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ABSTRACT

Dissecting the genetic components of Genotype-by-Environment interactions is of key importance in
the context of increasing instability and plant competition due to climate change and phytosanitary
treatment limitations. It is widely addressed in plants using Multi-Environment Trials (MET), in which
statistical modelling for genome-wide association studies (GWAS) is promising but significantly
more complex than for single-environment studies. In this context, we introduce metaGE, a flexible
and computationally efficient meta-analysis approach for the joint analysis of any MET GWAS
experiment. To cope with the specific requirements of the MET context, metaGE accounts for both
the heterogeneity of QTL effects across environments and the correlation between GWAS summary
statistics acquired on the same or related set(s) of genotypes. Compared to previous GWAS in 3
plant species and a multi-parent population, metaGE identified known and new QTLs. It provided
valuable insight into the genetic architecture of several complex traits and the variation of QTL effects
conditional to environmental conditions.

Keywords Meta-Analysis · GWAS · Genotype x Environment Interaction · Multi-Environment Trial · R package

1 Introduction

Understanding the adaptation mechanisms of plant species to different environments and the underlying genetic
architecture has been a long-standing challenge in plant genetics [20, 4, 15]. It can be investigated through the mapping
of quantitative trait loci (QTL) and the evaluation of their effects in different environments. Multi-Environment Trials
(MET) that consist in phenotyping the same panel of genotypes in different locations and/or over different years have
been widely adopted to dissect the genetic components underlying the Genotype-by-Environment (GxE) interactions
and to describe the QTL response to different environmental factors. Recent genome-wide association studies in plant
genetics have illustrated how the QTL-environment interaction may affect the phenotypic response [41, 50, 1, 18].
While informative and promising, QTL identification through the analysis of MET requires a dedicated statistical
methodology to account for both the instability of allelic effects and the high level of correlation between measurements
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acquired on the same (or very similar) panel(s) across environments. Compared to the single environment analysis
scenario for which many computationally efficient and grounded methods have been developed [57, 59, 36, 37, 32], the
statistical analysis of MET is still an open problem with only a few methods available [31, 60, 7, 38]. Powerful and
scalable methods that account for the environmental variation and its interaction with the QTLs remain challenging.

In this context, an appealing alternative to classical approaches consists in performing individual GWAS analyses
in each environment separately using one of the efficient single environment methods mentioned above, then jointly
analyzing the summary results - typically the effects and p-values associated with the different markers - of the individual
GWAS through a Meta-Analysis (MA) [17, 19]. GWAS-MA has proven to yield significant gains of power over initial
individual analyses while efficiently controlling for false positives and keeping the computational burden low [13]. It
has been successfully applied to both human [8, 44, 34] and animal [10, 25] genetic studies, allowing the detection of
QTLs with small or moderate effects[28]. GWAS-MA was, however, rarely applied to plant genetics [58, 51] and never
in the context of MET analyses. In addition, most MA procedures have been developed for human genetics purposes
and aim at detecting QTLs with stable effects over independent populations and, as such, are not suited to the MET
context where important variations in QTL effects can be observed and where the same (or related) panel(s) is(are)
phenotyped across different locations and years.

We propose new extensions to make MA procedures amenable to MET and GxE interaction analysis in plant genetics.
We developed fixed and random MA procedures to handle respectively fully controlled environments, and experiments
where the monitoring is insufficient to describe and classify the environments, as often observed in fluctuating field
conditions. To further investigate the GxE interaction, we introduce a new test procedure to identify QTLs whose effect
variations are correlated with a given environmental covariate. We demonstrate the efficiency of our approach through
applications to MET GWAS analysis of 3 species (A thaliana, maize and wheat) and a maize multi-parent population
MET. The whole statistical procedure is available in the metaGE R package.

2 Results

2.1 Meta-analysis approach

The study of GxE interactions in plant genetics requires the evaluation of the same panel - or highly overlapping
panels including several common genotypes - evaluated under different environmental conditions. Depending on the
experiment, environments may correspond to controlled stress conditions (e.g. nitrogen, water or competition stress),
or to different fields and/or years where the environmental conditions are contrasted but not fully controlled by the
experimenter. The newly developed fixed effect (FE) and random effect (RE) meta-analysis procedures respectively
cope with the controlled and uncontrolled environment cases. They are briefly described (see the section 4.2 for details),
then illustrated on several applications cases.

We consider a meta-analysis relying on K different GWAS performed in individual environments testing the association
between a set of M markers and a phenotype of interest. We denote βmk the estimated effect of marker m in environment
k, and pmk is the associated p-value. We define the z-score Zmk as

Zmk = −Φ−1(0.5pmk)× sign(βmk),

where Φ stands for the standard Gaussian cumulative distribution function. The smaller the p-value of the marker, the
greater will be the absolute value of the z-score. The sign of the z-score corresponds to the sign of the marker effect.
Importantly, when a marker m is not associated with the phenotype, Zmk follows a standard Gaussian distribution.

Fixed Effect (FE) procedure When the environmental conditions are controlled, the environments can be a priori
classified into several groups. One can then assume the marker effect to be stable within each group but different from
one group to another. Assuming the environments are classified into J distinct groups, the fixed effect model for a given
marker m is:

Zmk(j) = µj
m + Emk(j)

Em ∼ N (0K ,Σ)
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where µj
m is the marker effect specific to group j = 1, ..., J , Em = (Em1, . . . , EmK) is the vector containing the

residuals error, and Σ is the inter-environment correlation matrix. Testing the association at marker m corresponds to
testing the null hypothesis of all group-specific marker effects µj

m, j = 1, ..., J being equal to zero.

Random Effect (RE) procedure In the case of uncontrolled or partially controlled environmental conditions, the
heterogeneity of the QTL effects across environments may be accounted for through a random marker effect. The
model is updated as follows:

Zmk = µm +Amk + Emk

Em ∼ N (0K ,Σ)

Am ∼ N (0K , τ2mΣ)

Em ⊥⊥ Am

where µm is the mean marker effect, Am = (Am1, . . . , AmK) is the random effect accounting for the heterogeneity of
the marker effect, with variance τ2m. Testing the association of the marker m corresponds to testing the null hypothesis
of the mean marker effect µm and the marker effect variance τ2m being equal to zero.

To further investigate the GxE interaction, we also introduce a new meta-regression test procedure to identify QTLs
whose effects variations are correlated to a given environmental covariate (described in Section 4.2).

2.2 Applications

The 3 datasets presented in the following sections were selected to represent classical MET experiments for G ×
E interactions association studies in plant quantitative genetics, and cover controlled or partially/not controlled
experimental designs and a multi-parent MET population. Additionally, a fourth application to a wheat MET GWAS
dataset is presented in Supp. Mat. A. All datasets are publicly available (see the Data Availability section 4.3).

Controlled experiments We consider the Arabidopsis dataset of [23], where GWAS analyses were performed on the
local mapping population TOU-A, with a panel of 195 whole-genome sequenced accessions evaluated in six controlled
micro-habitats (combinations of three soils × presence/absence of inter-specific competition, noted A to F). Each
accession was phenotyped for bolting time and had genotypic information for 981,278 SNPs (after quality control and a
MAF threshold of 0.07). The trials were conducted under controlled stress conditions, with Arabidopsis being grown in
competition with the weed Poa annua in environments B, D, F and without competition in environments A, C and E.
The fixed-effect procedure described in details in the Methods Section 4.2 was applied to perform the joint analysis of
the 6 GWAS summary statistics.

First, a standard FE procedure was performed to detect markers with a stable effect across environments, leading
to the identification of 191 SNPs clustered into 61 QTLs. Among these QTLs, 51 were found significant in at
least one individual GWAS (see Table S1 in Supp. Mat. B for details). Following [11], the list of significant
SNPs was further validated by looking at the enrichment ratio for a priori candidate genes in bolting time. The
enrichment of the identified markers (enrichment=4.13) was significantly higher than what would be expected at random
([q0.05; q0.95] = [0.066; 3.2]).

We then applied the contrasted FE testing procedure described in the Methods section, Equ. (2) with a group effect
corresponding to the presence or absence of a competition with Poa annua to detect markers with contrasted allelic
effects based on the presence or absence of competition. The contrasted FE procedure identified 221 SNPs located
in 72 QTLs (Fig.1.A) and covering 160 candidate genes that show significant enrichment for three Gene Ontology
terms (MapMan functional annotation,[46]), i.e. ‘development’ (P = 8.866e-03), ‘cell’ (P = 1.522e-03) and ‘tetrapyrrole
synthesis’ (P = 0.020). Interestingly, the two latter MapMan processes were also detected as enriched when challenging
the local mapping population TOU-A to the presence of three weed species in greenhouse conditions [35].

Fig.1.B represents the z-scores of two QTLs found on chromosome 5 involving 22 and 9 markers, respectively. The
identified markers clearly exhibited a contrasted marker effect profile: when the effects were positive in one of the two
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groups of environments, they were negative or null in the other. All the 22 SNPs of the second QTL (QTL5_22.1) are
located in the AtCNGC4 genomic region that is well-known to affect floral transition [12] [22].

Figure 1: Results of the FE procedure applied to the Arabidopsis dataset to detect markers with competition contrasted
effects. (A) Local scores along the chromosomes. The boxes represent the significant zones identified. (B) Z-scores of
two QTL regions located on chromosome 5 (QTL5_22.0 a,d QTL5_22.1), with markers in rows and environments in
columns. A, C and E correspond to the 3 environments without competition.

Importantly, as the contrasted FE procedure aims at identifying markers with contrasted (i.e. unstable) effects across the
two sets of environments, 71 out of the 72 QTLs identified by the contrasted FE procedure are new candidates that were
not detected by the standard FE procedure.

Uncontrolled experiments We consider the Maize dataset of [41], where GWAS analyses were performed on a
panel of 244 maize dent lines evaluated as hybrids with a common parental line (a usual practice in maize genetics)
in 22 environments (combinations of location × year x treatment). Each line was genotyped at 602,356 SNPs (after
quality control) and phenotyped for grain yield (GY) in the 22 environments. In addition, environmental variables were
measured in each environment.

The RE procedure detailed in Section 4.2 was applied to perform the joint analysis of the 22 per environment GWAS
summary statistics. In total 52 genomic regions were identified, of which 14 correspond to QTLs also detected in
the original publication [41]. The three QTLs with the most significant association peaks (Fig.2.A) were located on
chromosomes 3 (QTL3_120.0) (local score=38), 6 (QTL6_20.3) (local score=415) and 7 (QTL7_41.4) (local score =
18, not detected in the original publication). The z-score heatmaps corresponding to QTL6_20.3 and QTL7_41.4 are
displayed in Fig.2.B. The heatmap of QTL6_20.3 revealed a cluster of six environments (Cra12R, Cam12R, Cra12W,
Mur13R, Mur13W and Cam12W) with strong similar marker effects that were found to be characterized by severe
heatwaves with high night temperature (close to 22°C) and high maximal temperature (above 36°C) together with high
evaporative demand during the day (3.6 KPa). The QTL6_20.3 individual GWAS p-values were all lower than 1e-6 in
the 6 aforementioned environments, confirming the strong association signal detected by the RE procedure. In contrast,
the QTL7_41.4 showed a moderate positive effect across nearly half of the environments: individual GWAS p-values
were lower than 1e-2 in ten environments out of 22, and was found significant in only two individual GWAS.

We performed a genome-wide detection of markers whose effect variations are correlated with environmental variables
by running the meta-regression test procedure described in Section 4.2. The environmental variables considered were
the evapotranspiration (ET0), the mean night temperature during the flowering period (Tnight) and the mean night
temperature during the grain filling period (Tnight.Fill).

Regarding evapotranspiration, the meta-regression test identified 14 QTLs located on chromosomes 2 and 9 (Fig.2.C).
Allelic effects on grain yield of one of the most significant marker (marker AX-91538480, QTL2_153.8) markedly
changed with potential evapotranspiration (ET0) (Fig.2.D).

For the mean night temperature during the flowering period, the meta-regression test identified 21 QTLs, with the main
association corresponding to a genomic region located at less than 0.6 Mb to QTL6_20.3 (Fig.S2.A in Supp). This
detection corroborates the results previously obtained in [41]).
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Figure 2: Results of the MA procedure applied to the Maize dataset. (A) Local score obtained from the RE procedure
along the chromosomes. The range of values on the y-axis has been bounded to 0–20 to highlight minor QTL. The boxes
represent the significant zones identified. (B) Z-scores of two QTLs located on chromosomes 6 and 7 (QTL6_20.3
and QTL7_41.4), with markers in rows and environments in columns. Only the 100 top significant SNPs out of 169
composing the QTL6_20.3 have been displayed. The six environments highlighted in blue correspond to environments
characterized by severe heatwaves (night temperature close to 22°C and maximal temperature above 36°C). (C) Local
score obtained from the meta-regression test for the evapotranspiration along the chromosomes. The range of values on
the y-axis has been bounded to 0–20 to highlight minor QTL. The boxes represent the significant zones identified. (D)
Z-scores as a function of the evapotranspiration (ET0), for the top significant marker of QTL2_162.5 detected with the
meta-regression procedure (Maize dataset, marker AX-91538480).

Regarding the night temperature during the grain filling period, the meta-regression test identified 15 QTLs across six
chromosomes. In particular, the allelic effects on GY of one of the most significant marker located on chromosome
9 (marker AX-91123283, QTL9_28.6) changed dramatically according to night temperature during the grain filling
period, with positive effects on cool night and negative effects on hot night during the grain filling period (Fig.S2.B in
Supp). See Supp.Mat C for an analysis regarding night temperature during the grain filling period.

Extension to Multi-Parental Population MET experiments The maize EU-NAM Flint includes 11 biparental
populations obtained from crosses between UH007 and 11 peripheral parents representative of the Northern Europe
maize diversity [5, 33]. In each population, double haploid (DH) lines were produced and genotyped at 5,263 SNPs
(after quality control). All populations were evaluated for biomass dry matter yield (DMY) in 4 locations (La Coruna,
Roggenstein, Einbeck and Ploudaniel). Three populations with less than 30 progenies were removed from the present
analysis. Unlike previous datasets involving an association panel, the present one consists in a multi-parent crossing
design, each bi-parental progeny being phenotyped in all aforementioned locations. In this context we extend the notion
of environment to the combination of one sub-population and one location.

To estimate the allelic effect per parent and environment, GWAS analyses were performed on each combination of cross
and location, resulting in 32 individual analysis. The RE procedure detailed in Section 4.2 was applied to perform the
joint analysis of the 32 individual GWAS summary statistics. In total, 16 QTLs were identified, highlighting some very
significant association peaks, especially on chromosomes 1 (QTL1_117.6) and 6 (QTL6_84.2). These QTLs were also
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identified in the publication of Garin et al. [24]. The allelic effect of QTL1_117.6 was almost consistent across all
populations except F2 (Fig.S3 in Supp).

QTL6_84.2 showed an interesting genetic effect series since an ancestral allele inherited by parents D152, F03802, F2,
F283, UH006, and DK105 [24] had a strong negative effect mostly in the environment TUM (Fig.3.A).

Figure 3: (A) Allelic effects of QTL6_84.2 (EU-NAM Flint, marker PZE.106101278) through locations and sub-
populations (B) Allelic effects of QTL5_23.9 (EU-NAM Flint, marker PZE.105012387) through locations and sub-
populations. A combination of location x sub-population is highlighted if individual GWAS p-value were below 0.01.

While the analysis of Garin et al. [24] was limited to the study of two of the four locations, the present analysis included
all locations. In this study, we revealed ten new QTLs not detected in the initial analysis, five of them correspond to
QTL which showed effect inversion among populations. For example, the QTL5_23.9 showed a positive effect for the
population F03802 and a negative effect for the population F64 (Fig.3.B). We also noticed that 3 of them corroborated
with flowering time QTL detected from the same materials in Giraud et al. [26]. Flowering time has a simpler genetic
determinism than grain yield and is one of its main drivers, with negative, null or positive correlations according to
environmental conditions [41].

Computational efficiency of the method The computational times corresponding to the meta-analysis procedure for
each dataset are displayed in Table 1.
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Dataset Nb. Env. Nb. Markers Method Time
Arabidopsis 6 ≈ 1M FE 1.2mn (26s)
Maize 22 ≈ 600K RE + MR 2.25mn (41s)
Wheat 16 ≈ 100K RE 47s (30s)
EU-NAM Flint 32 ≈ 6, 000 RE 12s (8s)

Table 1: Computational time of the whole meta-analysis procedure (in detail, the time of the inference of the inter-
environment correlation matrix) for each dataset.

The analysis of the different datasets considered in this article was handled in less than 3 minutes, even for datasets
characterized by a large number of environments and/or markers. Importantly, most of the computational time
corresponded to the inference of the inter-environment correlation matrix, a step that needs to be run only once as it is
common to both the RE and FE models and all subsequent testing procedures.

3 Discussion

We proposed new key extensions to make GWAS meta-analysis (MA) amenable to MET analysis and GxE exploration
in plant genetics. This made it possible to address a need in the community that we illustrated through four case studies
in A thaliana, maize and wheat, which cover a diversity of experimental designs and trait complexity.

GWAS-MA has proven to yield significant gains of power over initial individual analyses while efficiently controlling
for false positives [13]. The observed gain in detection power applies as well to the MET context. Our MA approach
revealed interesting new QTLs even in regions where the test statistics did not pass the nominal significance threshold
in most individual environments. For example, the genomic region corresponding to the third highest local score in the
Maize dataset (QTL7_41.4, local score = 18) was found significant in only two environments out of 22 and was not
detected in the original publication [41]. This region harbors QTLs controlling plant growth rate and final biomass in
water deficit conditions [45]. Similarly, in the Wheat dataset none of the QTLs identified by our MA RE method were
found significant in any environment. Therefore, the joint analysis of individual GWAS is suitable for complex traits
(such as yield) whose genetic variations are usually due to many QTLs with minor effects that might go undetected in
single environment analyses.

In addition to the gain of power, our MA method allows testing any contrast between the effects of environmental
subgroups. Although tests of contrasts have been formerly considered in the MA context [9], it was restricted to the
comparison of effects across subgroups and to the case of independent individual studies. The extension presented
here facilitates the assessment of QTL effects stability or variation across environmental conditions, which is of key
interest to detect alleles conferring specific adaptive features. As an illustration,the analysis of the Arabidopsis dataset
highlighted a major region on chromosome 5 (QTL5_22.0), with an effect sign that switched according to the presence
or absence of competition with Poa annua. Arabidopis QTL5.220 is located in the AtCNGC4 genomic region that is
well-known to affect floral transition [12, 22]. In addition, AtCNGC4 impairs plant immunity [22, 54], which is in line
with the negative effect of competitive interactions on pathogen defense to the benefit of plant development such as
floral transition [53].

Similar results were found in the Maize analysis where environmental conditions were not controlled a priori. The
analysis of allelic effects of QTL6_20.3 detected with the RE model highlighted a group of six environments (Fig.2.C).
A subsequent analysis showed that these environments were characterized by severe heatwaves at night. Consistently,
QTL6_20.3 colocalized with a QTL affecting grain yield in the "Po valley" in which maize is currently irrigated but
subject to high temperatures during summer [16]. QTL6_20.3 also overlaps with a large 2.4 Mbp Present/Absent
Variant (PAV) harboring dozen of genes - including one encoding an ABA-induced protein by water deficit [41]. These
genes were further shown to be associated with environmental adaptation to high temperature and to have undergone
strong selection during both domestication and improvement [29].

Beyond a posteriori interpretation, environmental variables can also be incorporated as a covariate in the GWAS-MA
model for a whole genome scan of the response of QTL effects. Such a relationship between marker effects and
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environmental variables was investigated in [41] for the Maize dataset. However, this initial analysis was performed
empirically (i.e. without any proper testing procedure) and was restricted to markers found significantly associated in
at least one environment. We reanalyzed the full dataset using our Meta regression procedure using 3 covariates and
identified a number of new regions. Figure.2.D illustrates how the effect of a QTL located on chromosome 2 (pos154)
varies linearly from negative to positive effects according to evapotranspiration. This QTL colocalizes with the QTL of
expression of aquaporins (eQTL of PIP2.2 ez and eQTL of PIP2.1 ez). These channel proteins facilitate water transport
between cells and impact water use efficiency (WUE) and stomatal conductance (Granato et al., in prep). These two
physiological adaptive traits are highly sensitive to environmental conditions [45]. A second region was detected on
chromosome 9 (pos125) using the same environmental covariate. It co-localizes with a QTL of plant growth (PG)
rate and a QTL of WUE under water deficit conditions. Both PG and WUE are two traits that are highly sensitive to
evaporative demand. Lastly, a third QTL, also located on chromosome 9 (pos135), co-localizes with a QTL of plant
growth sensitivity to soil water potential, consistent with observed effects [45]. None of these genomic regions on
chromosomes 2 and 9 were detected in the initial publication.

An attractive feature of MA procedures is their ability to cope with unbalanced/incomplete data - without need for
further data imputation or additional computational overhead. The procedures presented in this article rely on summary
statistics (i.e. p-values and effect signs) obtained from per-environment GWAS, which avoids re-scaling if traits were
measured on different scales. The use of summary statistics also makes the addition/removal of a given environment
(based e.g. on post hoc quality control) and the update of the results straightforward. Furthermore, MA procedures do
not require the availability of phenotypic evaluations for all individuals in all environments. Regarding the genotypic
information, MA procedures easily handle cases where summary statistics are missing for some markers in a series
of environments. This may occur e.g. when different technologies or sequencing depth were used in the individual
experiments. Furthermore, in plant genetics, Multi-Parental Population analyses are pervasive and also yield missing
summary statistics as different sets of markers may be mono-morphic in different parental sub-populations. Our method
is still applicable in such cases as illustrated with the EU-NAM example where inversions of allelic effects were
identified for some sub-populations (Fig 3). These inversions may correspond to a genetic background effect (i.e. to
conditional epistasis, see for instance [6]), or alternatively to an allelic series with several haplotypes presenting a range
of effects, with the SNP allele contrasting central haplotypes vs. extreme opposite haplotypes.

While several approaches have been proposed to model the GxE interactions in different contexts [31, 60, 7, 38, 24],
many of them exhibit a computational time that may become prohibitive when dealing with either large scale genomic
datasets or a large number of environments. In contrast, the GxE MA procedures presented here do not suffer from
such limitations. As an example the QTLs detection analysis of the EU-NAM Flint (5,000 markers) required 15
seconds using the MA procedure, and more than 7 hours using the MPP-ME methodology of Garin et al. [24]. More
generally the different panels considered in this article were handled within minutes, most of the computational time
corresponding to the inference of the inter-environment correlation matrix (see Table 1).

Our methods can be applied to various MET designs such as controlled experiments, uncontrolled or partially controlled
experiments and all kinds of multi-parent populations MET widely used in modern breeding programs. Our methodology
integrates several tools for the characterisation of environments. The contrast test associated to the FE procedure
enables the identification of QTLs specific to some subsets of environments, i.e., whose behaviour interacts with the
environmental characterisation defined by the classification. The definition of the classification is very flexible and can
rely on any qualitative covariate, such as known control/stress conditions or sub-populations in the case of an MPP
experiment. The meta-regression test allows the detection of QTL whose variations are correlated to any quantitative
environmental covariate. Searching for such relationships between marker effects and environmental characteristics is a
key issue in plant genetics. It has also been widely investigated in the context of of animal and human MA-studies,
where dedicated procedures have been developed to handle environmental covariates measured at the individual level
[3, 39]. Our meta-regression procedure represents a new contribution to account for environmental covariates measured
at the environment level, and complement the existing MA toolbox. All the testing procedures presented here, along
with the FE and RE procedures are implemented in the metaGE R package available on the CRAN repository.

In the recent years, a number of public initiatives involving thousands of individuals evaluated in dozens of well
characterized environments have been developed, such as the Genomes To Fields project for maize [2] or the elite yield
trial nurseries from CIMMYT’s bread wheat breeding program [30, 43]. MET are one of the central elements of a
breeding program [14]. Screening such datasets for genome-wide associations requires the development of scalable and
flexible methodological tools. In this context GxE Meta-Analysis can be routinely applied in most breeding programs
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and we strongly believe that it will represent a methodology of choice in the future to address the many challenges of
modern GWAS.

4 Methods

4.1 Meta-analysis classical approach

In this section, we present the fixed effect and the random effect meta-analysis that are classically used in human
genetics [52] [17]. The newly developed methods necessary for its implementation on MET in plant genetics will be
presented in Section 4.2.

Fixed effect procedure

Model We consider a meta-analysis relying on K different genetic association studies testing the association between
a set of M markers and a phenotype of interest. We denote βmk the estimated effect of marker m in study k, and pmk

its associated p-value. We define the z-scores Zmk as

Zmk = −Φ−1(0.5pmk)× sign(βmk),

where Φ−1 stands for the standard Gaussian cumulative distribution function. The z-score is to be understood as
follows: the smaller the p-value of the marker, the greater the absolute value of the z-score, with the sign of the z-score
corresponding to the sign of the marker effect. Importantly, when marker m is not associated to the phenotype, Zmk

follows a standard Gaussian distribution, i.e. the H0 distribution of Zmk is known. The fixed-effect model assumes the
effect of a marker to be stable (i.e. identical) across studies. Denoting Zm := (Zm1, . . . , ZmK) the vector of z-scores
of marker m, one has

Zm = µm1K + Em

Em ∼ N (0K , I)

where µm ∈ R quantifies the deviation to H0 of marker m and is common to all studies, Em the vector of error terms,
and I the identity matrix. Note that the model assumes the z-scores to be mutually independent. This assumption is
satisfied whenever the initial GWAS analyses are performed on different panels, a classical configuration in human
genetics where MA is usually performed to summarize GWAS performed on different populations.

Inference The parameter µm can be easily inferred using the empirical mean of Zm :

µ̂m =
1

K

K∑
k=1

Zmk

One can then perform association detection by testing

H0 : {µm = 0} vs H1 : {µm ̸= 0}

based on the following test statistic

Sm =
√
Kµ̂m =

1√
K

K∑
k=1

Zmk

that follows a N (0, 1) distribution under the null hypothesis, which corresponds to the approach of the METAL
procedure [56]. The resulting MA p-value for marker m is then

pm = 2× Φ (−|sm|) ,

with sm the observed value of Sm.
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Random effect procedure

Model We denote βmk the estimated effect of marker m in study k, and vmk its standard error associated. The random-
effect model incorporates the heterogeneity of the marker effects across studies. Denoting βm := (βm1, . . . , βmK) the
vector of the estimated effect of marker m, one has

βm = µm1K +Am + Em,

Am ∼ N (0, τ2mI)

Em ∼ N (0, Vm)

Am ⊥⊥ Em

where µm ∈ R quantifies the deviation to H0 of marker m and is common to all studies, τm is between-study variance
associated to the random marker effect Am, Em the vector of error terms, Vm the diagonal matrix of (v2mk)k=1,...,K

and I the identity matrix.

Inference The maximum likelihood estimators of µm and τ2m are obtained by solving the following equations
iteratively [27]:

µ̂m =

∑K
k=1

βmk

(v2
mk+τ̂2

m)∑K
k=1

1
(v2

mk+τ̂2
m)

τ̂2m =

∑K
k=1

(βmk−µ̂m)2−v2
mk

(v2
mk+τ̂2

m)2∑K
k=1

1
(v2

mk+τ̂2
m)2

The test of association of the marker corresponds to:

H0 : {µm = 0 and τ2m = 0} vs H1 : {µm ̸= 0 or τ2m ̸= 0}

and can be performed using a likelihood ratio test. Noting l0 and l1 the likelihood of βm under H0 and H1, respectively,
the test statistic is:

2(l1 − l0)
H0∼ 1

2
χ2(1) +

1

2
χ2(2)

4.2 Meta-analysis for GxE analysis in plant genetics

This section introduces the newly developed MA approaches, in the context of plant genetics. The study of GxE
interactions in plant genetics requires the evaluation of a same panel - or highly related panels including several
common genotypes - in different locations and under different environmental conditions. The use of related panels
in MET designs make the independence assumption for the z-scores (see Section 4.1) unrealistic. Depending on the
experiment, environments may correspond to controlled stress conditions (e.g. nitrogen, water or competition stress),
or to different fields and/or years where the environmental conditions are contrasted but not fully controlled by the
experimenter. In this section, we show how the fixed and random MA procedures can be adapted to cope with the
controlled and uncontrolled environment cases respectively. Assuming that a GWAS analysis has been performed in
each environment, the goal of the MA procedure is to summarize the environment-by-environment GWAS results, while
i) efficiently controlling the false positive detection rate, and ii) accounting for the heterogeneity of the QTL effects
across environments.

GxE fixed effect procedure When the environmental conditions are controlled, environments can be a priori classified
into several groups. One can then assume the marker effect to be stable within each group, but different from one group
to another.
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Model We use the same notations as in section 4.1, with K now corresponding to the number of environments. We
consider that the environments are classified into J distinct groups. Since a same panel of varieties - or overlapping
panels - are used in all environments, the Z-scores cannot be assumed to be mutually independent anymore. The model
is updated as follows:

Zm = Xµm + Em

Em ∼ N (0K ,Σm)

where the incidence matrix X ∈ MK×J is such that :

Xkj =

{
1 if the environment k belongs to the group j

0 else

µm = (µ1
m, . . . , µJ

m)
T ∈ RJ is the vector containing the group specific marker effects, and Σm is the inter-environment

correlation matrix.

Note that if allelic effects are assumed to be stable across all environments, these environments can be gathered into a
single group. In such a case the null hypothesis will be H0 : {µm = 0} as in the classical FE procedure described in
Section 4.1.

Inference The parameters to be estimated are the inter-environment correlation matrix Σm and the marker effects
within groups (µ1

m, . . . , µJ
m). We assume the inter-environment correlation matrix to be common to all markers, i.e.

Σm = Σ. Considering only the M0 markers under H0, i.e. the markers having no effect in any environment, the
correlation between the z-scores of two environments k and k′ can be estimated as follows:

Σ̂k,k′ = cor(Zk, Zk′) =

∑M0

m=1(Zmk − Zk)(Zmk′ − Zk′)√∑M0

m=1 (Zmk − Zk)
2
√∑M0

m=1 (Zmk′ − Zk′)
2

(1)

As the list of markers under H0 is unknown, a filtering step for markers with a high probability of being under H1 is
needed. Different filtering approaches exist, and we present two of them. The first one consists in considering only the
markers m whose p-values pmk are higher than a certain threshold fixed by the user, in each environment k ∈ 1, . . . ,K
[47].

The second filtering approach consists, for each environment k, in estimating the distribution of the random variables
Φ−1(pmk),m ∈ 1, . . . ,M , where Φ−1 is the inverse distribution function of the normal distribution N (0, 1). By
definition, the distribution to be estimated is a mixture between a N (0, 1) distribution corresponding to the markers
under H0 and a second unknown distribution corresponding to those under H1. This mixture distribution can be inferred
by a kernel method. Then, the filtering consists in considering only the markers m whose a posteriori probabilities
of being under H1 are lower than a certain threshold [40]. For the applications detailed in the Section 2, the filtering
method was performed with a threshold fixed at 0.8.

Given an estimate of Σ, the within group marker effects µ1
m, . . . , µJ

m can be inferred by the empirical means of the
z-scores of each group :

µ̂m = DXTZm

where D = diag( 1
n1

, ..., 1
nJ

) and nj is the number of experiments in group j.

Global test Association of marker m can be tested as follows:

H0 : {∀j, µj
m = 0} ⇔ {µm = 0J} vs H1 : {∃j, µj

m ̸= 0}

Alternatively, one may test whether the marker m has different effects across groups of environments:

H0 : {µ1
m = µ2

m = · · · = µJ
m} vs H1 : {∃j1, j2 / µj1

m ̸= µj1
m} (2)

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530237
http://creativecommons.org/licenses/by-nd/4.0/


metaGE: Investigating G × E interactions through meta-analysis

More generally, one may test H0 : {Cµm = 0} for any contrast matrix C ∈ MQ×J , where Q ∈ {1, ..., J} is
the number of linear constraints on the marker effects to be tested. Under the null, Cµ̂m ∼

H0

N (0Q, VC) where

VC = CDXTΣXDCT . Therefore:
V

− 1
2

C Cµ̂m ∼
H0

N (0Q, I)

which leads to the following test statistic:

Tm =
∣∣∣∣∣∣V − 1

2

C CDXTZm

∣∣∣∣∣∣2 H0∼ χ2(Q)

The p-value is given by :
pm = 1− Φχ2(Q) (tm) ,

with tm the observed value of Tm, and Φχ2(Q) the cumulative distribution function of the χ2(Q) distribution.

GxE random effect procedure In the case of uncontrolled environmental conditions, the heterogeneity of the QTL
effects across environments can be accounted for through a random marker effect.

Model The model is updated as follows :

Zm = µm1K +Am + Em

Em = (Em1, . . . , EmK)T ∼ N (0K ,Σ)

Am = (Am1, . . . , AmK)T ∼ N (0K , τ2mΛm)

Em ⊥⊥ Am

where τ2m and Λm are the variance and the correlation matrix associated to the random marker effect, respectively.

Compared to the method presented in section 4.1, note that our random effect model is based on the z-scores rather than
on the marker effects. As for matrix Σ, we assume the random effect correlation matrix to be common to all markers, i.e.
Λm = Λ. Furthermore, since Σ quantifies the similarity between environments, it provides some a priori knowledge
about the similarities of allelic effects at the scale of a marker. Consequently it will be assumed that Λ = Σ.

Inference The correlation matrix Σ is inferred using estimator 1. The effect of the marker µm ∈ R and the between
environment variance τ2m ∈ R+ are inferred by maximum likelihood inference, yielding

µ̂m =
1T
KΣ−1Zm

1T
KΣ−11K

τ̂2m = max

(
1

K
(Zm − µ̂m1K)

T
Σ−1(Zm − µ̂m1K)− 1, 0

)
Global test The test for the marker association corresponds to:

H0 : {µm = 0 and τ2m = 0} vs H1 : {µm ̸= 0 or τ2m ̸= 0}

and can be performed using a likelihood ratio test. Noting l0 and l1 the likelihood of Zm under H0 and H1, respectively,
the test statistic is:

2(l1 − l0)
H0∼ 1

2
χ2(1) +

1

2
χ2(2)

Meta-regression test In MET studies, trials can be characterized through some quantitative environmental covariates
(e.g. temperature or evapotranspiration). One can then aim at identifying markers whose effects are correlated to a given
environmental covariate. Denote the covariate by X , and assume X to be centered. For each marker m, one can test :

H0 : {cov(µm1K +Am, X) = 0} vs H1 : {cov(µm1K +Am, X) ̸= 0}
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The covariance of interest can be inferred by its empirical counterpart, leading to the following test statistic:

ZT
mX√

XTΣX

that follows a N (0, 1) distribution under the null hypothesis.

The p-value is given by :

pm = 2× Φ

(
−
∣∣∣∣ zTmX√

XTΣX

∣∣∣∣) ,

where zm is the observed value Zm.

Multiple test control In order to control Type I errors, we apply the local score approach developed by [21]. The
local score approach detects significant regions in a genome sequence by accumulating single marker p-values while
controlling the FDR. This approach depends on the choice of the threshold ξ (in log10 scale) below which small p-values
are accumulated. The significant genomic regions are computed chromosome by chromosome, and a significance
threshold for the FDR control is associated with each chromosome (see [21] for details). For the applications detailed
in the Section 2, we set the threshold ξ = 3 and fix the nominal FDR level at 0.05.

4.3 Availability of data

The raw Arabidopsis data of Frachon et al. (2017) [23] used to perform the individual GWAS is available at the open
access local repository https://lipm-browsers.toulouse.inra.fr/pub/Frachon2017-NEE/.

The raw DROPS-Amaizing data of Millet et al. 2019 [42] used to perform the individual GWAS is available at
https://doi.org/10.15454/IASSTN .

The raw EU-NAM Flint data of Garin et al. 2020 [24] used to perform the individual GWAS is available at the GitHub
repository https://github.com/vincentgarin/mppGxE_data/tree/master/data.

The raw Wheat data of Rincent et al. 2020 [48] used to perform the individual GWAS is available at https:
//doi.org/10.15454/TKMGCQ.

References
[1] Javed Akhatar, Anna Goyal, Navneet Kaur, Chhaya Atri, Meenakshi Mittal, Mohini Prabha Singh, Rimaljeet Kaur,

Indu Rialch, and Surinder S Banga. Genome wide association analyses to understand genetic basis of flowering
and plant height under three levels of nitrogen application in brassica juncea (l.) czern & coss. Scientific reports,
11(1):1–14, 2021.

[2] Naser AlKhalifah, Darwin A Campbell, Celeste M Falcon, Jack M Gardiner, Nathan D Miller, Maria Cinta Romay,
Ramona Walls, Renee Walton, Cheng-Ting Yeh, Martin Bohn, et al. Maize genomes to fields: 2014 and 2015 field
season genotype, phenotype, environment, and inbred ear image datasets. BMC research notes, 11(1):1–5, 2018.

[3] Hugues Aschard, Dana B Hancock, Stephanie J London, and Peter Kraft. Genome-wide meta-analysis of joint
tests for genetic and gene-environment interaction effects. Human heredity, 70(4):292–300, 2010.

[4] RJ Baker. Tests for crossover genotype-environmental interactions. Canadian journal of plant science, 68(2):405–
410, 1988.

[5] Eva Bauer, Matthieu Falque, Hildrun Walter, Cyril Bauland, Christian Camisan, Laura Campo, Nina Meyer,
Nicolas Ranc, Renaud Rincent, Wolfgang Schipprack, Thomas Altmann, Pascal Flament, Albrecht E. Melchinger,
Monica Menz, Jesús Moreno-González, Milena Ouzunova, Pedro Revilla, Alain Charcosset, Olivier C. Martin,
and Chris Carolin Schön. Intraspecific variation of recombination rate in maize. Genome Biology, 14, 9 2013.

[6] G Blanc, A Charcosset, B Mangin, A Gallais, and L Moreau. Connected populations for detecting quantitative
trait loci and testing for epistasis: an application in maize. Theoretical and Applied Genetics, 113(2):206–224,
2006.

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530237doi: bioRxiv preprint 

https://lipm-browsers.toulouse.inra.fr/pub/Frachon2017-NEE/
https://doi.org/10.15454/IASSTN
https://github.com/vincentgarin/mppGxE_data/tree/master/data
https://doi.org/10.15454/TKMGCQ
https://doi.org/10.15454/TKMGCQ
https://doi.org/10.1101/2023.03.01.530237
http://creativecommons.org/licenses/by-nd/4.0/


metaGE: Investigating G × E interactions through meta-analysis

[7] Martin P. Boer, Deanne Wright, Lizhi Feng, Dean W. Podlich, Lang Luo, Mark Cooper, and Fred A. Van Eeuwijk.
A mixed-model quantitative trait loci (qtl) analysis for multiple-environment trial data using environmental
covariables for qtl-by-environment interactions, with an example in maize. Genetics, 177:1801–1813, 11 2007.

[8] F Bonfiglio, M Henström, A Nag, F Hadizadeh, Tenghao Zheng, MC Cenit, E Tigchelaar, F Williams,
A Reznichenko, Weronica E Ek, et al. A gwas meta-analysis from 5 population-based cohorts implicates ion
channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterology & Motility, 30(9):e13358,
2018.

[9] Michael Borenstein and Julian P.T. Higgins. Meta-analysis and subgroups. Prevention Science, 14:134–143, 4
2013.

[10] Aniek C Bouwman, Hans D Daetwyler, Amanda J Chamberlain, Carla Hurtado Ponce, Mehdi Sargolzaei, Flavio S
Schenkel, Goutam Sahana, Armelle Govignon-Gion, Simon Boitard, Marlies Dolezal, et al. Meta-analysis of
genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals.
Nature genetics, 50(3):362–367, 2018.

[11] Benjamin Brachi, Nathalie Faure, Matt Horton, Emilie Flahauw, Adeline Vazquez, Magnus Nordborg, Joy
Bergelson, Joel Cuguen, and Fabrice Roux. Linkage and association mapping of arabidopsis thaliana flowering
time in nature. PLoS Genetics, 6:40, 5 2010.

[12] Kimberley Chin, Thomas A. Defalco, Wolfgang Moeder, and Keiko Yoshioka. The arabidopsis cyclic nucleotide-
gated ion channels atcngc2 and atcngc4 work in the same signaling pathway to regulate pathogen defense and
floral transition. Plant Physiology, 163:611–624, 2013.

[13] Lawrence D Cohn and Betsy J Becker. How meta-analysis increases statistical power. Psychological methods,
8(3):243, 2003.

[14] Mark Cooper, Carla Gho, Roger Leafgren, Tom Tang, and Carlos Messina. Breeding drought-tolerant maize
hybrids for the us corn-belt: Discovery to product. Journal of Experimental Botany, 65:6191–6194, 11 2014.

[15] J Crossa, M Vargas, FA Van Eeuwijk, C Jiang, GO Edmeades, and D Hoisington. Interpreting genotype× environ-
ment interaction in tropical maize using linked molecular markers and environmental covariables. Theoretical and
applied genetics, 99(3):611–625, 1999.

[16] Matteo Dell’Acqua, Daniel M Gatti, Giorgio Pea, Federica Cattonaro, Frederik Coppens, Gabriele Magris, Aye L
Hlaing, Htay H Aung, Hilde Nelissen, Joke Baute, et al. Genetic properties of the magic maize population: a new
platform for high definition qtl mapping in zea mays. Genome biology, 16(1):1–23, 2015.

[17] R. DerSimonian and N Laird. Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3):177–188, 1986.

[18] Shamseldeen Eltaher, P Stephen Baenziger, Vikas Belamkar, Hamdy A Emara, Ahmed A Nower, Khaled FM
Salem, Ahmad M Alqudah, and Ahmed Sallam. Gwas revealed effect of genotype× environment interactions for
grain yield of nebraska winter wheat. BMC genomics, 22(1):1–14, 2021.

[19] Evangelos Evangelou and John P.A. Ioannidis. Meta-analysis methods for genome-wide association studies and
beyond. Nature Reviews Genetics, 14:379–389, 6 2013.

[20] Douglas S Falconer. The problem of environment and selection. The American Naturalist, 86(830):293–298,
1952.

[21] María Inés Fariello, Simon Boitard, Sabine Mercier, David Robelin, Thomas Faraut, Cécile Arnould, Julien
Recoquillay, Olivier Bouchez, Gérald Salin, Patrice Dehais, David Gourichon, Sophie Leroux, Frédérique Pitel,
Christine Leterrier, and Magali SanCristobal. Accounting for linkage disequilibrium in genome scans for selection
without individual genotypes: The local score approach. Molecular Ecology, 26:3700–3714, 7 2017.

[22] Alex Fortuna, Jihyun Lee, Huoi Ung, Kimberley Chin, Wolfgang Moeder, and Keiko Yoshioka. Crossroads of
stress responses, development and flowering regulation—the multiple roles of cyclic nucleotide gated ion channel
2. Plant Signaling and Behavior, 10, 2 2015.

[23] L. Frachon, C. Libourel, R. Villoutreix, S. Carrere, C. Glorieux, C. Huard-Chauveau, M. Navascués, L. GAY,
R. Vitalis, and al. Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time.
Nature Ecology and Evolution, 1(10):1551–1561, October 2017.

[24] Vincent Garin, Marcos Malosetti, and Fred van Eeuwijk. Multi-parent multi-environment qtl analysis: an
illustration with the eu-nam flint population. Theoretical and Applied Genetics, 133:2627–2638, 9 2020.

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530237
http://creativecommons.org/licenses/by-nd/4.0/


metaGE: Investigating G × E interactions through meta-analysis

[25] G Gebreyesus, AJ Buitenhuis, NA Poulsen, MHPW Visker, Q Zhang, HJF van Valenberg, D Sun, and H Bovenhuis.
Combining multi-population datasets for joint genome-wide association and meta-analyses: The case of bovine
milk fat composition traits. Journal of dairy science, 102(12):11124–11141, 2019.

[26] Héloïse Giraud, Christina Lehermeier, Eva Bauer, Matthieu Falque, Vincent Segura, Cyril Bauland, Christian
Camisan, Laura Campo, Nina Meyer, Nicolas Ranc, Wolfgang Schipprack, Pascal Flament, Albrecht E. Melchinger,
Monica Menz, Jesús Moreno-González, Milena Ouzunova, Alain Charcosset, Chris Carolin Schön, and Laurence
Moreau. Linkage disequilibrium with linkage analysis of multiline crosses reveals different multiallelic qtl for
hybrid performance in the flint and dent heterotic groups of maize. Genetics, 198:1717–1734, 12 2014.

[27] Rebecca J. Hardy and Simon G. Thompson. A likelihood approach to meta-analysis with random effects. Statistics
in Medicine, 15:619–629, 3 1996.

[28] R. S. Houlston, J. Cheadle, S. E. Dobbins, A. Tenesa, A. M. Jones, K. Howarth, S. L. Spain, P. Broderick,
E. Domingo, S. Farrington, and al. Meta-analysis of three genome-wide association studies identifies susceptibility
loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature Genetics, 42(11):973–979, 11 2010.

[29] Yumin Huang, Wei Huang, Zhuang Meng, Guilherme Tomaz Braz, Yunfei Li, Kai Wang, Hai Wang, Jinsheng Lai,
Jiming Jiang, Zhaobin Dong, et al. Megabase-scale presence-absence variation with tripsacum origin was under
selection during maize domestication and adaptation. Genome biology, 22(1):1–28, 2021.

[30] Philomin Juliana, Ravi P Singh, Jesse Poland, Suchismita Mondal, José Crossa, Osval A Montesinos-López,
Susanne Dreisigacker, Paulino Pérez-Rodríguez, Julio Huerta-Espino, Leonardo Crespo-Herrera, et al. Prospects
and challenges of applied genomic selection—a new paradigm in breeding for grain yield in bread wheat. The
plant genome, 11(3):180017, 2018.

[31] R. A. Kempton. The use of biplots in interpreting variety by environment interactions. The Journal of Agricultural
Science, 103(1):123–135, 1984.

[32] Fabien Laporte, Alain Charcosset, and Tristan Mary-Huard. Efficient reml inference in variance component mixed
models using a min-max algorithm. PLoS Computational Biology, 18, 1 2022. mm4lmm.

[33] Christina Lehermeier, Nicole Krämer, Eva Bauer, Cyril Bauland, Christian Camisan, Laura Campo, Pascal
Flament, Albrecht E. Melchinger, Monica Menz, Nina Meyer, Laurence Moreau, JesúS Moreno-González,
Milena Ouzunova, Hubert Pausch, Nicolas Ranc, Wolfgang Schipprack, Manfred Schönleben, Hildrun Walter,
Alain Charcosset, and Chris Carolin Schön. Usefulness of multiparental populations of maize (zea mays l.) for
genome-based prediction. Genetics, 198:3–16, 4 2014.

[34] Daniel F Levey, Murray B Stein, Frank R Wendt, Gita A Pathak, Hang Zhou, Mihaela Aslan, Rachel Quaden,
Kelly M Harrington, Yaira Z Nuñez, Cassie Overstreet, et al. Bi-ancestral depression gwas in the million veteran
program and meta-analysis in> 1.2 million individuals highlight new therapeutic directions. Nature neuroscience,
24(7):954–963, 2021.

[35] Cyril Libourel, Etienne Baron, Juliana Lenglet, Laurent Amsellem, Dominique Roby, and Fabrice Roux. The
genomic architecture of competitive response of arabidopsis thaliana is highly flexible among plurispecific
neighborhoods. Frontiers in Plant Science, 12, 11 2021.

[36] C. Lippert, J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson, and D. Heckerman. Fast linear mixed models for
genome-wide association studies. Nature methods, 8(10), September 2011.

[37] Po Ru Loh, George Tucker, Brendan K. Bulik-Sullivan, Bjarni J. Vilhjálmsson, Hilary K. Finucane, Rany M.
Salem, Daniel I. Chasman, Paul M. Ridker, Benjamin M. Neale, Bonnie Berger, Nick Patterson, and Alkes L.
Price. Efficient bayesian mixed-model analysis increases association power in large cohorts. Nature Genetics,
47:284–290, 2 2015. bolt lmm.

[38] Marcos Malosetti, Jean-Marcel Ribaut, and Fred A van Eeuwijk. The statistical analysis of multi-environment
data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in physiology, 4:44, 2013.

[39] Alisa K Manning, Michael LaValley, Ching-Ti Liu, Kenneth Rice, Ping An, Yongmei Liu, Iva Miljkovic, Laura
Rasmussen-Torvik, Tamara B Harris, Michael A Province, et al. Meta-analysis of gene-environment interaction:
joint estimation of snp and snp× environment regression coefficients. Genetic epidemiology, 35(1):11–18, 2011.

[40] T. Mary-Huard, S. Das, I. Mukhopadhyay, and S. Robin. Querying multiple sets of p-values, 2021.

15

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530237
http://creativecommons.org/licenses/by-nd/4.0/


metaGE: Investigating G × E interactions through meta-analysis

[41] E.J. Millet, C. Welcker, W. Kruijer, S. Negro, A. Coupel-Ledru, S.D. Nicolas, and al. Genome-wide analysis of
yield in europe: allelic effects vary with drought and heat scenarios. Plant Physiology, 172(2):749–764, 07 2016.

[42] Emilie J. Millet, Cyril Pommier, Mélanie Buy, Axel Nagel, Willem Kruijer, Therese Welz-Bolduan, Jeremy
Lopez, Cécile Richard, Ferenc Racz, Franco Tanzi, Tamas Spitkot, Maria-Angela Canè, Sandra S. Negro, Aude
Coupel-Ledru, Stéphane D. Nicolas, Carine Palaffre, Cyril Bauland, Sébastien Praud, Nicolas Ranc, Thomas
Presterl, Zoltan Bedo, Roberto Tuberosa, Björn Usadel, Alain Charcosset, Fred A. van Eeuwijk, Xavier Draye,
François Tardieu, and Claude Welcker. A multi-site experiment in a network of european fields for assessing the
maize yield response to environmental scenarios, 2019.

[43] Osval Antonio Montesinos-López, José Cricelio Montesinos-López, Abelardo Montesinos-López, Juan Manuel
Ramírez-Alcaraz, Jesse Poland, Ravi Singh, Susanne Dreisigacker, Leonardo Crespo, Sushismita Mondal, Velu
Govidan, et al. Bayesian multitrait kernel methods improve multienvironment genome-based prediction. G3,
12(2):jkab406, 2022.

[44] Jodie N Painter, Tracy A O’mara, Andrew P Morris, Timothy HT Cheng, Maggie Gorman, Lynn Martin, Shirley
Hodson, Angela Jones, Nicholas G Martin, Scott Gordon, et al. Genetic overlap between endometriosis and
endometrial cancer: evidence from cross-disease genetic correlation and gwas meta-analyses. Cancer medicine,
7(5):1978–1987, 2018.

[45] Santiago Alvarez Prado, Llorenç Cabrera-Bosquet, Antonin Grau, Aude Coupel-Ledru, Emilie J. Millet, Claude
Welcker, and François Tardieu. Phenomics allows identification of genomic regions affecting maize stomatal
conductance with conditional effects of water deficit and evaporative demand. Plant Cell and Environment,
41:314–326, 2 2018.

[46] Nicholas J. Provart and Tong Zhu. A browser-based functional classification superviewer for arabidopsis genomics.
2003.

[47] Debashree Ray and Michael Boehnke. Methods for meta-analysis of multiple traits using gwas summary statistics.
Genetic Epidemiology, 42:134–145, 3 2018.

[48] Renaud Rincent. Robert et al. Combining crop growth modelling with trait-assisted prediction improved the
prediction of genotype by environment interactions, 2020.

[49] Pauline Robert, Jacques Le Gouis, The BreedWheat Consortium , and Renaud Rincent. Combining crop growth
modeling with trait-assisted prediction improved the prediction of genotype by environment interactions. Frontiers
in Plant Science, 11, 2020.

[50] Mahbod Sahebi, Mohamed M Hanafi, MY Rafii, TMM Mahmud, Parisa Azizi, Mohamad Osman, Rambod Abiri,
Sima Taheri, Nahid Kalhori, M Shabanimofrad, et al. Improvement of drought tolerance in rice (oryza sativa l.):
genetics, genomic tools, and the wrky gene family. BioMed Research International, 2018, 2018.

[51] Johnathon M. Shook, Jiaoping Zhang, Sarah E. Jones, Arti Singh, Brian W. Diers, and Asheesh K. Singh.
Meta-gwas for quantitative trait loci identification in soybean. G3: Genes, Genomes, Genetics, 11, 7 2021.

[52] S. Stouffer, E. Suchman, L. DeVinnery, S. Star, and R. Williams. The American Soldier, volume I: Adjustment
during Army Life. 1949.

[53] Harihar Jaishree Subrahmaniam, Cyril Libourel, Etienne Pascal Journet, Jean Benoît Morel, Stéphane Muños,
Andreas Niebel, Sylvain Raffaele, and Fabrice Roux. The genetics underlying natural variation of plant–plant
interactions, a beloved but forgotten member of the family of biotic interactions. Plant Journal, 93:747–770, 2
2018.

[54] Wang Tian, Congcong Hou, Zhijie Ren, Chao Wang, Fugeng Zhao, Douglas Dahlbeck, Songping Hu, Liying
Zhang, Qi Niu, Legong Li, Brian J. Staskawicz, and Sheng Luan. A calmodulin-gated calcium channel links
pathogen patterns to plant immunity. Nature, 572:131–135, 8 2019.

[55] Gaëtan Touzy, Renaud Rincent, Matthieu Bogard, Stephane Lafarge, Pierre Dubreuil, Agathe Mini, Jean Charles
Deswarte, Katia Beauchêne, Jacques Le Gouis, and Sébastien Praud. Using environmental clustering to identify
specific drought tolerance qtls in bread wheat (t. aestivum l.). Theoretical and Applied Genetics, 132:2859–2880,
10 2019.

[56] Cristen J. Willer, Yun Li, and Gonçalo R. Abecasis. Metal: Fast and efficient meta-analysis of genomewide
association scans. Bioinformatics, 26:2190–2191, 7 2010.

16

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530237
http://creativecommons.org/licenses/by-nd/4.0/


metaGE: Investigating G × E interactions through meta-analysis

[57] Jianming Yu, Gael Pressoir, William H. Briggs, Irie Vroh Bi, Masanori Yamasaki, John F. Doebley, Michael D.
McMullen, Brandon S. Gaut, Dahlia M. Nielsen, James B. Holland, Stephen Kresovich, and Edward S. Buckler.
A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature
Genetics, 38:203–208, 2 2006.

[58] Jiantao Zhao, Christopher Sauvage, Jinghua Zhao, Frédérique Bitton, Guillaume Bauchet, Dan Liu, Sanwen
Huang, Denise M Tieman, Harry J Klee, and Mathilde Causse. Meta-analysis of genome-wide association studies
provides insights into genetic control of tomato flavor. Nature communications, 10(1):1–12, 2019.

[59] X. Zhou and M. Stephens. Genome-wide efficient mixed-model analysis for association studies. Naturegenetics,
44(7):821–824, 2012.

[60] Richard W. Zobel, Madison J. Wright, and Hugh G. Gauch Jr. Statistical analysis of a yield trial. Agronomy
Journal, 80(3):388–393, 1988.

17

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530237
http://creativecommons.org/licenses/by-nd/4.0/


metaGE: Investigating G × E interactions through meta-analysis

5 Supplementary Material

A Wheat dataset analysis

We consider the Wheat dataset of [49], where GWAS analyses were performed on a panel of 210 wheat lines phenotyped
for grain yield in 16 environments (combinations of location x year x treatment). Lines were genotyped at 108,410 SNPs
(after quality control) and phenotyped for heading date and grain yield. In [49] the 16 environments were clustered
into 4 groups corresponding to contrasted relationships between heading date and grain yield (low, medium or high
correlation between heading date and grain yield, the last group corresponding to a quadratic relationship between
heading date and grain yield). When present, the correlation between heading date and grain yield could be positive or
negative, depending on the environments. Both the FE and RE were run on the initial per environment GWAS summary
statistics.

The RE procedure identified 15 QTLs (Figure.S1.A) each involving one marker except for one QTL located on
chromosome 4D involving three markers. Three of these regions were located at less than 1.6 Mb to known flowering
genes or heading date QTLs detected on the same panel in [55]. Five of the detected regions colocalized (less than
2Mb) with yield components QTLs detected in [55]. For all these collocalizations, the tests were much more significant
with our approach than those from [55] based on a standard GWAS model.

Figure S1: Results of the MA applied to the Wheat dataset. (A) Local score along the chromosomes from the RE
procedure. The boxes represent the significant zones identified. (B) Local score along the chromosomes from the FE
procedure. The boxes represent the significant zones identified. (C) Z-scores as a function of the correlation between
the heading date and the grain yield, for the top significant marker detected with the meta-regression procedure (Wheat
dataset, marker cfn2941229 located on chromosome 6A). (D) Z-scores as a function of the correlation between the
heading date and the grain yield, for the second top significant marker detected with the meta-regression procedure
(Wheat dataset, marker cfn1693678 located on chromosome 2B). Colors correspond to the environment classification
according to the relationship between heading date and grain yield of [49].

The FE procedure was also applied to detect markers with stable effect across environments. In total 11 QTLs were
identified, highlighting some very significant association peaks, especially on chromosome 1D (involving 16 markers),
chromosome 6B (involving 13 markers) and chromosome 7B (involving 19 markers) (Figure.S1.B). As expected
because of the choice of the 16 environments, these stable regions did not collocalize with major flowering genes nor
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with heading date QTLs from [55]. Interestingly, two of the detected regions collocalized with yield components QTLs
detected in [55], and again the significance was much higher with our approach.

A meta-regression test was performed to detect markers with effects correlated to the correlation between heading date
and grain yield (cor_HD_GY). The procedure identified 6 QTLs with two main association peaks on chromosomes
2B and 6A, these regions being illustrated in Fig.S1.C and Fig.S1.D. Two of these six regions were close to a known
flowering gene (Ppd-B1 on 2B).

B Table S1 (Arabidopsis dataset)

Nb. QTLs Nb. Env.
21 1
19 2
11 3
0 4

Table S1: Number of QTLs identified by the standard FE procedure that were found significant in individual analyses.
(Arabidopsis dataset analysis)

C Night temperature meta-regression tests (Maize dataset)

Regarding night temperature during the grain filling period, hot conditions may affect ovary development and grain
growth, carbon translocation or photosynthesis. Interestingly rapid senescence was observed in heat scenarios as well
as smaller individual grain sizes and reduced number of grains per ear in the two environments with extreme conditions
(Cra). The QTL2_234 found on chromosome 2 was also identified in platform experiments ([45], Granato 2022 in prep)
and corresponds to a QTL of plant growth rate in well-watered conditions (pos234) and radiation-interception efficiency
(pos233.9).

Figure S2: (A) Z-scores as a function of the mean night temperature, for the top significant marker detected with the
meta-regression procedure (Maize dataset, marker AX-91369217 located on chromosome 6 pos 21). (B) Z-scores as a
function of the mean night temperature during the grain filling period for the top significant marker detected with the
meta-regression procedure (Maize dataset, marker AX-91123283 located on chromosome 9 pos 28).
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D Allelic effects of QTL1_117.6 (EU-NAM Flint dataset)

Figure S3: Allelic effects of QTL1_117.6 (EU-NAM Flint, marker PZE.101144585) through locations and sub-
populations. A combination of location x sub-population is highlighted if individual GWAS p-value were below 0.01.

20

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2023. ; https://doi.org/10.1101/2023.03.01.530237doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.01.530237
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Results
	Meta-analysis approach
	Applications

	Discussion
	Methods
	Meta-analysis classical approach
	Meta-analysis for GxE analysis in plant genetics
	Availability of data

	Supplementary Material
	Wheat dataset analysis
	Table S1 (Arabidopsis dataset)
	Night temperature meta-regression tests (Maize dataset)
	Allelic effects of QTL1_117.6 (EU-NAM Flint dataset)


