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ABSTRACT
In biological systems, the joints are actuated antagonistically by muscles that can be moved coherently to

achieve the desired displacement and coactivated with appropriate forces to vary joint stiffness. Inspired by this,
there is an interest in developing bio-inspired robots suitable for low- and high-stiffness tasks. Mechanisms actu-
ated by antagonist cables can be a reasonable approximation of biological joints. A study on the anti-parallelogram
mechanism showed that the antagonistic forces (> 0) positively influence its stiffness, similar to the biological joints.
This work investigates more general symmetric four-bar mechanisms with crossed/non-crossed limbs and top and
base bars of unequal lengths for this property. Firstly, the cables are attached between the two unconnected pivot
pairs in the four-bar mechanism, and their limits of movement are presented. Inside these limits, we show that the
cable forces have a positive (resp. negative) influence on the stiffness of the mechanism when its limbs are crossed
(resp. non-crossed). These results are validated experimentally in all cases. Subsequently, we consider alternate
cable attachments for the mechanisms with non-crossed limbs to achieve coactivation. Examples show that coac-
tivation is possible in these mechanisms but comes at the cost of a diminished range of movement. Among all the
four-bar mechanisms considered, the anti-parallelogram mechanism offers the largest orientation range of (−π,π)
for the top bar w.r.t. its base while providing coactivation and is thus the best choice.

Nomenclature
l Length of the two limbs of a symmetric four-bar mechanism
b Length of the top bar/coupler of a four-bar mechanism
b0 x-coordinate of a fixed pivot of a four-bar mechanism
C1,C2 Antagonist cables actuating a four-bar mechanism
l1, l2 Lengths of the antagnonist cables C1,C2, respectively
D1(xd ,yd) Attachment point of the cable C1 on the base
α Orientation of the top bar of the four-bar mechanism w.r.t. its base
φ,ψ Orientation of the two limbs of the four-bar mechanism w.r.t. its base
αmax Upper bound for α due to geometry of the joint and cable actuation
F1,F2 Forces applied by the antagnonist cables C1,C2, respectively
K Stiffness of the four-bar mechanism
γ1,γ2 Coefficients of the actuation forces F1,F2, in the respective expressions of stiffness

1 Introduction
There has always been an interest in developing robotic arms that are fast, accurate, repeatable, and energy-efficient

for industrial applications. But, recently, research on robotic arms with more sophisticated capabilities, such as stiffness
modulation, deployability, and safe interaction with the environment, has been gaining prominence [1], [2]. An important

*This article is an extended version of a paper presented at the 6th International Conference on Cable-Driven Parallel Robots (CableCon 2023) held at
Nantes during 26-28 June 2023.
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source of inspiration for developing such robots stems from the nature/biological systems, e.g., human arm in [3], giraffe’s
neck in [4], bird’s neck in [5], elephant’s trunk in [6].

One of the key differences between conventional robots and biological systems lies in their joints. While most of the
robots are made up of revolute or prismatic joints, the biological systems hardly contain any of them. Instead, their joints
are composed of complex surfaces in contact with one another. Some works have been dedicated exclusively to the study of
kinematics of such joints, e.g., human knee in [7], [8]. The significance of closed kinematic chains in modeling biological
movements is presented in [9]. A review of the animal joints and their approximation with linkage mechanisms can be found
in [10].

Another interesting feature of biological joints is their actuation. Unlike conventional robots with linear or rotary
actuators, they are actuated antagonistically by muscles. Typically, one set of muscle(s) contract while their antagonistic
counterparts relax and vice versa to achieve the desired joint movement. However, under exceptional circumstances, both sets
of muscles contract simultaneously to increase the stiffness of the joint. This phenomenon is referred to as the coactivation
of muscles in biological systems [11]. This natural actuation scheme keeps the energy consumption at a minimum during
regular operations and increases it through coactivation only while performing high-stiffness tasks. Inspired by this efficient
scheme, variable stiffness actuators have been developed in [12], [13], where cables, along with non-linear springs, act as
muscles to antagonistically actuate a pulley joint. The two cables are pulled (resp. released) simultaneously to increase
(resp. decrease) the stiffness of this joint. However, it must be emphasized that this is possible for the pulley joint only in
the presence of non-linear springs [12].

On the other hand, for tensegrity-inspired joints presented in [14], the stiffness modulation can be achieved by simply
varying the cable forces without in-series springs. It was found that with the increase in antagonistic cable forces, the revolute
joint experiences a drop in stiffness, which was a counter-intuitive result [14]. The same behavior was also reported for a
2R joint with offsets that represents one circle pure rolling over another [15]. In contrast, for an anti-parallelogram joint
that is equivalent to one ellipse pure rolling over another, the antagonistic actuation has a positive influence on the joint
stiffness [14], just as in the biological joints. Thus, drawing inspiration from the anti-parallelogram mechanism, this work
aims to find all the four-bar mechanisms with symmetric limbs that exhibit coactivation.

We presented an initial version of this work in [16], showing that the four-bar mechanisms exhibit coactivation when
their limbs are crossed but not otherwise. In this paper, we additionally provide experimental evidence for those results.
Further, we also show that by altering the attachment points of the cables, one can achieve coactivation in the four-bar
mechanisms with non-crossed limbs as well.

The remaining paper is organized as follows: Section 2 presents the mechanism and cable arrangement. Section 3 dis-
cusses the kinematic model of the four-bar mechanism. Section 4 derives the static model of this mechanism. Section 5
considers cables attached between the unconnected pivot pairs in the four-bar mechanisms and presents the effect of antag-
onistic forces on their stiffnesses with supporting experiments. Section 6 considers different cable attachment points for the
mechanisms with non-crossed limbs to obtain coactivation. Finally, Section 7 presents the conclusions of this study.

2 Description of the symmetric four-bar mechanism

(a) b0 < 0 (b) b0 > 0

Fig. 1: Schematic diagram of four-bar mechanisms with symmetric limbs that are crossed when b0 < 0 (left) and non-crossed
when b0 > 0 (right). The two actuating cables are shown in dashed lines.
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The schematics of four-bar mechanisms with symmetric limbs of length l and a top bar of length b are shown in Fig. 1.
The two pivots fixed to the ground are set at locations B1(0,0) and B2(b0,0), where b0 is a parameter that can be varied to
produce different four-bar mechanisms. Notably, b0 < 0 produces mechanisms with crossed limbs, while b0 > 0 produces
mechanisms with non-crossed limbs as illustrated in Figs. 1a and 1b, respectively. The special cases of anti-parallelogram
and parallelogram mechanisms are obtained when b0 =−b and b0 = b, respectively. However, the case b0 = 0 degenerates
the four-bar mechanism to a revolute joint and will not be considered in this work. For all the mechanisms, it is necessary
that the geometric condition

(
l > |b−b0|

2

)
be satisfied for its assembly. Note that in the limiting assembly condition all pivots

of the mechanism align and it has no finite range of movement.
This mechanism is actuated antagonistically with two cables C1 and C2, connected between the pivots (P1,D1) and (P2,D2),

respectively, as indicated by dashed lines in Fig. 1. The position of the cable attachment pivots on the ground are parameter-
ized as D1(xd ,yd) and D2(b0 −xd ,yd) to extend the symmetry in the architecture to its actuation scheme as well. Each cable
is connected to a motor fixed at the base. In this study, the motors are used as a force source only to set the specified tensions
in the cables. The tension set in cable Ci is given by Fi ≥ 0, and its varying length in the mechanism is denoted by li, for
i = 1,2. The cables are assumed to be massless and inelastic (i.e., a pure force transmission element) in this study.

The orientation of the top bar w.r.t. the base is denoted by α, while those of the two limbs w.r.t. the base are given
by φ,ψ, respectively (see Fig. 1). The coordinate α is used to measure the range of movement of the mechanism. The upper
bound for α, denoted by αmax, can be found by rotating the top bar from α = 0 in the counterclockwise direction until the
instantaneous center of rotation (i.e., the virtual intersection point of the limbs) meets with the line of an actuating cable
(i.e., P1D1 or P2D2). Physically, in this configuration, the wrench imposed by one of the cables vanishes, and the static
balance of the mechanism cannot be maintained. Thus, the wrench-feasible range of movement for this mechanism is given
by α ∈ (−αmax,αmax), owing to the symmetry in architecture and actuation scheme about α = 0.

However, the angle α is not a valid representation of a configuration of the parallelogram mechanism (b0 = b) since it
always remains zero. This mechanism will be treated separately in Section 5.1. But, for all other mechanisms, further study
will be conducted inside α ∈ (−αmax,αmax).

3 Kinematic model of the mechanism
The loop-closure equation for the four-bar mechanism can be written as follows (see Fig. 1):

−−→
B1P1 +

−−→
P1P2 −

−−→
B2P2 −

−−→
B1B2 =

−→
0 (1)

This can be expanded into:

l
(

cosψ

sinψ

)
+b

(
cosα

sinα

)
− l

(
cosφ

sinφ

)
−
(

b0
0

)
=

(
0
0

)
(2)

Since the above equations are homogeneous in terms of the length parameter, they can be normalized by setting b = 1,
without any loss of generality. Considering α as the known input, it is possible to find the trigonometric ratios of the
remaining angles (φ,ψ) as a function of α using the above equations (see, e.g., [17], pp. 411-412). There are two possible
solutions (φ,ψ)1 and (φ,ψ)2, as presented below:

(φ,ψ)1 :=


cosφ = µsinα+cosα−b0

2l

sinφ = sinα+µ(b0−cosα)
2l

cosψ = µsinα−cosα+b0
2l

sinψ = µ(b0−cosα)−sinα

2l

(φ,ψ)2 :=


cosφ =− µsinα−cosα+b0

2l

sinφ =− µ(b0−cosα)−sinα

2l
cosψ =− µsinα+cosα−b0

2l

sinψ =− sinα+µ(b0−cosα)
2l

(3)

where µ =

√
4l2−b2

0−1+2b0 cosα

b2
0+1−2b0 cosα

. For a given α ∈ (−αmax,αmax), only the configuration respecting the following two condi-

tions must be considered. Firstly, the cables remain on the two sides of the instantaneous center of rotation. Secondly, there
should be connectivity with the reference configuration α = 0 (i.e., when P1P2 is parallel to B1B2 and remains above it).

From Fig. 1, the cable lengths (in all cases) can be written as follows:Length of cable C1 =⇒ l1 := ∥P1D1∥=
√

l2 −2lxd cosψ−2lyd sinψ+ x2
d + y2

d

Length of cable C2 =⇒ l2 := ∥P2D2∥=
√

l2 +2lxd cosφ−2lyd sinφ+ x2
d + y2

d

(4)
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The lengths l1, l2 can be obtained as functions of α by substituting for the trigonometric ratios of ψ and φ from Eq. (3),
appropriately.

4 Static model of the mechanism
The static model of the mechanism is formulated in Section 4.1 and its physical interpretation is provided in Section 4.2.

4.1 Formulation
The static model of the four-bar mechanism in Fig. 1 can be developed starting from its potential energy:

U =Ug +F1l1 +F2l2 (5)

where Ug represents the contribution of gravity and springs (if any), Fili with i = 1,2, represents the work done by the
actuating cables. Treating α as the generalized coordinate in this study, differentiating U w.r.t. α and setting it to zero, yields
the static equilibrium equation:

dUg

dα
+F1

dl1
dα

+F2
dl2
dα

= 0 (6)

Further differentiation w.r.t. α yields the stiffness (K) of the mechanism:

K :=
d2Ug

dα2 +F1
d2l1
dα2 +F2

d2l2
dα2 (7)

Since there are two actuation forces in a single-degree-of-freedom mechanism, there is an actuation redundancy of order 1.
This redundancy allows an ∞1 combinations of equilibrating forces (F1,F2) to maintain equilibrium at a given configura-
tion α. While the mechanism moves within its limits α ∈ (−αmax,αmax), it is apparent that one of the cables increases in
length while the other decreases. Thus, their first-order derivatives w.r.t. α, namely dl1

dα
and dl2

dα
have opposite signs inside

these limits. Since these derivatives form the coefficients of the two actuation forces in the equilibrium equation, it is ap-
parent that the two forces are antagonistic to one another. Hence, both forces can be increased or decreased simultaneously
while the mechanism is at a given α. While this change in forces preserves the configuration of the mechanism, it modifies
the mechanism stiffness (K) at that configuration.

In order to understand the evolution of stiffness with the change in actuation forces at a given configuration, one can
solve for F2 from Eq. (6) and substitute into Eq. (7) to obtain:

K = γ1F1 +Kg (8)

where γ1F1 represents the contribution by actuation forces and Kg (devoid of actuation forces) denotes the contribution by
gravity and springs (if any). The expression of γ1 is given by:

γ1 =

(
d2l1
dα2 +

(
−dl1/dα

dl2/dα

)
d2l2
dα2

)
(9)

Similarly, it is also possible to solve for F1 from Eq. (6) and substitute in Eq. (7) to obtain the coefficient of F2 in K as:

γ2 =

(
d2l2
dα2 +

(
−dl2/dα

dl1/dα

)
d2l1
dα2

)
(10)

Due to symmetry in the mechanism architecture and cable connections, γ1 and γ2 are mutually symmetric about α = 0, i.e.,
γ2 = γ1(−α).

The effect of actuation forces on stiffness can be studied based on the force coefficients γ1 and γ2. If γ1 > 0 (resp. γ2 > 0),
it implies that F1 (resp. F2) has a positive influence on the stiffness, and the antagonistic forces exhibit coactivation in
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the mechanism. Similarly, if they are negative, then the forces have a negative influence on the stiffness, and there is no
coactivation.

Mechanisms with positive γ1,γ2, are quite interesting because even when they become unstable due to external factors
such as an addition of payload while the mechanism is placed vertically upward against gravity, they can be stabilized
by simply increasing the actuation forces. This key property makes them ideal candidates for mimicking muscle-actuated
joints in biological systems, e.g., the elbow joint of a human arm, where its increased stability can be felt by simultaneous
contraction of the associated muscles.

Interestingly, the force coefficients (γ1,γ2) depend only on the first- and second-order derivatives of the cable lengths
w.r.t. a generalized coordinate. This property shows that the coactivation ability of the mechanism is independent of other
factors, such as gravity, springs, etc., although they influence the equilibrium configuration and the value of stiffness.

4.2 Physical interpretation
This sections presents more details on the static model and stiffness modulation of the mechanism by resorting to vectors

and matrices. The equilibrium equation in Eq. (6) can be rewritten as follows:

dUg

dα︸︷︷︸
G(α)

=
[
− dl1

dα
− dl2

dα

]︸ ︷︷ ︸
Γ(α)

[
F1
F2

]
(11)

From the above equation:

- Direct static problem: For a given set of actuation forces, Eq. (11) is a non-linear equation in α, which can admit a
finite number of solutions. However, only the solution(s) that respect the limits of movement α ∈ (−αmax,αmax) must
be considered to ensure that the actuating cables remain on the two sides of the instantaneous center of rotation, and
provide connectivity to the reference configuration α = 0.

- Inverse static problem: For a given feasible configuration α ∈ (−αmax,αmax), Eq. (11) becomes a linear underdeter-
mined equation with two variables F1,F2. Hence, there is an ∞1 possible combination of actuation forces that maintain
the equilibrium of the mechanism.

In this study, we are only concerned with the inverse static problem.
Consider the mechanism at an equilibrium configuration α = αE under a given set of actuation forces (F1E ,F2E). Sup-

pose an external disturbance [∆Fx,∆Fy]
⊤ is imposed at an arbitrary point P(x,y) attached to the top bar, the response of the

system can be characterized by linearizing the equilibrium equation around the configuration α = αE as follows:

(
dG
dα

− dΓ

dα

[
F1
F2

])
E︸ ︷︷ ︸

K(αE ,F1E ,F2E )

∆α =
[

dx
dα

dy
dα

][∆Fx
∆Fy

]
(12)

The coefficient of ∆α is same as the expression of stiffness derived in Eq. (7). The response of the system, i.e. ∆α, depends on
this stiffness (K). Since an ∞1 combinations of actuation forces [F1,F2]

⊤ can be applied at a given αE , the stiffness of the sys-
tem can be modulated by varying these forces. The nature of this modulation is characterized by the force coefficients γ1,γ2
derived in Eq. (8) in the previous section.

In the subsequent sections, the force coefficients γ1,γ2 are studied for various four-bar mechanisms.

5 Cable attachments at the pivots of the mechanism
As a first choice, the cable attachment pivots at the base are fixed at B2 and B1 for the cables C1 and C2, respectively.

This choice is motivated by simplicity and compactness of the mechanism. Mathematically, it corresponds to setting xd = b0
and yd = 0, which simplifies the cable lengths in Eq. (4) to:

l1 := ∥P1B2∥=
√

l2 +b2
0 −2lb0 cosψ

l2 := ∥P2B1∥=
√

l2 +b2
0 +2lb0 cosφ

(13)

The force coefficients associated with the proposed cable arrangement is studied for the parallelogram and anti-parallelogram
mechanisms in Section 5.1, and the general symmetric four-bar mechanisms in Section 5.2.
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5.1 Parallelogram and anti-parallelogram mechanisms

Fig. 2: Schematic of the parallelogram mechanism (b0 = b).

The parallelogram mechanism, shown in Fig. 2, is obtained by setting b0 = b. Unlike other four-bar mechanisms, α

remains zero at all configurations for this mechanism. Hence, the orientation (θ) of the line joining mid-points of the top
and base bars w.r.t. the vertical is used as the independent coordinate. The range of movement for this mechanism is limited
by θ ∈

(
−π

2 ,
π

2

)
, due to the flat-singularities.

From Fig. 2, it is apparent that φ = ψ = π

2 +θ. Thus, from Eq. (13), the cable lengths are given by:

{
l1 =

√
l2 +b2 +2lbsinθ

l2 =
√

l2 +b2 −2lbsinθ
(14)

Following the procedure in Section 4, with θ in place of α, one obtains γ1,γ2 as:


γ1 =− 2bλ2(λ2+1)cos2(θ)

(λ2+1−2λsinθ)(λ2+1+2λsinθ)
3/2

γ2 =− 2bλ2(λ2+1)cos2(θ)

(λ2+1−2λsinθ)
3/2
(λ2+1+2λsinθ)

(15)

where λ = (l/b). Except for the leading negative signs, all the factors in the numerators of γ1 and γ2 are positive. The two
factors in the respective denominators are also positive since they are bounded inside [(λ−1)2,(λ+1)2] for all real θ. Thus,
it is clear that γ1,γ2 < 0, which shows that antagonistic forces have a negative impact on the stiffness of the parallelogram
mechanism. This result is also consistent with the experimental data presented in [18], where the cable tensions were reduced
to increase the stiffness of this mechanism.

Contrary to the parallelogram mechanism, it has been proven analytically in [14] that the antagonistic forces have a
positive impact on the stiffness of the anti-parallelogram mechanism.

As a numerical illustration consider parallelogram (b0 = b) and anti-parallelogram (b0 =−b) mechanisms with b = 1 m
and l = 2 m each. For the sake of simplicity, the bar masses are neglected, and no springs are added to these mechanisms. In
order to perform a fair comparison, the anti-parallelogram mechanism will also be described by the coordinate θ, as defined
above for the parallelogram mechanism. The associated expressions for cable lengths and mechanism stiffness can be found
in [14].

One of the ways to study the change in stiffness with increasing antagonistic forces is to specify a minimum value for the
actuation forces, say Fmin. At a given configuration θ, one could compute the balancing forces (F1,F2) from Eq. (6) (neglect-
ing Ug) such that one of them is equal to Fmin while the other is greater than or equal to Fmin. These forces can be substituted
in Eq. (7) to find the respective value of stiffness. This process has been carried out for different values of Fmin: 0 N, 75 N,
and 150 N. The corresponding values of stiffness are plotted for the parallelogram and anti-parallelogram mechanisms in
Figs. 3a and 3b, respectively. The equilibrium forces are also represented in certain configurations. It is apparent that an
increase in Fmin causes a decrease (resp. increase) in stiffness for the parallelogram (resp. anti-parallelogram) mechanism
for all values of θ. This is a consequence of the negative (resp. positive) force coefficients γ1,γ2 for the parallelogram (resp.
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Fig. 3: Stiffness of the mechanisms when θ ∈
(
−π

2 ,
π

2

)
for different actuation forces.

anti-parallelogram) mechanism. This shows that the anti-parallelogram mechanism can serve as a bio-inspired joint while
the parallelogram mechanism cannot.

The coactivation properties of more general symmetric four-bar mechanisms are studied in the following section.

5.2 General symmetric four-bar mechanisms
Unlike the parallelogram and anti-parallelogram mechanisms, it is very difficult to conduct analytical studies on γ1,γ2

for the general mechanisms (b0 ̸=±b) due to the emergence of nested square roots in expressions of l1, l2 (see Eqs. (3),(13)).
Hence, the nature of γ1,γ2 will be studied through numerical examples for these mechanisms.

Table 1: Effect of antagonistic forces on the stiffness of general symmetric four-bar mechanisms.

Condition/ Schematic Bounds on
α ∈ (−αmax,αmax)

Plot of γ1 (−), γ2 (−) for
one design

with b = 1 m, l = 2 m

(γmin/b) or (γmax/b) in
design space

2l > (b−b0) & l ∈
[0,20b] & b0 ∈ [0,b]

3 2 1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

3 2 1 0 1 2 3

- 2.0

- 1.5

- 1.0

- 0.5

0.0

In the first version of this work [16], we considered four distinct categories of four-bar mechanisms apart from the
parallelogram and anti-parallelogram architectures, depending on whether the base bar is longer/shorter than the top bar and
the two limbs are crossed/non-crossed. However, the distinction based on the relative length of the base bar to the top bar is
not necessary for the chosen cable attachments, as the relative kinematics and coactivation properties of a closed chain (i.e.,
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the evolution of α and the cable lengths) remain invariant to the fixing of the longer or shorter bar. Indeed, this is because one
mechanism is a kinematic inversion of the other (see, e.g., [19], pp. 12-14). Hence, further study in this section is conducted
by setting the base bar to be smaller than the top bar, i.e., b0 ∈ [−b,b], with b > 0. The two variants of general four-bar
mechanisms that emerge depending on b0 < 0 and b0 > 0 are considered in the following. The coactivation properties are
studied numerically in these cases, and experimental validations are provided for the same in the next section.

Table 1 presents the two variants of general four-bar mechanisms. In each case, the limiting configurations at (±αmax),
plot of γ1,γ2 inside α ∈ (−αmax,αmax) for one candidate design, and the limiting value of γ1,γ2 inside the feasible design
space, are presented in the successive columns of these tables. The following observations are made from them:

- The maximum orientation (αmax) of the top bar varies in (0,π) when b0 < 0, while it is limited to (0, π

2 ) when b0 > 0.
Thus, mechanisms with crossed limbs must be preferred for applications requiring large α.

- From the plots of γ1,γ2 for one candidate design, it is observed that they remain positive (resp. negative) when b0 < 0
(resp. b0 > 0). The values of γ1,γ2 tend to ±∞ near the limits due to the vanishing of dl1

dα
or dl2

dα
, present in the denominator

of the respective expressions (see Eqs. (9),(10)). However, this does not imply that the mechanism allows for infinite
tuning of stiffness for a finite variation of actuation forces at the joint limits. It is rather indicative of the degeneracy
of the wrench applied by one of the cables in that configuration. In the equilibrium equation (Eq. 6) the corresponding
actuation force is no longer present due to the vanishing of its coefficient. Physically, the mechanism is not redundantly
actuated at that configuration and will readily collapse when subjected to a disturbance that the remaining cable cannot
balance.

- In order to verify if γ1,γ2 remain positive (resp. negative) for other designs when b0 < 0 (resp. b0 > 0), their mini-
mum γmin (resp. maximum γmax) inside the range of movement is tested. Since the expressions of γ1,γ2 are homogeneous
w.r.t. the derivatives of cable lengths, one of the length variables (b ̸= 0) can be factored out as in Eq. (15). This reduces
the design space to just two variables ( l

b ,
b0
b ). Firstly, a feasible design space satisfying the assembly condition l > b−b0

2

and bounded by 0 < |b0|
b < 1 and 0 < l

b ≤ 20 is constructed. The values of γmin
b and γmax

b are computed for several feasible
designs numerically to obtain the plots in the last column of the table. From these, it is clear that γmin > 0 when b0 < 0
and γmax < 0 when b0 > 0. This result illustrates that the antagonistic forces have a positive (resp. negative) influence
on the stiffness of four-bar mechanisms with crossed (resp. non-crossed) limbs, while the cables are attached between
the unconnected pivot pairs.

- For mechanisms with b0 < 0, the value of γmin is large for designs close to the limiting assembly condition 2l = (b−b0)
(highlighted by gray plane in the last column of the Table 1). Recalling that the mechanism has no finite range of
movement (i.e., αmax = 0 rad) at the limiting assembly condition, we observe that there is a compromise between the
range of movement and the minimum value of force coefficient (γmin) for designs in the category b0 < 0.

Among the four-bar mechanisms that offer coactivation (i.e., b0 < 0), the anti-parallelogram mechanism (b0 = −b) has the
largest range of movement α ∈ (−π,π) and is to be preferred in general. However, the other mechanisms with crossed
bars might also be interesting for applications where a large orientation range may not be essential, e.g., joints in the hyper
redundant robots inspired by the elephant’s trunk [6].

5.3 Experimental validation
This section presents experiments on various four-bar mechanisms to confirm their ability/inability to produce coactiva-

tion. In this regard, four different mechanisms (anti-parallelogram, parallelogram, general crossed limbs, general non-crossed
limbs) are considered as shown in Fig. 4. All the mechanisms have the same lengths for their base bars |b0| = 0.05 m and
limbs l = 0.1 m, while the top bar lengths are fixed at b = 0.05 m for the mechanisms in Figs. 4a, 4b, and at b = 0.1 m
for the mechanisms in Figs. 4c, 4d. Two actuating cables are attached between the unconnected pairs of pivots in all the
mechanisms, as highlighted by the dashed lines. They are equipped with springs on the two sides to ensure stability in the
absence of actuation forces. For the mechanisms with crossed limbs shown in Figs. 4a and 4c, a pair of identical springs with
stiffness 100 N/m is attached on each side parallel to the actuating cables, thereby resulting in a total stiffness of 200 N/m
on either side. On the other hand, for the mechanisms presented in Figs. 4b and 4d, just one spring of stiffness 100 N/m is
attached on each side with external supports. The springs are not attached parallel to the cables like in the other mechanisms
due to constraints on their maximum elongation lengths.

The variation of stiffness due to actuation forces is studied at the zero orientation shown in Fig. 4, by applying equal
forces on the two cables F1 = F2 = Fant. Three experiments are conducted on each mechanism by setting different values of
Fant = 10,20,30 N. In each case, the stiffness of the mechanism is studied by applying an external force with a dynamo-meter
and measuring the corresponding angular displacement with an encoder mounted on one of the moving pivots, as shown in
Fig. 5. In order to enable a comparison between the results of the three experiments, the external force is regulated manually
to produce the same displacement in a mechanism as observed in Fig. 5. This regulation is performed by monitoring the
encoder reading in real time while applying the force. However, the value of this displacement is chosen arbitrarily in
each mechanism (∆α ≈ 25◦ for anti-parallelogram, ∆θ ≈ 20◦ for parallelgoram, ∆α ≈ 30◦ for general mechanism with
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(a) Anti-parallelogram mechanism (b) Parallelogram mechanism

(c) Mechanism with crossed limbs (d) Mechanism with non-crossed limbs

Fig. 4: Experimental setup of different symmetric four-bar mechanisms.

crossed limbs, ∆α ≈ 15◦ for general mechanism with non-crossed limbs). Large values of displacements have been chosen
to overcome the frictional effects and clearly illustrate the difference in the external forces. Though such displacements
cannot allow us to measure the value of stiffness exhibited by the mechanism, it can qualitatively indicate the nature of
stiffness modulation by actuation forces, i.e., whether the mechanism exhibits coactivation or not. From the readings of the
dynamo-meter on the left part of the figures, it is apparent that the external force required increases (resp. decreases) with the
actuation force Fant for mechanisms with crossed bars (resp. non-crossed bars). These results confirm that the antagonistic
forces increase the stiffness of four-bar mechanisms when their limbs are crossed, while they decrease the stiffness when the
limbs are non-crossed.

To further illustrate the loss of stiffness in the mechanisms with non-crossed limbs, another experiment is conducted
by increasing the actuation forces F1 = F2 = Fant linearly with time. In this case, no external forces are imposed, but the
mechanisms lose their stability and collapse once the force Fant reaches a critical value (28.5 N for parallelogram and 55.5 N
for general mechanism). The associated videos can be found in the following links for the parallelogram mechanism1 and
the general mechanism2 with non-crossed limbs.

The next section investigates the possibility of coactivation in four-bar mechanisms with non-crossed limbs by changing
their cable attachments.

6 Cable attachments to achieve coactivation in four-bar mechanisms with non-crossed limbs
Since it has been shown that the coactivation property depends only on the first- and second-order derivatives of the

cable lengths, this section studies the possible cable attachments for a parallelogram mechanism and a general non-crossed
limb mechanism to enable coactivation in them.

6.1 Coactivation in a parallelogram mechanism
The schematic of a parallelogram mechanism with general cable attachment points (xd ,yd) at the base is shown in Fig. 6.

In this study, we treat the coordinates (xd ,yd) as design parameters that can be altered to obtain the desired coactivation
behavior. Note that it is also possible to alter the cable attachment on the top bar from P1 and P2 to other points while
preserving the symmetry of the mechanism. But, we do not consider this change in this study for the sake of simplicity.

The collinearity of the points points (Di,Bi,Pi), for i = 1,2, form the limits of movement of the mechanism. Clearly,
the parallelogram mechanism cannot achieve its maximum orientation range of θ ∈

(
−π

2 ,
π

2

)
unless yd = 0 and xd ̸= 0. In all

other cases, the feasible range of movement will be less than π.

1https://youtu.be/iddUEDVTqJo
2https://youtu.be/Dx1eA_1-kSw 9

https://youtu.be/iddUEDVTqJo
https://youtu.be/Dx1eA_1-kSw


(a) Anti-parallelogram mechanism (b) Parallelogram mechanism

(c) Mechanism with crossed limbs (d) Mechanism with non-crossed limbs

Fig. 5: External force required to produce the same displacement in a mechanism for different antagonistic actuation forces
F1 = F2 = Fant.

The cable lengths can be obtained by setting φ = ψ = π

2 +θ in Eq. (4), as follows:

l1 =
√

l2 +2lxd sinθ−2lyd cosθ+ x2
d + y2

d

l2 =
√

l2 −2lxd sinθ−2lyd cosθ+ x2
d + y2

d

(16)
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Fig. 6: Parallelogram mechanism with cables attached at points D1 and D2 in the base.

Note that the lengths of the cables are independent of b, indicating that the wrenches imposed by the cables, as well as the
nature of coactivation, are independent of the width of the parallelogram. The force coefficients γ1,γ2 can be obtained from
the formulae presented in Eqs. (9),(10). The expressions are not presented here due to their large sizes. But, they satisfy
the symmetry condition due to configuration: γ1(xd ,yd ,−θ) = γ2(xd ,yd ,θ). Additionally, due to the specific geometry of
the parallelogram mechanism, they also satisfy: γ1(−xd ,yd ,θ) = γ2(xd ,yd ,θ), which indicates that switching the attachment
points of the cables from (D1,D2) to different points

(
D

′
1,D

′
2

)
that are mirror images about the vertical lines placed at B1,B2,

respectively, preserves the force coefficients in the stiffness. In addition, it can also be shown that the limits of movement
remain the same while the cables are attached at (D1,D2) or

(
D

′
1,D

′
2

)
. The only difference is that the direction of the

moment imposed by the respective cable changes between the two scenarios.
In order to achieve coactivation with the parallelogram mechanism, the force coefficients γ1,γ2 must be positive. How-

ever, since their expressions are difficult to analyze analytically, we consider γ1 for one configuration (θ = 0) of the mecha-
nism as follows:

γ1(θ = 0) =
2l(yd − l)

(
yd(yd − l)+ x2

d

)(
(l − yd)2 + x2

d

)3/2 (17)

It is apparent that the denominator is always positive. Hence, the condition to achieve coactivation at θ= 0, i.e. γ1(θ= 0)> 0,
can be written as:

γ1(θ = 0)> 0 =⇒

{
Always, when (yd > l)
(x2

d +(yd − (l/2))2 − (l/2)2)< 0, when (yd < l)
(18)

Thus, the limiting boundaries of attachment point D1(xd ,yd) are formed by a circle and a straight line to achieve coactivation
in a parallelogram mechanism. As an illustration, the feasible region for the attachment point D1 is shown along with the
mechanism for the parameters l = 1,b = 2, in Fig. 7. Note that the scale of the mechanism has been normalized w.r.t. l
without any loss of generality. As explained above, for every attachment point D1 that is chosen on the left half of the
feasible space, there is a point D

′
1 that offers the same joint limits and force coefficients for the resulting mechanism (see

Fig. 7). The choice between them can be made based on secondary factors such as compactness or ease of motor placement.
For further study, we choose two points D1a = (−1,2) and D1b = (−2/5,2/5) inside the feasible region as shown in

Fig. 7. The schematic of the resulting mechanisms with cable attachment points and the plots of γ1,γ2 inside their respective
joint limits are presented for D1a in Fig. 8 and for D1b in Fig. 9. In both cases, we observe that the force coefficients remain
positive inside their joint limits, indicating that both attachment points offer coactivation at all feasible configurations of
the parallelogram mechanism, similar to mechanisms with crossed limbs. Since the attachment point D1b is closer to the
limiting boundary than D1a (see Fig. 7), the associated values of force coefficients are smaller near θ = 0 (see Figs. 8b
and 9b). However, as a compromise, the attachment at D1b offers a larger range of movement for the mechanism than
its counterpart. Hence, the designer must choose the attachment points appropriately depending on which feature is more
significant for the task.
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Fig. 7: Feasible region for the cable attachment point D1 to achieve coactivation at the configuration θ = 0 rad in the
parallelogram mechanism with l = 1,b = 2.

(a) Mechanism with cable attachment points

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0
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20

(b) Variation of force coefficients inside the joint limits

Fig. 8: Parallelogram mechanism with l = 1,b = 2 and its force coefficients when the left (resp. right) cable is attached
to D1a = (−1,2) (resp. D2a = (3,2)) at the base. The limits of movement are found to be ±θmax = ±0.46 rad. The force
coefficient γ1 (resp. γ2) tends to infinity asymptotically as θ approaches the limit −θmax (resp. θmax).

6.2 Coactivation in a general four-bar mechanism with non-crossed limbs
This section considers a four-bar mechanism with non-crossed limbs with geometry l = 1,b = 1,b0 = 1/2. As in

the previous section, the cable attachment points at the base are parameterized by (xd ,yd) coordinates while retaining the
attachment points at P1 and P2 in the top bar. From Eq. (4), the lengths of the cables are recalled below:

l1 =
√

l2 −2lxd cosψ−2lyd sinψ+ x2
d + y2

d

l2 =
√

l2 +2lxd cosφ−2lyd sinφ+ x2
d + y2

d

(19)

Unlike in the parallelogram mechanism, the presence of intermediate angles (ψ,φ) (see Fig. 1) ensures that all the bar lengths
are involved in the expressions of cable lengths. Further, the force coefficients γ1,γ2 are computed using the formulae in
Eqs. (9),(10). The symmetry due to configuration α, i.e., γ1(xd ,yd ,α) = γ2(xd ,yd ,−α) is respected, but there is no symmetry
w.r.t. the sign of coordinate xd as observed in the previous section.

For this mechanism, the condition for coactivation (i.e., positivity of force coefficients) at one configuration α = 0 is
12



(a) Mechanism with cable attachment points

1.5 1.0 0.5 0.0 0.5 1.0 1.5
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7

(b) Variation of force coefficients inside the joint limits

Fig. 9: Parallelogram mechanism with l = 1,b = 2 and its force coefficients when the left (resp. right) cable is attached to
D1b = (−2/5,2/5) (resp. D2b = (12/5,2/5)) at the base. The limits of movement are found to be ±θmax =±0.79 rad. The
force coefficient γ1 (resp. γ2) tends to infinity asymptotically as θ approaches the limit −θmax (resp. θmax).

3 2 1 0 1 2 3

0

1

2

3

4

Fig. 10: Feasible region for the cable attachment point D1 to achieve coactivation at the configuration α = 0 rad in a four-bar
mechanism with non-crossed limbs of geometry l = 1,b = 1,b0 = 1/2.

itself quite large to be analyzed symbolically. Hence, its geometry parameters l = 1,b = 1,b0 = 1/2 are substituted to derive
a simplified condition in terms of xd and yd as follows:

−
√

15x3
d + x2

d

(
31yd −8

√
15
)
− xd

(√
15y2

d −8yd +
√

15
)
+ yd

(
31(y2

d +1)−16
√

15yd

)
> 0 (20)

The above expression does not factor into simpler terms like the previous case. Hence, the region satisfying the above
condition (i.e., the feasible region for attachment point D1) has been plotted as is, along with the mechanism in Fig. 10.

One feasible candidate D∗
1 = (1,3) has been chosen for this mechanism. As explained in the previous section, there exist

limits of movement due to the collinearity of the points (Di,Bi,Pi). These limits are found to be α ∈ (−αmax,αmax) with
αmax = 0.31 rad. The schematic of the mechanism with the chosen attachment points for the cables is shown in Fig. 11a, and
the respective plot of the force coefficients within the joint limits is presented in Fig. 11b. It is observed that γ1,γ2 are both
positive, indicating that the mechanism exhibits coactivation throughout the entire range of movement.

The above results show that it is possible to achieve coactivation in the parallelogram mechanism and general four-bar
13



(a) Mechanism with cable attachment points
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(b) Variation of force coefficients inside the joint limits

Fig. 11: Four-bar mechanism with l = 1,b = 1,b0 = 1/2 and its force coefficients when the left (resp. right) cable is attached
to D∗

1 = (1,3) (resp. D∗
2 = (−1/2,3)) at the base. The limits of movement are found to be ±αmax = ±0.31 rad. The force

coefficient γ1 (resp. γ2) tends to infinity asymptotically as α approaches the limit αmax (resp. −αmax).

mechanisms with non-crossed limbs by selecting appropriate cable attachment points. However, there is a compromise on
the range of movement permissible for the mechanism.

7 Conclusion
A class of four-bar mechanisms with symmetric limbs, actuated antagonistically with two symmetrically attached cables

imposing forces F1,F2 > 0, was considered in this work. The effect of an actuation force F1 (resp. F2) on the stiffness of a
mechanism was studied through its coefficient γ1 (resp. γ2) in the expression of stiffness after eliminating the other force F2
(resp. F1) using the equilibrium equation. The expressions of force coefficients showed that they depend only on the varying
cable lengths and its first- and second-order derivatives w.r.t. a generalized coordinate. Also, due to the symmetry in
architecture and arrangement of cables, the force coefficients are mutually symmetric about the configuration where the top
and base bars are parallel. When γ1,γ2 are positive, the stiffness increases with the increase in cable forces, similar to the
muscle actuation of a biological joint, and the mechanism is said to exhibit coactivation.

As a first arrangement, the cables were attached between the two unconnected pairs of pivots in the four-bar mechanism.
It was found through numerical simulations that γ1,γ2 > 0 occurs only when the two limbs are crossed, and not otherwise.
Among such mechanisms, the anti-parallelogram mechanism offers the largest orientation range of (−π,π) for the top bar
w.r.t. its base, and is thus best suited for building bio-inspired robot manipulators. The other mechanisms with crossed
limbs might also be of interest for applications where a large range of movement is not a necessity, as in redundant and
hyper-redundant systems. These results were validated by experiments.

Further investigations were conducted on the possibility of coactivation in four-bar mechanisms with non-crossed limbs
by changing the attachment points of the cables. Numerical examples of a parallelogram mechanism and a general mecha-
nism with non-crossed limbs showed that there exist suitable attachment points to produce coactivation in these mechanisms,
but it comes at the cost of a reduced range of movement.

In the future, this study will be extended to multiple degree-of-freedom mechanisms suitable for mimicking biological
joints, such as an elbow in the human arm or intervertebral contact in a bird’s neck.
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