions of the global problem (at the pre-
vious step). This decomposition between the two scales
not only reduces the computational time but also allows
the global mesh to remain fixed.

3.3 Extension to three dimensions

The displacement approximation (4) directly extends to
three dimensions. The crack geometry in three dimen-
sions is described by a surface (crack interior) and
a boundary curve (crack front). As enrichment func-
tions, the generalized Heaviside function is used for
the crack interior and the two-dimensional (plane-
strain) asymptotic functions given in (4b) are used
for the crack front. The definitions for the sets of
enriched nodes are identical to the two-dimensional
case. For example, all nodes whose basis function sup-
port contains the crack front are enriched with the
near-tip functions. In three dimensions, a local crack-
tip coordinate system (r, θ) is attached to each point
s on the crack front (see Fig. 4). For a given inte-
gration point x ∈ Ω , the point s on the crack front
is needed to determine the local coordinate system to
compute the enrichment functions as well as in post-
processing to extract the stress intensity factors using
the domain form of the contour interaction integrals.
In finite element analysis, a nonlinear Newton iter-
ative scheme is needed to compute the shortest dis-
tance, which is then used to set up the local coordi-
nate system at s (Gosz and Moran 2002). An implicit
representation of the crack geometry using level sets

x

x
n

x2

3x

1

s

s

s

s

Crack front Λc

r
θ

Fig. 4 Local coordinate system for crack front enrichment
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greatly simplifies these computations in the X-FEM
(see Sect. 6).

While it is common to use the four functions (4b)
for both two and three-dimensional problems, it bears
emphasis that they are only asymptotic under plane-
strain conditions. Many fracture problems in three
dimensions have cracks that intersect a free surface,
where the nature of the singularity changes. Theoretical
analysis due to Benthem (1977) reveals that the strength
of the singular fields near a free surface depends on
the Poisson’s ratio ν. For ν = 0, a r−1/2 singularity
in the near-tip stress field exists, as one might expect.
However, for ν > 0, the strength of the singularity is
generally less than 1/2. This variation in the singular-
ity near the free surface is neglected in most studies
that use the X-FEM. In very recent work, González-
Albuixech et al. (2015) modify the enrichment func-
tions to account for free-surface effects, which shows
improvements in the accuracy of the extended finite
element computations.

We also mention some alternatives to near-tip
enrichment in three dimensions. Consider a standard
eight-node trilinear brick element, which employs
eight standard shape functions and 24 degrees of
freedom to approximate a vector-valued displacement
field. When near-tip enrichment is added in the form
of (4b), an additional 12 degrees of freedom per
enriched node are required. As such, an eight-noded
element with all nodes enriched with near-tip functions
employs 120 degrees of freedom (24 standard and 96
enriched).

One approach to reduce this relatively large num-
ber of degrees of freedom and still capture the asymp-
totic field is to employ vectorial enrichment. The use
of vectorial enrichment for crack problems was first
introduced in Duarte et al. (2000). With the standard
near-tip enrichment, each of the four scalar enrichment
functions (4b) are multiplied by vectorial degrees of
freedom bkαt . By contrast, vectorial enrichment uses
three vector-valued enrichment functions that are each
multiplied by scalar degrees of freedom. The result is
that the number of additional degrees of freedom per
enriched node is reduced from 12 to 3. Recent work
by Chevaugeon et al. (2013) and Gupta et al. (2015)
in two and three dimensions, respectively, demon-
strate that when combined with the geometric enrich-
ment strategy, use of vectorial enrichment provides
the same level of accuracy at reduced computational
cost.

3.4 Programming

The extended finite element approximation (4a) can be
a challenge to incorporate into standard finite-element
programs, depending on the structure of the basic code
and its ability to manage degrees of freedom. Rather
than a standard element-centric philosophy, the X-FEM
adopts a nodal-centric viewpoint when building an
enriched approximation. As indicated in Fig. 2, this
gives rise to elements with variations in both number
and type of degrees of freedom. The number of enriched
nodes for an element can be zero, one, or all the nodes of
the element. More generally, elements can have a mix of
standard, near-tip, and Heaviside degrees of freedom.

Many finite-element programs assume that all ele-
ments within a block have the same number of degrees
of freedom. Using mesh structures that respect this
restriction helps to optimize memory and reduce
latency for parallel calculations. When only Heavi-
side enrichment is used, such structures can easily be
maintained by adopting the partial element approach
of Hansbo and Hansbo (2004). With near-tip enrich-
ment, one (very inefficient) approach is to construct a
mesh of elements with all nodes enriched, and then to
simply fix degrees of freedom to zero for those nodes
with basis function supports that are far away from any
crack tip.

Beyond these basic considerations, there are many
technical aspects to consider to properly and efficiently
handle the interaction between an arbitrary crack geom-
etry and a background mesh. This includes the utiliza-
tion of geometric predicates to deal with tolerances
and recursive algorithms for constructing integration
cells. For details into these issues, we refer the reader
to discussions in Sukumar et al. (2000) and Sukumar
and Prévost (2003). Importantly, the enrichment strate-
gies of the X-FEM have been successfully incorporated
into a wide range of commercial and research codes:
for example, Abaqus, LS-DYNA, Code_Aster and
GetFem++ to name just a few.

4 Numerical computation of weak form integrals

On using trial and test functions of the form (4) in the
weak form (3), we obtain the discrete set of equations
in the X-FEM (Moës et al. 1999). The entries of the
stiffness matrix are given by integrals with integrands
that are discontinuous across the crack and/or are also
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weakly singular at the crack-tip. To accurately evaluate
these contributions to the stiffness matrix, additional
procedures are needed to perform the numerical inte-
gration.

First and foremost, since the crack is a line or surface
discontinuity that intersects an enriched element, any
numerical integration scheme must perform quadrature
over the subdomains on either side of the crack. To
this end, the simplest and most widely used approach
is the partitioning of the finite element into subcells
(triangles in R2 and tetrahedra in R3) for the purpose
of numerical integration (Moës et al. 1999; Sukumar
et al. 2000). In 2D, an enriched element is decom-
posed into a collection of triangles, with the crack con-
forming to the boundary edges of the triangles. It is
worth pointing out that this procedure is not equiva-

lent to remeshing, since no additional degrees of free-
dom accrue and in addition, there are no restrictions
placed on the shape of these triangles. The partitioning
is relatively easy to implement in 2D, but for multiple
cracks with kinks in 3D, more sophisticated compu-
tational geometric algorithms are needed for an effi-
cient and robust implementation. To avoid the need for
partitioning the elements, algorithms have also been
devised for polynomial-precision quadrature rules that
integrate discontinuous functions on either side of the
crack (Ventura 2006; Holdych et al. 2008; Mousavi and
Sukumar 2010b; Ventura and Benvenuti 2015); how-
ever, these approaches are still the subject of current
research, and hence the partitioning procedure contin-
ues to be the preferred method-of-choice for numerical
integration within the X-FEM.

Elements that contain the crack-tip in two dimen-
sions or those that intersect the crack front in three
dimensions require special treatment, since the crack-
tip singularity lies within such elements. A higher-
order tensor-product Gauss quadrature rule as adopted
in Moës et al. (1999) and Sukumar et al. (2000) suf-
fices for coarse-mesh accuracy. However, to demon-
strate robustness of the method and to establish conver-
gence for geometric enrichment (Laborde et al. 2005;
Béchet et al. 2005), the singular (weakly) integrands
must be accurately integrated to ensure optimal asymp-
totic rates of convergence. Use of Gauss quadrature
limits the accuracy for such integrals, and hence in two
dimensions an almost-polar transformation (Laborde
et al. 2005), which is identical to the Duffy map (Duffy
1982)

)

, and a parabolic transformation (Béchet et al.
2005), were introduced. When the crack-tip is located

T0y

xu

v v

u

SS
D

β
g D

Fig. 5 Transformations from the unit square to the standard tri-
angle. The Duffy transformation D : S → T0 maps the unit
square to the standard triangle. This is followed by a power
transformation D

β
g : S → S that maps the square onto itself.

The composite map from u → x is: x = uβ , y = uβv, where
β ∈ Z

+ (Mousavi and Sukumar 2010a)

within an element, the element is partitioned into tri-
angles with the crack-tip located at a vertex of each
triangle. Mousavi and Sukumar (2010a) generalized
the Duffy transformation to integrate weakly singular
integrands. In this approach, an affine transformation is
first used to map each triangle to the standard triangle
T0 shown in Fig. 5. Then, the unit square (unit cube in
3D) is mapped to the standard triangle (pyramid in 3D)
via the transformation:

(u, v) → (x, y) : x = uβ , y = xv = uβv, (5)

where β ∈ Z+. Consider integrating f (x) := g(x)r−α

over T0, where r =
√

x2 + y2 and g(x, y) is a bivariate
polynomial. Then, on applying (5), the kernel becomes

K (u, v) :=
g(uβ , uβv)|J |

rα
=

g(uβ , uβv)βu2β−1−αβ

√
1 + v2

,

(6)

where |J | is the Jacobian of the map in (5). The para-
meter β is selected so that the exponent of u in (6)
is the smallest positive integer. For α = 1, the 1/r

singularity is eliminated with β = 1 (Duffy transfor-
mation), whereas for 1/

√
r (α = 1/2), β = 2 is opti-

mal. Since 1/r and 1/
√

r terms arise in the X-FEM for
elastic fracture, this approach is accurate in two dimen-
sions (Mousavi and Sukumar 2010b; Minnebo 2012;
Cano and Moreno 2015). Cano and Moreno (2015)
provide a general prescription to obtain the map Dg

that cancels the singularity. These integration schemes
are also pertinent when other power singularities are
present, for instance in applications such as as hydraulic
fracture (Gordeliy and Peirce 2015), crack impinging
a bimaterial interface (Huang et al. 2003), and Poisson
and elasticity problems with reentrant corners. For a
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crack front that represents a line singularity, Minnebo
(2012) describes a comparison of existing approaches,
and presents extensions of the Duffy and parabolic
transformation schemes to integrate singular enrich-
ment functions in 3D.

5 Conditioning of the linear system of equations

Conditioning issues may arise with the X-FEM, which
come in two types. The first is related to the crack-
tip enrichment, which was first observed in Laborde
et al. (2005) and Béchet et al. (2005). Ill-conditioning
in the X-FEM stems from the fact that on a given
support of a nodal finite element basis function, the
enriched basis functions may be nearly linearly depen-
dent among themselves and/or with the finite element
basis functions. We note in passing that instead of form-
ing the partition-of-unity functions from the finite ele-
ment shape functions, use of flat-top functions (Griebel
and Schweitzer 2000) ensures linearly independent
basis functions and algorithms are available that mit-
igate ill-conditioning in the particle partition-of-unity
method (Schweitzer 2011). The crack-tip enrichments
given in (4b) introduce 8 (12) additional degrees of
freedom per node in 2D (3D). Globally, these enrich-
ment functions are linearly independent. However, on
an element-level the basis functions ({Ni Fα}) that
are associated with these enrichments can be lin-
early dependent, which was demonstrated in Laborde
et al. (2005). With just topological enrichment, the ill-
conditioning is not severe; however, it is exacerbated
with geometric enrichment. This is due to two reasons:
enriching many nodes within a fixed radius of the crack-
tip can introduce low-energy modes; and away from
the crack-tip,

√
r resembles a polynomial that intro-

duces near linear-dependencies between the enriched
and FE basis functions. Fortunately, remedies exist.
The one proposed in Laborde et al. (2005) is to reduce
the number of enriched degrees of freedom by tying
them together, leading to enrichment functions with
larger support. This approach, however, compromises
accuracy.

Another remedy is to enrich each component of the
displacement field using the vectorial enrichment strat-
egy discussed in Sect. 3.3. The impact of vectorial
enrichment on conditioning was examined by Chevau-
geon et al. (2013). Vectorial enrichment improves con-
ditioning in large part because of the reduction in

enriched degrees of freedom — a factor of four at each
node in 3D.

Yet another way to improve conditioning is to design
an ad hoc preconditioner (Béchet et al. 2005). The
preconditioner is devised by considering all approx-
imations functions related to a support and orthogo-
nalizing them with respect to the bilinear form, i.e.,
block-preconditioning, with each block gathering all
the degrees of freedom for a particular node.

The generalized Heaviside (discontinuous) enrich-
ment can be the cause for the second type of ill-
conditioning. Indeed, if the support of a basis function
is cut by a crack that is very close to its boundary, the
standard FE basis function and the enriched basis func-
tion will be nearly linearly-dependent. This issue may
also arise if several cracks cross the support of a basis
function, partitioning the support of the basis function
into two pieces with one volume significantly smaller
than the other (Siavelis et al. 2013). Again, the specific
X-FEM preconditioner designed in Béchet et al. (2005)
is found to be efficient.

Very recently, a new design of the enrichment func-
tions has been proposed to mitigate ill-conditioning in
partition-of-unity finite element methods. It is coined
SGFEM (stabilized generalized finite element method)
(Babuška and Banerjee 2012). The key idea is to
remove from the enrichment function its piecewise lin-
ear continuous interpolant. The strategy is very effi-
cient in terms of reducing the condition number and an
error reduction is also observed. Indeed, the SGFEM
does not give the same solution as the GFEM due to
the elements that are located on the boundary of the
enrichment region. On these elements, the new enrich-
ment strategy appears to be more efficient. For a planar
three-dimensional edge-crack problem with vectorial
enrichment functions, Gupta et al. (2015) showed that
the SGFEM improves accuracy and reduces the condi-
tion number vis-à-vis GFEM for topological as well as
geometric enrichment strategies.

6 Implicit representation of cracks in three

dimensions

In the X-FEM, cracks can be arbitrarily placed within
a finite element mesh. Since cracks are modeled inde-
pendent of the underlying FE mesh, their geometry
needs to be stored in some other manner. To this end,
one approach is to explicitly provide the crack geom-
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etry as a set of segments or parametric curves in two
dimensions, and as a set of triangles (nonplanar sur-
face) in three dimensions. Initial papers on the X-FEM
did use this explicit representation. A major draw-
back to this approach is that it requires a completely
separate infrastructure to represent the crack, beyond
what the background finite element mesh can provide.
Furthermore, while a great deal of progress has been
made using explicit representations of crack geome-
tries to simulate crack growth in three dimensions,
the approach remains non-trivial for industrial-grade
problems. We point the reader to Garzon et al. (2014)
for insight into the state-of-the-art and remaining chal-
lenges. Considerations such as these have motivated
the development and pursuit of alternative methods for
representing crack geometries.

Level set and fast marching methods (Sethian 1999)
are numerical techniques for capturing moving inter-
faces. They provide an implicit way to store boundaries
and to evolve them under known prescribed velocities
on the boundaries. The boundary is represented as the
zero level contour of a signed distance function that is
associated with it. The signed distance function may be
discretized by nodal values of a standard finite element
field, and hence geometrical features are transformed
into finite element fields.

For closed surfaces of codimension 1 in Rd , the
level set representation and implementation is straight-
forward. However, modeling cracks poses significant
challenges, since a crack does not decompose a domain
into two disjoint parts (except when the domain is fully
cut). Hence, two level sets are needed to locate a crack:
a normal level set function φn(x) and a tangential level
set function φt (x). For representing 2D cracks, the use
of level sets with the X-FEM was conceived in Sto-
larska et al. (2001), and the extension to 3D was pre-
sented in Moës et al. (2002) and Gravouil et al. (2002).
The sign of the function φn(x) indicates if a point x is
above or below the crack, and the function φt (x) pro-
vides the distance to the crack front. On combining the
two, the crack discontinuity and the crack front of the
discontinuity are represented by the sets

Γc = {x : φn(x) = 0 and φt (x) < 0}, (7a)

Λc = {x : φn(x) = 0 and φt (x) = 0}. (7b)

Figure 6a, b illustrate φn and φt in 2D and 3D, respec-
tively.

φn = 0

φn > 0

φn < 0

φt = 0

φt > 0

φt < 0

(a)

φn = 0

φ
t
= 0

crack discontinuity

(b)

Fig. 6 Level set representation of a crack. Signed distance func-
tions φn and φt to represent the crack interior and the crack
tip/front, respectively. The functions are illustrated for 2D in (a)
and for 3D in (b)

In addition to providing the location of the crack,
the use of these two level set functions offer additional
advantages in extended finite element computations.
First, on using φn(x) and φt (x), the local crack-tip
coordinates (r, θ) (see Fig. 4) that are needed for eval-
uating enrichment functions are readily computed:

r = φ2
n + φ2

t , θ = tan−1
(

φn

φt

)

. (8)

Secondly, for even planar cracks (penny or elliptical in
shape) within X-FEM or those meshed within FEM,
knowing the associated level set fields is beneficial to
express the auxiliary fields that arise in the domain form
of the contour interaction integrals (see Sect. 7).
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7 Extraction of stress intensity factors and crack

growth simulations

The notion of stress intensity factors (SIFs), which is
central to linear elastic fracture mechanics, appear in
Williams’s expansion of the stress field in the vicin-
ity of the crack-tip. The three (constant) stress inten-
sity factors K I , K I I and K I I I that correspond to the
opening mode, in-plane shear mode, and out-of-plane
shear mode, respectively, are sufficient to define the
so-called K -dominant field. When small-scale yield-
ing conditions hold, the elastic K -field governs frac-
ture and failure of the material. Irwin showed that the
energy release rate (crack driving force) is related to
the stress intensity factors. Stress intensity factors are
used to both ascertain whether or not cracks will grow
under given loading conditions, and also to determine
the direction of crack propagation under mixed-mode
loading conditions.

For stress intensity factor computations with finite
elements or extended finite elements, the use of crack-
tip flux integrals leads to better accuracy than displace-
ment or stress extrapolation techniques. Domain forms
of the contour J -integral and associated contour inter-
action integrals remain the most popular method for
extracting SIFs from finite-element calculations (Yau
et al. 1980; Li et al. 1985; Shih et al. 1986; Moran
and Shih 1987; Nakamura and Parks 1989; Gosz and
Moran 2002). In the interaction integral method, the
two-dimensional plane strain auxiliary fields are intro-
duced and superposed on the actual fields that arise
from the solution of the boundary-value problem. By
judicious choice of the auxiliary fields, the contour
interaction integral can be directly related to the mixed-
mode stress intensity factors.

Interaction integral methods were employed in two-
dimensional analysis with the X-FEM (Belytschko and
Black 1999; Moës et al. 1999). The domain repre-
sentation of the interaction integral converts a contour
integral around the crack-tip into an area integral over
the region enclosed by the contour. Let this domain
of integration be denoted by Ωh

k . In two dimensions,
the process is completed in three basic steps. First, one
identifies all elements having a node within a specified
radius rk := αhe of the crack-tip, where α is a scalar
multiple and he is the crack-tip mesh size. This set
of elements defines Ωh

k . Then, a scalar-valued weight
function, typically designated as q(x), is constructed
using the nodal shape functions of these domain ele-

ments. A common procedure is to use a plateau func-
tion for q(x), which assumes a value of unity every-
where except near the boundary of the domain where
it vanishes. Finally, contributions to the interaction
integral, which involve field quantities and their gra-
dient, are assembled by looping over these domain
elements.

For planar cracks in three dimensions, the domain
form of the J -integral is used (Sukumar et al. 2000),
whereas for nonplanar cracks in three dimensions, the
interaction integral method of Gosz and Moran (2002)
is used to extract the SIFs in extended finite element
computations (Moës et al. 2002; Sukumar et al. 2008).
In three dimensions, the process is not as straightfor-
ward as in two dimensions, since the collections of ele-
ments that represent suitable domains for SIF extrac-
tion along the crack front are not so easily identifiable.
An approach that was introduced in Sukumar et al.
(2000) is to construct a completely independent group
of hexahedral cells near a point on the crack front where
SIFs are desired. Domain integrals are then assem-
bled by looping over newly-created quadrature points
in these cells. At each quadrature point in a cell, it is
necessary to locate the position of the point in the origi-
nal mesh and then extract the needed quantities such as
the strain energy density. We note that these fields are
discontinuous across element boundaries, and as such
there is error associated with the quadrature in these
cells. SIFs obtained with this approach tend to exhibit
small oscillations, as shown in Sukumar et al. (2000).
One means to effectively smooth oscillations for SIFs
along the crack front is to adopt a modal decomposi-
tion, such as that proposed by Galenne et al. (2007) for
dynamic loading. While this technique was originally
proposed for cracks that are meshed, it can be applied
to embedded crack surfaces as in the X-FEM.

Under fatigue-type crack growth conditions, know-
ing the stress intensity factor distribution along the
crack front for the maximum and minimum load in
each cycle, the crack extent is computed from the
Paris law for a given number of cycles. The crack
growth direction is determined using the maximum
hoop stress criterion (Erdogan and Sih 1963). For two-
dimensional cracks that are represented by piecewise
linear segments, the exact geometry is available, and
hence its extension during crack growth is simple. In
three dimensions, the use of level set functions φn and
φt is attractive to represent cracks during crack prop-
agation simulations. On knowing the magnitude and
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orientation of crack growth, both φn and φt are updated
using the level set method (Gravouil et al. 2002).

For monotonically advancing interfaces such as
crack fronts, the fast marching method (FMM) (Sethian
1999) has certain advantages over the level set method
— FMM is a single-pass algorithm with no time-step
restriction, which is unlike the level set method that is
limited by a critical time-step to ensure stability. The
FMM was first adopted for crack propagation simula-
tions of planar cracks in Sukumar et al. (2003) and sub-
sequently extended for nonplanar cracks in Sukumar
et al. (2008). Duflot (2007) has presented an overview
of various algorithms for the level set description for
three-dimensional cracks. Since these initial papers,
with an eye on robustness and speed, improvements
have been proposed — use of a narrow band FMM
by Shi et al. (2010) and use of alternative level set
update equations by Colombo and Massin (2010).

8 Extensions beyond quasistatic elastic fracture

The preceding sections have focused on the modeling
of cracks using the X-FEM within the purview of qua-
sistatic linear elastic fracture mechanics. Of course,
fracture phenomena is in general much richer and
diverse, and the extended finite element method has
been brought to bear on more complicated fracture
problems in linear and nonlinear failure mechanics.
Herein, we touch upon some of the more important
and noteworthy developments along these lines, includ-
ing cohesive models of fracture, dynamic fracture, and
inelastic fracture governed by finite deformation kine-
matics and incompressible material behavior. We also
discuss important advances concerning the develop-
ment of models that enable transitions from damage
to discrete fractures.

8.1 Cohesive models, dynamic fracture and nonlinear
fracture

Cohesive models are one of the more prominent means
to treat fracture and failure. They are characterized by
an interfacial constitutive law (often nonlinear) relat-
ing tractions and displacements on crack faces. With
cohesive models and the X-FEM, a key question con-
cerns identifying the crack geometry and the extent
of the cohesive region during the progression of the

simulation. This aspect is addressed in depth in Moës
et al. (2002). Another question concerns the stability
of the formulation as the effective stiffness of the inter-
face increases, an issue first raised by Ji and Dolbow
(2004). This aspect has been addressed in part through
both the development of stable (Ferté et al. 2014) and
stabilized (Annavarapu et al. 2014) formulations for
treating interfacial constitutive laws with the X-FEM.
Mergheim et al. (2005) and Mergheim et al. (2007) have
adopted the approach of Hansbo and Hansbo (2004) to
simulate propagating cohesive cracks in quasi-brittle
materials using small-strain and finite-strain kinemat-
ics, respectively.

While cohesive zone models are relatively straight-
forward in their implementation, dynamic fracture is
not. Indeed, dynamic fracture has raised specific issues
related to the X-FEM, including the need for appro-
priate mass lumping strategies and stable time inte-
grators with near-tip enrichment (Menouillard et al.
2008). Schweitzer (2013) has proposed a variational
mass lumping scheme for partition of unity methods,
which holds promise for dynamic fracture. Robust time
integration schemes remain an open issue, in the sense
that the use of an explicit scheme precludes removing
near-tip enrichment from nodes as a crack propagates.
Conditional stability can only be guaranteed if the num-
ber of near-tip enriched degrees of freedom monoton-
ically increases with time (Réthoré et al. 2005).

Up to this point, we have confined our attention to
fracture problems in which the bulk material response
is linearly elastic. The basic ideas of the X-FEM have
also been adapted for other bulk material models, to
varying degrees. For example, it is trivial to extend
the concept of Heaviside enrichment to finite strains
and nonlinear elasticity, as shown in Wells and Sluys
(2001). However, beyond linear elasticity, identifying
near-tip enrichment functions that are sufficiently accu-
rate to recover optimal rates of convergence becomes
much more challenging (Legrain et al. 2005). Examples
of recent attempts to identify suitable near-tip enrich-
ment functions can be found in Elguedj et al. (2006) for
plasticity and in Karoui et al. (2014) for compressible
hyperelasticity.

With nearly-incompressible material response, the
standard approach with finite elements is to
employ mixed formulations (or their selective reduced-
integration equivalents) that are stable. The first attempt
at this with the X-FEM adopted an enhanced assumed
strain formulation, and introduced the concept of a dis-
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continuous version of the patch test (Dolbow and Devan
2004). More generally, not all element formulations
remain stable once Heaviside and/or near-tip enrich-
ment is introduced. We point the reader to the work
of Legrain et al. (2008) for an exposé on this topic.

8.2 Connecting damage and discrete fractures

We have emphasized that the X-FEM is, first and fore-
most, an enabling technology. It provides a means to
introduce a discontinuity inside an element, as well as
a network of discontinuities inside a mesh. It also pro-
vides a way to enhance finite element approximation
functions beyond the standard piecewise-polynomial
functions, such that near-tip singularities can be cap-
tured on relatively coarse meshes. It bears emphasis that
such capabilities are not a replacement for the physics
of fracture. In order to be robust, fracture simulations
employing the X-FEM need to be based on sound the-
oretical underpinnings.

Robustness has proven to be elusive for complex
three-dimensional crack growth simulations, where for
example there is an interest in representing many crack
surfaces that nucleate, interact, and merge. Several
researchers have attempted to use relatively simple
physical laws to nucleate and grow multiple crack sur-
faces in three dimensions, with varying degrees of suc-
cess (Molino et al. 2004). While such approaches can
undoubtedly enable fragmentation simulations, spatial
convergence in various output quantities of interest has
yet to be demonstrated. On occasion, failures in this
arena have been attributed to the limitations of the X-
FEM itself, but we contend that in fact the issue is a
reliance on physical models that are unsound, com-
bined with algorithms that employ heuristics.

We believe that a sound approach to treat this class
of problems is to view the X-FEM as a means to tran-
sition from continuum damage models to discrete frac-
ture surfaces. Early studies along these lines were per-
formed by Simone et al. (2003) who modeled the tran-
sition from nonlocal damage to discrete cracks, and
by Comi et al. (2007) who used enrichment functions
in the X-FEM to facilitate the transition from a damage
model to a cohesive zone model. We also mention the
contribution of Seabra et al. (2012) who placed discon-
tinuity surfaces in plastic zones for ductile failure, as
well as the recent work of Tamayo-Mas and Rodriguez-
Ferran (2015), who placed them in damage zones for

quasi-brittle failure. Continuum damage models raise
interesting theoretical questions when the capabilities
of the X-FEM are considered. When a standard dam-
age model is employed with finite elements, at some
point damage accumulates to such a degree that some
elements are completely degraded. These regions intro-
duce a number of challenges, such as significant mesh
distortion and poor conditioning. A crude way to treat
such elements is to simply remove them from the dis-
cretization. But this approach results in a loss of mass,
and fracture surfaces that are jagged.

In principle, the X-FEM provides an elegant
approach to introduce a failure surface as damage pro-
gresses. But where should distinct fracture surfaces be
placed for a given damage model, and how quickly
should they advance? Surfaces that advance too quickly
end up failing material that has not fully degraded. Con-
versely, surfaces that do not advance at the appropri-
ate rate result in the same issues that were mentioned
above, where regions of completely degraded elements
can persist.

The aforementioned questions are not as much
related to the X-FEM as they are to theoretical issues
pertaining to the transition from damage to frac-
ture. The recently proposed Thick Level Set (TLS)
method (Moës et al. 2011) is an attempt at address-
ing these questions. In the TLS, the damage variable is
tied to a level set field, from which the contour of the
crack (d = 1) can be extracted. Damage reaches unity
at exactly the same rate as the crack advances. Once
the crack geometry is identified, the extended finite ele-
ment technology is introduced to capture displacement
jumps. The TLS also remedies a technological chal-
lenge with level sets and fracture surfaces, in the sense
that a single level set field can be used for all the cracks
in the domain. The method has been used to simulate
complex fracture problems in three dimensions, includ-
ing crack nucleation, branching, and coalescence.

9 Conclusions and future outlook

In this paper, we have provided our perspective on the
main developments of the X-FEM (and related meth-
ods) in computational fracture mechanics. As stated in
the introduction, this is not a review paper, but rather
a synthesis of our views on the main thrusts in the X-
FEM. We have concentrated on the use of the X-FEM
for the simplest, but yet most widely-used mechanical
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failure model — linear elastic fracture mechanics with
a crack growth model that only requires knowing the
stress intensity factors along the crack front.

The extended finite element method is an advance
in element technology for modeling cracks and to con-
duct crack growth simulations without the need for the
finite element mesh to conform to the crack geome-
try. For crack modeling, the framework of partition-of-
unity enrichment is used to construct the displacement
approximation: Heaviside enrichment is used for the
crack interior and elastic near-tip asymptotic enrich-
ment functions are used for the crack tips. For compa-
rable number of degrees-of-freedom, use of the X-FEM
with topological enrichment (crack tips) yields better
accuracy than quarter-point finite elements; however,
both approaches deliver a (suboptimal) convergence
rate of 1/2 in the energy seminorm. With geometric

enrichment for the crack tips, the accuracy in the X-
FEM is further enhanced, and more significantly, the
optimal convergence rate of 1 in the energy seminorm
for first-order Lagrange finite elements is realized. The
flexibility that the X-FEM affords renders it particularly
attractive to conduct parametric linear elastic fracture
studies for cracks that have varying size, shape and
location in complex geometries.

Notwithstanding the many advances and enhance-
ments of the X-FEM for linear and nonlinear frac-
ture computations, there still remain many challenges
and open issues that can form the subject for future
research. Further theoretical and numerical develop-
ments in r -adaptivity and goal-oriented error estima-
tion techniques can ensure that a user-specified level of
accuracy for the stress intensity factors can be met in
elastic fracture analyses. Since geometric enrichment
deteriorates the conditioning of the stiffness matrix,
efficient preconditioners and solvers for ill-conditioned
linear system of equations are of interest. Devising effi-
cient numerical integration techniques without the need
to partition the finite elements can lead to simplifica-
tions in the implementation of the X-FEM for frac-
ture problems, and also enhance the robustness of the
method. Since the crack geometry is not described by
the FE mesh, the extraction of stress intensity factors
using the volume representation of the interaction inte-
gral for three-dimensional crack configurations is, both,
error prone and computationally demanding. Alterna-
tive approaches to compute SIFs in extended finite ele-
ment need to be explored that are accurate, reliable and
computationally efficient.

Conducting three-dimensional crack growth simu-
lations poses an additional set of challenges to capture
the evolution of cracks using level set functions. Vari-
ants of the fast marching method to update the level set
functions for crack propagation simulations appear to
be a fruitful direction to pursue. For dynamic fracture,
suitable enrichment strategies and mass lumping tech-
niques, and stable time-integration schemes can pave
the way towards accurate simulations, while simulating
fragmentation with a transition from continuum dam-
age to discrete cracks remains a challenge. Finally, as
an enabling technology, the X-FEM should now be
also viewed as a numerical tool that allows one to
assess and validate existing theoretical models against
experiments and, in case such tests fail, provides the
impetus towards the development of more appropriate
models.
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