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Design considerations and workspace computation of 2-X and 2-R planar cable-driven
tensegrity-inspired manipulators

Vimalesh Muralidharana,∗, Philippe Wengera, Christine Chevallereaua

aNantes Université, Ecole Centrale de Nantes, CNRS, LS2N, 44321 Nantes, France

Abstract

This study considers two-degree-of-freedom planar tensegrity-inspired manipulators composed of anti-parallelogram (X) and
revolute (R) joints containing springs and actuated remotely by four cables. The goal is to design the constituent elements of
these manipulators while they carry a given payload in the presence of gravity. While this is a classical problem in serial and
parallel manipulators with known approaches in the literature, their extension to tensegrity-inspired manipulators is challenging
due to the presence of springs and actuation by cables. In this paper, we address all these challenges in a sequence for the 2-X
and 2-R manipulators. Firstly, we discuss the limits on joint movement due to the geometry and spring free length. Then, we find
the set of all feasible springs that can be installed on these joints while respecting their mechanical constraints, e.g., maximum
elongation. We estimate the axial loads in the bars to obtain cross-sections safe from buckling failure. Finally, we compute
the stable wrench-feasible joint space (SWFJ) and stable wrench-feasible workspace (SWFW) for the two manipulators. The
ultimate objective of this study is design optimization of these manipulators.

Keywords: Tensegrity-inspired manipulators, Antagonistic actuation, Feasible springs, Safe bar sections, Stable
wrench-feasible workspace

Nomenclature
DoF Degree-of-freedom
R Revolute joint
X Anti-parallelogram joint
l, b Lengths of bars in the X-joint
r, h Semi-base length, height of isosceles triangles in R-joint
αi Orientation of the top bar of the ith joint w.r.t. its base
αmax Upper bound for αi due to geometry of the joint and cable actuation
σα Fraction ∈ ]0, 1[ used to set safe joint limits
αmax (< αmax) safe upper bound for αi inside the limits due to geometry and actuation
ki, l0i , lmaxi Stiffness, free length, maximum operating length of springs installed in ith joint
αmaxi

(≤ αmax) actual upper bound for αi considering the spring free length (l0i)
d,D,Na Wire diameter, coil diameter, number of active coils of a spring
lbj , rbj ,mj Length, cross-section radius, mass of the jth bar in the manipulator
Fli , Fri Forces imposed by the left, right cables on the ith joint
Fmin, Fmax Minimum, maximum bounds on the cable forces
mp, Fp Mass, weight of the point mass payload at end-effector
SWFJ Stable wrench-feasible joint space (α1, α2) of a manipulator
SWFW Stable wrench-feasible workspace (x, y) of a manipulator
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1. Introduction

Recently, there has been a growing interest in developing manipulators for safe interactions with the environment and collab-
oration with humans [1],[2]. In this regard, nature has been a great source of inspiration for roboticists to develop robots with
such enhanced capabilities [3]. In the literature, one finds several bio-inspired systems for soft interactions [4],[5]. These are
inspired mainly by flexible organs of continuous-bodied organisms (e.g., tentacles of octopus [6]) or the musculoskeletal system
of vertebrate animals (e.g., arm of human [7]).

A lot of research has been devoted to bio-inspired continuous-bodied robots, commonly called continuum robots [8]. Their thin
form and adaptability to unstructured environments make them ideally suited for surgical applications, e.g., [9]. These robots are
driven extrinsically by cables/tubes/rods or intrinsically by pressurized fluids, depending on the environmental constraints [10].

(a) 2-X manipulator (b) 2-R manipulator

Figure 1: Schematics of the manipulators under study: 2-X (left) and 2-R (right).

In contrast, a musculoskeletal system consists of joints formed by contact between surfaces of bones, supported by ligaments,
and actuated by muscles. In a bio-inspired robotic system, these elements are substituted with bars, springs, and cables for
practical realization [11]. These elements are also typically found in tensegrity systems [12]. Drawing inspiration from them,
two manipulators based on the musculoskeletal/tensegrity paradigm, shown in Fig. 1, are studied in this paper. However, the
form of these manipulators differs from the authentic tensegrity systems (see, e.g., [13]) in a few ways, as explained in the
following.

The concept of tensegrity originated in architecture, with the emergence of artistic structures containing “floating” rigid bodies
held together by cables. On the contrary, tensegrity-inspired manipulators are systems designed to exhibit controlled motions
through actuation with motors. They also contain mechanical connections (joints) between the rigid bodies to limit their
degree-of-freedom (DoF) to less than six, as required by the application, see, e.g., other planar tensegrity mechanisms [14],[15].
Another point of difference is that in conventional tensegrity structures, only cables/springs support tensile loads and not rigid
bodies. However, in the tensegrity-inspired manipulators, the loading pattern changes with their movement, and consequently,
some bars experience tensile loading in some configurations.

Despite these differences, the feasible configurations of the tensegrity-inspired manipulators are determined by the conditions
of static equilibrium and stability, as in the case of conventional tensegrity structures. Hence, it is justified to refer to them as
tensegrity-inspired manipulators.

Another challenge in tensegrity-inspired manipulators is to choose an appropriate actuation scheme. Since there are several
possibilities for actuation, selecting a good actuation scheme is not an intuitive one [16]. In this regard, antagonistic actuation
of cables is a scheme that preserves the ability to prestress the mechanism [17]. In most tensegrity mechanisms, the actuator(s)
are used to control the position of some nodes (attachment points between components) by implicitly using a closed-loop
control scheme (with sensor feedback). However, there are a few others where the actuators are used only to impose the tension
in cables with an open-loop control scheme (without sensor feedback) [18],[19]. This study will assume the latter scheme
owing to its simplicity.
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The objective of this work is to present the various factors to consider while designing tensegrity-inspired manipulators for car-
rying a payload, similar to those of serial and parallel manipulators [20],[21], and eventually perform their design optimization.
Firstly, the design of tensegrity-inspired manipulators must also consider the springs, whose mechanical feasibility conditions
are more challenging to incorporate inside the overall design of the manipulator. Secondly, the cross-sections of the bars must
also be chosen appropriately based on the payload weight, forces due to springs, and cable routing to prevent buckling failure.
Finally, unlike in a conventional manipulator, the workspace of the tensegrity-inspired manipulators is not only determined
by kinematic factors such as singularities and joint limits but is further qualified by the conditions of static equilibrium and
stability, which makes its computation more involved [22].

This paper addresses the above design challenges for two planar tensegrity-inspired manipulators shown in Fig. 1. The signifi-
cant contributions of this work may be summarized as follows:

• All the conditions of mechanical feasibility for the springs (with non-zero free lengths) are considered to derive the total
feasible design space for them. A two-parameter representation of this space is presented to access all the springs.

• The limits of movement for each of the joints in the manipulator are studied systematically by considering their geometry,
actuation scheme of cables, and free length of springs installed in them.

• A geometric method is proposed to estimate the axial forces in the bars conservatively within the permissible range of
movement. This estimation is used to design sufficiently large cross-sections to avoid bucking failure.

• The steps involved in the computation of the stable wrench-feasible workspace (SWFW) are illustrated for the 2-X and
2-R tensegrity-inspired manipulators.

The rest of this paper is organized as follows: the architectures of the two manipulators are described in Section 2. The design
considerations and steps involved in the computation of SWFW are discussed for the 2-X and 2-R manipulators in Sections 3
and 4, respectively. Finally, the conclusions of this study are presented in Section 5.

2. Description of the two tensegrity-inspired manipulators

The schematics of two planar positioning manipulators, namely 2-X and 2-R, are shown in Figs. 1(a) (left) and 1(b) (right),
respectively. They are each a two-degree-of-freedom (2-DoF) robotic system used to control the position of an end-effector
point P (x, y), containing a point payload of mass mp.

The 2-X manipulator comprises two anti-parallelogram (X) joints arranged in series with rigid offsets (highlighted in shading)
as shown in Fig. 1(a). Each X-joint consists of a top bar and a base bar of length b, and two crossed bars of length l, satisfying
the condition (l > b) for its assembly. All the bars are connected to their neighbors with pivots.

On the other hand, the 2-R manipulator has R-joints instead of X-joints, with the same arrangement of offsets, as illustrated in
Fig. 1(b). An R-joint contains two congruent isosceles triangles (each composed of three bars), one inverted on top of the other.
The semi-base length r and height h specify the geometry of these triangles.

In both manipulators, for joint i, the orientation of the top bar relative to its base is denoted by αi, with i = 1, 2, as shown in
Fig. 1. The joint i is equipped with two identical extension springs of stiffness ki and free length l0i , on either side to ensure that
the manipulator remains in stable equilibrium at the home configuration (α1, α2) = (0, 0) rad1 when no external forces (other
than the gravitational forces) are applied. In both manipulators, there exist two rigid offsets (in the form of trusses) of length a
between the two joints and between the second joint and the end-effector point P , as indicated by the shaded portions in Fig. 1.
Note that the purpose of shading is only to differentiate between the offsets and joints, while both are composed of bars and
pivots2. All the bars and springs are arranged in parallel planes to avoid any interference between them. This arrangement also
provides improved rigidity for these manipulators in the direction normal to the plane of movement, as is necessary for their
practical realization. All the bars are assumed to be inelastic in this study.

The manipulators are placed such that their plane of motion is parallel to the direction of gravity (see Fig. 1), unlike a conven-
tional SCARA robot [23]. This placement ensures that the moments induced due to the weight of bars/payload are parallel to
the axes of the pivots, which they cannot transmit. Since pivots connect all the elements, there is only a transmission of axial
forces between them. In order to preserve this property and keep the moving structure light, these manipulators will be actuated
remotely by motors installed on the ground, using cables as transmission elements.

The visible difference between the two architectures is that for the 2-R manipulator, the two instant centers of rotations are
located at the “central” pivots of the R-joints, while for the 2-X manipulator, the centers of rotations are not at fixed pivots
but at the virtual intersection of diagonal bars of the X-joints. The hidden difference is that the antagonistic cable actuation
produces different effects on the stiffness of the two manipulators, as in the case of single X- and R-joints explained in [18].

1In this paper, all the angular parameters are presented in radians unless specified otherwise.
2In this paper, the term pivot represents the connection between two neighboring elements (bars/springs) in the manipulator, while, the term revolute joint

(R-joint) represents the complete joint module inclusive of the two triangles and springs.
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The following sections will discuss the design considerations for the 2-X and 2-R manipulators.

3. Design considerations for 2-X manipulator

(a) Bar labels (b) Cable routing

Figure 2: Bar labels (left) and cable routing scheme (right) for the 2-X manipulator.

A schematic showing the labels of all the moving bars and pivots of the 2-X manipulator is presented in Fig. 2(a), and will be
referred to in the following sections. Four motors actuate this manipulator using one cable each, as depicted in Fig. 2(b). The
cables Cl1 and Cr1 actuate the first X-joint antagonistically, while the cables Cl2 and Cr2 actuate the second joint in a similar
manner independently of the first one. In order to achieve this independence, the cables Cl2 , Cr2 have been routed along the
bars of the first joint and the rigid offsets with pulleys, following the strut-routed scheme described in [24]. They have been
passed through the rigid offset multiple times in a zig-zag manner to avoid loss of contact with the pulleys. This paper assumes
that the cables are massless and inextensible while the pulleys are massless points with zero radii. The forces imposed by the
actuating cables are bounded by [Fmin, Fmax], with Fmin = 0 N for simplicity.

Though three cables are sufficient to actuate a 2-DoF manipulator [25], four cables have been considered in this work to extend
the symmetry in the architecture of the above manipulator to its actuation scheme and eventually its workspace (more details
in [26]).

The various steps involved in the feasible design and workspace computation of a 2-X manipulator are summarized in Fig. 3
and are described in detail in the following sections. As a first step, safe limits for the movement of the joints are computed
from the joint geometry and cable routing scheme in Section 3.1. These limits are used to define the complete feasible design
space for the springs in Section 3.2. Inside this design space, the designer must independently choose springs for each joint.
Then, the actual joint limits for each joint are determined based on the free length of the springs installed in it (discussed in
Section 3.1). These data, along with the user-defined maximal actuation forces and payload, are used to estimate the axial
forces in the bars and define safe cross-sections for them in Section 3.3. These data are used to develop the static model of the
manipulator in Section 3.4, followed by the kinematic model in Section 3.5. The steps involved in the computation of SWFW
are presented in Section 3.6. Finally, the entire process is illustrated with a numerical example in Section 3.7.

3.1. Joint limits for ith X-joint

The range of movement of an X-joint is limited by the flat singularities at αi = ±π. A static analysis shows that the forces in
the bars of the joint tend to infinity while it approaches these singularities (more details to follow in Section 3.3.2). Thus, it is
necessary to set safe limits [−αmax, αmax], such that αmax(< π) for all the joints to keep them far from flat singularities.

In addition to the above limits, which apply identically to all the X-joints, the movement of the ith X-joint in the serial chain
could be further limited by the springs installed in it (see Fig. 4(a)). This limit arises because the extension springs cannot have
a length smaller than their free length. The lengths of the springs (or, equivalently distance between their attachment points) on
either side of the joint can be computed as (see [18]):

lli(αi) = −b sin(αi/2) +
√
l2 − b2 cos2(αi/2) lri(αi) = b sin(αi/2) +

√
l2 − b2 cos2(αi/2) (1)
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Figure 3: Sequence of treating the design considerations for the 2-X manipulator.

(a) Case A: lli (αmax) < l0i <
√
l2 − b2 (b) Case B: 0 < l0i ≤ lli (αmax)

Figure 4: Joint limits of an X-joint depending on the spring free length and bar lengths.
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Since we use identical springs on the two sides, it is apparent that their free length must be in the range
]
0,
√
l2 − b2

[
for their

installation. Further study of joint limits bifurcates into two cases depending on the free length (l0i) of the springs, as follows:

• Case A
[
lli(αmax) < l0i <

√
l2 − b2 in Fig. 4(a)

]
: In this case, the free length (l0i) of the springs in ith joint happens

to be more than the distance between the attachment points (Pli , Bli) at αi = αmax. Thus, the actual amplitude of
movement for ith X-joint, denoted by αmaxi

(< αmax), will be attained when the left spring reaches its free length.
Owing to the symmetry of this joint, the right spring reaches its maximum operating length (lmaxi

) at this configuration.
Thus, from the geometry of the X-joint in Fig. 4(a), αmaxi

and lmaxi
can be computed in terms of the free length (l0i) as

follows: αmaxi = 2arcsin

(
l2−b2−l20i

2bl0i

)
lmaxi =

l2−b2

l0i

(2)

• Case B [0 < l0i ≤ lli(αmax) in Fig. 4(b)]: In this case, the free length of the springs allows the joint to reach its safe
limits ±αmax. The maximum operating length of the springs is given by the distance between the attachment points of
the spring on the right side at αmax (see Fig. 4(b)) as:{

αmaxi = αmax

lmaxi
= lri(αmax)

(3)

In summary, from Eqs. (2),(3), it is observed that the joint limits for the ith X-joint depend on the geometry (b, l), designer-
specified safe limit (αmax), and the free length (l0i) of the springs. Though the designer can choose the values of (b, l, αmax)
rather arbitrarily, the choice of free length is not an obvious one. This is because the springs with stiffness required to stabilize
the manipulator may not possess the chosen free length and vice versa. Hence, a more reasonable approach would be to find all
the feasible springs that can be installed in the joint based on the (b, l, αmax) parameters and let the designer choose a suitable
one. Once this choice is made, the actual joint limits (±αmaxi

) can be determined from Eq. (2) or Eq. (3) depending on whether
the free length of the chosen spring belongs to case A or case B.

In order to compute all the feasible springs, the conditions on free length (l0i) and required operating length (lmaxi
) derived

in cases A and B must be used along with other feasibility conditions for the springs. This process is carried out in the next
section.

3.2. Design space for the springs of ith X-joint

In this section, a method to compute the complete feasible design space for the springs for an X-joint with known geometry
(b, l) and safe joint limits (±αmax) is presented briefly. More details can be found in the associated technical report [27].

Figure 5: Schematic of a helical extension spring.

The schematic of a helical extension spring with stiffness ki and free length l0i is shown in Fig. 5. It is fabricated by winding
a steel wire of diameter d around a cylinder successively to form identical coils of nominal diameter D. The number of active
coils, Na, which contribute to the elongation of the spring is conventionally assumed to be one less than the total number of
coils in the body (see, e.g., [28], p. 357). The initial tension in the spring is neglected in this study [27].

One commonly used material for manufacturing springs is EN 10720-1 (SH/DH) (equivalently ASTM A228), also known as
music/piano wire. This material will be assumed for all the springs uniformly in this paper. From the standard [29], one finds
the shear modulus (Gk) as 81.5 GPa and volumetric density (ρk) as 7850 kg/m3.

Using Fig. 5, the mass of the spring inclusive of the two hooks can be computed as:

mki =
1

4
ρk(πd)

2D(Na + 3) (4)
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While the material is known, the spring parameters {ki, d,D,Na, l0i} can completely define a spring. However, they must
also respect two equations. The first one is the relation between the spring stiffness and its geometry and material properties
(see [28], p. 355), while the second one is the geometric relation between the free length and other parameters (see Fig. 5):

ki =
Gkd

4

8NaD3
=⇒ Na =

Gkd
4

8kiD3
(5)

l0i = (Na + 1)d+ 2(D − d) (6)

Thus, only three of the above parameters can be chosen independently to define a spring. In this paper, (k, d,D) are treated as
independent parameters while (Na, l0i) are determined from Eqs. (5) and (6), respectively.

In addition, there are several inequality conditions that must be respected by the spring (see [27] for more details):
χ1 : coils must be strong enough to support the specified deflection
χ2 : there should be more than three active coils
χ3 : the spring index (D/d) must be bounded inside [4, 20]

χ4 : the helix angle must be less than 7.5◦

(7)

Note that the conditions χ1, χ4 depend on the desired maximum elongation (lmaxi
) of the spring [27]. Furthermore, for

incorporating the spring into X-joint, the following conditions must be considered:{
χ5 : the outer diameter (D + d) must be less than one third the joint width (b/3) for compactness
χ6 : condition on l0i in case A (denoted χ6a) or case B (denoted χ6b) as in Section 3.1

(8)

Recalling that the conditions on l0i and the respective expressions of lmaxi are different in cases A and B discussed above, we
come up with two sets of feasibility conditions for the springs. The ones corresponding to case A are consolidated into χa and
those corresponding to case B in χb, as follows:

χa =



χ1

(
lmaxi

= l2−b2

l0i

)
χ2

χ3

χ4

(
lmaxi

= l2−b2

l0i

)
χ5

χ6a := l0i ∈
]
lli(αmax),

√
l2 − b2

[
χb =



χ1 (lmaxi = lri(αmax))

χ2

χ3

χ4 (lmaxi
= lri(αmax))

χ5

χ6b := l0i ∈ ]0, lli(αmax)]

(9)

The above conditions can be formulated solely in terms of the independent spring parameters (k, d,D) using Eqs. (5),(6), as
illustrated in [27]. The set of all (k, d,D) values satisfying χa (resp. χb) form the feasible design space for springs belonging
to case A (resp. B). The complete feasible design space for the springs is obtained from the union of the two sets χa ∪ χb.

It is customary to use only standard values for the wire diameter (d) for its accurate fabrication, as it is the most influential
parameter in the spring design (see Eqs. (5),(6)). Thus, in this study, the wire diameter is assumed to be a discrete variable that
takes the following values d = {0.2, 0.3, . . . , 6} mm.

As a numerical illustration, consider the X-joint with geometry: b = 0.2 m, l = 0.4 m, and safe joint limit αmax = 5π/6 rad.
A slice of the spring space for ki = 3000 N/m is shown in Fig. 6(a). The vertical grid lines represent the chosen discrete values
of d. For each value of d, D can vary inside an interval ∆j to generate feasible spring designs. These feasible intervals on each
grid line are shown in blue. In this example, all the feasible springs belong to set χa.

There are a total of 37 feasible intervals ∆1,∆2, . . . ,∆37 of D for different values of d, as shown in Fig. 6(a). These intervals
can be normalized w.r.t. the sum of all the interval sizes

∑37
j=1 ∆j , to form ∆

′

j . This permits one to arrange them successively
as in Fig. 6(b), to create a bijective map between the feasible intervals and a fraction σki

∈ [0, 1]. For instance, when σki
= 1.0,

the corresponding point in the feasible space is found to be (d,D) = (6.0, 58.4844) mm, as depicted in Fig. 6(b). In this
manner, all the feasible points in (d,D) space can be accessed with just a single parameter σki

.

It is noted that the map from σki
to the intervals has several discontinuities as observed from Fig. 6(b). At all such values

of σki
, the right-sided limit for d(σki

) has been assigned arbitrarily. This leads to the loss of the upper bounding point in all the
intervals, except the last one. However, the loss of a few discrete points in an ∞1 space is an acceptable compromise to obtain
a one-parameter (σki) representation of that space.

In summary, the complete feasible design space for the springs of an X-joint i, with known geometry (l, b) and safe joint limits
(±αmax), can be described with just two parameters (ki, σki

) with σki
∈ [0, 1]. The wire and coil diameters (d,D) of the

springs can be found from the mapping illustrated in Fig. 6(b). The remaining parameters, namely, number of active coils, free
length, and mass, can be found using Eqs. (5),(6),(4), respectively. In the above example, when ki = 3000 N/m, σki = 1.0,
(d,D) = (6.0, 58.4844) mm, the other parameters are found to be: Na = 22.0005, l0i = 0.2430 m, mki

= 1.0195 kg. Further,
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Figure 6: Parametrization of the feasible spring space with σki
∈ [0, 1] when ki = 3000 N/m for an X-joint with b = 0.2 m and l = 0.4 m, and αmax =

5π/6 rad.

from Eq. (2), the actual upper limit of movement for this joint is computed to be αmaxi = 1.3561 rad and the maximum
operating length of this spring is lmax1 = 0.4939 m.

In the next section, the data of springs and actual limits for all the joints will be used to estimate the forces in the bars and
design safe cross-sections for them.

3.3. Cross-sections and masses of the bars of 2-X manipulator

This section presents a method to determine safe cross-sections for the bars of the 2-X manipulator, whose bar lengths, springs,
maximum cable forces, and payload mass are known.

3.3.1. Cross-section of a bar for a given buckling load

Since it is known that the bars experience only axial loads (see Section 2), they are most likely to fail in buckling. In this study,
all the bars are assumed to be made of Aluminum with a uniform circular cross-section. Let lbj and rbj denote the length and
cross-section radius of the jth bar, respectively, with j = 1, . . . , 12 (see Fig. 2(a)). From [30], p. 819, the critical buckling load
of this bar is found to be:

Fcritical =
π2EIbj
l2bj

(10)

where E = 70 GPa is the Young’s modulus of Aluminum, Ibj =
πr4bj
4 is the second moment of area of the bar about an axis

lying in the cross-section. Substituting for Ibj and rearranging the above equation, one obtains:

rbj =

(
4Fcriticall

2
bj

Eπ3

)1/4

(11)

This value of rbj represents a limiting value of the cross-section radius for which the jth bar will just buckle when the applied
load is equal to Fcritical. Suppose one could overestimate the load experienced by the jth bar and assign it to Fcritical in Eq. (11),
a safe value for its cross-section radius can be obtained. This computation is carried out in the next section.

3.3.2. Safe estimation for axial load in the bars

This section aims to estimate the forces experienced by each of the bars while the manipulator is held in static equilibrium by
the actuating cables. This estimation is challenging since the forces in the bars vary with the configuration and the redundant
equilibrating cable forces at that configuration. Additionally, the masses of the bars and springs must also be considered for
calculating these forces accurately. However, the cross-sections of the bars are not known to the designer a priori, which makes
the accurate computation of the bar reactions extremely difficult. Hence, an alternate approach that provides a conservative
estimation of these forces will be followed in this work.

In this approach, the masses of bars and springs are neglected since their contributions are expected to be lower than the others.
Hence, the reaction forces Fj acting at the ends of each bar j must be directed along their respective longitudinal axes in
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Figure 7: Reaction forces at the ends of the bars.

opposite directions. As a convention, while the forces are compressive (i.e., directed towards the geometric center), they are
considered positive. While they are tensile, they are considered negative. Some of these forces and their transmissions between
the bars are visualized by splitting the manipulator into many parts, as shown in the first row of Fig. 7. In addition to these,
forces imposed by the cables (based on the routing shown in Fig. 2(b)) and the stiffness of springs are also considered at the
various pivots, as shown in the second and third rows of Fig. 7, respectively.

The forces in each of the bars can be computed successively starting from the bars 12 and 11. From the second column in
Fig. 7, it is apparent that forces induced in these two bars are only due to the payload weight Fp. Hence, the forces F12 and
F11 can be computed by the vectorial resolution of this force along the directions of these bars. The resulting expressions are
represented as: F12 = Ω12

p Fp and F11 = Ω11
p Fp, where the coefficients of Fp are defined in Eq. (13).

Similarly, the net force at one end of all the bars are computed as in Eq. (12) and the expressions for force coefficients3 are
presented in Eq. (13). While (−π < αi < π), it can be shown that θi = αi/2 (see Fig. 1(a) and [24]). The other intermediate
angles (ϕi, ψi) shown in Fig. 2(a) can be obtained in terms of αi using the loop-closure equations of the X-joint (see [31]).
Finally, the constant angles (β1, β2) in offsets shown in Fig. 2(a), can be obtained from the lengths of the bars.

F12 = Ω12
p Fp

F11 = Ω11
p Fp

F10 = Ω10
11F11 +Ω10

Fkl2
(Fl2 + k2(ll2 − l02))

F9 = Ω9
11F11 +Ω9

Fkl2
(Fl2 + k2(ll2 − l02))

F8 = Ω8
12F12 +Ω8

Fkr2
(Fr2 + k2(lr2 − l02))

F7 = Ω7
9F9 +Ω7

Fl2
Fl2 +Ω7

Fr2
Fr2 +Ω7

kr2
k2(lr2 − l02)

F6 = Ω6
9F9 +Ω6

Fl2
Fl2 +Ω6

Fkr2
(Fr2 + k2(lr2 − l02))

F5 = Ω5
8F8 +Ω5

7F7 +Ω5
Fl2
Fl2 +Ω5

Fr2
Fr2 +Ω5

kl2
k2(ll2 − l02)

F4 = Ω4
8F8 +Ω4

7F7 +Ω4
Fl2
Fl2 +Ω4

Fr2
Fr2 +Ω4

kl2
k2(ll2 − l02)

F3 = Ω3
4F4 +Ω3

Fl2
Fl2 +Ω3

Fr2
Fr2 +Ω3

Fkl1
(Fl1 + k1(ll1 − l01))

F2 = Ω2
4F4 +Ω2

Fl2
Fl2 +Ω2

Fr2
Fr2 +Ω2

Fkl1
(Fl1 + k1(ll1 − l01))

F1 = Ω1
6F6 +Ω1

5F5 +Ω1
Fl2
Fl2 +Ω1

Fr2
Fr2 +Ω1

Fkr1
(Fr1 + k1(lr1 − l01))

(12)

3Note that csc(·) = 1/sin(·) and sec(·) = 1/cos(·).

9





Ω12
p = csc(2β2) cos(β2 + (α1 + α2)); Ω

11
p = csc(2β2) cos(β2 − (α1 + α2));

Ω10
11 = csc(ψ2 − α2) sin(β2 + α2 − ψ2); Ω

10
Fkl2

= csc(ψ2 − α2) cos(θ2 − ψ2);

Ω9
11 = csc(ψ2 − α2) sin(β2); Ω

9
Fkl2

= csc(ψ2 − α2) cos(θ2);

Ω8
12 = csc(ϕ2 − α2) sin(β2); Ω

8
Fkr2

= csc(ϕ2 − α2) cos(θ2);

Ω7
9 = cos(ψ2); Ω

7
Fl2

= 1 + cos(β1); Ω
7
Fr2

= 1 + sin(θ2); Ω
7
kr2

= sin(θ2);

Ω6
9 = sin(ψ2); Ω

6
Fl2

= sin(β1); Ω
6
Fkr2

= − cos(θ2);

Ω5
8 = − sec(β1) cos(ϕ2); Ω

5
7 = − sec(β1); Ω

5
Fl2

= sec(β1)(1− sin(θ2));

Ω5
Fr2

= 1 + sec(β1); Ω
5
kl2

= − sec(β1) sin(θ2);

Ω4
8 = sec(β1) sin(β1 + ϕ2); Ω

4
7 = tan(β1);

Ω4
Fl2

= − sec(β1) cos(β1 + θ2)− tan(β1);

Ω4
Fr2

= − tan(β1); Ω
4
kl2

= − sec(β1) cos(β1 + θ2);

Ω3
4 = cot(ψ1 − α1); Ω

3
Fl2

= 1 + csc(α1 − ψ1) sin(β1 + α1 − ψ1);

Ω3
Fr2

= 1; Ω3
Fkl1

= cos(θ1 − ψ1) csc(ψ1 − α1);

Ω2
4 = csc(ψ1 − α1); Ω

2
Fl2

= sin(β1) csc(α1 − ψ1); Ω
2
Fr2

= 1;

Ω2
Fkl1

= cos(θ1) csc(ψ1 − α1);

Ω1
6 = csc(ϕ1 − α1); Ω

1
5 = sin(β1) csc(ϕ1 − α1); Ω

1
Fl2

= 1;

Ω1
Fr2

= sin(β1) csc(α1 − ϕ1); Ω
1
Fkr1

= cos(θ1) csc(ϕ1 − α1)

(13)

From the above expressions of force coefficients, it is clear that the ones containing csc(ψi − αi) and csc(ϕi − αi) can tend
to infinity while their respective arguments approach zero. Physically, this happens when the joint i is near its flat singulari-
ties (αi = ±π). Hence, to avoid unreasonably large forces in the bars, the designer must ensure that the joints operate within
safe limits sufficiently far from these singular configurations, as detailed in Section 3.1.

The next step involves the computation of the bounds for the bar forces. From Eq. (12), it is observed that each term contains
a product of a force and a force coefficient which depends on the configuration. A conservative estimation of the range of each
of the terms can be obtained by firstly computing the bounds of the forces [F , F ] and the respective coefficients [Ω,Ω]. Then,
the bounds of the product (ΩF ) can be obtained as the minimum and maximum values of the set {Ω F ,ΩF ,ΩF ,Ω F}. The
range of forces and force coefficients are obtained as follows:

• Though the payload weight Fp = mpg (where g = 9.8 m/s2 is the acceleration due to gravity), is a known constant,
its bounds are assumed to be Fp ∈ [0, 2mpg]. The lower bound is set to 0 to ensure that the manipulator remains safe
even when it is loaded with a lighter payload than the assumed one. The upper bound is set to twice the actual weight to
compensate for the masses of the bars and springs that were neglected. This is also expected to account for the dynamic
forces that might arise while moving the manipulator. The bounds of other forces due to cables and the stiffness of the
springs are also listed in the following (i = 1, 2):

Fp ∈ [0, 2mpg]

{Fli , Fri} ∈ [Fmin, Fmax]

{ki(lli − l0i), ki(lri − l0i)} ∈ [0, ki(lmaxi
− l0i)]

(14)

• From Eq. (13), Ω12
p ,Ω

11
p are functions of (α1 + α2). Since αi ∈ [−αmaxi

, αmaxi
], it follows that (α1 + α2) must

be bounded within [−(αmax1 + αmax2), (αmax1 + αmax2)]. Hence, the bounding values of Ω12
p ,Ω

11
p can be found by

evaluating the respective cosine functions at the stationary points and the bounds. It is also apparent from Eq. (13) that
one can reduce all the other force coefficients to functions of just one of the angles αi. Thus, they can be classified into
several categories as in Table 1, by studying them analytically (see Appendix A for illustrations). This classification
aids in the computation of their bounding values. Note that while αi = αmaxi

(resp. −αmaxi
), all the dependent angles

(ψi, ϕi, θi) in that joint attain their maximum (resp. minimum) values. Hence, the bounds of coefficients in categories II
and III can be computed directly without rewriting them in terms of αi.

• Once the bounds of distal bars F12, F11 are found, they will be used successively for computing the bounds of F10, F9, F8,
and so on. This causes the force estimations to be increasingly more conservative as one moves toward the base. This
computational feature is acceptable since the effect of neglected bar masses also increases as one moves closer to the
base.

• Finally, the upper bounds of the estimated bar forces, denoted by F ∗
j , will be used in Eq. (11) to compute the safe

cross-section radius for bar j.

3.3.3. Practical considerations and symmetry of the manipulator

Let the value of rbj determined by substituting Fcritical = F ∗
j in Eq. (11) be given by r∗bj . In order to avoid practical issues

associated with the fabrication of small sections, a minimum cross-section radius rbj = 5 mm is considered. Thus, a corrected
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Table 1: Classification of the coefficients in Eq. (13) and computation of their bounds.

Category Nature Coefficients Minimum Maximum

I Constant Ω7
Fl2
,Ω6

Fl2
,Ω5

7,Ω
5
Fr2

,Ω4
7, Value of the constant

Ω4
Fr2

,Ω3
Fr2

,Ω2
Fr2

,Ω1
Fl2

II Monotonic increase Ω10
11,Ω

10
Fkl2

,Ω8
Fkr2

,Ω7
Fr2

, Maximum Minimum
with αi ∈ ]−π, π[ Ω7

kr2
,Ω5

8,Ω
3
4,Ω

3
Fkl1

,Ω1
Fkr1

angles angles

III Monotonic decrease Ω9
Fkl2

,Ω7
9,Ω

5
Fl2
,Ω5

kl2
, Minimum Maximum

with αi ∈ ]−π, π[ Ω3
Fl2
,Ω2

Fkl1
angles angles

IV Possible extrema
Ω12

p ,Ω
11
p ,Ω

9
11,Ω

8
12,Ω

6
9, Evaluate at stationary points,

Ω6
Fkr2

,Ω4
8,Ω

4
Fl2
,Ω4

kl2
,Ω2

4, bounds; choose the minimum
Ω2

Fl2
,Ω1

6,Ω
1
5,Ω

1
Fr2

and maximum from them.

cross-section radius is obtained as: rbj = max
(
rbj , r

∗
bj

)
.

Further, to preserve the mass symmetry of the manipulator about the configuration (α1, α2) = (0, 0), it is necessary to have
the same cross-sections for the following pairs of the bars (see Fig. 2(a)): (1, 2), (4, 6), (8, 9), (11, 12). This requirement is
satisfied by setting the largest of the two cross-sections for both bars in each pair. Finally, the mass of jth bar (mj) can be
computed as mj = πρr2bj lbj , where ρ = 2700 kg/m3 is the volumetric density of Aluminum.

3.4. Static model of 2-X manipulator

As a first step, the total potential energy of the 2-X manipulator is computed to be:

Ux = mpgyp +

12∑
j=1

mjgyj +

2∑
i=1

(
mkig(yli + yri) +

ki
2

(
(lli − l0i)

2 + (lri − l0i)
2
)
+ Fli lli + Fri lri

)
(15)

where mp is the mass of the point payload and yp its y-coordinate, mj represents the mass of the jth bar (see Fig. 2(a) and
Section 3.3) and yj the y-coordinate of its geometric center. Similarly,mki

represents the mass of the springs in the ith joint (see
Eq. (4)), and yli (resp. yri ) the y-coordinate of the mid-point of the attachment points of the left (resp. right) spring. In effect,
the terms containing g represent the contribution of gravity in the total potential energy (assuming the zero-potential reference
along the x-axis). The remaining terms signify the contribution of spring stiffness and actuation forces to the total potential,
respectively. The lengths lli , lri , shown in Fig. 1(a), can be expressed as functions of l, b, αi (see Eq. (1)). The forces Fli , Fri

are the actuation forces imposed by cables Cli , Cri (see Fig. 2(b)), respectively, for i = 1, 2.

The static equilibrium equations can be obtained by setting the derivatives of Ux w.r.t. α1 and α2, to zeros. This results in two
equations, which can be written in the following form:{

G1(k1, g, α1, α2) = Γ1(Fl1 , Fr1 , α1)

G2(k2, g, α1, α2) = Γ2(Fl2 , Fr2 , α2)
(16)

where Gi represents the wrench due to springs and gravity, while Γi is the wrench due to the actuating cables on the ith joint,
with i = 1, 2. The expressions of Gi and Γi are given by:

G1 = −2C3x sin(α1 + θ2)
√
l2 − b2 cos2(θ2) + C1x sinα1 − C

′

3x sin(α1 + α2)

+
sin(θ1)

(
−C

′′
1x(l

2−2b2 cos2(θ1))−C
′
1x cos(θ1)

)
√

l2−b2 cos2(θ1)

G2 = C2x sinα2 − C
′

3x sin(α1 + α2)

+
C3x(b2 sin(θ2) cos(θ2) cos(α1+θ2)+sin(α1+θ2)(b2 cos2(θ2)−l2))−C

′
2x sin(θ2) cos(θ2)√

l2−b2 cos2(θ2)

Γ1 = −bFl1 cos(θ1)

(
b sin(θ1)√

l2−b2 cos2(θ1)
− 1

)
− bFr1 cos(θ1)

(
b sin(θ1)√

l2−b2 cos2(θ1)
+ 1

)
Γ2 = −bFl2 cos(θ2)

(
b sin(θ2)√

l2−b2 cos2(θ2)
− 1

)
− bFr2 cos(θ2)

(
b sin(θ2)√

l2−b2 cos2(θ2)
+ 1

)
(17)
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where θ1 = (α1/2), θ2 = (α2/2) and

C1x = 2b2k1 − ag(2m10 + 4m11 + 2m4 +m5 + 2m7 + 4m8 + 4mk2 + 2mp)

C
′

1x = 2b2k1l01
C

′′

1x = g(m1 +m10 + 2m11 +m3 + 2m4 +m5 +m7 + 2m8 +mk1
+ 2mk2

+mp)

C2x = 2b2k2

C
′

2x = 2b2k2l02
C3x = g(m10 + 2m11 +m8 +mk2

+mp)

C
′

3x = 2ag(m11 +mp)

(18)

The substitutions θ1 = (α1/2), θ2 = (α2/2) have been made above and in the remaining sections for brevity. The masses
(m2,m6,m9,m12) have been replaced by (m1,m4,m8,m11), respectively, owing to symmetry (see Fig. 2(a) and Section 3.3).

It can be shown that the coefficient of Fli (resp. Fri ) in Eq. (17) is positive (resp. negative) when αi ∈] − π, π[, with i =
1, 2 (see [18]). This implies that Fli imposes a counterclockwise moment and Fri imposes a clockwise moment on the ith

joint, respectively. This feature is also evident from the cable routing shown in Fig. 2(b). Thus, an increase in the force Fri

means that Fli also increases to preserve the configuration of the manipulator. This simultaneous increase (or decrease) of the
antagonistic forces allows the manipulator to achieve different stiffnesses at the same configuration, making them suitable for
applications requiring variable stiffness.

Recall that the actuation forces imposed by cables are limited by: Fli , Fri ∈ [Fmin, Fmax]. Thus, at a given configura-
tion (α1, α2), the actuation wrench Γi is bounded below by Γi which occurs when (Fli = Fmin and Fri = Fmax), and
bounded above by Γi which occurs when (Fli = Fmax and Fri = Fmin), for i = 1, 2. Consequently, the equilibrium equation
given in Eq. (16) can be satisfied at (α1, α2) only when Gi ∈

[
Γi,Γi

]
, which are known as the wrench-feasibility conditions.

The stability of an equilibrium configuration can be characterized by the positive definiteness of the associated stiffness ma-
trix. For the 2-X manipulator, the articular stiffness matrix (Kα) can be computed as the Hessian of its potential energy
w.r.t. [α1, α2]

⊤ (see [24]), as follows:

Kα =

(
K11 K12

K12 K22

)
with K11 =

4K
′

11

(λ2 − c21)
3/2

and K22 =
4K

′

22

(λ2 − c22)
3/2

(19)

where

K
′

11 = −4b4c12C3x
(
λ2 − c21

)3/2√
λ2 − c22 − b4c1C

′′

1x

{
2c41 − c21

(
3λ2 + 2s21

)
+ λ4 + 3λ2s21

}
+b2C

′

1x

(
c41 − c21λ

2 + λ2s21
)
− 2b3c′12C

′

3x

(
λ2 − c21

)3/2
+ 2b3C1x

(
λ2 − c21

)3/2 (
c21 − s21

)
−b4Fr1

{
s1
(
λ2 − c21

)3/2
+
(
c41 − c21λ

2 + λ2s21
)}

+ b4Fl1

{
s1
(
λ2 − c21

)3/2 − (c41 − c21λ
2 + λ2s21

)}
K

′

22 = −b4C3x
{
c12
(
2c42 − 3c22λ

2 + λ4 + λ2s22
)
+ 2c2s12s2

(
λ2 − c22

)}
−2b3c′12C

′

3x

(
λ2 − c22

)3/2
+ 2b3C2x

(
λ2 − c22

)3/2 (
c22 − s22

)
+ b2C

′

2x

(
c42 − c22λ

2 + λ2s22
)

−b4Fr2

{
s2
(
λ2 − c22

)3/2
+
(
c42 − c22λ

2 + λ2s22
)}

+ b4Fl2

{
s2
(
λ2 − c22

)3/2 − (c42 − c22λ
2 + λ2s22

)}
K12 = −8C

′

3xc
′
12 +

4b√
λ2−c22

[
C3x

{
c′12c2 − s′12s2 −

(
2λ2 − 1

)
c12
}]

(20)

in which λ = (l/b), c1 = cos(θ1), s1 = sin(θ1), c2 = cos(θ2), s2 = sin(θ2), s12 = sin(2θ1 + θ2), c12 = cos(2θ1 + θ2), c
′
12 =

cos(2(θ1 + θ2)), s
′
12 = sin(2(θ1 + θ2)).

Since the equilibrium equations in Eq. (16) must be satisfied while evaluating the stiffness, one could solve for two of the
forces, say, (Fl1 , Fl2) from the two equations and substitute in Eq. (20). This results in the stiffness matrix Krr

α which contains
only the redundant actuation forces (Fr1 , Fr2):

Krr
α =

(
K rr

11 K12

K12 K rr
22

)
with K rr

11 =
4K rr′

11

bc1 (λ2 − c21)
and K rr

22 =
4K rr′

22

bc2 (λ2 − c22)
(21)
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where

K rr′
11 = −2b2C3x

√
λ2 − c22

(
2c1c12

(
λ2 − c21

)
+ c21s12

√
λ2 − c21 + λ2s1s12

)
+b2C

′′

1x

{
2c41s1 − c21λ

2s1 +
√
λ2 − c21

(
2c41 − 2c21s

2
1 − λ2

)}
+bC

′

3x

{
2c1c

′
12

(
c21 − λ2

)
− c21s

′
12

√
λ2 − c21 − λ2s1s

′
12

}
+2bc31C1x

(
s1
√
λ2 − c21 − c21 + λ2 + s21

)
− c31C

′

1x

(√
λ2 − c21 + s1

)
+2b2c31Fr1

(√
λ2 − c21 + s1

)
K rr′

22 = b2C3x

[
c12c2

{
c22

(
2
√
λ2 − c22 + s2

)
− λ2

√
λ2 − c22

}
+ s12

{
c42 − c22

(
2s2
√
λ2 − c22 + λ2

)
− λ2s2

√
λ2 − c22

}]
+C

′

3x

{
2bc′12c2

(
c22 − λ2

)
− bs′12

(
c22
√
λ2 − c22 + λ2s2

)}
+2bc32C2x

(
s2
√
λ2 − c22 − c22 + λ2 + s22

)
− c32C

′

2x

(√
λ2 − c22 + s2

)
+2b2c32Fr2

(√
λ2 − c22 + s2

)
(22)

From the above expressions, one finds that the redundant force Fri is present only in the ith diagonal term. Additionally, its

coefficient
4
(
2b2c3i

(√
λ2−c2i+si

))
bci(λ2−c2i )

is always positive while λ > 1 (assembly condition which is always valid) and θi ∈
]
−π

2 ,
π
2

[
within the flat singularities, for i = 1, 2. This shows that the antagonist forces have a positive correlation with the stiffness
for the 2-X manipulator, similar to that of a single X-joint [18]. Hence, maximum stiffness at a given configuration can be
obtained by setting maximum forces in the cables such that all of them are within their bounds [Fmin, Fmax]. Since there are
two redundant actuators in this manipulator, a pair of forces (Fr1 , Fr2) or (Fr1 , Fl2) or (Fl1 , Fr2) or (Fl1 , Fl2) can be set to
Fmax to obtain maximum stiffness at any configuration.

Suppose a given configuration permits setting the forces (Fr1 , Fr2) to Fmax, the stiffness matrix corresponding to maximum
stiffness can be obtained as K

rr
α = Krr

α(Fr1 = Fmax, Fr2 = Fmax) from Eqs. (21),(22). If the resulting matrix is positive-
definite, then that configuration is a stable one, otherwise it is not. However, while the configuration is not known a priori, the
maximum stiffness could occur when any one of the four pairs of forces is at Fmax. Thus, the expressions for stiffness matrices
corresponding to each force pair at Fmax are computed beforehand. They are denoted by

(
K

rr
α,K

rl
α,K

lr
α,K

ll
α

)
. The limiting

condition(s) of stability can be found from the vanishing of the determinants of these matrices as explained in [32],[33]. Their
zero-level sets can be plotted in the joint space to distinguish between the stable and unstable configurations for the manipulator.
Note that if a configuration (α1, α2) is identified as stable, then at least one combination actuation forces can stabilize the
manipulator at that configuration.

The set of all (α1, α2) inside the actual joint limits, which respect the conditions of wrench-feasibility and stability, forms the
stable wrench-feasible joint space (SWFJ) for this manipulator. The corresponding set of all end-effector positions in the task
space (x, y) forms the SWFW. In order to map the SWFJ onto the task space, the kinematic model of the 2-X manipulator is
essential and is derived in the next section.

3.5. Kinematic model of 2-X manipulator

The kinematic model of the 2-X manipulator involves expressing the end-effector coordinates (x, y) in terms of the joint
angles (α1, α2). Considering that αi ∈ ]−π, π[ , i = 1, 2, it is possible to present the direct kinematics of the manipulator (see
Fig. 1(a)) as follows (see [34] for more details):

x = −l1(α1) sin(α1/2)− a(sinα1 + sin(α1 + α2))− l2(α2) sin(α1 + α2/2)

y = l1(α1) cos(α1/2) + a(cosα1 + cos(α1 + α2)) + l2(α2) cos(α1 + α2/2)

where li(αi) =
√
l2 − b2 cos2(αi/2), i = 1, 2

(23)

Differentiation w.r.t. time yields:[
ẋ
ẏ

]
= Jx

[
α̇1

α̇2

]
,where Jx =

[
∂x
∂α1

∂x
∂α2

∂y
∂α1

∂y
∂α2

]
is a Jacobian matrix. (24)

The singularity condition for the manipulator is obtained from the vanishing of the determinant of Jx. After clearing the
non-zero factors and the denominator of det(Jx), the singularity condition can be expressed as [34]:

(25)

4a sin θ2
√
l2 − b2 cos2 θ1

(
l2 − 2b2 cos2 θ2

)
+ 2b4 cos θ1 sin θ2 cos

2 θ2

+ b2l2
(
sin(θ1 − θ2)− 2 cos2 θ2 sin(θ1 + θ2)

)
+ l4 sin(θ1 + θ2)

+
√
l2 − b2 cos2 θ2

(
2a
(
cos θ1 sinα2

(
l2 − b2

)
− l2 sin θ1 sin

2 θ2 + l2 sin θ1 cos
2 θ2
)

−
(
b2 − 4a2

)
sinα2

√
l2 − b2 cos2 θ1

)
= 0
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where θ1 = (α1/2), θ2 = (α2/2). Note that (α1, α2) = (0, 0) satisfies the singularity condition irrespective of the bar lengths.

The SWFW boundary is obtained by mapping the boundary of the SWFJ onto the task space using Eq. (24). Additionally,
it is also necessary to map the singular configurations inside SWFJ separately, as they form an essential part of the SWFW
boundary.

The steps involved in the computation of SWFJ and SWFW are discussed briefly in the next section.

3.6. Stable wrench-feasible workspace of 2-X manipulator

When all the parameters (bar dimensions, springs, cable forces) of the 2-X manipulator are defined, its SWFW can be obtained
by using the method described in [32],[33]. The important steps involved are summarized in the following:

1. All the limiting conditions of wrench-feasibility and stability, namely,
{
G1 − Γ1 = 0, G1 − Γ1 = 0, G2 − Γ2 = 0,

G2 − Γ2 = 0, det
(
K

rr
α

)
= 0, det

(
K

rl
α

)
= 0, det

(
K

lr
α

)
= 0, det

(
K

ll
α

)
= 0

}
, must be consolidated together into a

vector f(α1, α2) = 0.
2. These conditions must be rewritten as polynomials in t1 = tan(α1/4) (resp. t2 = tan(α2/4)) by suppressing the

variable α2 (resp. α1) inside its coefficients to obtain f1(t1) = 0 (resp. f2(t2) = 0).
3. The joint space (α1, α2) must be discretized into grid lines of α1 and α2 inside the joint limits.
4. On each grid line of α1 (resp. α2), the bounding values of the stable wrench-feasible intervals of α2 (resp. α1) can be

determined by solving the univariate polynomial f2(t2) = 0 (resp. f1(t1) = 0). The spurious solutions (if any) must be
eliminated.

5. Once the boundary points (α1, α2) of the SWFJ on all the grid lines are calculated, a linear interpolation must be per-
formed between them to obtain polygon(s) approximating the actual SWFJ.

6. Finally, all the boundary points of SWFJ, along with the manipulator singularities, must be mapped onto the task space
using the direct kinematic model (see Eq. (23)) to obtain the corresponding polygonal approximation of the SWFW.

3.7. Consolidation of all design conditions and a numerical example for 2-X manipulator

In this section, all the design considerations discussed above for the 2-X manipulator are consolidated to determine its SWFW
and a numerical example is presented. Starting from a given design of the 2-X manipulator, i.e., with defined geometry
(b, l, a), safe joint limits (αmax), springs (ki, σi) for i = 1, 2, and maximal actuation force (Fmax), the steps involved in the
computation of its SWFW are presented in a flow chart in Fig. 8. As a numerical illustration, consider the following design of
the 2-X manipulator: b = 0.2 m, l = 0.4 m, a = 0.5 m, αmax = 5π/6 rad, k1 = 3000 N/m, σk1

= 1.0, k2 = 1000 N/m,
σk2

= 0.7, Fmax = 200 N. A payload of mp = 2 kg is considered at the end-effector. The SWFJ and SWFW obtained for this
design are presented in Figs. 9(a) and 9(b), respectively. The steps involved are described in the following:

• Section 3.2: The first step involves the computation of the feasible design space for each of the springs and determining
the dependent parameters. If the feasible design space is empty for any of the springs, then the design of that 2-X
manipulator is deemed infeasible. The spring stiffnesses were chosen such that the manipulator is in stable equilibrium at
(α1, α2) = (0, 0) without actuation forces. For spring 1, k1 = 3000 N/m, σk1

= 1.0, the dependent parameters are found
to be (see Fig. 6(b) and Eqs. (5),(6),(2),(4)): d = 6.0 mm, D = 58.4844 mm, Na = 22.0005, l01 = 0.2430 m, lmax1

=
0.4939 m,mk1

= 1.0195 kg. Similarly, for spring 2, k2 = 1000 N/m, σk2
= 0.7, the parameters are found to be:

d = 4.7 mm, D = 52.3495 mm, Na = 34.6515, l02 = 0.2629 m, lmax2 = 0.4565 m,mk2 = 0.8433 kg. The total mass
contributed by all the springs are found to be 4(mk1 +mk2) = 3.7257 kg.

• Section 3.1: By substituting the spring free length data in Eq. (2), one obtains αmax1
= 1.3561 rad and αmax2

=
1.0108 rad, i.e., the actual range of movement of the two joints areα1 = [−1.3561, 1.3561] rad andα2 ∈ [−1.0108, 1.0108] rad,
respectively.

• Section 3.3: The conservative bounds for bar forces are computed using the data of geometry, maximal actuation force
Fmax, springs, and payload. The numerical values are presented in the second column of Table 2. The safe cross-section
radii for the bars and their corrected values based on symmetry and assumed minimum rbj = 5 mm are presented in
the subsequent columns. Further, the respective masses (mj) for all the bars have also been presented. The total mass
contributed by the moving bars is 1.4956 kg, which is much smaller than those of the springs (3.7257 kg). The total
moving mass of the manipulator is found to be 5.224 kg.

• Section 3.4: The static model of the manipulator (Eqs. (17),(18),(19),(20)) can be defined using the data of springs, bar
masses, and geometry of the manipulator obtained previously.

• Section 3.5: Independent of the above computations, the direct kinematic model and the singularity condition det(Jx) =
0 can be defined using the geometry parameters (b, l, a).

14



Figure 8: Computational scheme for the determination of SWFW for the 2-X manipulator that accounts for all of its design considerations discussed in Section 3.
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(a) SWFJ highlighted in shading
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(b) SWFW with two maximal inscribed disks (of radius
0.0736 m each)

Figure 9: Stable wrench-feasible joint space (SWFJ) and stable wrench-feasible workspace (SWFW) for the 2-X manipulator with: b = 0.2 m, l = 0.4 m,
a = 0.5 m, αmax = 5π/6 rad, k1 = 3000 N/m, l01 = 0.2430 m, mk1

= 1.0195 kg, k2 = 1000 N/m, l02 = 0.2629 m, mk2
= 0.8433 kg,

Fmax = 200 N. In SWFJ, the curves lying in the region where det(Jx) > 0 are shown in opaque style while those in det(Jx) < 0 region are shown in
transparent style. The images of these curves in the task space are also shown in the same style for the sake of clarity.

Table 2: 2-X manipulator: Range of estimated buckling loads and the resulting safe cross-section radii for the bars along with their masses.

Bar index Estimated load [N] Cross-section radius [mm] Mass [kg]
j Computed (r∗bj ) Corrected (rbj ) mj

12 [-101.92, 101.92] 2.64 5.00 0.108111 [-101.92, 101.92] 2.64
10 [-461.71, 162.19] 1.86 5.00 0.0424
9 [-173.81, 772.84] 3.89 5.00 0.08488 [-173.81, 772.84] 3.89
7 [-726.05, 807.06] 2.78 5.00 0.0424
5 [-4128.03, 4128.03] 6.85 6.85 0.2146
6 [-567.46, 958.53] 4.58 6.60 0.18454 [-4091.47, 4107.72] 6.60
3 [-8434.49, 8240.10] 4.96 5.00 0.0424
2 [-9041.49, 10451.80] 7.45 7.70 0.20101 [-9694.20, 11896.80] 7.70

Total bar mass 1.4986
Mass of springs (2(mk1

+mk2
)) 3.7257

Total moving mass of the manipulator 5.2244
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• Section 3.6: Using the static model and joint limits (αmaxi) for all joints i = 1, 2, the SWFJ of the manipulator can be
constructed as in Fig. 9(a) (shaded part). In this example, it is observed that the limiting boundaries of SWFJ are only
formed by the wrench-feasibility and joint limits but not by stability. This indicates that the manipulator must possess
good stiffness throughout the SWFJ. Further, the bounding points of SWFJ and singularities in the joint space have
been mapped onto the task space using the direct kinematic map in Eq. (23). The resulting plot of the SWFW of the
manipulator is shown in Fig. 9(b).

In Fig. 9(a), all the curves in the region (det(Jx) > 0) (resp. region (det(Jx) < 0)) are shown in opaque (resp. transparent)
styles, to distinguish between the two symmetric halves in the joint space and display the overlapping regions in task space with
clarity. As expected from the manipulator symmetry, the images of the two halves of SWFJ in the task space, are symmetric
about the y-axis. The overlapping region around the y-axis has two feasible configurations, while those on the two farther sides
have just one feasible configuration. Due to the symmetry of SWFW, it is sufficient to use just one half (e.g., opaque style)
to quantify its size. In the literature, it is a common strategy to inscribe a regular shape, such as a disk, inside the workspace
and use its dimensions for quantification [35]. Since the SWFW is in the form of polygons [32], an open-source c++ library
polylabel has been used to find the maximally inscribed disk(s) inside it4. The inscribed disks shown in Fig. 9(b) have a ra-
dius of 0.0736 m each. For this design, it takes about 43 ms (averaged over 100 runs) to compute the SWFW and the maximally
inscribed disk5. The maximal vertical reach (i.e., the y-coordinate of the end-effector while the joint angles are (α1, α2) = (0, 0))
of the manipulator is 1.6928 m, which is about 23 times the radius of the inscribed disk.

As a validation of the obtained design, it has been verified that the actual loads induced in the bars are less than the estimated
ones at several configurations (α1, α2) inside the SWFJ and for several combinations of actuation forces ∈ [Fmin, Fmax] in Ap-
pendix B. This study confirms that the design of the 2-X manipulator proposed is safe from buckling failure for manipulating
a payload of 2 kg inside its SWFW. Note that the resulting mass of the bars and springs (5.2244 kg) is more than twice the
payload mass assumed in the design process in Section 3.3.2. But, the actual forces induced in the bars are much smaller than
the estimated ones. This difference can be attributed to the further overestimation in the scheme, where the worst combinations
of all forces and the respective force coefficients were considered. It is observed that this difference also increases as one moves
from the end-effector toward the base. This is due to the overestimation of forces at the distal bars and their recursive substitu-
tions in the computation of forces in the proximal bars (see Eq. (12)). Nevertheless, the resulting cross-sections of the bars are
not impacted severely due to this overestimation, as observed from Table 2, thanks to the damping exponent (1/4) in Eq. (11).
It was verified through several numerical examples that the resulting bar cross-sections are safe for the 2-X manipulator, thereby
validating the proposed methodology.

The design considerations for the 2-R manipulator and the computation of its SWFW will be discussed in the following section.

4. Design considerations for 2-R manipulator

The schematic of the 2-R manipulator with bar and pivot labels is shown in Fig. 10(a). This manipulator is also remotely actuated
with four motors using one cable each, as shown in Fig. 10(b). The cables Cli and Cri actuate the ith joint independently, for
i = 1, 2, as explained in the case of 2-X manipulator (see Section 3).

In the following, we describe the different factors to be considered in the design of 2-R manipulators. The joint limits of an
R-joint are explored in Section 4.1. The governing conditions for spring design are listed in Section 4.2. The estimation of
buckling loads for the bars and the determination of their cross-section radii are carried out in Section 4.3. The static and
kinematic models of the 2-R manipulator are developed in Sections 4.4 and 4.5, respectively. Finally, the SWFW computation
is illustrated with an example in Section 4.6.

4.1. Joint limits for ith R-joint

The movement of an R-joint is limited due to cable actuation in two different ways. First, due to the vanishing of the segment
joining the cables (i.e., meeting of the pivots (Bli and Pli ) or (Bri and Pri )). Second, due to force-closure singularity [36],
which occurs when the line of action of force passes through the center of rotation (i.e., when (Bli , Oi, Pli ) or (Bri , Oi, Pri )
become collinear). For the R-joint, it can be shown that the joint limits will be formed by the first condition when (r > h) and
by the second condition when (r < h), and by both of them simultaneously when (r = h) (see [18]). In these cases, the upper
bound for joint limits (αmax) are given by:

αmax =


2 arctan (h/r) , if r > h

2 arctan (r/h) , if r < h
π
2 , if r = h

(26)

4The associated code could be found at https://github.com/mapbox/polylabel.
5All the computations reported in this work have been performed on a computer with an Intel® Core™ i7-6700 CPU running @ 3.40GHz processor, using

a C++ code.
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(a) Bar labels (b) Cable routing

Figure 10: Bar labels (left) and cable routing scheme (right) for the 2-R manipulator.

As in the case of X-joint, a safe amplitude of movement should be defined by the designer as αmax which is strictly less
than αmax. However, unlike in the X-joint, the singularities occur at different joint angles depending on the geometry of the
joint. Hence, it is more convenient to define the safe limits as a fraction of the bounds due to singularity, i.e., αmax = σααmax,
with σα ∈ ]0, 1[, such that it is valid for all joint geometries.

(a) Case A: lli (αmax) < l0i < 2h (b) Case B: 0 < l0i ≤ lli (αmax)

Figure 11: Joint limits of an R-joint depending on the spring free length (l0i ) and bar lengths.

Further, for the ith R-joint, the actual joint limits (±αmaxi) can differ from the safe joint limits (±αmax) depending on the free
length (l0i) of the springs installed in it (see Fig. 11). Since identical springs are used on the two sides of the joint, it is apparent
that their free length must respect l0i ∈ [0, 2h] for installation. The lengths of the springs on either side (i.e., the distance
between their attachment points) are given by (see [18]):

lli(αi) = 2
(
h cos

(αi

2

)
− r sin

(αi

2

))
lri(αi) = 2

(
h cos

(αi

2

)
+ r sin

(αi

2

))
(27)

The computation of actual joint limit (αmaxi
) and maximum operating length (lmaxi

) of the springs is carried out in a case-wise
manner in the following:

• Case A [(lli(αmax) < l0i < 2h) in Fig. 11(a)]: In this case, αmaxi
is attained when the left spring reaches its free

length (l0i). At this configuration, the right spring attains its maximum operating length (lmaxi). From the geometry of
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R-joint, αmaxi and lmaxi can be obtained in terms of l0i as:αmaxi
= 2

(
arccos

(
l0i

2
√
h2+r2

)
− arccos

(
h√

h2+r2

))
lmaxi

=
2hr

√
4(h2+r2)−l20i

+l0i(h
2−r2)

h2+r2

(28)

• Case B [0 < l0i ≤ lli(αmax) in Fig. 11(b)]: In this case, the joint movement is limited by the safe limits, i.e., αmaxi
=

αmaxi
, irrespective of the spring free length. The maximum operating length of the springs is also attained at these limits,

as computed by: {
αmaxi

= αmax

lmaxi
= lri(αmax)

(29)

In the next section, the feasible design space for the springs is derived using the aforementioned conditions and mechanical
feasibility.

4.2. Design space for the springs of ith R-joint

The design of springs for the R-joint is conducted like that of the X-joint in Section 3.2. For the R-joint, in Eq. (8), expression
of one third the joint width (b/3) must be replaced by (2r/3), and the conditions χ6a and χ6b must be adopted to cases A and
B, discussed in the previous section. Also, the respective expressions for lmaxi

derived in each of these cases should be used in
the inequalities χ1 and χ4. Finally, the set of all conditions for spring design in the case of R-joint is obtained to be:

χa =



χ1 (lmaxi
in Eq. (28))

χ2

χ3

χ4 (lmaxi in Eq. (28))
χ5

χ6a := l0i := ]lli(αmax), 2h[

χb =



χ1 (lmaxi
= lri(αmax))

χ2

χ3

χ4 (lmaxi = lri(αmax))

χ5

χ6b := l0i ∈ ]0, lli(αmax)]

(30)

Similar to the X-joint, the set of all feasible springs for the R-joint is obtained from χa ∪ χb.

4.3. Cross-sections and masses of the bars of 2-R manipulator

There are 14 bars in the 2-R manipulator as shown in Fig 10(a). They are all designed exactly like those in the 2-X manipulator
in Section 3.3. The reaction forces at the ends of the bars due to the contacting bars, actuating cables, and springs are shown in
Fig. 12. The expressions for forces in the bars are presented in Eqs. (31) and (32). Unlike in the case of 2-X manipulator, these
coefficients involve only two varying angles (α1, α2) and three constant angles (β0, β1, β2) in the offsets and joints (shown in
Fig. 10(a)).

The forces due to payload, cables, and springs have the same bounds as in Eq. (14). On the other hand, the force coeffi-
cients belong to just two categories (I, IV) for this manipulator as presented in Table 3, and their bounds can be calculated
as detailed in Section 3.3 and Appendix A. Finally, the bounds of forces in the bars can be overestimated, and their cross-
section radii and masses can be computed in the same manner as illustrated for the 2-X manipulator. In this process, the
symmetry of the manipulator is maintained about the configuration (α1, α2) = (0, 0), by choosing identical radii for the bars
(1, 2), (4, 6), (8, 9), (11, 12), (13, 14).

F14 = Ω14
p Fp

F13 = Ω13
p Fp

F12 = Ω12
14F14 +Ω12

Fkr2
(Fr2 + k2(lr2 − l02))

F11 = Ω11
14F14 +Ω11

Fkr2
(Fr2 + k2(lr2 − l02))

F10 = Ω10
13F13 +Ω10

Fkl2
(Fl2 + k2(ll2 − l02))

F9 = Ω9
11F11 +Ω9

10F10

F8 = Ω8
11F11 +Ω8

10F10

F7 = Ω7
9F9 +Ω7

Fl2
Fl2 +Ω7

Fr2
Fr2 +Ω7

kr2
k2(lr2 − l02)

F6 = Ω6
9F9 +Ω6

Fl2
Fl2 +Ω6

Fkr2
(Fr2 + k2(lr2 − l02))

F5 = Ω5
8F8 +Ω5

7F7 +Ω5
Fl2
Fl2 +Ω5

Fr2
Fr2 +Ω5

kl2
k2(ll2 − l02)

F4 = Ω4
8F8 +Ω4

7F7 +Ω4
Fl2
Fl2 +Ω4

Fr2
Fr2 +Ω4

kl2
k2(ll2 − l02)

F3 = Ω3
6F6 +Ω3

5F5 +Ω3
Fr2

Fr2 +Ω3
Fkr1

(Fr1 + k1(lr1 − l01))

F2 = Ω2
6F6 +Ω2

5F5 +Ω2
Fr2

Fr2 +Ω2
Fkr1

(Fr1 + k1(lr1 − l01))

F1 = Ω1
4F4 +Ω1

Fl2
Fl2 +Ω1

Fkl1
(Fl1 + k1(ll1 − l01))

(31)
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Figure 12: Reaction forces at the ends of the bars.



Ω14
p = csc(2β2) cos(β2 + α1 + α2); Ω

13
p = csc(2β2) cos(β2 − α1 − α2);

Ω12
14 = − sec(β0) cos(β0 − β2); Ω

12
Fkr2

= − sec(β2) sin(β0 − (α2/2));

Ω11
14 = sec(β0) sec(β2); Ω

11
Fkr2

= sec(β0) cos(α2/2);

Ω10
13 = sec(β0) sin(β2); Ω

10
Fkl2

= sec(β0) cos(α2/2);

Ω9
11 = csc(2β0) sin(α2); Ω

9
10 = csc(2β0) sin(2β0 + α2);

Ω8
11 = csc(2β0) sin(2β0 − α2); Ω

8
10 = − csc(2β0) sin(α2);

Ω7
9 = − sin(β0); Ω

7
Fl2

= 1 + cos(β1); Ω
7
Fr2

= 1 + sin(α2/2); Ω
7
kr2

= sin(α2/2);

Ω6
9 = cos(β0); Ω

6
Fl2

= sin(β1); Ω
6
Fkr2

= − cos(α2/2);

Ω5
8 = − sec(β1) sin(β0); Ω

5
7 = − sec(β1); Ω

5
Fl2

= − sec(β1) (−1 + sin(α2/2)) ;

Ω5
Fr2

= 1 + sec(β1); Ω
5
kl2

= − sec(β1) sin(α2/2);

Ω4
8 = cos(β0) + sin(β0) tan(β1); Ω

4
7 = tan(β1);

Ω4
Fl2

= − cos(β1 + (α2/2)) sec(β1)− tan(β1);

Ω4
Fr2

= − tan(β1); Ω
4
kl2

= − sec(β1) cos(β1 + (α2/2));

Ω3
6 = − tan(β0); Ω

3
5 = − cos(β1)− sin(β1) tan(β0); Ω

3
Fr2

= sec(β0) cos(β0 − β1);

Ω3
Fkr1

= − sec(β0) sin(β0 − α1/2);

Ω2
6 = − sec(β0); Ω

2
5 = sec(β0) sin(β1); Ω

2
Fr2

= 1− sec(β0) sin(β1);

Ω2
Fkr1

= sec(β0) cos(α1/2);

Ω1
4 = sec(β0); Ω

1
Fl2

= 1− sec(β0) sin(β1); Ω
1
Fkl1

= sec(β0) cos(α1/2);

(32)
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Table 3: Classification of the coefficients in Eq. (32) and computation of their bounds.

Category Nature Coefficients Minimum Maximum

I Constant

Ω12
14,Ω

11
14,Ω

10
13,Ω

7
9,Ω

7
Fl2
,

Value of the constantΩ6
9,Ω

6
Fl2
,Ω5

8,Ω
5
7,Ω

5
Fr2

,

Ω4
8,Ω

4
7,Ω

4
Fr2

,Ω3
6,Ω

3
5,

Ω3
Fr2

,Ω2
6,Ω

2
5,Ω

2
Fr2

,Ω1
4,Ω

1
Fl2

IV Possible extrema

Ω14
p ,Ω

13
p ,Ω

12
Fkr2

,Ω10
Fkl2

,

Ω9
11,Ω

9
10,Ω

8
11,Ω

8
10,Ω

7
Fr2

, Evaluate at stationary points,
Ω7

kr2
,Ω6

Fkr2
,Ω5

Fl2
,Ω5

kl2
,Ω4

Fl2
, bounds; choose the minimum

Ω4
kl2
,Ω3

Fkr1
,Ω2

Fkr1
,Ω1

Fkl1
and maximum from them.

4.4. Static model of 2-R manipulator

Following the same method as detailed in Section 3.4, the static equilibrium equations for the 2-R manipulator are also obtained
in the form (Gi = Γi), i = 1, 2, where:

G1 = C1r sinα1 + C
′

1r sin(α1/2)− C3r sin(α1 + α2)

G2 = C2r sinα1 + C
′

2r sin(α2/2)− C3r sin(α1 + α2)

Γ1 = Fl1 (r cos(α1/2) + h sin(α1/2))− Fr1 (r cos(α1/2)− h sin(α1/2))

Γ2 = Fl2 (r cos(α2/2) + h sin(α2/2))− Fr2 (r cos(α2/2)− h sin(α2/2))

(33)

with 

C1r = − 1
2ag(4m10 + 2m12 + 4m13 + 2m4 +m5 + 2m7 + 4m8 + 4mk2 + 2mp)

−gh(m1 + 4m10 + 2m12 + 4m13 +m3 + 2m4 +m5 +m7 + 3m8 +mk1 + 3mk2 + 2mp)

+2k1
(
r2 − h2

)
C

′

1r = 2hk1l01
C2r = 2k2

(
r2 − h2

)
C

′

2r = 2hk2l02
C3r = g(a(m13 +mp) + h(m10 +m12 + 2m13 +mk2 +mp))

(34)

The masses (m2,m6,m9,m11,m14) have been replaced by (m1,m4,m8,m10,m13) due to symmetry (see Fig. 10(a) and
Section 4.3) of the manipulator. Similar to the 2-X manipulator, it can be shown that the coefficient of Fli (resp. Fri ) is positive
(resp. negative) in Eq. (33). Thus, the condition of equilibrium (α1, α2) can be satisfied only when Gi ∈

[
Γi,Γi

]
for i = 1, 2.

The stiffness matrix can be computed for the 2-R manipulator similarly as illustrated for the 2-X manipulator in Section 3.4.
Upon eliminating the forces (Fl1 , Fl2) from the equilibrium equations, one obtains the stiffness matrix in terms of the redundant
forces as:

Krr
α =

(
K rr

11 K12

K12 K rr
22

)
with K rr

11 =
K rr′

11

2 (rc1 + hs1)
and K rr

22 =
K rr′

22

2 (rc2 + hs2)
(35)

where 
K rr′

11 = 2C1r
(
c31r − hs31

)
+ C3r{h(c1s12 − 2c12s1) + r(−2c1c12 − s1s12)}+ C

′

1rr − 2hrFr1

K rr′
22 = C3r{h(c2s12 − 2c12s2) + r(−2c12c2 − s12s2)}+ C2r

(
2c32r − 2hs32

)
+ C

′

2rr − 2hrFr2

K12 = −C3rc12

(36)

in which c1 = cos(α1/2), s1 = sin(α1/2), c2 = cos(α2/2), s2 = sin(α2/2), c12 = cos(α1 + α2), s12 = sin(α1 + α2). The
coefficient of Fri in the stiffness matrix is found to be −2hr

2(rci+hsi)
, for i = 1, 2. It can be shown that this coefficient is negative for

all values of (r, h) when αi is within limits due to cable actuation, i.e., ∈
]
−αmax, αmax

[
as defined in Eq. (26). This indicates

that unlike in the 2-X manipulator, the stiffness decreases with the increase in actuation forces for the 2-R manipulator. This
result is consistent with the one obtained for a single R-joint in [18]. In this case, the matrix corresponding to maximum
stiffness must be obtained by setting two actuation forces to their minimum bound of Fmin. For instance, from Eq. (35),(36),
one obtains K

rr
α = Krr

α(Fr1 = Fmin, Fr2 = Fmin). Similarly, the other stiffness matrices
(
K

rl
α,K

lr
α,K

ll
α

)
can also be obtained

by setting the redundant forces to Fmin.

As in the case of the 2-X manipulator, the SWFJ for this manipulator is formed by all (α1, α2) configurations where the
conditions of wrench-feasibility and stability are satisfied. Their mapping onto the task space is conducted using the kinematic
model defined in the next section.

21



4.5. Kinematic model of 2-R manipulator

From Fig. 1(b), the direct kinematics of 2-R manipulator can be expressed as:{
x = −(2h+ a) sin(α1)− (h+ a) sin(α1 + α2)

y = h+ (2h+ a) cos(α1) + (h+ a) cos(α1 + α2)
(37)

Note that the kinematic model is independent of r.

It is well-known that the singularity of the 2-R manipulator occurs when α2 = 0 (fully stretched configuration) and α2 = ±π
(folded back configuration). Recalling the joint limits αi ∈

]
−π

2 ,
π
2

[
, only the condition α2 = 0 is relevant for constructing the

SWFW for this manipulator.

4.6. Stable wrench-feasible workspace of 2-R manipulator with a numerical example

The computation of SWFW for the 2-R manipulator follows the method described in Section 3.6. Notably, the discretization
of α1 and α2 is performed within the joint limits of R-joint derived in Section 4.1.

Table 4: 2-R manipulator: Range of estimated buckling loads and the resulting safe cross-section radii for the bars along with their masses.

Bar index Estimated load [N] Cross-section radius [mm] Mass [kg]
j Computed (r∗bj ) Corrected (rbj ) mj

14 [-30.62, 65.65] 2.37 5.00 0.108113 [-30.62, 65.65] 2.37
12 [-282.37, 23.34] 1.15 5.00 0.0424
11 [-34.67, 445.61] 2.39 5.00 0.042410 [-34.67, 445.61] 2.39
9 [-193.60, 656.81] 2.64 5.00 0.04248 [-193.60, 656.81] 2.64
7 [-346.87, 619.92] 2.60 5.00 0.0424
5 [-2603.15, 2603.15] 6.11 6.11 0.1704
6 [-489.19, 754.51] 4.32 6.07 0.15614 [-2716.72, 2939.62] 6.07
3 [-3065.23, 2826.14] 3.80 5.00 0.0424
2 [-3370.15, 4120.78] 4.17 5.00 0.04241 [-3151.42, 3853.07] 4.11

Total bar mass 1.0805
Mass of springs (2(mk1 +mk2)) 4.4639

Total moving mass of the manipulator 5.5444

As a numerical illustration, the following design is considered: r = 0.1 m, h = 0.1732 m, a = 0.5 m. These parameters
ensure that the height and width for the joints and offsets of the 2-R manipulator are the same as those of the 2-X manipulator
considered in Section 3.7. The other design parameters are assumed to be: σα = (9/10), k1 = 5000 N/m, σk1

= 0.7,
k2 = 2000 N/m, σk2

= 0.5, Fmax = 200 N. The springs chosen are much stiffer than in the case of the 2-X manipulator, as
those springs could not stabilize the 2-R manipulator at (α1, α2) = (0, 0), in the absence of actuation forces. The main steps
involved in computing the SWFJ and SWFW are listed in the following:

• Section 4.2: The computation of feasible design space for the springs of R-joint was performed in the same manner
as illustrated for the X-joint in Section 3.7. The dependent parameters of spring 1 (k1 = 5000 N/m, σk1

= 0.7), are:
d = 5.7 mm, D = 36.2069 mm, Na = 45.3131, l01 = 0.3250 m, lmax1

= 0.3644 m, mk1
= 1.1008 kg. The

dependent parameters of spring 2 (k2 = 3000 N/m, σk2
= 0.5) are: d = 5.3 mm, D = 45.4872 mm, Na = 42.7045,

l02 = 0.3120 m, lmax1
= 0.3728 m, mk2

= 1.1311 kg.

• Section 4.1: While σα = (9/10), αmax = 0.9425 rad. From the free length of the springs, the actual maximum limit of
movement for the two joints are found to be αmax1 = 0.1976 rad, αmax2 = 0.3050 rad, respectively, which shows that
both springs belong to the set χa in the spring design space (i.e., case A in Fig. 4(a)).

• Section 4.3: The bounds estimated for the axial forces in the bars, their cross-section radii, and masses are presented in
Table 4. The total moving mass is computed to be 5.5444 kg, with maximum contribution from the springs.

• Sections 4.4, 4.5, 4.6: Using the static and kinematic models of the manipulator, its SWFJ and SWFW are constructed
as shown in Figs. 13(a) and 13(b), respectively. The opaque and transparent styles for the boundaries have the same
meaning as described for the 2-X manipulator in Section 3.7.
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0.0086 m each)

Figure 13: The stable wrench-feasible joint space (SWFJ) and stable wrench-feasible workspace (SWFW) for the 2-R manipulator with: r = 0.1 m, h =
0.1732 m, a = 0.5 m, σα = (9/10), k1 = 5000 N/m, l01 = 0.3250 m, mk1

= 1.1008 kg, k2 = 2000 N/m, l02 = 0.3120 m, mk2
= 1.1311 kg,

Fmax = 200 N/m. In the joint space (α1, α2), the curves lying in the region (α2 > 0) are shown in opaque style while those in the region (α2 < 0) are
shown in transparent style. The images of these curves in the task space are also shown in the same style for the sake of clarity.

From Fig. 13(a), it is observed that the joint limits are much stronger for the 2-R manipulator when compared to its counterpart
in Fig. 9(a). This is mainly due to the geometry of the R-joint and the actuation scheme with cables, which limit the maximum
amplitude of joint movement to π

2 (see Eq. (26)). Consequently, the 2-R manipulator has a much smaller SWFJ and SWFW
than the 2-X manipulator. Therefore, the two maximally inscribed disks (radius = 0.0086 m) are much smaller than the ones
found for the 2-X manipulator (radius = 0.0736 m) in Fig. 9(b). The maximum vertical reach of the manipulator is nearly
200 times the radius of the maximal inscribed disk. Thus, the design is a very poor one. For this design, it takes about 7 ms
(averaged over 100 runs) to compute the SWFW, which is over five times faster than that of the 2-X manipulator.

From Fig. 13, it is also observed that the stability boundary is very close to the home configuration (α1, α2) = (0, 0), indicating
that it is difficult to stabilize the 2-R manipulator, even with springs of large stiffness, unlike its counterpart.

5. Conclusions

Two planar cable-driven tensegrity-inspired manipulators composed of two anti-parallelogram (X) joints and two revolute (R)
joints, respectively, were studied in this work. These joints are remotely actuated with two cables, each, by motors attached to
the base. The joints also have springs on the two sides to stabilize the manipulator while it carries a payload at the end-effector
in the presence of gravity. Globally, a method to compute the stable wrench-feasible workspace of these manipulators, which
accounts for the mechanical feasibility of its constituent elements, was presented.

A systematic study of the joint limits due to the geometry and cable actuation was presented. The conditions responsible for
the mechanical feasibility of the springs, namely, allowable shear stress, recommended spring index, standard wire diameters,
minimum number of active coils, and safe helix angle, were used to construct the feasible design space for the springs. Two
parameters are needed to access all the springs inside this space. The interdependence of the actual joint limits and the free
length of the springs were explored on a case-by-case basis, covering all the possibilities exhaustively.

A method for finding safe cross-sections of the bars in these manipulators was proposed. Since all the bars in tensegrity-inspired
manipulators are only loaded axially, a geometric approach has been used to compute the axial forces in the bars due to the
payload, cable actuation, and springs. Using the limits on the movement of each joint and the range of forces achievable with
the cables and springs, upper limits for compressive loads in the bars were obtained. These limits were used to determine safe
cross-sections for the bars. Further, it was ensured that the mass symmetry of the manipulators is preserved and the sections are
large enough to avoid fabrication difficulties.

Subsequently, the kinematic and static models of the manipulators were formulated. It was found that the 2-X manipulator
(resp. 2-R manipulator) has a positive (resp. negative) correlation between actuation forces and stiffness. By imposing realistic
bounds on the cable forces, their stable wrench-feasible joint spaces (SWFJ) and stable wrench-feasible workspaces (SWFW)
were computed. In order to quantify the size of SWFW, maximal disk(s) was inscribed inside it, and its radius was evaluated.

Numerical examples of 2-X and 2-R manipulators were presented, such that they have similar bar lengths and cable forces.
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The springs were chosen to ensure stability at the vertically straight configuration for both manipulators in the absence of
actuation forces. While the two manipulators have a comparable moving mass, the size of the SWFW for the 2-X manipulator
is nearly 10 times larger (as evaluated by the radius of the inscribed disk) than that of the 2-R manipulator. However, for both
manipulators, the radius of the inscribed disk in SWFW itself is much smaller (0.005-0.05 times) compared to their maximum
vertical reach. Due to a higher complexity of the model of the 2-X manipulator, the time taken to compute its SWFW with
the inscribed disk (43 ms) is about six times that of the 2-R manipulator (7 ms). Nevertheless, the time taken is of the order
of milliseconds for both manipulators, making the proposed computation scheme suitable for exploring several designs in an
optimization framework.

It is noted that the observations reported on workspace sizing are specific to the examples in this paper and do not extend
to all the designs of these manipulators. A more conclusive study must find good designs for the two tensegrity-inspired
manipulators and study their properties. This problem will be addressed in the future through design optimization of the 2-X
and 2-R manipulators for the same inscribed disk in SWFW.

The overall design process illustrated for the two manipulators is generic and is, in principle, applicable to other architectures
of planar tensegrity-inspired manipulators. It can also be adapted to different actuation schemes of the cables and different
placements of the manipulator (e.g., ceiling-mounted systems like the Delta robot) by appropriately adjusting the direction of
gravity.

Appendix A. Illustrations on the categorization of the force coefficients in the design of bars of 2-X manipulator

This section illustrates the algebraic steps involved in categorizing the force coefficients in Table 1 with one example each. The
coefficients in category I need no processing. Hence, one coefficient from the remaining categories is chosen and studied in the
following:

• Category II: From Eq. (13), Ω10
11 = csc(ψ2 − α2) sin(β2 + α2 − ψ2). Substituting for ψ2 in terms of α2 using the

loop-closure equation (see [31]) and recalling that α2 = 2θ2, the above coefficient can be rewritten solely in terms of θ2
as:

Ω10
11 = − sec θ2 cos(β2 + θ2)

√
λ2 − cos2 θ2 + sin(β2 + θ2)√

λ2 − cos2 θ2 + sin θ2
(A.1)

where λ = (l/b). Differentiation w.r.t. θ2 results in:

dΩ10
11

dθ2
=

λ2 sin(β2) sec
2 θ2√

λ2 − cos2 θ2(
√
λ2 − cos2 θ2 + sin θ2)

(A.2)

Recalling that λ > 1 (see Section 2), it can be shown that the denominator is strictly positive when θ2 ∈
[
−π

2 ,
π
2

]
(see [18]). Additionally, since β2 ∈

[
0, π2

]
(see Fig. 2(a)), it follows that dΩ10

11

dθ2 > 0. Thus, Ω10
11 increases monotonically

with θ2 ∈ [−π
2 ,

π
2 ], or, equivalently with α2 ∈ [−π, π].

• Category III: From Eq. (13), Ω9
Fkl2

= csc(ψ2 − α2) cos(θ2 − ψ2). As in the previous case, the force coefficient and its
first derivative can be written as:

Ω9
Fkl2

=
λ√

λ2 − cos2 θ2 + sin θ2
(A.3)

dΩ9
Fkl2

dθ2
= − λ cos θ2√

λ2 − cos2 θ2(
√
λ2 − cos2 θ2 + sin θ2)

(A.4)

Clearly,
dΩ9

Fkl2

dθ2 < 0 while θ2 ∈ [−π
2 ,

π
2 ], or α2 ∈ [−π, π]. This implies that Ω9

Fkl2
monotonically decreases in the

specified domain.

• Category IV: From Eq. (13), Ω9
11 = csc(ψ2 − α2) sin(β2). It can be rewritten as:

Ω9
11 =

λ sec θ2 sinβ2√
λ2 − cos2 θ2 + sin θ2

(A.5)

Differentiating w.r.t. θ2 yields:

dΩ9
11

dθ2
=
λ sinβ2(

√
λ2 − cos2 θ2 tan θ2 sec θ2 − 1)√

λ2 − cos2 θ2(sin θ2 +
√
λ2 − cos2 θ2)

(A.6)

Unlike in the previous cases, the above expression is not provably positive or negative. Hence, there is a possible extrema
for Ω9

11 within the domain of interest. The associated stationary points can be found from the zeros of the function in
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Eq. (A.6). Since the denominator and the first two factors in the numerator are positive, only the remaining factor must
be considered for finding the zeros. This results in:√

λ2 − cos2 θ2 tan θ2 sec θ2 − 1 = 0 (A.7)

=⇒
√
λ2 − cos2 θ2 =

1

tan θ2 sec θ2
(A.8)

Squaring both sides and incorporating the tangent half-angle substitutions: sin θ2 = 2t2
1+t22

and cos θ2 =
1−t22
1+t22

, with

t2 = tan
(
θ2
2

)
, one obtains: (

1 + t22
)2 (

t42 − 2
(
2λ2 + 1

)
t22 + 1

)
(1 + t22)

2 = 0 (A.9)

Clearing the non-zero factors in the numerator and denominator yields:

t42 − 2
(
2λ2 + 1

)
t22 + 1 = 0 (A.10)

The zeros of this polynomial contain the stationary points (if any) and possibly some spurious solutions to dΩ9
11

dθ2 = 0

(introduced due to squaring of Eq. (A.8)). Note that these roots depend only on the ratio λ = (l/b), and only the real
roots within the bounds of θ2 (equivalent to those of α2) are of interest. The function Ω9

11 can be evaluated at these roots
as well as the bounds of θ2 to form a set. Then, the lower and upper bounds of Ω9

11 can be found as the minimum and
maximum values, respectively, in this set.

Appendix B. Computation of actual compressive loads in the bars and validation of 2-X and 2-R designs

Figure B.14: Computation of the buckling load in the bar j subjected to forces F
′
j and F

′′
j at the two ends.

This section aims to show that the critical values for buckling load assumed in the design process (see Tables 2 and 4) are larger
than the actual loads experienced by the bars in 2-X and 2-R manipulators.

This study is conducted inside the SWFJ at equilibrium configurations for both manipulators. Since four cables redundantly
actuate these manipulators, it is necessary to specify the two redundant forces along with the configuration while defining their
static models. As a first step, the Newton-Euler equations were developed for each of the bars in the two manipulators. The
masses of the bars, as well as the springs (see Sections 3.7 and 4.6), are included in this model to determine the reaction forces
accurately.

Then, the joint space (α1, α2) is discretized into 900 equally spaced grid points within the joint limits. Of these, the points
inside the SWFJ are selected as feasible configurations. At each point, 100 combinations of redundant forces ∈ [Fmin, Fmax]
are considered to cover the actuation force space sufficiently. Finally, the static model is solved at the chosen configuration for
the assumed combination of redundant forces to determine the reaction forces at the ends of the bars.

For a bar j, the forces acting at the two ends are shown in Fig. B.14(left). Note that these forces are not directed along the axis
of the bar as assumed in the design process (see Sections 3.3 and 4.3). This is to balance the forces and moments induced by
the self-weight of the bar, which were neglected during the design process.

Next, the reaction forces at the two ends of the bar are resolved into the axial and transverse directions, as shown in Fig. B.14(center).
Since only the axial component of reactions is responsible for buckling, only F

′

aj
and F

′′

aj
are considered in further compu-

tations. When both these forces point in the same direction, no axial stresses are induced in the bar. When their directions
are opposite but directed away from the center of the bars, then they induce tensile stresses in the bar, which cannot cause
buckling failure. However, when the forces are directed toward the center of the bar, buckling is possible. The difference in the
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magnitude of these forces balances the self-weight component, while min(F
′

aj
, F

′′

aj) induces a buckling load in the bar. Hence,

the numerical value of min
(
F

′

aj
, F

′′

aj

)
is quantified as the actual buckling load faced by this bar (see Fig. B.14(right)).

The above computation is performed for all the bars at each grid point inside the SWFJ and the chosen levels of redundant
forces. The minimum and maximum values of the axial loads for each of the bars are presented along with their assumed values
in Table B.5 (resp. B.6) for the 2-X manipulator (resp. 2-R manipulator).

It is observed that the range of actual load lies within the range of estimated load for the bars in both manipulators. This
validates the manipulator designs as safe and free from buckling failure.

Table B.5: Ranges of the estimated load and the actual load in the bars of the 2-X manipulator. The positive sign indicates compressive loading while the
negative sign indicates tensile loading.

Bar index (j) Estimated load [N] Actual load [N]
12 [-101.92, 101.92] [-53.50, 53.51]
11 [-101.92, 101.92] [-53.50, 53.51]
10 [-461.71, 162.19] [-174.79, -42.30]
9 [-173.81, 772.84] [87.79, 361.38]
8 [-173.81, 772.84] [87.79, 361.38]
7 [-726.05, 807.06] [-57.25, 328.22]
6 [-567.46, 958.53] [-72.66, 283.76]
5 [-4128.03, 4128.03] [-218.52, 218.00]
4 [-4091.47, 4107.72] [-158.60, 377.77]
3 [-8434.49, 8240.10] [-311.62, 278.13]
2 [-9041.49, 10451.80] [384.62, 831.61]
1 [-9694.20, 11896.80] [384.62, 831.61]

Table B.6: Ranges of the estimated load and the actual load in the bars of the 2-R manipulator. The positive sign indicates compressive loading while the
negative sign indicates tensile loading.

Bar index (j) Estimated load [N] Actual load [N]
14 [-30.62, 65.65] [-15.73, 34.10]
13 [-30.62, 65.65] [-15.73, 34.10]
12 [-282.37, 23.34] [-166.97, -38.64]
11 [-34.67, 445.61] [55.05, 369.02]
10 [-34.67, 445.61] [55.05, 369.02]
9 [-193.60, 656.81] [80.42, 361.92]
8 [-193.60, 656.81] [80.42, 361.92]
7 [-346.87, 619.92] [-49.71, 309.58]
6 [-489.19, 754.51] [-15.55, 253.20]
5 [-2603.15, 2603.15] [-51.87, 51.85]
4 [-2716.72, 2939.62] [-43.63, 221.51]
3 [-3065.23, 2826.14] [-195.39, 3.56]
2 [-3370.15, 4120.78] [122.71, 635.37]
1 [-3151.42, 3853.07] [122.71, 635.37]
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