
HAL Id: hal-04507684
https://hal.science/hal-04507684

Submitted on 30 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of methods computing the distance between
two ellipsoids

Ivan Girault, Mohamed-Amine Chadil, Stéphane Vincent

To cite this version:
Ivan Girault, Mohamed-Amine Chadil, Stéphane Vincent. Comparison of methods computing
the distance between two ellipsoids. Journal of Computational Physics, 2022, 458, pp.111100.
�10.1016/j.jcp.2022.111100�. �hal-04507684�

https://hal.science/hal-04507684
https://hal.archives-ouvertes.fr


Comparison of methods computing the distance between two ellipsoids

Ivan Giraulta,1, Mohamed-Amine Chadila,∗, Stéphane Vincenta

aLaboratoire MSME, CNRS UMR 8208, Université Gustave Eiffel, 5 Boulevard Descartes Marne-la-Vallée, 77454, France

Abstract

A review of the existing methods to compute the minimal distance between two ellipsoids has been conducted
in order to retain the most adequate one within the context of Particle-Resolved Direct Numerical Simulations
for particle-laden flows. First, all methods have been implemented and the corresponding algorithms are
reported. Furthermore, a procedure has been systematically suggested to control the error associated with
each method, when such control was not explicitly available. In a second phase, a two-ellipsoid configuration
where an analytical solution is known has been used to perform an error study. This allows to assess the
accuracy and consistency of each method, regarding required criteria defined in this paper. The methods
that do not verify these criteria have been ruled out. Finally, the remaining methods have been studied on a
benchmark of randomly-generated arrays of mono-dispersed spheroids, with aspect ratios ranging from 1/6
to 6 and volume fraction ranging from 0.05 to 0.25. For each method, the spheroidal packings have been
sized to measure a statistically significant computing time. Such procedure enabled to study with generality
the computing-time dependency of one method on the aspect ratio, the volume fraction, and the desired
accuracy. The most efficient method for a given value of these parameters has then been identified.

Keywords: ellipsoid, non-spherical, distance query, Particle-Resolved Direct Numerical Simulation, convex,
optimization

1. Introduction
Computing the Euclidean distance between two ellipsoids is of major interest in problems of collision

detection between geometrical objects. Those problems arise in various practical fields such as computer
graphics [1], robotics [2] or Particle-Resolved Direct Numerical Simulations (PR-DNS) of particle-laden
flows [3, 4, 5]. In the context of the last example, numerical models used to describe collisions between two
immersed ellipsoids require to compute their minimal separating distance. This is necessary to apply distance-
dependant lubrication corrections in the near-field regime. Such resolved simulations being extremely time-
consuming, any involved numerical step must be optimized. The goal of this paper is thus to retain the most
effective method to accurately compute the distance between two ellipsoids.

This work is part of a larger project aiming to enhance the capabilities of an in-house PR-DNS code,
named RESPECT (REsolved Scale Particle and Energy Techniques), which at the present time is capable
of computing flows seeded with spherical particles. It is based on the Implicit Tensorial Penalty Method
proposed by Vincent et al. [6], and the collision model for spheres proposed by Brändle de Motta et al. [7].
This code has been used to produce numerical simulations of fixed beds [8, 9], fluidized bed [10] and particles
in Homogeneous Isotropic Turbulence [11]. The next achievement would be to reproduce such numerical
results with non-spherical particles. The ellipsoidal shape is then a pertinent choice because it can model
various real non-spherical particles, from elongated fibers to disks [12].

∗Corresponding author
Email addresses: ivan.girault@imft.fr (Ivan Girault), amine.chadil@cnrs.fr (Mohamed-Amine Chadil),

stephane.vincent@univ-eiffel.fr (Stéphane Vincent)
1Present adress: Institut de Mécanique des Fluides de Toulouse (IMFT), 2 Allée du Professeur Camille Soula Toulouse,

31000, France

Preprint submitted to Journal of Computational Physics



The mathematical formulation of the problem is now described. Let (Em)m∈{1,2} be two ellipsoids of R3,
each one represented by (see Appendix A):

• its centre rm.

• a quaternion qm.

• a symmetric positive-definite 3× 3 matrix Am.

• a vector of R3 bm.

• a constant αm.

• a quadratic form fm given by:

fm :

R3 −→ R

x 7→ 1

2
x⊤Amx+ b⊤

mx+ αm

 . (1.1)

• if Em is a spheroid, meaning an ellipsoid that features an axis of symmetry, it is convenient to define
the aspect ratio of the spheroid Em:

Ar,m =
length of the semi-axis related to the axis of symmetry of Em

length of the other semi-axes of Em
. (1.2)

The problem to solve is then:

Find the unique (x∗
1,x

∗
2) ∈ E1 × E2 such that ∥x∗

1 − x∗
2∥ = min

x1∈E1,x2∈E2

∥x1 − x2∥ (1.3)

Throughout this article, the notation (x∗
m)m∈J1,2K will refer to the exact solution of problem (1.3). The

associated exact distance will then be noted d∗, that verifies:

d∗ = ∥x∗
1 − x∗

2∥ = min
x1∈E1,x2∈E2

∥x1 − x2∥. (1.4)

Of course, if E1 and E2 are overlapping, a solution (x∗
1,x

∗
2) is not necessarily unique. In this case, the only

concern is to detect this overlap.
At this stage, it becomes necessary to quantitatively specify the required accuracy when solving problem

(1.3). In the context of PR-DNS, the necessity to compute the minimal distance between two ellipsoids
arises from the computation of distance-dependent lubrication corrections between two close ellipsoids. In
the simpler case of spherical particles, distance thresholds are used in the collision model to modulate
the lubrication corrections. For a collision between two identical spheres of radius R, the smallest distance
threshold d1 used in RESPECT, (below which the lubrication correction becomes independent of the distance)
equals [7]:

d1 = ϵ1R, with ϵ1 = 10−3. (1.5)

As a first approach, Ardekani et al. [3] proposed to treat the collision between two ellipsoids as a collision
between two equivalent spheres, which radius coincides with the local Gaussian curvature radius of the
corresponding ellipsoid at the point of minimal approach. Following this approach, the value of the smallest
distance threshold d1 (1.5) that is used for the collision of two identical spheres dictates the target accuracy
ϵd that has to be reached when computing the distance between two ellipsoids (Em)m∈J1,2K:

ϵd = 0.01ϵ1 min
m∈J1,2K

[
min

x∈∂Em

(
RG,m(x)

)]
= 10−5 min

m∈J1,2K

[
min

x∈∂Em

(
RG,m(x)

)]
(1.6)

where RG,m is the local Gaussian curvature of ellipsoid Em (see Appendix B). In this article, the application
of Eq. (1.6) will be eased by the choice to work with spheroids.

2



It is proposed to review and compare the existing methods of the literature that are devoted to solve
problem (1.3). The most attractive method will be retained according to the following criteria:

• absolute robustness is required over the range of all possible computed distances, which is of the
form [0, dmax], dmax being the upper bound above which the lubrication corrections are not active. In
particular, the retained method has to handle the case of very close ellipsoids, without convergence
issues.

• absolute robustness is required over the range of investigated aspect ratios Ar = [1/6 , 6], without
convergence issues.

• the distance computation error has to be controlled, to satisfy the condition expressed in Eq. (1.6).

• the method must be insensitive to the working scale, meaning that the method behavior (error, com-
puting time) must be the same if a dilation parameter Λ is applied to a particular two-ellipsoid con-
figuration.

• the ideal method has to be, on average, the less time-consuming as possible.

The reviewed methods to solve problem (1.3) are now briefly introduced.

1. Lin et al. [13] proposed in 2001 a geometrical iterative algorithm, sometimes called ’Moving Balls
algorithm’. In their paper, all the mathematical proofs relative to the convergence of the method are
presented. They found "the algorithm to be very reliable and to work very well generally", but stressed
out that "the convergence may become a little slow when the ellipsoids are small, thin, and far apart".
Thanks to its conceptual simplicity and its ease of implementation, it has been used by Ardekani et al.
[3] and Lambert et al. [5] in the context of PR-DNS.

2. In 1988, a geometrical iterative algorithm, known as the Gilbert-Johnson-Keerthi (GJK) algorithm,
has been introduced by the related authors [14]. The GJK algorithm originally applies to the more
general problem of computing the distance between two convex sets. According to [12], "the GJK
algorithm has been unfairly overlooked by the granular dynamics community", "while popular in the
computer graphics community for decades" as a collision detection tool between two convex objects.
Rare examples of use in the context of granular dynamics simulations are [15, 16, 17]. More references
about the GJK algorithm are available in [12].

3. Abbasov [18] proposed for the first time in 2015 a physics-inspired method, the Newton-Coulomb
method or Charged Balls method. The solution of problem (1.3) is considered to be the equilibrium
point of a dissipating dynamical system. A basic numerical scheme enables to find this equilibrium
point. The method has been corrected and proofs of convergence have been introduced in 2017 [19]
by the same author. In the same article, numerical experiments have been presented, suggesting the
effectiveness of the algorithm. A recent publication [20] proposed some variants of the method. Note
that the procedure is still relevant for smooth convex objects.

4. Tamasyan et al. [21] presented in 2014 a way to transform the constrained problem (1.3) into a global
problem thanks to the introduction of an exact penalty function. This function is then minimized
with a non-smooth analysis technique, analog to a gradient descent algorithm, but adapted to the case
of a non-differentiable function. The method is quite laborious to master, but not very difficult to
implement. The authors concluded that their method is more universal than the Moving Balls Method
[13], because it is still relevant when considering non-ellipsoidal quadrics, and is less time-consuming
than the algebraic approach of Uteshev et al. [22].

5. Jain et al. [4] introduced in 2019 a new geometrical iterative algorithm to address problem (1.3),
as part of an article dealing with their new collision model for ellipsoidal particles in a viscous flow.
They stated that their procedure "converges fast", and "is free from any additional parameter" in
opposition to the Moving Balls algorithm. No mathematical proof of convergence has been given by
the authors. We demonstrate in the current article that this algorithm does not converge for case

3



with moderately small distances. After communicating with the authors of [4], they found out that
the actual distance algorithm used in their publications [4, 23] was different from the one described in
[4]. This led them to publish a Corrigendum [24], where the authors acknowledge that the algorithm
introduced in [4] suffers from convergence issues. They also state that the actual algorithm (described
in the Corrigendum) used in their publications yields a large number of iterations for case with small
distances. It is thus "not recommended for further use due to its excessive computational cost" [24].
For information purposes, the presentation of their initial method [4] and its analysis is conserved in
the present paper.

6. Uteshev et al. [22] have constructed in a 2008 paper an algebraic method, using elimination theory.
In the previously mentioned paper [21], the authors stated that their method is "less labor-consuming
than the algebraic approach of Uteshev et al. [22]". Consequently, there is no need to consider the
latter in this paper. Moreover, its implementation is rather challenging.

This article is organized as follows. First, the numerical procedures of the aforementioned methods are
described. Then a validation case is considered. It simple enough to be analytically solved, the evaluation
of the accuracy of each method is then possible. At this stage, some methods are ruled out because of
convergence issues or excessive computational time. Finally, the most promising methods are tested on
assemblies of numerous ellipsoidal particles, whose positions and orientations are randomly generated. The
purpose is to ensure the reliability of the algorithms and to establish which one is the fastest on average for
a given accuracy.

2. Algorithms description
In this section, the practical details necessary to the implementation of each algorithm are described:

• 2.1: Moving Balls Algorithm [13].

• 2.2: Gilbert-Johnson-Keerthi (GJK) Algorithm [14], [25].

• 2.3: Newton-Coulomb or ’Charged balls’ method [18], [19], [20].

• 2.4: Exterior Penalty Function Method [21].

• 2.5: Jain et al.’ algorithm [4].

Some of the reviewed algorithms can treat natively the particular situation where the ellipsoids are
overlapping while some cannot. For the latter algorithms, a preliminary procedure has to be run to detect
the overlap. Such a procedure has been provided by Jia et al. [26]. It is described in Appendix C. Since
this test is exact and analytical, it is fast and can thus be used as a preliminary step before using any of the
following methods to compute the distance between the ellipsoids E1 and E2. Indeed, in the case where the
ellipsoids overlap, it avoids running any iterative procedure.

The reader wishing to learn more about one method is invited to refer to the mentioned papers.

2.1. The "Moving Balls" algorithm [13]
The Moving Balls algorithm [13] is an iterative method that provides, at each iteration k, a pair of points(

xk
m

)
m∈J1,2K that are located on the surfaces (∂Em)m∈J1,2K of the ellipsoids (Em)m∈J1,2K. Lin et al. [13]

showed that the sequence
((

xk
m

)
m∈J1,2K

)
k∈N

converges towards (x∗
m)m∈J1,2K the solution of Problem (1.3).

At each iteration k, the algorithm [13] begins by constructing two spheres centered on points
(
ckm
)
m∈J1,2K

as illustrated in Fig. 1. How
(
ckm
)
m∈J1,2K are constructed will be precised below (see Eq. (2.1)). These

spheres are completely inside the ellipsoids (Em)m∈J1,2K, and tangent to the surfaces (∂Em)m∈J1,2K at points(
xk
m

)
m∈J1,2K. The points

(
xk+1
m

)
m∈J1,2K are then constructed as the intersection of the segment [ck1 , c

k
2 ]

4



with the ellipsoids surfaces (∂Em)m∈J1,2K as illustrated in Fig. 1 (the details for the computation of the
intersections are given in Appendix D). The algorithm iterates by constructing the points

(
xk
m

)
m∈J1,2K, until

the convergence criterion discussed in 2.1.1 is reached.

•
ck1

•
xk
1

•
ck2

•
xk
2

•
xk+1
1 •

xk+1
2

Figure 1: Construction of points
(
xk+1
1 ,xk+1

2

)
from

(
xk
1 ,x

k
2

)
.

The main difficulty of this algorithm [13] lies on the construction of the spheres:

• on the one hand, one would want them to be as large as possible to speed up the convergence.

• on the other hand, they must be completely contained in their associated ellipsoid, as it is a sufficient
(but not necessary) condition for the algorithm to converge [13].

To that end, Lin et al. [13] have demonstrated the following useful result.

Theorem 1. Let Em =

{
w :

1

2
w⊤Amw + b⊤

mw + αm ≤ 0

}
be a non-empty ellipsoid. Let xk

m be a point of

∂Em. Then, for any 0 < γm ≤
1

ρ (Am)
,

B
(
xm − γm

(
Amxk

m + bm

)
, γm||Amxk

m + bm||
)
⊂ Em

ρ (Am) being the spectral radius of Am, and B (c, r) a ball of center c and radius r .

It is worth noting that:

• The vector Amxk
m + bm is the gradient of the quadratic form representing the ellipsoid Em. Thus, this

vector is normal to the surface ∂Em, hence the sphere B
(
xk
m − γm

(
Amxk

m + bm

)
, γm||Amxk

m + bm||
)

is tangent to ∂Em at point xk
m.

• The spectral radius ρ (Am) is related to the smallest semi-axis cm of Em as ρ (Am) =
1

c2m
.

Given the previous two remarks, the sphere center ckm can thus be constructed from the surface point xk
m

as follows:

ckm = xk
m − γm

(
Amxk

m + bm

)
(2.1)

5



with γm being the parameter introduced in Theorem 1. This parameter value can be fixed by observing
that the greater the radii of the constructed spheres are, the faster the algorithm is. It is thus chosen as:

γm =
1

ρ (Am)
= the square of the smallest semi-axis of the ellipsoid Em (2.2)

2.1.1. Convergence criterion

A stopping criterion can be established from the fact that the vector x∗
1 − x∗

2 is normal to both the
surfaces ∂E1 and ∂E2 [13]. That is why, at each iteration k −→ k + 1, the angles

(
θk+1
m

)
m∈J1,2K between the

approached distance vector and the normal vector to the ellipsoids surface (∂Em)m∈J1,2K are computed:{
θk+1
1 = θ

(
xk+1
2 − xk+1

1 ,A1x
k+1
1 + b1

)
θk+1
2 = θ

(
xk+1
1 − xk+1

2 ,A2x
k+1
2 + b2

) . (2.3)

Therefore when the sequence
((

xk
m

)
m∈J1,2K

)
k∈N

converges towards (x∗
m)m∈J1,2K then the sequence

((
θkm
)
m∈J1,2K

)
k∈N

converges towards (0, 0).
A threshold ϵθ is then introduced to stop the program when the following condition is satisfied:{

θk+1
1 ≤ ϵθ

θk+1
2 ≤ ϵθ.

(2.4)

In Appendix E, an inexpensive implementation of this criterion is proposed.
When the algorithm stops at iteration n, the algorithm returns the value of the current distance and

points, which are noted in the following: 
x1 = xn

1

x2 = xn
2

d = dn = ∥xn
1 − xn

2∥.
(2.5)

As mentioned in the introduction, it is desirable to control the error on the computed distance. ϵθ has
thus to be scaled, to ensure a distance error inferior to a chosen parameter ϵd (1.6). To do so, the maximal
possible distance error committed with a fixed parameter ϵθ is analytically estimated, thanks to geometrical
considerations detailed in Appendix F. This analytical estimation uses the local curvature of the ellipsoids
surfaces (∂Em)m∈J1,2K at the exact solution points (x∗

m)m∈J1,2K

More quantitatively, for m ∈ J1, 2K, the application

Rmax,m :

(
∂Em −→ R
xm 7→ Rmax,m (xm)

)
(2.6)

represents the local maximum radius of surface ∂Em at a given point xm (see Appendix B). One of the
main results of this paper, demonstrated in Appendix F, is expressed as follows:

|d− d∗| ≤ (ϵθ)
2 Rmax,1 (x

∗
1) +Rmax,2 (x

∗
2)

2
(2.7)

where d = ||x2 − x1|| is the estimated distance obtained after the convergence criterion (2.4) is met, and
d∗ = ||x∗

2 − x∗
1|| is the exact analytical distance.

This inequality is of particular interest to control the distance error. The parameter ϵd can then be
introduced to limit this error. To satisfy this control, an expression for ϵθ has to be provided, so that when
the algorithm stops due to the criterion (2.4), the distance error |d− d∗| verifies:

6



|d− d∗| ≤ ϵd. (2.8)

From inequality (2.7), the value of ϵθ can be chosen as:

ϵθ =

√
2ϵd

max∂E1
(Rmax,1) + max∂E2

(Rmax,2)
. (2.9)

Indeed, this choice will ensure, following inequality (2.7):

|d− d∗| ≤ ϵd
Rmax,1 (x

∗
1) +Rmax,2 (x

∗
2)

max∂E1
(Rmax,1) + max∂E2

(Rmax,2)
≤ ϵd. (2.10)

As explained in the Appendix F, it is possible to implement an adaptive ϵkθ that is computed at each
iteration (Eq. (F.6)). Such option enables the algorithm to converge with less iterations (while still ensuring a
distance error inferior to ϵd), but necessitates to compute the two local curvature radii

(
Rmax,m

(
xk
m

))
m∈J1,2K

at each iteration k. For the Moving Balls Algorithm, the speedup due to the reduced number of iterations
has been observed to not be sufficient to compensate the overhead due to the curvature computations.

It is stressed out that these considerations about the control of the distance error were not found in the
literature, and thus constitute a novel contribution of this article. In Appendix F.3, it is numerically verified
on a large number of two-ellipsoid configurations that the proposed values for the parameter ϵθ (Eq. (2.9)
and Eq. (F.6)) enables the inequality (2.8) to be satisfied.

2.1.2. Overlapping ellipsoids

By definition, when two ellipsoids overlap, the computed distance must be zero. At iteration k, the
procedure presented in Appendix D computes the intersection point between an ellipsoid and a segment and
provides values for tk1 and tk2 such that: {

xk+1
1 = ck1 + tk1

(
ck2 − ck1

)
xk+1
2 = ck1 + tk2

(
ck2 − ck1

)
.

(2.11)

If tk1 < tk2 , the program carries on. Otherwise, the ellipsoids are overlapped and the program returns the
distance 0.

2.1.3. Summary of the numerical process

The Moving Balls Algorithm is described in Algorithm 1. The only necessary inputs are the ellipsoids
(Em)m∈J1,2K and the parameter ϵd.

7



Algorithm 1 Moving Balls Algorithm
1: k = 0
2: For m ∈ J1, 2K, x0

m = [r1, r2] ∩ ∂Em

3: Set ϵθ with Eq. (2.9)
4: Compute

(
θ0m
)
m∈J1,2K with Eq. (2.3)

5: while θk1 > ϵθ or θk2 > ϵθ do
6: Compute

(
ckm
)
m∈J1,2K with Eq. (2.1) and Eq. (2.2)

7: For m ∈ J1, 2K, xk+1
m =

[
ck1 , c

k
2

]
∩ ∂Em

8: if tk1 ≥ tk2 {see 2.1.2} then
9: return distance = 0

10: end if
11: Compute

(
θk+1
m

)
m∈J1,2K with Eq. (2.3)

12: k ← k + 1
13: end while
14: return distance =

∥∥xk
1 − xk

2

∥∥
2.2. The Gilbert–Johnson–Keerthi algorithm [14]

The Gilbert-Johnson-Keerthi (GJK) algorithm [14] is an iterative and geometrical method, that leverages
on the convexity of the ellipsoidal shape. This special feature enables to reduce problem (1.3) (ie. compute
the distance between two ellipsoids (Em)m∈J1,2K) to the easier task of computing the distance between the
origin and a particular convex set C derived from the two ellipsoids. This computation is performed by
building a sequence of simplices contained in this particular convex set C. Each simplex of the sequence is
built to be closer to the origin than the one built at the previous iteration. This process goes on until the
distance between the current simplex coincides with the actual distance between C and the origin.

The GJK algorithm manages the computation of the distance between two general convex objects, pro-
vided that the support mapping of each object can be specified. The reader interested in using the GJK
algorithm with objects other than ellipsoids can refer to the corresponding paragraph in [12].

In this section, the GJK algorithm will be explained following the implementation of Van den Bergen [25].
First, the global operation of the method is introduced in 2.2.1. Then, specific topics are exposed in 2.2.2
and 2.2.3. In 2.2.4, all the information necessary to easily implement the algorithm is gathered. Finally, the
solution to reconstruct the minimizing points (x∗

m)m∈J1,2K respectively belonging to the ellipsoids (Em)m∈J1,2K
is given in 2.2.5.

The presentation of several notions related to convex analysis is deferred to Appendix G.

2.2.1. General operation of the GJK algorithm

Problem (1.3), in the general case of E1 and E2 being two convex sets, is equivalent to determining the
distance of the Minkowski difference E1 − E2 (see Appendix G) to the frame origin [12], [25].

The Minkowski difference E1 − E2 of two convex sets being also convex, the problem is thus reduced to
the general problem of projecting the origin onto a convex C:

Compute the unique point v (C) ∈ C such that ||v (C) || = d (C) = min
z∈C
||z||. (2.12)

Thanks to the Hilbert Projection Theorem (Appendix G), the projection v (C) of the origin onto a convex
C is well-defined. In the following, the projection application v will be often used.

In order to solve the simpler Problem (2.12), with C = E1 − E2, the GJK algorithm builds a sequence of
simplices

(
Sk
)
k∈N contained in C, with Sk+1 lying closer to the origin than Sk. Therefore, with the sequence

of the projections
(
vk
)
k∈N defined as vk = v

(
Sk
)
, the sequence

(
∥vk∥

)
k∈N must be decreasing. In this way,

the simplices
(
Sk
)
k∈N are built to have ||vk|| −→ d (C).

8



Computationally, each simplex Sk is represented by a set of vertices W k, with Sk being the convex hull
(see Appendix G) of W k:

Sk = conv
(
W k
)
. (2.13)

To build the sequence of simplices
(
Sk
)
k∈N and associated vertices sets

(
W k
)
k∈N, the notion of support

mapping sC of a convex set C is used (Appendix G). Initially, the set of vertices W 0, representing the simplex
S0, is set to ∅. The initial distance vector v0 is set to be an arbitrary vector in C. From the knowledge of
W k and vk = v

(
Sk
)
, the next set of vertices W k+1 is built with the following steps:

1. a new vertex wk is built thanks to the support mapping sC of C:

wk = sC
(
−vk

)
.

2. vk+1 is set as the projection of the origin onto the convex set conv
(
W k ∪ {wk}

)
:

vk+1 = v

(
conv

(
W k ∪ {wk}

))
.

3. W k+1 is set as the smallest subset X of W k ∪ {wk} such that vk+1 belongs to conv (X). This subset
X is unique and affinely independent [25].

To provide a stopping criterion, a sequence
(
δk
)
k∈N is computed at each iteration from the new vertex

wk+1 and the new approximated distance vector vk+1:

δk+1 =
wk+1 · vk+1

∥vk+1∥ . (2.14)

Geometrically, δk+1 is the distance from the origin to the plane containing wk+1 and normal to vk+1.
This distance is always a lower bound on the distance from C to the origin, and converges towards it:{

∀k ∈ N, δk+1 ≤ d (C)

δk+1 −→ d (C) .
(2.15)

Contrarily to the sequence
(∥∥vk

∥∥)
k∈N, the sequence

(
δk
)
k∈N may not be monotonic in k. Hence, a more

suitable sequence
(
µk
)
k∈N, monotonically increasing, is computed:{

µ0 = 0

µk+1 = max
(
µk, δk+1

)
.

(2.16)

Hence a very practical convergence criterion can be directly established by introducing the parameter ϵd:

∥vk+1∥ − µk+1 ≤ ϵd. (2.17)

Indeed, the error on d (C) = d (E1, E2) do not exceed ϵd when (2.17) is satisfied.

This building procedure is illustrated in Fig. 2.

For clarity purposes, several specific points were not detailed in the previous presentation of this algorithm,
and have to be addressed:

• Until now, the support mapping sC of C = E1 − E2 has not been explicitly defined. Its computation
is explained in 2.2.2.

• Performing tasks 2. and 3. is the main difficulty. In practice, they are handled by a single sub-algorithm
described in 2.2.3.

9



×
0

w0 = sC(−v0)

v0

C

(a) k = 0, W
0
= ∅, δ0 < 0, µ

0
= 0

×
0

•w0

v1

w1

C

(b) k = 1, W
1
= {w0}, δ1 < 0, µ

1
= 0

×
0

•w0

•w
1

v2

w2

C

(c) k = 2, W
2
= {w0

,w
1}, δ2 > 0, µ

2
= δ

2

×
0

•w0

•w
1

•w2

v3

w3

C

(d) k = 3, W
3
= {w0

,w
2}, δ3 < δ

2
, µ

3
= µ

2

Figure 2: An example to understand the geometrical process of the GJK algorithm.

10



2.2.2. Computation of the support mapping

The problem of computing the support mapping sC of the set C = E1 − E2 is now addressed.
From the knowledge of the support mappings (sEm

)m∈J1,2K of the two ellipsoids (Em)m∈J1,2K, the com-
putation of the support mapping of sC C is straightforward (see [25]):

sC (−v) = sE1
(−v)− sE2

(v) . (2.18)

In the following, the ellipsoids
(
Ẽm

)
m∈J1,2K

are centered at the origin, their semi-axes are aligned with

the Cartesian axes, and have the same semi-axes length (am, bm, cm)m∈J1,2K as the ellipsoids (Em)m∈J1,2K.

From [16], we recall the support mapping of the ellipsoids
(
Ẽm

)
m∈J1,2K

is:

sẼm
(v) =

(
(am)2vx, (bm)2vy, (cm)2vz

)⊤
∥(amvx, bmvy, cmvz)∥

. (2.19)

Then, the support mapping of the ellipsoids (Em)m∈J1,2K, can be deduced from the knowledge of their as-
sociated rotation matrix (Um)m∈J1,2K and centre (rm)m∈J1,2K. With the definition of the affine transformation
Tm (x) = Umx+ rm, it yields [25], for m ∈ J1, 2K:Em = Tm

(
Ẽm

)
sEm

(v) = Tm

(
sẼm

(
U⊤

mv
))

.
(2.20)

The reader wishing to obtain the adequate support mapping formulae for other geometrical shapes are
invited to refer to [16] and [25].

2.2.3. The GJK distance sub-algorithm

This sub-algorithm is introduced to solve the tasks 2. and 3. described in 2.2.1. Its implementation is
presented following the article of Van den Bergen [25].

In the following, Y = W k ∪ {wk}. The GJK sub-algorithm is introduced to determine the vector vY and
the subset X ⊂ Y satisfying the following problem:{

vY = v (conv (Y ))

X = the smallest subset of Y such that vY ∈ conv (X)
(2.21)

where it is recalled that:

• conv(Y ) is the convex hull of the set of points Y .

• v (conv(Y )) is the projection of the origin onto conv(Y ).

According to [25], Y is affinely independant (if not, the exact distance has been reached at the previous
iteration): as a consequence, Y has at most 4 elements and can be indexed as

Y = {y0, ...,yN} with N ≤ 3. (2.22)

An arbitrary subset X of Y can thus be represented by a subset of indices IX ⊂ IY = {0, ..., N}.

11



For each Z ⊂ Y , the sub-algorithm computes v (aff (Z)), the distance vector from the origin to the affine
hull of Z (see Appendix G). The procedure for computing the distance vector will be explain below. Note
that because Y is affinely independent, so are all the subsets Z ⊂ Y . The solution X = {yi|i ∈ IX ⊂ IY } of
Problem (2.21) is then characterized by [25]:

X = the biggest Z ⊂ Y such that


v (aff (Z)) =

∑
i∈IZ

λi(Z)yi

with all λi(Z) > 0 and
∑
i∈IZ

λi(Z) = 1.
(2.23)

When such X is obtained, we actually have vY = v (aff (X)) = v (conv (X)).

Computing v (aff (X)) for any X ⊂ Y :
For now, let X be any subset of Y . The following lines details how to compute the vector v (aff (X))

The vector v (aff (X)) is represented by the coefficients (λi (X))i∈IX
such that:

v (aff (X)) =
∑
i∈IX

λi (X)xi,
∑
i∈IX

λi (X) = 1. (2.24)

The coefficients (λi (X))i∈IX
can be obtained from a system of linear equations, deduced from orthogo-

nality conditions [25]. The recursion in Cramer’s rules [25] is then used to solve this system, by computing
non normalized coefficients (∆i (X))i∈IX

, which are closely related to the coefficients (λi (X))i∈IX
(see below

Eq. (2.27)). It then lies the recursion formula, ∀j ∈ IY :

∆j ({yj}) = 1 (2.25)

∀Z ⊂ Y such that j /∈ IZ , ∆j (Z ∪ {yj}) =
∑
i∈IZ

∆i (Z) (yl · yi − yj · yi) (2.26)

where l is a fixed but arbitrary element of IZ . From the coefficients (∆j ({yj}))j∈IY
, all the ∆ coefficients

related to 2-elements subsets of Y can be computed, and so on.
The coefficients (λi (X))i∈IX

are then related to these non-normalized coefficient with the relation:

∀i ∈ IX , λi (X) =
∆i (X)∑

j∈IX
∆j (X)

. (2.27)

Exact procedure to solve Problem (2.21):
For each X ⊂ Y , the (∆i (X))i∈IX

are computed, in ascending order of Card (X). The sub-algorithm
identifies the solution X of Problem (2.21) and Eq. (2.23) when both the following conditions are satisfied
[25]: {

∀i ∈ IX , ∆i (X) > 0

∀j /∈ IX , ∆j (X ∪ {yj}) ≤ 0.
(2.28)

The sub-algorithm then stops and return the set W k+1 = X as well as the new distance vector vk+1 =
vY = v (aff (X)).

Remarks
The following remarks, made by [25], enable to optimize the algorithm:

• the new vertex wk is necessarily contained in the solution X of Eq. (2.23), then it reduces the number
of subsets contained in Y to be tested for the condition (2.28).

• to apply the recursion formula (2.25), the same dot product of Y vectors might be used multiple times.
The coefficients ∆ might also be used multiple times. To reduce the computation time, their value can
be retained in arrays updated at each iteration (see [25] for how to proceed).

12



2.2.4. Computational process

The numerical procedure of the GJK algorithm is summarized in Algorithm 2.

Algorithm 2 GJK algorithm
1: k = 0
2: W 0 = ∅
3: v0 = r1 − r2
4: w0 = sC

(
−v0

)
using Eq. (2.18) and Eq. (2.19)

5: µ0 = 0
6: while

∥∥vk
∥∥− µk > ϵd do

7: Sub-algorithm 2.2.3

{
vk+1 = v

(
conv

(
W k ∪ {wk}

))
W k+1 = the smallest subset X ⊂W k ∪ {wk} such that vk+1 ∈ conv

(
W k+1

)
8: if

∥∥vk+1
∥∥ = 0 then

9: return distance = 0 {to avoid evaluating sC at 0 where it is not defined}
10: end if
11: wk+1 = sC

(
−vk+1

)
using Eq. (2.18) and Eq. (2.19)

12: δk+1 =
vk+1 ·wk+1

||vk+1||
13: µk+1 = max

(
µk, δk+1

)
14: k ← k + 1
15: end while
16: return distance =

∥∥vk
∥∥

The significance of the variables is recalled:

• W k+1 is a finite subset of points, affinely independent, representing the simplex Sk+1 (Eq. (2.13)).

• vk+1 is the distance vector of the simplex Sk+1 = conv
(
W k+1

)
.

• wk+1 is the new vertex built at each iteration.

• δk+1 =
vk+1 ·wk+1

||vk+1|| is a lower bound on the distance. Geometrically, it is the distance from the origin

to the plane normal to vk+1, containing the point wk+1. It enables to build a monotonic increasing
sequence

(
µk
)
k∈N that converges towards the exact solution for the distance d (C).

• ϵd is the desired distance accuracy.

Note that the GJK algorithm automatically handles the situation where the two ellipsoids collide. In
this situation, the sub-algorithm will return at a certain iteration a null distance vector. In this case, the
algorithm must stop (see line 8 in Algorithm 2) to avoid evaluating the support mapping sC at 0 where it
is not defined.

The last problem to tackle is the reconstruction of the two minimizing points located on the ellipsoids
surfaces. Indeed, the GJK algorithm only seems to provide the difference vector vn ∈ E1 − E2 defined by
these two points. Fortunately, the building process of the GJK algorithm allows to recover (x∗

1,x
∗
2) ∈ E1 × E2

from the knowledge of x∗
1,x

∗
2.

2.2.5. How to reconstruct the minimizing points belonging to the ellipsoids

After the last iteration n, the returned distance vector vn is expressed as a convex combination of the
vertices yi ∈Wn:

13



vn =
∑

i∈IWn

λiyi. (2.29)

Now, let us recall that all elements yi ∈Wn have been computed in the form yi = pi − qi, (pi,qi) ∈ E1 × E2,
with Eq. (2.18). This calculation occurs at line 11 in Algorithm 2, when a new vertex wk+1 is computed.
Then, by convexity of E1 and E2, an estimation of (x∗

1,x
∗
2) ∈ E1 × E2 such that vn = x∗

1 − x∗
2 is obtained

[25]:

x∗
1 =

∑
i∈IWn

λipi, x∗
2 =

∑
i∈IWn

λiqi. (2.30)

2.3. Newton-Coulomb Method [18]
This method has been originally introduced by Abbasov in [18]. It is based on a physical principle met

by mechanical systems at equilibrium: the minimization of the potential energy.
A fictitious charged point is placed on the surface of each ellipsoid. The principle is to let those two

charges evolve under the action of the attractive electrostatic force, with the constraint of staying located on
their respective ellipsoid surface. A viscous drag force is added so that convergence occurs. When mechanical
equilibrium is reached, the electrostatic potential of interaction between the charged points is minimal, and
so the distance between these two points is solution of problem (1.3).

2.3.1. Initial version of the Newton-Coulomb method [18]

Two charged points m ∈ J1, 2K of same mass M and charge qm are free to move on the surface ∂Em of the
ellipsoid Em. They are thus represented by the vector xm ∈ ∂Em. The evolution of (xm)m∈J1,2K is described
by Newton’s second Law:

Mmẍm = Fm +Nm +Rm (2.31)

where:

• Fm is the electrostatic Coulomb force exerted upon the charged particle m by the other one. It is given
by:

F1 = q1q2
x1 − x2

||x1 − x2||3

F2 = q1q2
x2 − x1

||x1 − x2||3
.

• Nm accounts for the normal reaction of the surface ∂Em, which physically enforces the charge m to

stay on it. From equation
d

dt
(ẋm · nm) = 0, it can be derived:

Nm = −Fm · ∇fm (xm)

||∇fm (xm) ||2 ∇fm (xm) +
ẋ⊤
mAmẋm

||∇fm (xm) ||2∇fm (xm) .

It is recalled that the matrices (Am)m∈J1,2K and the quadratic forms (fm)m∈J1,2K mathematically de-
scribes the ellipsoids (Em)m∈J1,2K (see 1 and Appendix A).

• Rm is a viscous drag force, with µ a constant:

Rm = −µẋm.

The set of differential equations representing the system is:
ẋ1 = z1

ẋ2 = z2

ż1 = ψ1 (x1,y2, z1, z2)

ż2 = ψ2 (x2,x2, z1, z2)

(2.32)

14



with (xm)m∈J1,2K being the positions of the charged points m respectively located on (∂Em)m∈J1,2K. The
(ψm)m∈J1,2K functions are given by:

ψ1 (x1,x2, z1, z2) =
p1

||x1 − x2||3
(
x2 − x1 +

(x1 − x2) · ∇f1 (x1)

||∇f1 (x1) ||2
∇f1 (x1)

)
− p2z1 −

z⊤1 A1z1
||∇f1 (x1) ||2

∇f1 (x1)

(2.33)

ψ2 (x1,x1, z1, z2) =
p1

||x1 − x2||3
(
x1 − x2 +

(x2 − x1) · ∇f2 (x2)

||∇f2 (x2) ||2
∇f2 (x2)

)
− p2z2 −

z⊤2 A2z2
||∇f2 (x2) ||2

∇f2 (x2)

(2.34)

and p1 and p2 are parameters related respectively to the electrostatic force and the viscous drag:p1 = −q1q2
M

p2 =
µ

M
.

(2.35)

As proposed in [18], a simple Euler scheme is implemented to solve the problem. To avoid accumulation
of errors, the points are projected at each iteration on the surface of each ellipsoid. The associated scheme
is, with δ being the time step: 

x̃k
1 = xk

1 + δzk1

x̃k
2 = xk

2 + δzk2

xk+1
1 = x̃k

1 −
∇f1

(
x̃k
1

)
||∇f1

(
x̃k
1

)
||2 f1

(
x̃k
1

)
xk+1
2 = x̃k

2 −
∇f2

(
x̃k
2

)
||∇f2

(
x̃k
2

)
||2 f2

(
x̃k
2

)
zk+1
1 = zk1 + δψ1

(
xk
1 ,x

k
2 , z

k
1 , z

k
2

)
zk+1
2 = zk2 + δψ2

(
xk
1 ,x

k
2 , z

k
1 , z

k
2

)
.

(2.36)

This algorithm is initialized with
(
x0
m

)
m∈J1,2K being the intersection between the segment joining the two

centers of the ellipsoids, and (∂Em)m∈J1,2K. The stopping criterion is imposed on θ1 and θ2 (see 2.1.1 and
Eq. (E.1)).

The parameters p1, p2 and δ must be tailored to obtain the fastest convergence.

2.3.2. Necessity to modify the initial method

Preliminary studies have shown that the algorithm is not usable in the form (2.36); once the parameters
have been adjusted with a particular two-ellipsoids configuration, the algorithm can not handle a new
situation where the ellipsoids are closer: the convergence can become prohibitively slow, or even never
occurs. This is due to the divergent nature of the electrostatic force when ∥x1 − x2∥ → 0.

To overcome this difficulty, an attempt has been made in this work to build on this initial method to
make it usable. The details of these modifications are described in the next subsection.

2.3.3. Description of the modified Newton-Coulomb Method

"Zeroing speed" scheme [20]: Already introduced in [20], it consists in setting the charged particles
speed to zero at each iteration

(
zkm = 0

)
. This modification is supposed to avoid convergence issues due

to inertia, which can generate oscillations around the equilibrium point. Among all the variants of the
Newton-Coulomb method proposed in [20], the "zeroing-speed" technique was proven by the author to be
the fastest, which justifies its use here. Note that the numerical experiments realized in [20] were for distance
computations between an ellipsoid and a point, and not between two ellipsoids.

15



This "Zeroing speed" technique leads to new acceleration functions (ξm)m∈J1,2K analogous to (2.33), but
without all the terms depending on the velocities:

ξ1 (x1,x2) =
1

||x1 − x2||3
(
x2 − x1 +

(x1 − x2) · ∇f1 (x1)

||∇f1 (x1) ||2
∇f1 (x1)

)
ξ2 (x1,x2) =

1

||x1 − x2||3
(
x1 − x2 +

(x2 − x1) · ∇f2 (x2)

||∇f2 (x2) ||2
∇f2 (x2)

)
.

(2.37)

The numerical scheme to approach the equilibrium point of the dynamical system (2.32) is then:

x̃k
1 = xk

1 + δ2ξ1
(
xk
1 ,x

k
2

)
x̃k
2 = xk

2 + δ2ξ2
(
xk
1 ,x

k
2

)
xk+1
1 = x̃k

1 −
∇f1

(
x̃k
1

)
||∇f1

(
x̃k
1

)
||2 f1

(
x̃k
1

)
xk+1
2 = x̃k

2 −
∇f2

(
x̃k
2

)
||∇f2

(
x̃k
2

)
||2 f2

(
x̃k
2

)
.

(2.38)

It is worth noting that the only remaining parameter here is the time step δ, which has absorbed the
parameter p1 related to the electrostatic force. The proposed scheme (2.38) is different from the one suggested
in [20], in which the acceleration at iteration k is computed from the previous positions at iteration k − 1,
whereas here it is computed with the current positions. It has been observed that a faster convergence is
obtained by doing so.

Nonetheless, even if the number of parameters is now reduced, a numerical procedure is still needed to
scale the time step δ, to avoid convergence issues or too large numbers.

Adaptive time-step: It is proposed here to adapt the time step δ, so that the displacement amplitude
δ2ξm

(
xk
1 ,x

k
2

)
is adjusted to the local curvature of the ellipsoid surface ∂Em. This modification is inspired

from Jain et al. [4], as they introduce a step size that takes into account regions of increased curvature for
flattened or elongated shapes. The minimum curvature radius at point xk

m belonging to the surface ∂Em is
noted Rk

min,m (see Appendix B). The time-step δk, used to compute the positions at time k + 1 following
Eq. (2.38), could be obtained from:

δk = min
m∈{1,2}

√
CcurvRk

min,m

||ξm
(
xk
1 ,x

k
2

)
|| . (2.39)

Eq. (2.39) enforces the displacement
(
δk
)2
ξm
(
xk
1 ,x

k
2

)
to be inferior to the limit CcurvR

k
min,m, with Ccurv

a constant which must be adjusted (see Eq. (2.45) in the corresponding paragraph "Adaptive Ccurv").
Since exactly describing the trajectories of the fictitious charged points is not mandatory, two time-steps

δk1 and δk1 can be simultaneously used, each one adapted to its relative ellipsoid:

δk1 =

√
CcurvRk

min,1

||ξ1
(
xk
1 ,x

k
2

)
|| , δk2 =

√
CcurvRk

min,2

||ξ2
(
xk
1 ,x

k
2

)
|| . (2.40)

The points at time k + 1 are then computed as follows:

x̃k
1 = xk

1 +
(
δk1
)2
ξ1
(
xk
1 ,x

k
2

)
x̃k
2 = xk

2 +
(
δk2
)2
ξ2
(
xk
1 ,x

k
2

)
xk+1
1 = x̃k

1 −
∇f1

(
x̃k
1

)
||∇f1

(
x̃k
1

)
||2 f1

(
x̃k
1

)
xk+1
2 = x̃k

2 −
∇f2

(
x̃k
2

)
||∇f2

(
x̃k
2

)
||2 f2

(
x̃k
2

)
.

(2.41)

16



Preliminary tests have shown that the method works, except when the ellipsoids are very close (below
10−2 − 10−3 relative to the dimension of the ellipsoids). In those cases, convergence can become very slow,
or never occur. Two additional modifications are still necessary, namely, the adding of a "backtracking loop"
and the reduction of the amplitude displacement when the ellipsoids are very close. These modifications are
detailed hereafter.

Backtracking loop [20]: This modification was introduced in [20]. It consists in verifying that the time-
steps

(
δkm
)
m∈J1,2K ensure the distance to decrease at the k + 1th step . If not, the δkm are corrected with the

procedure described in Algorithm 3.

Algorithm 3 Backtracking loop for time-step correction at iteration k

1: For m ∈ J1, 2K,


z̃m = xk

m +
(
δkm
)2
ξm
(
xk
1 ,x

k
2

)
zm = z̃m −

∇fm (z̃m)

||∇fm (z̃m) ||2 fm (z̃m)

2: while ∥z1 − z2∥ ≥
∥∥xk

1 − xk
2

∥∥ do
3: δkm ← λδkm

4: For m ∈ J1, 2K,


z̃m = xk

m +
(
δkm
)2
ξm
(
xk
1 ,x

k
2

)
zm = z̃m −

∇fm (z̃m)

||∇fm (z̃m) ||2 fm (z̃m)

5: end while
6: For m ∈ J1, 2K, xk+1

m = zm
7: return

(
xk+1
m

)
m∈J1,2K

where λ is a shrinking factor < 1 .

Adaptive Ccurv: Some tests have shown that for a constant Ccurv value, the method could still have
convergence issues when the distance between the ellipsoids becomes very small, even when adding a back-
tracking loop. If the convergence is not obtained with a fixed value of Ccurv, it has been observed that the
Ccurv value could be diminished a posteriori to obtain the convergence.

This observation proves that some arguments are needed to scale the Ccurv value in the limit of close
ellipsoids.

Actually, some tests have shown that the convergence problems arise when the distance between ellipsoids
becomes of the same magnitude than the distance ekm of the point x̃k

m from the ellipsoid surface ∂Em. This
distance ekm, induced by the tangential displacement CcurvR

k
min,m from the point xk

m, is represented in Fig. 3.
It can be seen that ekm depends on Ccurv, Rk

min,m the minimum radius curvature at point xk
m and Rk

loc,m the
curvature radius at point xk

m in the direction of the displacement.

17



Rk
loc,m

•
xk
m

•
xk+1
m

(
δkm
)2 ∥∥ξkm∥∥ = CcurvR

k
min,m

ekm

∂Em

Figure 3: Distance ekm from the ellipsoid surface generated by a tangential displacement of magnitude CcurvR
k
min,m. Rk

loc,m is
the local curvature radius of the surface ∂Em at point xk

m in the direction of the displacement, and it is recalled that Rk
min,m

is the minimal local curvature radius of the surface ∂Em at the point xk
m.

Of course, this distance ekm is compensated by the projection steps described by the third and fourth lines
of Eq (2.41), which enable to compute the point xk+1

m . Nonetheless, these steps are first-order projections,
and a small error can thus subsist. Assuming that this error is responsible for the observed convergence
issues, it seems reasonable to think that it will not play any role if the following inequality is satisfied:

ekm << ||xk
1 − xk

2 ||. (2.42)

The maximum possible value of ekm can be analytically estimated: this limit case occurs when Rk
loc,m = Rk

min,m.
To find this maximal value, a second-order equation has to be solved, which solution is:

ekm
(
Rk

loc,m = Rk
min,m

)
= Rk

min,m

(√
1 + C2

curv − 1
)
≃ Rk

min,m

C2
curv

2
. (2.43)

To ensure Eq. (2.42), Ccurv must then verify:

Ccurv <<

√
2||xk

1 − xk
2 ||

Rk
min,m

. (2.44)

This is why it is proposed to compute a different Ck
curv,m for each ellipsoid m, at each iteration k,

following:

Ck
curv,1 = min

(
Cmax, τ

√
2||xk

1 − xk
2 ||

Rk
min,1

)
, Ck

curv,2 = min

(
Cmax, τ

√
2||xk

1 − xk
2 ||

Rk
min,2

)
(2.45)

with τ < 1, and Cmax being the maximum possible value of Ck
curv,m. Cmax is an additional parameter

whose value has to be calibrated.

2.3.4. Convergence criterion

The same criterion expressed as in 2.1.1 for the description of the Moving Balls algorithm is used for
this algorithm, so that a controlling parameter ϵd has to be used, which ensures the error of the computed
distance to be inferior to ϵd. As explained in Appendix F, two possibilities are available for implementing this
convergence criterion. For the Newton-Coulomb method, the modified implementation already necessitates
computing the local curvature, so that the adaptive version Appendix F.2.2 of the convergence criterion can
be advantageously used.

18



2.3.5. Ellipsoids overlap

This algorithm has to be supplemented with an additional algorithm to detect a potential overlap. Indeed,
the electrostatic force is singular when

∥∥xk
1 − xk

2

∥∥ = 0. To avoid this situation, Jia et al.’s exact overlap
detection algorithm [26], described in Appendix C, is used before executing the Newton-Coulomb Method.
If an overlap is detected, the returned distance is equaled to zero. Otherwise, the Newton-Coulomb Method
is run to compute the distance.

2.3.6. Summary of the numerical process

Since multiple modifications have been introduced, the numerical steps of the Newton-Coulomb method
are recalled, in Algorithm 4. The important parameters are the following:

• ϵd the desired error of the distance.

• Cmax (Eq. (2.45)).

• τ (Eq. (2.45)).

• λ the parameter associated with the backtracking loop.

Algorithm 4 Newton-Coulomb Method
1: k = 0
2: if collision = .TRUE. (Collision Detection Algorithm Appendix C) then
3: return distance = 0
4: end if
5: For m ∈ J1, 2K, x0

m = [r1, r2] ∩ ∂Em

6: Set ϵ0θ = ϵθ with Eq. (2.9)
7: Compute

(
θ0m
)
m∈J1,2K with Eq. (2.3)

8: while θk1 > ϵkθ or θk2 > ϵkθ do
9: Compute

(
Ck

curv,m

)
m∈J1,2K with Eq. (2.45) and

(
δkm
)
m∈J1,2K with Eq. (2.40)

10: Compute the new points
(
xk+1
m

)
m∈J1,2K thanks to Eq. (2.41) and Eq. (2.37)

11: Correct the points
(
xk+1
m

)
m∈J1,2K with the backtracking loop described in Algorithm 3

12: Compute ϵk+1
θ with Eq. (F.6)

13: Compute
(
θk+1
m

)
m∈J1,2K with Eq. (2.3)

14: k ← k + 1
15: end while
16: return distance =

∥∥xk
1 − xk

2

∥∥
2.4. Exterior Penalty Function Method [21]

This method is an iterative descent method, providing a sequence of points
(
xk
1 ,x

k
2

)k
converging towards

the solution of Problem (1.3). It involves a reformulation of the constrained Problem 1.3 (ie.
(
xk
1 ,x

k
2

)
∈

∂E1 × ∂E2) into an unconstrained problem, thanks to the introduction of a global function defined ∀zk =(
xk
1 ,x

k
2

)
∈ R6 termed as a penalty function. This penalty function, defined from the two quadratic forms

describing the ellipsoids, is found to be minimized by the solution z∗ = (x∗
1,x

∗
2)

⊤ of Problem (1.3). Given
that the penalty function is not everywhere differentiable, a special gradient method has to be designed to
find the minimizing solution. This has been achieved in [21], using non-smooth analysis tools. Only the
strict computing process associated with the method is presented in the following, all the mathematical
justification can be found in the original paper [21].

19



2.4.1. Reformulating the problem

To stay consistent with the notations in [21], the quadratic forms associated with the ellipsoids (Em)m∈J1,2K
(see Appendix A) are designated by (hm)m∈J1,2K instead of (fm)m∈J1,2K given in (1.1).

The ellipsoids (Em)m∈J1,2K are thus defined by:

Em =
{
x ∈ R3

∣∣hm (x) ≤ 0
}
. (2.46)

Problem (1.3) can be formally reformulated in a 6-dimensional formalism, where two points (x1,x2) are
concatenated into a unique variable

z =

(
x1

x2

)
∈ R6. (2.47)

A function norm f is then defined ∀z ∈ R6 as:

f (z) =
∥x1 − x2∥2

2
. (2.48)

The set Z ⊂ R6 is also defined:

Z =

{
z ∈ R6

∣∣z =

(
x1

x2

)
∈ ∂E1 × ∂E2

}
(2.49)

and can be re-written as: {
Z = {z ∈ R6|ϕ(z) = 0}

with ϕ(z) = |h1(x1)|+ |h2(x2)|.
(2.50)

In this new 6-dimensional formalism, problem (1.3) is equivalent to:

Find zm such as f(zm) = min
ϕ(z)=0

f(z). (2.51)

To solve this constrained problem, an exact penalty function Φλ (see [21]) can be built:

λ > 0, ∀z ∈ R6, Φλ(z) = f(z) + λϕ(z). (2.52)

The use of such function is justified by the following theorem [21]:

Theorem 2. If we endow R6 with the Euclidean norm and the associated metric, there exists λ∗ ∈ R+ such
as ∀λ > λ∗, a local minimum zm of f in Z is also a local minimum of Φλ in R6.

The problem is thus reduced to minimize Φλ in R6 without constraint. Note that the constant λ is called
a penalty, and can be numerically chosen a posteriori, without a theoretical knowledge of λ∗.

Nonetheless, the problem is not simple, as Φλ is not differentiable where hi(xi) = 0. Tamasyan et al. [21]
provides an iterative descent procedure consistent with the previous fact, using non-smooth analysis. The
next subsection is devoted to describe the numerical procedure that computes the direction of descent of Φλ

at the point zk =
(
xk
1 ,x

k
2

)
.

2.4.2. Computing the direction of descent

Let us consider zk ∈ R6 the point built at the iteration k. To construct zk+1, the direction of descent
must be computed to ensure Φλ(z

k+1) < Φλ(z
k).

Since Φλ is not necessarily differentiable at the point zk, its gradient cannot be always defined, and a
weaker mathematical notion have to be used. That is why the hypo-differential dΦλ of Φλ is introduced [21].
The hypo-differential at the point zk, dΦλ

(
zk
)
, is a subset of R7, and can be expressed in the form:

dΦλ(z
k) =

{
W
(
zk, µ1, µ2

)
∈ R7

∣∣ µ1, µ2 ∈ R, |µ1|, |µ2| < λ
}
. (2.53)

20



To express the function W in Eq. (2.53), the quantities Q
(
zk
)
, h′

1 (x1), h′
2 (x2) for z = (x1,x2) ∈ R6

are defined:

Q(z) =

(
x1 − x2

−(x1 − x2)

)
∈ R6, h′

1(x1) =

(
A1x1 + b1

0R3

)
∈ R6, h′

2(x2) =

(
0R3

A2x2 + b2

)
∈ R6. (2.54)

Thus, W is expressed as [21]:

W
(
zk, µ1, µ2

)
=

(
µ1h1(x1) + µ2h2(x2)− λϕ(z)
µ1h

′
1(x1) + µ2h

′
2(x2) +Q(z)

)
. (2.55)

The direction of descent from zk is provided by the smallest vector of dΦλ(z
k) [21]. We thus have to find

W∗ (zk) verifying:

∥W∗∥2 = min
W∈dΦλ(zk)

∥W∥2 = min
µ1,µ2∈[−λ,λ]

∥∥W (
zk, µ1, µ2

)∥∥2 (2.56)

=
∥∥W (

zk, µ∗
1, µ

∗
2

)∥∥2. (2.57)

To find (µ∗
1, µ

∗
2), the partial derivatives of (µ1, µ2) −→ ||W(zk, µ1, µ2)||2 must be equaled zero, which

implies the following system of equations to be satisfied:

(
h2
1(x

k
1) + h′

1(x
k
1) · h′

1(x
k
1) h1(x

k
1)h2(x

k
2)

h1(x
k
1)h2(x

k
2) h2

2(x
k
2) + h′

2(x
k
2) · h′

2(x
k
2)

)(
µ∗
1

µ∗
2

)
=

(
λϕ
(
zk
)
h1

(
xk
1

)
− h′

1

(
xk
1

)
·Q
(
zk
)

λϕ
(
zk
)
h2

(
xk
2

)
− h′

2 (x2) ·Q
(
zk
)) .

(2.58)
One can ensure that |µ∗

m| < λ by setting a value of λ large enough [21].

The direction of descent G∗(zk) ∈ R6, called the hypogradient of Φλ at point zk, is then obtained as the
last 6 components of W∗ (zk), namely:

G∗(zk) = µ∗
1h

′
1(x

k
1) + µ∗

2h
′
2(x

k
2) +Q(zk). (2.59)

which can be written as:

G∗ (zk) = (G∗
1

(
xk
1

)
G∗

2

(
xk
2

)) =

(
µ∗
1

(
A1x

k
1 + b1

)
+ xk

1 − xk
2

µ∗
2

(
A2x

k
2 + b2

)
+ xk

2 − xk
1

)
. (2.60)

The vector −G∗ (zk) indicates the direction of descent in the 6-dimensional space . Thus, to compute
zk+1, the following problem needs to be solved:

Find βk such as Φλ(z
k − βkG∗) = min

β≥0
Φλ(z

k − βG∗). (2.61)

The procedure to solve Problem (2.61) is explained in the next subsection.

2.4.3. Solving Problem (2.61)

In [21], βk is said to be computed analytically, without further explanations. The procedure that has
been applied in this work to compute βk is thus explained in the next lines.

Γ : β −→ Φλ

(
zk − βG∗ (zk)) (2.62)

must be computed explicitly and equaled to zero, providing an equation in β to be solved. This reasoning

supposes that
dΓ

dβ
(βk) is well defined, i.e. Φλ differentiable at zk − βkG∗. This is not necessarily the case,

especially at the target point: indeed the minimum we are looking for is located on Z, where Φλ is not

21



differentiable. Nonetheless, we decide to ignore this for now and compute
dΓ

dβ
for β such that h1(x

k
1−βG1

∗) ̸=
0 and h2(x

k
2 − βG2

∗) ̸= 0:



Γ′(β) =
∂

∂β
f
(
zk − βG∗)+ λ

∂

∂β
ϕ
(
zk − βG∗)

∂

∂β
f
(
zk − βG∗) = − (G∗

1 −G∗
2) ·
(
xk
1 − xk

2

)
+ β (G∗

1 −G∗
2)

2

∂

∂β
ϕ
(
zk − βG∗) = β

∑
m∈J1,2K

[
sm(β) (G∗

m)
⊤
AmG∗

m

]
−

∑
m∈J1,2K

[
sm(β)

(
(G∗

m)
⊤
Amxk

m + (G∗
m)

⊤
bm

)]
,

(2.63)
where

sm(β) = the sign of hm

(
xk
m − βG∗

m

)
. (2.64)

Γ′(β) = 0 implies that:

β =
(G∗

1 −G∗
2) ·
(
xk
1 − xk

2

)
+ λ

∑
m∈J1,2K sm(β)

(
(G∗

m)
⊤
Amxk

m + (G∗
m)

⊤
bm

)
(G∗

1 −G∗
2)

2
+ λ

∑
m∈J1,2K sm(β) (G∗

m)
⊤
AmG∗

m

. (2.65)

Eq. (2.65) enables one to determine βk. If Eq. (2.65) can not be solved, it is assumed that the minimum
of Problem (2.61) is located where Γ is not differentiable, i.e. where:

h1

(
xk
1 − βG∗

1

)
= 0 or h2

(
xk
2 − βG∗

2

)
= 0.

Then,
(
βk
m

)
m∈J1,2K ∈ (R+)

2 are computed such that:

m ∈ J1, 2K, hm

(
xk
m − βk

mG∗
m

)
= 0. (2.66)

For m ∈ J1, 2K, it comes to determine the intersection of the surface ∂Em with the ray starting from xk
m

and directed along −G∗
m (for how to proceed, see Appendix D). As two solutions can exist for the same

βk
m, the smallest positive admissible value for βk

m in accordance with Eq. (2.66) is chosen. Then βk is then
chosen among

(
βk
m

)
m∈J1,2K ∈ (R+)

2 as the one minimizing Γ (see Eq. (2.62)).

2.4.4. Convergence criterion

The algorithm ends when a local minimum of Φλ is reached, i.e. when:∥∥G∗(zk)
∥∥ < ϵG. (2.67)

2.4.5. Ellipsoids overlap

Preliminary tests have shown that convergence issues could arise with overlapping ellipsoids. Since this
algorithm is also time-consuming, it is desirable to first test for the overlap with Jia et al.’s analytical overlap
test described in Appendix C. If no overlap is detected, the algorithm is run to compute the distance.

2.4.6. Summary of the numerical process

The parameters of the algorithm are recalled:

• the penalty constant λ

• the stopping criterion on the hypogradient norm ϵG

22



The numerical procedure of the Exterior Penalty Function Method is summarized in Algorithm 5.

Algorithm 5 Exterior Penalty Function Method
1: k = 0
2: if collision = .TRUE. (Collision Detection Algorithm Appendix C ) then
3: return distance = 0
4: end if
5: For m ∈ J1, 2K, x0

m = [r1, r2] ∩ ∂Em

6: z0 =
(
x0
1,x

0
2

)⊤
7: while Solution is not reached do
8: Compute Q

(
zk
)
, h′

1

(
xk
1

)
and h′

2

(
xk
2

)
with Eq. (2.54)

9: Compute (µ∗
1, µ

∗
2) by solving the system (2.58)

10: Compute G∗ (zk) = (G∗
1

(
xk
1

)
G∗

2

(
xk
2

)) with Eq. (2.60)

11: if
∥∥G∗(zk)

∥∥ < ϵG then
12: return distance =

∥∥xk
1 − xk

2

∥∥
13: end if
14: Compute βk by solving Problem (2.61) following 2.4.3
15: zk+1 =

(
xk
1 ,x

k
2

)⊤
= zk − βkG∗ (zk)

16: k ← k + 1
17: end while

2.5. Jain et al.’ algorithm [4]
A geometrical iterative algorithm has been suggested by Jain et al. [4], in an article that introduces

a methodology to perform Particle-Resolved Direct Numerical Simulations with ellipsoidal particles. The
method is quite simple, but no proof of convergence was given.

2.6. Geometrical procedure
This algorithm consists in parameterizing the surface of the ellipsoids with ellipsoidal coordinates (ν, ϕ) ∈

[0, π]× [−π, π]. In its own frame reference, for an ellipsoid with semi axes (a, b, c), it yields:
x = a cosϕ sin ν

y = b sinϕ sin ν

z = c cos ν.

(2.68)

Those relations can be inverted:

ν = arccos
z

c

ϕ =



arctan
ay

bx
if x > 0

π + arctan
ay

bx
if x < 0 and y ≥ 0

−π + arctan
ay

bx
if x < 0 and y < 0

π

2
if x = 0 and y > 0

−π

2
if x = 0 and y < 0.

(2.69)

At each iteration, by assuming the knowledge of the previous points (xk
1 ,x

k
2) ∈ E1×E2, points (xk+1

1 ,xk+1
2 ) ∈

E1 × E2 are computed as follows:

23




νk+1
m = νkm + Cm

dk
m · tkνm

||dk
m||.||tkνm

||

ϕk+1
m = ϕk

m + Cm

dk
m · tkϕm

||dk
m||.||tkϕm

||

(2.70)

where:

• m = 1, 2 is referring to the considered ellipsoid.

• tkνm
(respectively tkϕm

) is the tangent vector to ∂Em at point xk
m obtained by differentiating Eq. (2.68)

with respect to ν (respectively ϕ).

• Cm are constants, their choice is explained below.

• dk
1 = xk

2 − xk
1 and dk

2 = xk
1 − xk

2 .

The algorithm is initialized in the same manner than the Moving Balls algorithm 2.1: x0
m is chosen as

the intersection point between the segment joining the two mass centers and the surface ∂Em.

•
ϕk
1 •

xk
1

tkϕ1 •
ϕk
2

•
xk
2

tkϕ2

dk
1

E1

E2

Figure 4: 2D illustration for the working of the algorithm proposed by Jain et al. [4].

2.6.1. Choice of the constants Cm

In Jain et al.’ article [4], the constants (Cm)m∈1,2 are prescribed as

CJain
m =

Deq,m

max(am, bm, cm)
(2.71)

where Deq,m is the volumetrically equivalent diameter of the ellipsoid Em. The authors stated that it allows
to take into account the increased curvature generated by non-sphericity.

2.6.2. Convergence criterion

The same criterion expressed in 2.1.1 for the Moving Balls algorithm is also used for this algorithm. A
controlling parameter ϵd has to be used, which ensures that the error of the computed distance is inferior to
ϵd.

24



2.6.3. Ellipsoids overlap

This algorithm does not handle the situation where E1 and E2 collide, so it has to be supplemented with
an additional preliminary algorithm to detect a potential overlap. Jia’s et al.’s analytical overlap test [26] is
then run before executing the algorithm. This test is described in Appendix C. If no overlap is detected, the
algorithm is run and the distance is computed.

2.6.4. Summary of the numerical process

In Algorithm 6, the numerical process of Jain et al.’ method is summarized.

Algorithm 6 Jain et al.’ Distance Algorithm
1: k = 0
2: if collision = .TRUE. (Collision Detection Algorithm Appendix C ) then
3: return distance = 0
4: end if
5: For m ∈ J1, 2K, x0

m = [r1, r2] ∩ ∂Em

6: Compute
(
ν0m, ϕ0

m

)
J1,2K with Eq. (2.69)

7: Set ϵθ with Eq. (2.9)
8: Compute

(
θ0m
)
m∈J1,2K with Eq. (2.3)

9: while θk1 > ϵθ or θk2 > ϵθ do
10: Compute

(
νk+1
m , ϕk+1

m

)
J1,2K with Eq. (2.70)

11: Deduce
(
xk
1 ,x

k
2

)
with Eq. (2.68)

12: Compute
(
θk+1
m

)
m∈J1,2K with Eq. (2.3)

13: k ← k + 1
14: end while
15: return distance =

∥∥xk
1 − xk

2

∥∥
3. Algorithms validation

3.1. Goals
It is aimed here to test and validate the algorithms described in 2, to ensure that they:

• Respect the desired precision.

• Are insensitive to the employed scale.

• Are not excessively time-consuming. When the CPU time of one method is considered, the GJK will
be taken as reference.

A dedicated analytical example is set and described in 3.2. In 3.4, a precision study is realised for
every method with this specific configuration, following a common methodology explained in 3.3. Additional
considerations will be brought for the Newton-Coulomb method (3.4.3), the Exterior Penalty Function
Method (3.4.4) and Jain’s et al.’s method (3.4.5) to rule out these methods.

Note that the goal of this section is not to draw general conclusions about the methods, especially about
CPU time (except when it is excessive): it is aimed in the following to carry out a first validation step, and
to eliminate the methods that do not verify the above-mentioned points.

3.2. Description of the validation case
A two-ellipsoid configuration can be constructed where the solution of problem (1.3) is analytically known:

the case where one ellipsoid is the symmetric of the other with respect to a plane. In this case, the problem

25



is equivalent to compute the distance of an ellipsoid to the plane of symmetry. This can be exactly solved
thanks to support mappings introduced with the GJK algorithm in 2.2 and Appendix G.

An ellipsoid E1 of semi-axes (a, b, b) is considered, with its equivalent diameter Deq = (abb)1/3 set to 1.
The lengths (a, b) are thus completely determined by the aspect ratio Ar = a/b:

a = A
2
3
r
Deq

2

b = A
− 1

3
r

Deq

2
.

(3.1)

Its mass center r1 can move along the x axis, and is then characterised by xc > 0 (see Fig. 5). A rotation
of

π

4
around the z-axis is applied between its major axis and the x-axis. Its symmetric companion E2 with

respect to the yz plane is constructed. The exact solution of problem 1.3 for E1 and E2 is then:
x∗
1 = sE1(−n)

x∗
2 = sE2(n)

d∗ = ||x∗
1 − x∗

2||
(3.2)

where n is the normal vector to yz-plane directed towards E1, and sEm
is the support mapping of the

ellipsoid Em introduced in 2.2 and Appendix G.

•

a

b

r1 = (xc, 0, 0)

π\4

•
x∗
1

E1

•

a

b

r2 = (−xc, 0, 0)

−π\4

•
x∗
2

E2

x

y

O

d∗

sE1
(−n)

n

Figure 5: Description of the analytical validation case.

Three parameters characterize this two-ellipsoid configuration:

• the analytical distance d∗ (or abscissa xc).

• the aspect ratio Ar = a/b.

• a global dilation parameter Λ, acting on all the dimensions (Deq, a, b, xc, d
∗) illustrated in Fig.5.

3.3. Approach for the numerical study on the validation case 3.2
The solution provided by a particular algorithm for the validation case 3.2 will be noted (x1,x2, d =

||x2 − x1||).
For all the numerical tests in 3.4, lengths are then rendered dimensionless by dividing them with the

dimension Deq.

26



For a particular value of the aspect ratio Ar = a/b, the dilation parameter Λ, along with the internal
parameters of one method fixed, the following quantities will be studied as functions of the exact distance
d∗/Deq :

• the accuracy of the distance |d∗ − d|/Deq .

• the accuracy of the minimizing points ∥xm − x∗
m∥/Deq where m is indifferently equal to 1 or 2 thanks

to the symmetry of the considered configuration (see Fig.5).

The parameters related to the two-ellipsoids configuration 3.2 will be chosen as follows:

• the dilation parameter Λ ∈
{
10−6, 10−3, 1, 103, 106

}
.

• the analytical distance d∗/Deq ∈
{
10−k

∣∣k ∈ J0, 6K
}
.

• the aspect ratio Ar = a/b ∈ {1/6 , 1/3 , 2/3 , 3/2 , 3, 6}.

For each algorithm, the approach will be the same:

1. the first parameter to be varied will be the dilation parameter Λ, to ensure that the considered algorithm
is independent of a particular choice of scale.

2. After the algorithm is proven to be scale independent, the value of Λ is set to 1, and all the others
parameters of interest are then varied.

3.4. Numerical results
Following the approach described in 3.3, numerical results are presented for all algorithms detailed in 2.

Indeed, a parametric study is carried for all algorithms by varying the dilation parameter Λ, the aspect ratio
Ar, and the stopping parameter ϵd. Additional considerations are brought for the Newton-Coulomb method
3.4.3, the Exterior Penalty Function Method 3.4.4 and Jain et al.’s method 3.4.5.

3.4.1. Moving Balls algorithm

In this part, the numerical results concerning the validation case 3.2 are shown for the Moving Balls
algorithm 2.1.

The only free parameter for this algorithm is the stopping parameter controlling the accuracy of the
computed distance d.

Precision study with different values of the dilation parameter Λ

In Fig. 6, it is shown that for this particular example 3.2, the Moving Balls algorithm is fairly insensitive to
the working scale. All the curves collapse into a single one for all considered values of the dilation parameter
Λ.

10−6 10−5 10−4 10−3 10−2 10−1 100
10−7

10−6

10−5

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100
10−4

10−3

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 6: Quantities of interest against the distance d∗/Deq for different values of the dilation parameter Λ: ( ) Λ = 10−6,
( ) Λ = 10−3 ( ) Λ = 1, ( ) Λ = 103, ( ) Λ = 106. Ar=3 and ϵd = 10−5Deq .

27



Precision study with different values of the aspect ratio Ar

10−6 10−5 10−4 10−3 10−2 10−1 100
10−8

10−7

10−6

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 7: Quantities of interest against the distance d∗/Deq for different values of the aspect ratio Ar: ( ) Ar = 1/6, ( )
Ar = 1/3, ( ) Ar = 2/3, ( ) Ar = 3/2, ( ) Ar = 3 and ( ) Ar = 6 The ϵd value is set to 10−6Deq .

Fig. 7 shows that the Moving Balls algorithm always meet the desired inequality |d− d∗| ≤ ϵd for any
value of the aspect ratio Ar.

Precision study with different values of the stopping parameter ϵd

10−6 10−5 10−4 10−3 10−2 10−1 100

10−8

10−7

10−6

10−5

10−4

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100

10−4

10−3

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 8: Quantities of interest against the distance d∗/Deq for different values of the stopping parameter ϵd: ( ) ϵb = 10−4Deq ,
( ) ϵd = 10−6Deq and ( ) ϵd = 10−8Deq . Ar is set to 3.

In Fig. 8, it can be verified that the desired inequality |d− d∗| ≤ ϵd holds over the whole range of distances
d∗/Deq .

Conclusion
For this particular validation case, The Moving Balls algorithm meets all the required criteria expressed

in 3.1.

3.4.2. GJK algorithm

In this paragraph, the results of the numerical experiments on the validation case 3.2 are shown, for the
GJK algorithm 2.

The only free parameter of the GJK algorithm is the desired maximum error ϵd on the distance.
Note that if the initial vector v0 is chosen as the centers difference r1 − r2 as specified in Algorithm 2,

then the GJK algorithm returns the analytical result within 1 iteration. That is why an arbitrary initial
condition

v0 = (2xc, 2b, 2b)
⊤ ∈ E1 − E2 (3.3)

has been used in this subsection for this particular validation case.

28



Precision study for different values of the scaling parameter Λ

In Fig. 9, it is verified that the relative accuracy of the GJK algorithm is rigorously independent on the
scaling parameter Λ with this particular example. All the curves error/Deq = f (d∗/Deq ) collapse into a
single one.

10−6 10−5 10−4 10−3 10−2 10−1 100
10−6

10−5

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100

10−5

10−4

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 9: Quantities of interest against the distance d∗/Deq for different values of the dilation parameter Λ: ( ) Λ = 10−6,
( ) Λ = 10−3 ( ) Λ = 1, ( ) Λ = 103, ( ) Λ = 106. Ar=3 and ϵd = 10−5Deq .

Precision study with different values of the aspect ratio Ar

10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−6

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100
10−7

10−6

10−5

10−4

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 10: Quantities of interest against the distance d∗/Deq for different values of the aspect ratio Ar: ( ) Ar = 1/6, ( )
Ar = 1/3, ( ) Ar = 2/3, ( ) Ar = 3/2, ( ) Ar = 3 and ( ) Ar = 6 . ϵd is set to 10−6Deq .

Figure 10 shows that the global precision is almost independent on the aspect ratio on this particular
example. The precision of the distance is coherent with the assigned value of the parameter ϵd, meaning
that the inequality |d− d∗| ≤ ϵd holds. A peculiar behaviour is observed for the error ∥xm − x∗

m∥/Deq

associated with the minimizing point xm (right Fig. 10): this error increases with the distance d∗/Deq while
the distance error |d− d∗|/Deq (left Fig. 10) remains constant or even decreases with the distance d∗/Deq.
No explanation has been found.

Precision study with different values of the stopping criterion ϵd

Fig. 11 shows that the desired accuracy of the distance, set by ϵd, is always verified (i.e. |d− d∗| < ϵd).
The same curious trend observed in the previous test is also observed here: when the distance d∗/Deq

increases, the distance error |d− d∗|/Deq stays constant but the point error ∥xm − x∗
m∥/Deq increases.

Conclusion
For this particular validation case, the GJK algorithm meets the required criteria expressed in 3.1. An

unexplained opposite behavior has been observed between the distance error and the minimizing point error.
Nonetheless, it is worth noting that the particular initial condition used in this numerical analysis (Eq. (3.3))
can be the origin of such behavior.

29



10−6 10−5 10−4 10−3 10−2 10−1 100
10−9

10−8

10−7

10−6

10−5

10−4

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100

10−8

10−6

10−4

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 11: Quantities of interest against the distance d∗/Deq for different values of the stopping parameter ϵd: ( ) ϵd =
10−4Deq , ( ) ϵd = 10−6Deq and ( ) ϵd = 10−8Deq . Ar is set to 3.

3.4.3. Newton-Coulomb Method

In this part, the results of the numerical experiments on the validation case 3.2 are shown, for the
Newton-Coulomb method 4.

The parameters of the Newton-Coulomb method are recalled:

• ϵd the stopping parameter limiting the distance error.

• Cmax, being the maximum value of the Ck
curv,m coefficients ( Eq. (2.45) ).

• τ , being the parameter controlling the magnitude of Ck
curv,m in small-distance configurations (Eq. (2.45)).

• λ, being the shrinking factor appearing in the backtracking loop.

Calibration of Cmax, τ and λ

These three internal parameters need to be calibrated. Until further notice, their value is set to:

• Cmax = 0.01

• τ = 1

• λ = 0.5

Precision study with different values of the dilation parameter Λ

10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−6

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100
10−4

10−3

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 12: Quantities of interest against the distance d∗/Deq for different values of the dilation parameter Λ: ( ) Λ = 10−6,
( ) Λ = 10−3 ( ) Λ = 1, ( ) Λ = 103, ( ) Λ = 106. Ar=3 and ϵd = 10−5Deq

In Fig. 12, it is shown that algorithm is independent of the dilation parameter Λ, since here again all the
curves |d− d∗|/Deq = f(d∗/Deq) collapse into one. This is an expected consequence of the modifications

30



brought to the method in 2.3.2, because the displacement at each iteration is scaled proportionally to the
dimensions of the ellipsoid (see Eq. (2.40) and Eq. (2.41)).

Precision study with different values of the aspect ratio Ar

10−6 10−5 10−4 10−3 10−2 10−1 100
10−10

10−9

10−8

10−7

10−6

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−6

10−5

10−4

10−3

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 13: Quantities of interest against the distance d∗/Deq for different values of the aspect ratio Ar: ( ) Ar = 1/6, ( )
Ar = 1/3, ( ) Ar = 2/3, ( ) Ar = 3/2, ( ) Ar = 3, and ( ) Ar = 6 . ϵd is set to 10−6Deq

Figure 13 shows the distance error |d− d∗| stays inferior to the desired limit ϵd, for all aspect ratios Ar

and distances d∗/Deq considered. High variations of both errors with the distance d∗/Deq are observed.

Precision study with different values of the stopping parameter ϵd

Figure 14 shows that that for several values of ϵd, the desired inequality |d∗ − d| ≤ ϵd holds over the

range of tested distances
d∗

Deq
.

10−6 10−5 10−4 10−3 10−2 10−1 100
10−10

10−9

10−8

10−7

10−6

10−5

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100

10−5

10−4

10−3

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 14: Quantities of interest against the distance d∗/Deq for different values of the stopping parameter ϵd: ( ) ϵd =
10−4Deq , ( ) ϵd = 10−6Deq and ( ) ϵd = 10−8Deq . Ar is set to 3.

Comparison of the computing-cost with the GJK algorithm
Despite good performances in terms of computing time on the validation case (not shown) compared

to widely used algorithms such as the MB algorithm or the GJK algorithm, the implementation 4 of the
Newton-Coulomb method revealed to be disappointing a posteriori in terms of both computing-time and
robustness. The method also suffers from an high number of parameters that makes it tedious to calibrate.

To illustrate these difficulties, the computing-time of the Newton-Coulomb Method has been compared
to the GJK algorithm on a small randomly-generated array of mono-dispersed spheroids with aspect ratio

Ar =
1

6
(see 4.1.1 for the details regarding the array generation). The values of the parameters that have

been used in this comparison are compiled in Table 1, as well as the results of the comparison.

31



Both algorithms

ϵd 10−5Req

NCM

Cmax 0.01

τ 0.01

λ 0.5

Array parameters

aspect ratio Ar 1/6

array size L/Deq 5

volume fraction αp 0.25

Test results

Number of distance queries 606

Number of convergence failures 3

computing-time NCM
computing-time GJK

216

Table 1: Computing-time comparison between the GJK algorithm and Newton-Coulomb method: parameters and results.

The parameters of the Newton-Coulomb method have been chosen to enable a consequent number of
distance queries to succeed (small values for Cmax and τ). Yet, on the total number of 606 distance queries,
the algorithm failed to converge 3 times (a limit has been set to 105 iterations). In the meanwhile, the
Newton-Comlomb method has spent 216 times more CPU time than the GJK algorithm to solve these 606
distance queries.

This overhead can be reduced by increasing Cmax and τ , but the number of problematic distance queries
will also increase.

For informative purposes, one among the 3 problematic two-ellipsoid configurations is reported:

m = 1 m = 2

am A
2
3
r Deq/2

bm A
− 1

3
r Deq/2

cm A
− 1

3
r Deq/2

r⊤m (2.933, 8.555, 0.831) (0.231, 9.120, 1.451)

qp,m (0.116,−0.561,−0.087,−0.815) (0.351,−0.701,−0.525,−0.332)

Table 2: Two-ellipsoid configuration where the Newton-Coulomb fails to converge within 105 iterations.

Conclusion
The numerical results obtained with the validation case 3.2 did not disqualify the Newton-Coulomb

Method. However, this algorithm will not be considered in the statistical study 4, for the following reasons:

• high number of parameters that makes the method tedious to calibrate.

• robustness issues.

• high computing-time in comparison with the widely used GJK algorithm.

32



However, it is hoped that the proposed implementation of this paper can constitute a basis for one willing
to improve the method.

3.4.4. Exterior Penalty Function method

In this part, the results of the numerical experiments for the validation case 3.2 are shown, for the Exterior
Penalty Function Method 2.4.

The parameters of the algorithm are recalled:

• the penalty constant λ.

• the stopping criterion limiting the hypo-gradient norm ϵG.

Precision study with different values of the dilation parameter Λ

It has been tried to scale the internal parameters λ and ϵG following dimensional analysis. Indeed, these
parameters have the following dimensions:

• [λ] = length2, as can be seen in Eq. (2.52).

• [ϵG] = length, as can be seen in Eq. (2.59).

Thus, it would seem natural to set these parameters λ and ϵG proportional respectively to D2
eq and Deq,

following the convention that has been used so far to work with dimensionless lengths. By doing so, the
obtained results are shown in Fig.15. Note that the values of the dilation parameter Λ chosen for this figure
differs from the ones used so far for the other algorithms in Fig. 6, 9 and 12, because for certain of these
values the convergence of the Exterior Penalty Function Method is not obtained.

10−6 10−5 10−4 10−3 10−2 10−1 100

10−9

10−7

10−5

10−3

d∗

Deq

|d
−
d
∗
|

D
e
q

10−4 10−3 10−2 10−1 100 101 102

10−5

10−4

10−3

10−2

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 15: Quantities of interest against the distance d∗/Deq for different values of the dilation parameter Λ: ( ) Λ = 10−3,
( ) Λ = 1, ( ) Λ = 10 and ( ) Λ = 102. The ϵG value is set to 10−4Deq , and the λ constant is set to 103D2

eq .

It can be seen that the results of the precision study differ when changing the value of Λ. For the
previously used values Λ = 10−6 or 103, the convergence of the Exterior Penalty Function Method is not
obtained. These observations demonstrate that the adequate scaling of the internal parameters for the
implementation of this algorithm described in 2.4 is not trivial.

Nonetheless, the parameter study is carried out in the following paragraphs with Λ = 1.

Precision study with different values of the aspect ratios Ar

33



10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−6

10−5

10−4

10−3

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100

10−5

10−4

10−3

10−2

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 16: Quantities of interest against the distance d∗/Deq for different values of the aspect ratio Ar: ( ) Ar = 1/6, ( )
Ar = 1/3, ( ) Ar = 2/3, ( ) Ar = 3/2, ( ) Ar = 3, and ( ) Ar = 6. ϵG is set to 10−4Deq , and the λ constant is set to 104D2

eq .

In Fig. 16, several curves |d− d∗|/Deq = f (d∗/Deq ) and ∥xm − x∗
m∥/Deq = f (d∗/Deq ) are plotted,

each one corresponding to a particular aspect ratio Ar. All these curves illustrates a loss of precision when
the distance tends to zero.

Precision study with different values of the stopping parameter ϵG

10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−5

10−3

10−1

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 17: Quantities of interest against the distance d∗/Deq for different values of the stopping parameter ϵG: ( ) ϵG =
10−2Deq , ( ) ϵG = 10−3Deq and ( ) ϵG = 10−4Deq . Ar is set to 3 and λ to 103D2

eq .

In Fig. 17, different curves |d− d∗|/Deq = f (d∗/Deq ) and ∥xm − x∗
m∥/Deq = f (d∗/Deq ) are plotted for

different values of the stopping parameter ϵG. It can be seen that the error decreases slowly when decreasing
the value of ϵG. It seems, that this algorithm cannot reach high precision for distances d∗/Deq ≤ 10−3 ,
since further decreasing the value of ϵG (below 10−4Deq) can generates convergence issues. This is a serious
drawback, in comparison with the algorithms studied in 3.4.1 and 3.4.2 that can easily reach far lower errors.
Fig. 17 also shows that with the smallest possible value of ϵG = 10−4Deq (below this value the algorithm
does not converge), the error on the distance for small d∗/Deq cannot reach the level of accuracy easily
attained with the Moving Balls algorithm for instance (Fig. 8).

Precision study with different values of the penalty constant λ

34



10−6 10−5 10−4 10−3 10−2 10−1 100

10−7

10−6

10−5

10−4

10−3

d∗

Deq

|d
−
d
∗
|

D
e
q

10−6 10−5 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

d∗

Deq

‖x
m
−
x
∗ m
‖

D
e
q

Figure 18: Quantities of interest against the distance d∗/Deq for different values of the penalty constant λ: ( ) λ = 1000, ( )
λ = 5000 and ( ) λ = 10.000. Ar is set to 3 and ϵG to 10−4Deq .

Figure 18 shows that, on this particular validation case, the committed error on the solution seems to be
weekly dependant on the value of the penalty constant λ. This constant must then be chosen large enough to
ensure the convergence and ensure the constraint to be satisfied, but not too large to avoid a unreasonnable
computational cost.

Computing time comparison with the GJK algorithm
This algorithm is found to be very time-consuming. To illustrate this fact, it is shown in Fig. 19 that in

this particular example the Exterior Penalty Function method is two to four orders more time-consuming
than the widely used GJK algorithm, with parameters chosen so that the GJK algorithm is way more accurate
(ϵd = 10−6Deq) than the Exterior Penalty Function Method over the whole range of tested distances.

10−6 10−5 10−4 10−3 10−2 10−1 100
101

102

103

104

d∗

Deq

t p
e
n

t G
J
K

Figure 19: Computing time ratio between the Exterior Penalty Function method and the GJK algorithm tpen/tGJK against
the exact distance d∗/Deq , for different values of the aspect ratio Ar: ( ) Ar = 1/6, ( ) Ar = 1/3, ( ) Ar = 2/3, ( ) Ar = 3/2,
( ) Ar = 3, and ( ) Ar = 6. ϵG = 10−4Deq , λ = 103D2

eq for the Exterior Penalty Function Method, and ϵd = 10−6Deq for the
GJK algorithm.

Conclusion
Different reasons make the Exterior Penalty Function Method a less viable option, and thus it will not

appear in the statistical study 4. Indeed:

• The choice for the internal parameters λ and ϵG is not obvious, in particular in order to make the
algorithm insensitive to the dilation parameter Λ.

• It is difficult to obtain high accuracy in comparison with other methods.

• The computing time is excessive in comparison with other methods such as the GJK algorithm.

35



3.4.5. Jain et al.’s algorithm

In this part, some numerical results on the validation case 3.2 are presented, for Jain et al.’s algorithm.
It is recalled that this algorithm features the constants (Cm)m∈J1,2K appearing in (2.70). In the original

article [4], these constants are set with Eq. (2.71).
It has been noticed that Jain et al.’s algorithm fails to converge on the validation case for small distances

between the two ellipsoids. To address this issue, it has been first tried to reduce the value of the (Cm)m∈J1,2K
constants with respect to the scaling (2.70) introduced by Jain et al. [4]. Nonetheless, as will be shown in
the next paragraphs, this measure is not sufficient to correct this robustness issue.

Minimal distance of convergence with different values of the aspect ratio Ar, and different
values of the (Cm)m∈J1,2K constants

Since Jain et al.’s algorithm does not converge for all investigated distances d∗/Deq , full curves similar
to the ones presented in Figs. 7, 10, 13 and 16 for the previous algorithms are not reported. Instead,
the observed distance d∗ below which Jain et al.’s algorithm fails to converge on the validation case is
reported, with different values of the aspect ratio Ar, and different values for the (Cm)m∈J1,2K constants.
It is observed that prescribing a value of (Cm)m∈J1,2K twice as small as in Eq. (2.71) greatly enhances the
range of convergence of the algorithm (the algorithm converges down to smaller distances d∗) for all aspect
ratios, while still not covering the full range of investigated distances d∗/Deq (conversely to the Moving Ball
algorithm in Fig. 7 or to the GJK algorithm in Fig. 10 for instance). Curiously, further diminishing the value
of (Cm)m∈J1,2K increases the value of the minimal distance of convergence up to an apparent plateau. This
effect is thought to be very specific to this two-ellipsoid configuration.

Ar

Cm/CJain
m

1 1/2 1/4 1/10 1/20

1/6 10−1 10−2 10−3 10−2 10−3

1/3 100 10−4 10−2 10−2 10−2

2/3 100 10−6 10−2 10−2 10−2

3/2 10−1 10−4 10−2 10−2 10−2

3 10−2 10−3 10−2 10−2 10−2

6 100 10−3 10−2 10−2 10−2

Table 3: Value of d∗/Deq below which Jain et al.’s algorithm is observed not to converge, for different values of the aspect ratio
Ar and different values of the (Cm)m∈J1,2K. ϵd/Deq is set to 10−6.

Minimal distance of convergence with different values of the stopping parameter ϵd, and dif-
ferent values of the (Cm)m∈J1,2K constants

As in the previous paragraph, we report in Table 4 the observed distance d∗ below which Jain et al.’s
algorithm fails to converge on the validation case, but this time with different values of the stopping parameter
ϵd, and different values for the (Cm)m∈J1,2K constants. Firstly, for the value of Cm prescribed in Eq. (2.71), it is
observed that the smaller the stopping criterion ϵd, the bigger the minimal distance of convergence. Secondly,
the same trend than in Table 3 is observed when diminishing the value of the (Cm)m∈J1,2K constants: the
minimal distance of convergence d∗ goes smaller when dividing the value CJain

m by two, but then increases
when further decreasing the value of the (Cm)m∈J1,2K constants.

36



ϵd/Deq

Cm

/
CJain

m
1 1/2 1/4 1/10 1/20

10−4 10−3 10−4 10−3 10−2 10−2

10−6 10−2 10−3 10−2 10−2 10−2

10−8 10−1 10−2 10−2 10−2 10−2

Table 4: Value of d∗/Deq below which Jain et al.’s algorithm is observed not to converge, for different values of the stopping
parameter ϵd and different values of the (Cm)m∈J1,2K. The aspect ratio Ar is set to 3.

Therefore, a lack of robustness seems to be exhibited by these two last paragraphs. To further investigate
this point, the algorithm has been tested on a small randomly-generated array of ellipsoids to observe the
algorithm behaviour in a more practical context. The results are shown in the next paragraph.

Test on a small randomly-generated array, and computing cost comparison with the GJK
algorithm

Jain et al.’s algorithm has been run on a small randomly-generated array of mono-dispersed spheroids
with aspect ratio Ar = 1/6 (see 4.1.1 for the details regarding the array generation). Note that this choice
for the aspect ratio is arbitrary. The value of the (Cm)m∈J1,2K has been varied, and for each value all distance
queries in the array are treated (successfully or not) between pairs of spheroids that verify an augmented
bounding sphere test (4.2). In Table 5 are reported the percentage of convergence failure of Jain et al.’s
algorithm and the computing cost comparison with the GJK algorithm for the successful distance queries.
All involved parameters are also reported. These results exhibits a persistent robustness issue of Jain et al.’s
algorithm despite considerably diminishing the value of the (Cm)m∈J1,2K constants with respect to the value
CJain

m (2.71) recommended by Jain et al. [4]. Moreover, decreasing the value of the (Cm)m∈J1,2K constants
increases the computing cost of Jain et al.’s algorithm, as shows the computing cost comparison with the
GJK algorithm.

Array parameters

aspect ratio Ar 1/6

array size L/Deq 5

volume fraction αp 0.25

Algorithm parameters

ϵd 10−5Req

Cm

/
CJain

m 1/10 1/20 1/40 1/100 1/200

Numerical results

number of distance queries 606

% of convergence failure 22 13 9 5 3

computing time Jain et al.
computing time GJK

2.0 3.9 7.4 18 35

Table 5: Numerical test of Jain et al. algorithm on a small randomly-generated array of oblate spheroids, and computing cost
comparison with the GJK algorithm for the successful distance queries. Both algorithms are set with ϵd = 10−5Req . The value
of the (Cm)m∈J1,2K constants in Jain et al. algorithm is varied.

To overcome this lack of robustness while maintaining a small computing time, it has been tried to
adaptively scale at each iteration the value of the (Cm)m∈J1,2K constants with a "backtracking loop", on the

37



model of the one introduced by Abbasov [20]. This "backtracking loop" consists of the following step at each
iteration k:

• at the beginning of the iteration k, an initial value Cm = CJain
m (Eq. (2.71)) is used to compute a new

provisional distance vector.

• if the norm of this provisional distance vector is not inferior to the distance dk−1 computed at the
previous iteration k− 1, a smaller value λCm is used to compute a second provisional distance vector.

• if the norm of this second provisional distance vector is not inferior to the distance dk−1, the process is
repeated with a value λlCm (l is the index of the backtracking loop) until the new provisional distance
vector becomes smaller than the distance dk−1.

This attempt of improvement revealed unfruitful, and the reason for this has been analysed on the exemple
pictured in Fig. 20. For this example, Jain et al.’s algorithm does not converge with the (Cm)m∈J1,2K

constants set with Eq. (2.71). It has been observed that a value Cm = CJain
m

/
3 enables the algorithm to

converge (without resorting to the backtracking loop). However, when run with the backtracking loop, the
algorithm becomes trapped in it, because at some iteration k, the algorithm fails to generate new points(
xk
1 ,x

k
2

)
∈ ∂E1 × ∂E2 that verifies ∥∥xk

1 − xk
2

∥∥ ≤ ∥∥xk−1
1 − xk−1

2

∥∥. (3.4)

•
a1 = 4

b1 = 1

r1 = (3, 0, 0)

•

a2 = 4

b2 = 1

r2 = (0, 5, 0)

x

y

O

Figure 20: A configuration where the algorithm proposed by Jain et al. [4] does not converge. The third axis of both ellipsoids
is set to c1 = c2 = 1.

Conclusion
Jain et al. will not be considered in the statistical study 4 for the following reasons:

38



• convergence issues on the validation case in the regime of small distances, despite diminishing the value
of the (Cm)m∈J1,2K constants with respect to the value (2.71) introduced in [4].

• convergence issues observed on solving distance queries inside a moderately dense array of oblate
spheroids. Diminishing the value of the (Cm)m∈J1,2K constants enables to improve the ratio of converged
distance queries. However, the computing cost then becomes way bigger than widely known algorithms
such that the GJK algorithm.

• adding a backtracking loop does not solve the problem of appropriately scaling the (Cm)m∈J1,2K due to
the non-monotonic character of the algorithm.

3.5. Conclusions
The purpose of this study was to assess the ability of the methods to satisfy criteria expressed in 3.1,

on a particular two-ellipsoid configuration 3.2. In this regard, the Moving Balls 2.1 and GJK 2.2 algorithms
successfully passed this test; these two algorithms will be further investigated in the next section.

The Newton-Coulomb method 2.3, in its modified version 2.3.3, is also shown to successfully pass this
simple validation case. Nonetheless, this algorithm revealed unusable a posteriori when studied on randomly-
generated arrays of ellipsoids, because of a high number of parameters to calibrate, robustness issues, and
high computation-time.

The Exterior Penalty Function Method 2.4 was ruled out by this first test. Indeed, no adequate scaling of
the method’s internal parameters was found to obtain scale independence, and the error control was shown
to be poor. Even if considerations about computing time were not conducted on the validation case in this
section (because general conclusions could not be made with a particular example), an exception was made
for this algorithm to illustrate its excessive computing cost.

Finally, Jain et al.’ algorithm 2.5 was shown to suffer from a lack of robustness. This problem is shown
to be partly solved by reducing the value of the constants controlling the step size at each iteration, but
at the detriment of the computing cost that becomes prohibitively slow compared to the GJK algorithm.
Moreover, adding a backtracking loop to ensure robustness and a small computing cost is not possible due
to the non-monotonic character of the algorithm.

4. Statistical study of the computing time on randomly-generated
arrays of ellipsoids

In the last Section, the algorithms described in Section 2 were studied on a particular two-ellipsoid
configuration 3.2. No considerations were given regarding the computing time on this validation case, since
any conclusion would have been limited to this particular configuration (exception is found in 3.4.4, to
illustrate the excessive computation cost of the Exterior Penalty Function method 2.4).

In this section, it is therefore proposed to study the methods validated in 3.2 (i.e. the Moving Balls 2.1
and GJK 2.2 algorithms) on randomly-generated arrays of mono-dispersed spheroids, in order to assess their
robustness and make statistically true conclusions about the computing cost of these methods.

Firstly, the methodology used to carry this computing-time study is detailed in 4.1. Thereafter, a
statistical convergence study is led algorithm by algorithm in 4.2, to determine the minimal size of the
arrays that necessitates being used to get statistically significant results. Finally, the computing-costs of the
algorithms are compared in 4.3.

4.1. Methodology
In this subsection, the methodology that will be applied to compare the computing times of the algorithms

is described.
In 4.1.1, the characteristics of the randomly-generated arrays are given.
In 4.1.2, the approach to measure a mean computing-cost that is statistically significant is detailed.

39



4.1.1. Arrays generation

For all situations, the equivalent diameter Deq of the ellipsoids is kept constant for every aspect ratio Ar.
The semi-axes lengths (a, b, b) of a spheroid which aspect ratio equals Ar are then given by:

a = A
2
3
r
Deq

2

b = A
− 1

3
r

Deq

2
.

(4.1)

Each generated array of mono-dispersed spheroids is characterized by the following quantities:

• the spheroids aspect ratio Ar.

• the non-dimensional length l = L/Deq of the cubix box containing the ellipsoids.

• the volume fraction αp = Np
4

3
πR3

eq

/
L3 .

Since in PR-DNS particles repel each other (due to solid repulsion), arrays are generated without any
overlap, to work in the conditions under which the distance algorithms would be used.

To generate random packings without overlap between the spheroids, a Random Sequential Adsorption
(RSA) algorithm is used. Each array is filled particle after particle. The position and orientation of the
new particle to insert are randomly picked, and the overlap is tested with every particle already generated
with the Jia et al.’ algorithm [26], that is described in Appendix C. If no overlap is detected with these
"old particles", the new particle is retained. Otherwise, another position and orientation are picked, and
the procedure is repeated until the new particle can fit in. The algorithm goes on until the desired volume
fraction αp is reached. With this method, volume fractions αp can be obtained up to 0.25.

Another feature of these packings is periodicity. It suppresses edge effects due to the lack of neighbors
for spheroids located near the surfaces of the cubical domain. The periodicity of the arrays is taken into
account by adapting the overlap test in the Random Sequential Algorithm described above.

4.1.2. Approach for the computing time statistical study

Distance queries
For a particular array (Ar, αp, l), all possible distance queries are not solved; the total number of these

queries grows approximately as Np (Np − 1)/2 , the approximation coming from the periodic character of
the array. Instead, the distance is computed for pairs that potentially necessitate a lubrication correction.
It means that, for two spheroids with centers (rm)m∈J1,2K and same semi-axes lengths (a, b, b), the distance
between them is computed if the following bounding sphere test augmented by a small distance is verified:

∥r1 − r2∥ ≤ 2max(a, b) + ϵalReq. (4.2)

where ϵal is a small parameter setting the distance threshold below which distance-dependent lubrication
corrections would be applied during a PR-DNS. The order of magnitude of ϵal can be found in [7], and in
the following, it is fixed to:

ϵal = 0.2. (4.3)

Definition of a converged mean computing time
For each distance method, working with tall enough arrays enables to make statistically true statements

about the dependency of its computing cost on:

• the geometrical parameters, meaning the aspect ratio Ar ∈ [ 1/6 , 6] and the volume fraction αp ∈
[0.05, 0.25].

• the desired accuracy ϵd.

40



For a particular value of (Ar, αp, l, ϵd), the total computing time to solve all the distance queries in the cor-
responding array can be measured. From this total computing time, a mean computing time ⟨∆t⟩ (Ar, αp, l, ϵd)
per proximity query can be defined

⟨∆t⟩ (Ar, αp, l, ϵd) =
total computing time for solving all distance queries

total number of distance queries
. (4.4)

If the size l of the domain is tall enough (equivalently if enough random binary configurations of ellipsoids
are treated), the mean computing time (4.4) becomes independent of l. Therefore, there exists a size threshold
lt such that

∀l ≥ lt, ⟨∆t⟩ (Ar, αp, l, ϵd) ≡ ⟨∆t⟩ (Ar, αp, ϵd) . (4.5)

⟨∆t⟩ is called converged mean computing time.
For each method X ∈ {MB,GJK}, a size threshold lt,X will be identified in 4.2. It will enable to define

converged mean computing times
(
⟨∆t⟩X

)
X∈{MB,GJK}

, that will be then compared in 4.3 for different values

of the aspect ratio Ar, the volume fraction αp and the precision parameter ϵd.

4.2. Identification of the convergence thresholds
In this subsection, the goal is, for each algorithm, to identify a domain-size threshold lt, defined by the

property (4.5).
At this stage, since no comparison between the algorithms is performed, the mean number of iterations

⟨Nit⟩ will be studied instead of directly measuring the mean computing-time ⟨∆t⟩. Indeed, absolute com-
puting times are submitted to high fluctuations over a long period, engendering difficulties to analyze data
when the solving of all distance queries takes several hours.

4.2.1. MB algorithm

In Fig. 21, the mean number of iterations per distance query ⟨Nit⟩ of the MB algorithm is plotted against
the non dimensional-size of the domain, for a single value of ϵd = 10−5Deq. Each subfigure corresponds to
a value of the aspect ratio Ar, and each curve corresponds to a value of the volume fraction αp. It can be
seen that an appropriate value of the threshold lt,MB for defining a converged mean computing time can be
taken as:

lt,MB = 30 (4.6)

Indeed, Fig. 21 remains qualitatively the same for ϵd/Req ∈ [10−8, 10−4] (not shown).

41



5 10 15 20 25 30 35 40

120

130

140

l

〈N
it
〉

(a) Ar = 1/6

5 10 15 20 25 30 35 40

17

17.5

18

18.5

l

〈N
it
〉

(b) Ar = 1/3

5 10 15 20 25 30 35 40

6.2

6.4

6.6

6.8

l

〈N
it
〉

(c) Ar = 2/3

5 10 15 20 25 30 35 40

5.4

5.6

5.8

l
〈N

it
〉

(d) Ar = 3/2

5 10 15 20 25 30 35 40

17

17.5

18

18.5

l

〈N
it
〉

(e) Ar = 3

5 10 15 20 25 30 35 40

50

51

52

53

l

〈N
it
〉

(f) Ar = 6

Figure 21: Mean number of iterations per distance query of the MB algorithm against the dimensionless domain size l for
different values of the volume fraction αp and Ar. ( ) αp = 0.05, ( ) αp = 0.10 ( ) αp = 0.15, ( ) αp = 0.20, ( ) αp = 0.25.
ϵd is set to 10−5Req . To one subfigure corresponds a single value of Ar.

4.2.2. GJK algorithm

In Fig. 21, the mean number of iterations per distance query ⟨Nit⟩ of the GJK algorithm is plotted against
the non dimensional-size of the domain, for a single value of ϵd = 10−5Deq. Each subfigure corresponds to
a value of the aspect ratio Ar, and each curve corresponds to a value of the volume fraction αp. It can be
seen that an appropriate value of the threshold lt,GJK for defining a converged mean computing time can be
taken as:

lt,GJK = 30 (4.7)

Indeed, Fig. 22 remains qualitatively the same for ϵd/Req ∈ [10−8, 10−4] (not shown).

42



5 10 15 20 25 30 35 40

16.5

17

17.5

l

〈N
it
〉

(a) Ar = 1/6

5 10 15 20 25 30 35 40

15

16

l

〈N
it
〉

(b) Ar = 1/3

5 10 15 20 25 30 35 40
14

15

16

l

〈N
it
〉

(c) Ar = 2/3

5 10 15 20 25 30 35 40

12.5

13

l
〈N

it
〉

(d) Ar = 3/2

5 10 15 20 25 30 35 40

11.5

12

12.5

l

〈N
it
〉

(e) Ar = 3

5 10 15 20 25 30 35 40
12

12.2

12.4

12.6

12.8

l

〈N
it
〉

(f) Ar = 6

Figure 22: Mean number of iterations per distance query of the GJK algorithm against the dimensionless domain size l for
different values of the volume fraction αp. ( ) αp = 0.05, ( ) αp = 0.10 ( ) αp = 0.15, ( ) αp = 0.20, ( ) αp = 0.25. ϵd is set
to 10−5Req . To one subfigure corresponds a single value of Ar.

4.3. Computing-costs comparison
A converged mean computing-time per distance query ⟨∆t⟩X is now defined for each method X ∈

{MB,GJK}. In the following subsection, the ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK will be studied as a function of the

remaining parameters, that are recalled to be:

• the aspect ratio Ar.

• the volume fraction αp.

• the accuracy ϵd.

In 4.3.1, the independence from αp of the ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK will be outlined, so that the parametric

study is actually reduced to varying the aspect ratio Ar and the desired accuracy ϵd.

In 4.3.2, the ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK is studied as a function of the remaining parameters Ar and ϵd.

43



4.3.1. Independence of the ratio
⟨∆t⟩MB

⟨∆t⟩GJK
from the volume fraction αp

In Fig. 23, the computing-time ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK is plotted for multiple values of the aspect ratio

Ar and the accuracy ϵd as a function of the volume fraction αp. It shows that the computing-time ratio
⟨∆t⟩MB

/
⟨∆t⟩GJK is almost independent from the volume fraction, since the curves ⟨∆t⟩MB

/
⟨∆t⟩GJK =

f(αp) at constant ϵd and Ar are nearly horizontal lines.
This enables to simplify the parametric study of the computing-time ratio by eliminating the volume

fraction αp. What remains to be done is to study the dependence of the computing-time ratio on the
remaining parameters, namely the aspect ratio Ar and the desired accuracy ϵd. The results of this study are
shown in the next paragraph.

0.05 0.1 0.15 0.2 0.25

10−3
10−4

10−5
10−6

10−7

1

2

3

4

5

αp εd
Req

〈∆
t〉

M
B

〈∆
t〉

G
J
K

Figure 23: Computing-time ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK as a function of αp. Each curve corresponds to a value of ϵd, and each

color corresponds to a value of Ar: ( ) Ar =
1

6
, ( ) Ar =

1

3
, ( ) Ar = 3, and ( ) Ar = 6.

4.3.2. Study of the ratio
⟨∆t⟩MB

⟨∆t⟩GJK
as a function of aspect ratio Ar and desired accuracy ϵd

In Fig. 24, the computing-time ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK is plotted against the aspect ratio Ar for different

values of the desired accuracy ϵd. For the range of investigated values ϵd/Req ∈
[
10−7; 10−3

]
, a general

observation can be done:

• in a range of aspect ratios Ar ∈ [ 1/3 , 3], the computing-time ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK is shown to be

inferior to 1: in this range of aspect ratios, the MB algorithm is thus faster than the GJK algorithm.
For the sphere-like aspect ratios Ar = 2/3 and 3/2 , the MB algorithm is for instance 2 to 3 times
faster than the GJK algorithm.

• for aspect ratios Ar ≤ 1/3 or Ar ≥ 3, the computing time ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK is shown to be

superior to 1: in this range of aspect ratios, the GJK algorithm is thus faster than the MB algorithm.
The gain in computing-time can be considerable, with the GJK algorithm being more than 4 times
faster than the MB algorithm at Ar = 1/6 for instance.

44



1
6

1
5

1
4

1
3

2
3

1 3
2

3 4 5 6
0

1

2

3

4

5

Ar

〈∆
t〉

M
B

〈∆
t〉

G
J
K

Figure 24: Computing-time ratio ⟨∆t⟩MB

/
⟨∆t⟩GJK as function of aspect ratio Ar. Each curve corresponds to a value of the

desired accuracy ϵd: ( )
ϵd

Req
= 10−3, ( )

ϵd

Req
= 10−4, ( )

ϵd

Req
= 10−5, ( )

ϵd

Req
= 10−6, and ( )

ϵd

Req
= 10−7.

5. Conclusion
Five methods have been extensively studied to retain the most adequate one to perform Particle-Resolved

Direct Numerical Simulation featuring ellipsoidal particles immersed in a viscous fluid. This study was guided
by the criteria expressed in the introduction.

Three methods appeared to be ruled out by these criteria:

• Newton-Coulomb method: as initially introduced by Abbasov [18, 19, 20], this algorithm is unusable.
Indeed, the divergent nature of the electrostatic force for low distances makes the parameter calibration
impossible. An effort to improve this method has been reported in this article and is summarized in
Algorithm 4. But as outlined in 3.4.3, the modified version of the Newton-Coulomb did not prove
as efficient as expected, in terms of robustness and computing cost. The high number of parameters
makes the method tedious to calibrate.

• Exterior Function Penalty Method: introduced by Tamasyan et al. [21] and described in 2.4, has been
ruled out for multiple reasons: the algorithm is not scale-independent, no control of the accuracy has
been observed and the algorithm has been observed to be excessively time-consuming in comparison
to other methods.

• Jain et al.’s algorithm: introduced in [4] and described in 2.5, has been ruled out because of a lack
of robustness exhibited in 3.4.5. An attempt to scale the parameters of the method while preserving
a competitive computing cost revealed unsuccessful because the monotonic decreasing of the distance
with the iteration number k is not assured.

The two remaining methods, namely the Moving Balls algorithm 2.1 and the GJK algorithm 2.2 have
been studied on randomly-generated, mono-dispersed arrays of spheroids. The robust character of these two
methods has thus been firmly established. An explicit stopping criterion to control the committed error with
the Moving Balls method has been derived since it was not available in the original paper by Lin et al. [13].
After sizing the arrays to make statistically significant statements about the computing-time of the methods,
the mean computing-time per distance query of the Moving Balls algorithm and the GJK algorithm have
been compared for multiple values of the aspect ratio, volume fraction, and desired accuracy. It revealed
that the GJK algorithm is faster for flattened (Ar ≤ 1/3) or elongated (Ar ≥ 3) shapes. For intermediate
aspect ratios 1/3 ≤ Ar ≤ 3, the Moving Balls algorithm is the fastest method. A possible prospect for
future work would be to pursue the statistical study in random arrays of ellipsoids with various sizes and
aspect ratios.

45



Declaration of competing interest
The authors have no competing interest to declare rgarding the publication of this article.

Aknowledgements
This work was granted access to the HPC resources of IDRIS, CINES and CCRT under the allocation

A0072b06115 proposed by GENCI (Grand Equipement National de Calcul Intensif).

46



Appendix A. Mathematical description of ellipsoids
From a mathematical point of view, an ellipsoid Em of R3 can be represented in a Cartesian frame by a

quadratic form fm:

fm(x) =
1

2
x⊤Amx+ b⊤

mx+ αm (A.1)

where Am is 3× 3 symmetric definite positive matrix, bm a vector of R3, αm a constant and x ∈ R3.
The ellipsoid Em is then defined as

Em =
{
x ∈ R3|fm(x) ≤ 0

}
. (A.2)

In the frame defined by the three semi-axis of Em, with the origin that coincides with the centroid of Em,
the ellipsoid Em can be represented as:

1

2
x̃⊤Σmx̃− 1

2
≤ 0 (A.3)

where Σm is the 3× 3 matrix defined as:

Σm =



(
1

am

)2

0 0

0

(
1

bm

)2

0

0 0

(
1

cm

)2


(A.4)

am, bm, and cm being the length of the three semi-axes of Em.

To explicit Am, bm and αm in Eq. (A.1), the position of the centre r and the orientation of Em must
be taken into account. The use of Euler angles is avoided, thanks to the Unitary Quaternions Group. The
reader wishing to grasp more about Quaternions can refer to Wach’s review [12] as a starting point, but all
the strict necessary information is introduced below.

If the orientation of the ellispoid Em in R3 is represented by a unitary axis of rotation n̂m, and a angle
of rotation θm, a Unitary Quaternion qm can be defined from these quantities as:

qm = (qm,0, qm,1, qm,2, qm,3) =

(
cos

(
θm
2

)
, sin

(
θm
2

)
n̂m

)
. (A.5)

The Quaternion qm completely describes the orientation of Em in R3. Indeed, the rotation matrix Um

associated with the orientation of Em can be reconstructed from it:

U (qm) =


1− 2

(
(qm,2)

2
+ (qm,3)

2
)

2 (qm,1qm,2 − qm,0qm,3) 2 (qm,0qm,2 + qm,1qm,3)

2 (qm,1qm,2 + qm,0qm,3) 1− 2
(
(qm,1)

2
+ (qm,3)

2
)

2 (qm,2qm,3 − qm,0qm,1)

2 (qm,1qm,3 − qm,0qm,2) 2 (qm,0qm,1 + qm,2qm,3) 1− 2
(
(qm,1)

2
+ (qm,2)

2
)
 . (A.6)

The components x̃ of the position vector in the body-fixed frame associated with Em can be related to
the components x of the position vector in the general frame with the formula:

x̃ = U⊤
m(x− rm) (A.7)

with rm being the centre of the ellipsoid in the general frame.

47



Thus, Eq. (A.3) can be re-written

1

2
x⊤UmΣmU⊤

mx− (UmΣmU⊤
mrm)⊤x+

1

2
r⊤m(UmΣmU⊤

m)rm −
1

2
≤ 0. (A.8)

By identification with Eq. (A.1), it yields:

Am = UmΣmU⊤
m (A.9)

bm = −Amrm (A.10)

αm =
1

2
r⊤mAmrm −

1

2
(A.11)

where we recall that Σm is the matrix defined in Eq. (A.4), and rm is the center of the ellipsoid in the
general frame.

Appendix B. Curvature of an ellipsoid
For an ellipsoid Em, centered on the origin, and with its semi-axes (am, bm, cm) aligned with the Cartesian

axes, the Gaussian curvature Km and the mean curvature Hm of the surface ∂Em are [27]:

Km =
1

Rmin,mRmax,m
=

 1

ambmcm

(
x2

a4
m

+ y2

(bm)4 + z2

(cm)4

)
2

Hm =
1

2

(
1

Rmin,m
+

1

Rmax,m

)
=

(am)2 + (bm)2 + (cm)2 − x2 − y2 − z2

2(ambmcm)2
(

x2

(am)4 + y2

(bm)4 + z2

(cm)4

) 3
2

(B.1)

with Rmin,m and Rmax,m respectively being the smallest and tallest curvature radius of the surface ∂Em

at the point (x, y, z).
From Eq. (B.1), it can be established that both Rmin,m and Rmax,m satisfy the second-order equation in

X

KmX2 − 2HmX + 1 = 0 (B.2)

which solutions are 
Rmin,m =

Hm −
√
(Hm)2 −Km

Km

Rmax,m =
Hm +

√
(Hm)2 −Km

Km
.

(B.3)

The local Gaussian radius of curvature RG,m is defined as:

RG,m =
1√
Km

= ambmcm

(
x2

(am)4
+

y2

(bm)4
+

z2

(cm)4

)
. (B.4)

Appendix C. Overlap detection algorithm

Appendix C.1. The algorithm of Jia et al. [26]
In this subsection, an exact method to detect if two ellipsoids collide is presented. This method is based

on the analytical criterion of Wang et al. [28], demonstrated in 2001. On his original form, this analytical
criterion is not adequate for a fast implementation, since it involves locating in the complex plane the roots
of a fourth-order polynomial. Fortunately, this criterion has been reformulated by Jia et al. [26] in 2011 so
that only a few algebraic expressions have to be computed to determine if the two ellipsoids overlap or not.

48



Appendix C.1.1. The original criterion of Wang [28]

In [28], the ellipsoids (Em)m∈J1,2K are described in homogeneous coordinates, meaning the equation de-
scribing each ellipsoid m ∈ J1, 2K reformulated as:

XTAmX ≤ 0 (C.1)

where X =

x

1

, and (Am)m∈J1,2K are 4 × 4 matrices. How to compute these matrices is explained in

Appendix C.2.
With the use of (Am)m∈J1,2K, one can define the characteristic polynomial P associated with the two

ellipsoids E1 and E2:

P (λ) = det
(
λI4 + (A1)

−1A2

)
. (C.2)

Remarks:

• P is a fourth-order monic polynomial. In [28] or [26], the characteristic polynomial is designated by
det(λA1 +A2), which is not necessarily a monic polynomial. Eq. (C.2) provides directly a polynomial
with the leading coefficient equal to 1.

• In order to reduce the cost of computing the determinant in Eq. (C.2), the matrices (Am)m∈J1,2K can
be computed in the reference frame associated with the ellipsoid E1. In that way, the matrix A1 is
diagonal, and is easily inverted.

The following theorem, demonstrated in [28], constitutes an exact criterion for the overlapping of E1 and
E2.

Theorem 3 (Wang et al.’ criterion for the overlap of two ellipsoids, Wang et al. 2001). Let P be
the characteristic polynomial associated with E1 and E2.

1. The characteristic polynomial P has at least two real negative roots.

2. The two ellipsoids E1 and E2 are separated if and only if P has two distinct real positive roots.

3. The two ellipsoids E1 and E2 touch each other externally if and only if P has a real positive double
root.

Computing the roots of P to determine if E1 and E2 is an expensive operation. Moreover, the precise
value of these roots is not necessary to verify the overlap criterion expressed in Theorem 3. That is why this
criterion has to be adapted in order to be used in a fast algorithm. This task has been achieved in [26].

Appendix C.1.2. Reformulation of Wang et al.’ criterion

In the following, P is supposed to have been computed:

P (λ) = λ4 + aλ3 + bλ2 + cλ+ d. (C.3)

A first definition is necessary.

Definition 1 (Number of sign variations in a finite sequence). Let be s a finite sequence of real num-
bers. Var(s) is defined as the number of sign changes between two consecutive non-zero elements of s.

For instance:

• Var(−1, 1, 2) = 1

• Var(1, 2, 3) = 0

49



• Var(1, 0,−1) = 1

The reformulation of the Wang et al.’ criterion also involves five quantities sr22,sr20, sr11, sr10 and sr0,
computed from the coefficients (a, b, c, d) of the characteristic polynomial P following the procedure:


b̄ = − a/4

c̄ = b/6

d̄ = − c/4

ē = d

,



∆2 = b̄2 − c̄

∆3 = c̄2 − b̄d̄

W1 = d̄− d̄c̄

W2 = b̄ē− c̄d̄

W3 = ē− b̄d̄

,



T = −9W 2
1 + 27∆2∆3 − 3W3∆2

A = W3 + 3∆3

B = −d̄W1 − ē∆2 − c̄∆3

T2 = AW1 − 3b̄B

∆1 = A3 − 27B2

,



sr22 = ∆2

sr20 = −W3

sr11 = T

sr10 = T2

sr0 = ∆1.

(C.4)

Finally, the practical criterion, demonstrated in [26], is given by the following theorem.

Theorem 4 (Algebraic criterion for the overlap of two ellipsoids, Jia et al. 2011). Let P (λ) = λ4+
aλ3 + bλ2 + cλ+ d be the characteristic polynomial associated with E1 and E2.

1. The two ellipsoids E1 and E2 are separate if and only if Var(1, a, b, c, d) = 2 and

a sr22 > 0, sr11 > 0, sr0 > 0 or
b sr22 > 0, sr11 > 0, sr10 > 0, sr0 = 0

2. The two ellipsoids E1 and E2 touch each other externally if and only if

a sr22 > 0, sr11 > 0, sr10 < 0, sr0 = 0 or
b sr22 > 0, sr20 < 0, sr11 = 0, sr0 = 0

In the other cases, the two ellipsoids E1 and E2 overlap.

Appendix C.1.3. Numerical schedule

The numerical process is summed up in Algorithm 7.

Algorithm 7 Overlap detection algorithm
1: Compute matrices (Am)m∈J1,2K in the reference frame associated with ellipsoid E1, with Eq. (C.9)
2: Compute the coefficients (a, b, c, d) of the characteristic polynomial P defined in Eq. (C.2).
3: Set bool = .TRUE.
4: Compute Var(a, b, c, d)
5: if Var(a, b, c, d) = 2 then
6: Compute sr22,sr20, sr11, sr10 and sr0 with Eq. (C.4)
7: if (sr22 > 0, sr11 > 0, sr0 > 0) or ( sr22 > 0, sr11 > 0, sr10 > 0, sr0 = 0 ) then
8: Set bool = .FALSE.
9: end if

10: end if
11: return bool

Appendix C.2. Homogeneous coordinates

The equation
1

2
txAmx+ tbmx+ αm ≤ 0 can be reformulated as:

X⊤AmX ≤ 0 (C.5)

where X =

x

1

 and Am is a 4× 4 matrix.

50



Indeed, in its own reference frame, with the components of the position vector X̃ =

x̃

1

, the equation

of Em can be written:

X̃⊤



(
1

am

)2

0 0 0

0

(
1

bm

)2

0 0

0 0

(
1

cm

)2

0

0 0 0 −1


︸ ︷︷ ︸

Sm

X̃ ≤ 0. (C.6)

The relation between X and X̃ is given by the affine transformation (translation + rotation) characterizing
the position and orientation of the ellipsoid Em. In homogeneous coordinates, an affine transformation is
represented by a 4× 4 matrixMm such that:

X =MmX̃. (C.7)

The matrix Mm is related to the centre rm and 3× 3 rotation matrix Um of Em by [29]:

Mm =

Um rm

0⊤ 1

⇐⇒M−1
m =

U⊤
m −U⊤

mrm

0⊤ 1

 . (C.8)

Thus the matrix Am has the expression:

Am =
(
M−1

m

)⊤ SmM−1
m . (C.9)

Appendix D. Computation of the intersection point(s) between an
ellipsoid and a segment

Let Em be an ellipsoid represented by fm and (Am,bm, αm) (see Eq. A.1 and Eq. A.2). We wish
to compute the intersection point of ∂Em with the segment [c1, c2]. To proceed, the segment [c1, c2] is
parameterized by t ∈ [0, 1]: 

x(t) = x1 + t(x2 − x1)

y(t) = y1 + t(y2 − y1)

z(t) = z1 + t(z2 − z1).

(D.1)

By injecting x(t), y(t) and z(t) in the equation of ∂E f = 0, a second order polynomial equation in t is
obtained:

At2 +Bt+ C = 0, t ∈ [0, 1] (D.2)

51



where

2A = (Am)11 (x2 − x1)
2 + (Am)22 (y2 − y1)

2 + (Am)33 (z2 − z1)
2 (D.3)

+ 2 (Am)12 (x2 − x1)(y2 − y1)

+ 2 (Am)13 (x2 − x1)(z2 − z1)

+ 2 (Am)23 (y2 − y1)(z2 − z1)

B = (Am)11 x1(x2 − x1) + (Am)22 y1(y2 − y1) + (Am)33 z1(z2 − z1) (D.4)
+ (Am)12 [x1(y2 − y1)− y1(x2 − x1)]

+ (Am)13 [x1(z2 − z1)− z1(x2 − x1)]

+ (Am)23 [y1(z2 − z1)− z1(y2 − y1)]

+ (bm)1 (x2 − x1) + (bm)2 (y2 − y1) + (bm)3 (z2 − z1)

C =
1

2

[
(Am)11 (x1)

2 + (Am)22 (y1)
2 + (Am)33 (z1)

2
]

(D.5)

+ (Am)12 x1y1 + (Am)13 x1z1 + (Am)23 y1z1

+ (bm)1 x1 + (bm)2 y1 + (bm)3 z1

+ αm. (D.6)

Appendix E. Reformulating the stopping criterion on angles
The angle θ(a,b) between two vectors a and b is calculated as follows:

θ(a,b) = arccos

(
a · b
||a||||b||

)
, 0 ≤ θ ≤ π. (E.1)

It is necessary to reformulate the condition expressed in Eq. (2.4) to avoid the computation of an arccos ,
square roots and a division (see Eq. (E.1) ) at each iteration. Here is how to proceed:

θ(a,b) ≤ ϵθ ⇐⇒ cos θ(a,b) ≥ cos ϵθ

⇐⇒ a · b
||a||||b|| ≥ 1− ϵ2θ

2

⇐⇒ (a · b)2 ≥
(
1− ϵ2θ

2

)2

||a||2||b||2. (E.2)

• The first equivalency is a consequence of the convention introduced in Eq. (E.1): θ ∈ [0, π]. The
decreasing of cos on [0, π] is used.

• The second equivalency is true if ϵθ is small.

Appendix F. How to scale ϵθ

In Appendix F.1, an inequality is derived that relates the stopping parameter ϵθ (2.4) with the committed
error on the numerical solution. Then, this inequality is used in Appendix F.2 to calculate a value for ϵθ
that enforces the distance error to be inferior to ϵd. Two different implementations are proposed. Lastly, the
consistency of these implementations is tested on a large number of distance queries in Appendix F.3.

Appendix F.1. Relation between the stopping criterion on angles ϵθ and the error
made by the algorithm

An ideal configuration is presented in Fig. F.25. The points x∗
1, x

∗
2 and d∗ = ||x∗

2 − x∗
1|| are the exact

solutions of problem (1.3). The points x1, x2 and d = ||x2 − x1|| are the approximated solutions of the

52



Problem (1.3), provided by the algorithm. The angle between the normal of the surface ∂Em and the
approximated distance vector is noted θm. Both the angles (θm)m∈J1,2K are inferior to the stopping parameter
ϵθ (meaning they satisfy the criterion expressed in Eq. (2.4)).

The goal of this section is to relate the errors |d− d∗| and (∥xm − x∗
m∥)m∈J1,2K to the value of the stopping

parameter ϵθ.

It is assumed (with lack of generality) that the approximated distance vector x1 − x2 is colinear to the
exact distance vector x∗

1 − x∗
2: it is convenient for the calculation to come, but it is not necessarily the case

in practice when the algorithm ends. Nonetheless, this simplification is not an issue as long as only a scaling
law is looked for.

Thanks to the previous simplifications, the four points x1, x2, x∗
1 and x∗

2 are contained in the a same
plane Π. Then, in the vicinity of x∗

m, the curve defined as the intersection ∂Em ∩ Π is approximated as a
curve with a constant curvature radius Rm (x∗

m,Π) for m ∈ J1, 2K (see Fig. F.25).

By geometrical considerations, the quantities (∥xm − x∗
m∥)m∈J1,2K and (Sm)m∈J1,2K (see Fig. F.25) can be

expressed: ||xm − x∗
m|| =

√
2 (1− cos θm)Rm ≃ θmRm

Sm = sin
θm
2

√
2 (1− cos θm)Rm ≃ (θm)2

Rm

2
.

(F.1)

R2

•
x∗
2

R1

•
x∗
1

θ1
• x1

θ2

• x2

d∗d

S1

S2 ∂E2

∂E1

Figure F.25: A possible configuration when an algorithm stops

If ϵθ is the stopping parameter introduced in Eq. (2.4), the following scaling laws are true:
||xm − x∗

m|| ≃ ϵθRm

d− d∗ ≃ (ϵθ)
2R1 +R2

2
.

(F.2)

If the maximum curvature radius of the surface ∂Em at the point x∗
m is noted Rmax,m (x∗

m), Eq. (F.2)
implies the inequalities:

|d− d∗| ≤ (ϵθ)
2 Rmax,1 (x

∗
1) +Rmax,2 (x

∗
2)

2
(F.3)

≤ (ϵθ)
2 1

2

(
max
∂E1

(Rmax,1) + max
∂E2

(Rmax,2)

)
. (F.4)

The last inequalities (F.3) (local) and (F.4) (global) can be used to scale the stopping parameter ϵθ.

Appendix F.2. Possible versions of implementation
Both the Moving Ball Algorithm 2.1 and the Newton-Coulomb Method 2.3 provide a sequence of points(

xk
1 ,x

k
2

)
k
, which stops at iteration n when the criterion (2.4) involving the parameter ϵθ is met.

53



Since the maximal error on the distance is limited by the parameter ϵd (see Eq. (2.8) ), the inequalities
(F.3) and (F.4) provide two possible versions for the algorithms in question.

Appendix F.2.1. Version 1: constant-value ϵθ

If ϵd = (ϵθ)
2 1

2

(
max
∂E1

(Rmax,1) + max
∂E2

(Rmax,2)

)
, then the inequality

∣∣∣∥xn
1 − xn

2∥ − d∗
∣∣∣ ≤ ϵd will be met

when the algorithm stops at iteration n, according to the global inequality (F.4).
Therefore, the value of ϵθ can be set to the global constant:

ϵθ =

√
2ϵd

max∂E1
(Rmax,1) + max∂E2

(Rmax,2)
. (F.5)

Note that the global maxima
(
max
∂Em

(Rmax,m)

)
m∈J1,2K

are easily computed in the case of axisymmetric

ellipsoids (see Appendix Appendix B ).

Appendix F.2.2. Version 2: evolving ϵθ

A less constraining version can be established from the local inequality (F.3), by locally compute the
value of ϵθ at each iteration k from the local curvature radii of the surfaces (∂Em)m∈J1,2K at the points(
xk
m

)
m∈J1,2K:

ϵkθ =

√
2ϵd

Rmax,1

(
xk
1

)
+Rmax,2

(
xk
2

) . (F.6)

With this version, less iterations will be necessary to satisfy the desired distance accuracy ϵd, but the
local curvature radii

(
Rmax,m

(
xk
m

))
m∈J1,2K must be computed at each iteration k.

Appendix F.3. Consistency check
It is aimed in this part to verify that the previously described convergence criterion enforces the distance

error to verify the inequality (2.8). This verification can be conducted with any method that employs this
convergence criterion; the Moving Ball algorithm is one of them, and will be employed in this part. Among
the two possible versions of the convergence criterion, the adaptive version Appendix F.2.2 is tested because
it is less restrictive than its constant version Appendix F.2.1.

The randomly generated arrays of spheroids that are described in 4.1.1 are used to test the convergence
criterion on a large number of distance queries. Of course, for all these distance queries no analytical solution
is available. The reference distance is thus taken as the distance dGJK obtained with the GJK algorithm.
Indeed the GJK algorithm does not rely on the studied convergence criterion to impose the distance error
to be inferior to ϵd, so that the comparison is legitimate. 2.2 set with a low value of the ϵd parameter:

ϵGJK
d = 10−8Req (F.7)

while the Moving Balls algorithm is set with a parameter ϵd such that

ϵd ≫ ϵGJK
d . (F.8)

For each distance query, the MB algorithm provides a distance dMB that is compared to the solution dGJK

of the GJK algorithm. It enables to estimate the error committed by the Moving Balls algorithms because:

∣∣dMB − dGJK
∣∣ =

∣∣∣∣∣∣∣∣d
MB − d∗︸ ︷︷ ︸
O(ϵd)

−
(
dGJK − d∗

)︸ ︷︷ ︸
O(ϵGJK

d )

∣∣∣∣∣∣∣∣
≃
∣∣dMB − d∗

∣∣. (F.9)

54



In Fig. F.26, the maximum deviation of dMB(ϵd) to the reference distance dGJK is plotted against ϵd.
This maximum is computed on an important number of distance queries (more than two millions). It can
be seen that the result coincides with the line y = ϵd, demonstrating that the convergence criterion exposed
in Appendix F and implemented in the Moving Ball algorithm is suitable to control the distance accuracy.

10−7 10−6 10−5 10−4

10−7

10−6

10−5

10−4

εd
Req

m
a
x
|dM

B
(ε

d
)−
d
G

J
K
|

R
e
q

Figure F.26: Maximum error committed by the MB algorithm set with ϵd, by comparison with the reference solution dGJK .
The maximum error is computed for all distance queries occurring in the arrays described in 4.1.1 and corresponding to l = 40
and α = 0.25 (for all values of aspect ratio Ar); it involves 2.081.738 distance queries.

Appendix G. Convex analysis notions
Definition 2 (Minkowski sum). Let E1 and E2 be two convex set. The Minkowski sum E1−E2 is defined
as

E1 − E2 = {p− q | p ∈ E1,q ∈ E2}.

Theorem 5 (Hilbert Projection Theorem for R3). Let C be a closed convex set of R3, and x0 a point
in R3 \ C.
There exists a unique zC ∈ C such that:

∥zC − x0∥ = min
z∈C
∥z− x0∥.

Definition 3 (Support mapping). Let C be a convex set of R3. The support mapping of C is an appli-
cation sC : R3 → C, such that ∀d ∈ R3, sC(d) is the unique vector verifying:

sC(d) · d = max{x · d | x ∈ C}.

Geometrically, sC(d) is the most extreme point of C in the direction defined by d.

Definition 4 (Affine and convex hull). Let X = {x0, ...,xn} be a finite subset of R3. One can define
the affine hull and the convex hull of X, respectively noted aff(X) and conv(X), as:

aff(X) =

{
n∑

i=0

λixi |
n∑

i=0

λi = 1

}
(G.1)

conv(X) =

{
n∑

i=0

λixi |
n∑

i=0

λi = 1, λi ≥ 0

}
. (G.2)

Definition 5 (Notion of affinely independent set of points). A finite set of points X ⊂ R3 is said to
be affinely independent if ∀x ∈ X, x is not an affine combination of elements of X \ x.

In R3, an affinely independent set of points X has at most 4 elements. Following the value of Card(X),
the affine hull of X, aff(X), has a different nature:

55



• if Card(X) = 2, aff(X) is the line passing by the two elements of X.

• if Card(X) = 3, aff(X) is the plane defined by the 3 elements of X.

• if Card(X) = 4, aff(X) = R3.

Definition 6 (Simplex). A simplex is the convex hull of an affinely independent set of points

If S is the simplex shuch that S = conv(X), X being an affinely independent set of points, then the
nature of S depends on Card(X):

• if Card(X) = 1, S = conv(X) is the only element of X.

• if Card(X) = 2, S = conv(X) is the segment which the extremities are the two elements of X.

• if Card(X) = 3, S = conv(X) is the triangle which the vertices are the 3 elements of X.

• if Card(X) = 4, S = conv(X) is the tetrahedron the which vertices are the four elements of X.

References
[1] G. van den Bergen, Proximity queries and pentration depth computation on 3d game objects, 2001.

URL https://graphics.stanford.edu/courses/cs468-01-fall/Papers/van-den-bergen.pdf

[2] S. Cameron, A study of the clash detection problem in robotics, in: Proceedings. 1985 IEEE Interna-
tional Conference on Robotics and Automation, Vol. 2, Institute of Electrical and Electronics Engineers,
St. Louis, MO, USA, 1985, pp. 488–493. doi:10.1109/ROBOT.1985.1087245.
URL http://ieeexplore.ieee.org/document/1087245/

[3] M. N. Ardekani, P. Costa, W. P. Breugem, L. Brandt, Numerical study of the sedimentation of
spheroidal particles, International Journal of Multiphase Flow 87 (2016) 16–34. doi:10.1016/j.
ijmultiphaseflow.2016.08.005.
URL https://linkinghub.elsevier.com/retrieve/pii/S0301932216300556

[4] R. Jain, S. Tschisgale, J. Fröhlich, A collision model for DNS with ellipsoidal particles in viscous fluid,
International Journal of Multiphase Flow 120 (2019) 103087. doi:10.1016/j.ijmultiphaseflow.
2019.103087.
URL https://linkinghub.elsevier.com/retrieve/pii/S0301932219303453

[5] B. Lambert, L. Weynans, M. Bergmann, Methodology for numerical simulations of ellipsoidal particle-
laden flows, International Journal for Numerical Methods in Fluids (2020) fld.4809doi:10.1002/fld.
4809.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4809

[6] S. Vincent, J. C. Brändle de Motta, A. Sarthou, J.-L. Estivalezes, O. Simonin, E. Climent, A Lagrangian
VOF tensorial penalty method for the DNS of resolved particle-laden flows, Journal of Computational
Physics 256 (2014) 582–614. doi:10.1016/j.jcp.2013.08.023.
URL https://linkinghub.elsevier.com/retrieve/pii/S0021999113005615

[7] J. C. Brändle de Motta, W.-P. Breugem, B. Gazanion, J.-L. Estivalezes, S. Vincent, E. Climent, Numer-
ical modelling of finite-size particle collisions in a viscous fluid, Physics of Fluids 25 (8) (2013) 083302.
doi:10.1063/1.4817382.
URL http://aip.scitation.org/doi/10.1063/1.4817382

[8] M. Chadil, S. Vincent, J.-L. Estivalèzes, Accurate estimate of drag forces using particle-resolved direct
numerical simulations, Acta Mechanica 230 (2) (2019) 569–595. doi:10.1007/s00707-018-2305-1.
URL http://link.springer.com/10.1007/s00707-018-2305-1

56

https://graphics.stanford.edu/courses/cs468-01-fall/Papers/van-den-bergen.pdf
https://graphics.stanford.edu/courses/cs468-01-fall/Papers/van-den-bergen.pdf
http://ieeexplore.ieee.org/document/1087245/
https://doi.org/10.1109/ROBOT.1985.1087245
http://ieeexplore.ieee.org/document/1087245/
https://linkinghub.elsevier.com/retrieve/pii/S0301932216300556
https://linkinghub.elsevier.com/retrieve/pii/S0301932216300556
https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.005
https://doi.org/10.1016/j.ijmultiphaseflow.2016.08.005
https://linkinghub.elsevier.com/retrieve/pii/S0301932216300556
https://linkinghub.elsevier.com/retrieve/pii/S0301932219303453
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103087
https://doi.org/10.1016/j.ijmultiphaseflow.2019.103087
https://linkinghub.elsevier.com/retrieve/pii/S0301932219303453
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4809
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4809
https://doi.org/10.1002/fld.4809
https://doi.org/10.1002/fld.4809
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4809
https://linkinghub.elsevier.com/retrieve/pii/S0021999113005615
https://linkinghub.elsevier.com/retrieve/pii/S0021999113005615
https://doi.org/10.1016/j.jcp.2013.08.023
https://linkinghub.elsevier.com/retrieve/pii/S0021999113005615
http://aip.scitation.org/doi/10.1063/1.4817382
http://aip.scitation.org/doi/10.1063/1.4817382
https://doi.org/10.1063/1.4817382
http://aip.scitation.org/doi/10.1063/1.4817382
http://link.springer.com/10.1007/s00707-018-2305-1
http://link.springer.com/10.1007/s00707-018-2305-1
https://doi.org/10.1007/s00707-018-2305-1
http://link.springer.com/10.1007/s00707-018-2305-1


[9] E. I. Thiam, E. Masi, E. Climent, O. Simonin, S. Vincent, Particle-resolved numerical simulations of
the gas–solid heat transfer in arrays of random motionless particles, Acta Mechanica 230 (2) (2019)
541–567. doi:10.1007/s00707-018-2346-5.
URL http://link.springer.com/10.1007/s00707-018-2346-5

[10] A. Ozel, J. Brändle de Motta, M. Abbas, P. Fede, O. Masbernat, S. Vincent, J.-L. Estivalezes,
O. Simonin, Particle resolved direct numerical simulation of a liquid–solid fluidized bed: Compar-
ison with experimental data, International Journal of Multiphase Flow 89 (2017) 228–240. doi:
10.1016/j.ijmultiphaseflow.2016.10.013.
URL https://linkinghub.elsevier.com/retrieve/pii/S0301932216302221

[11] J. Brändle de Motta, P. Costa, J. Derksen, C. Peng, L.-P. Wang, W.-P. Breugem, J. Estivalezes,
S. Vincent, E. Climent, P. Fede, P. Barbaresco, N. Renon, Assessment of numerical methods for fully
resolved simulations of particle-laden turbulent flows, Computers & Fluids 179 (2019) 1–14. doi:
10.1016/j.compfluid.2018.10.016.
URL https://linkinghub.elsevier.com/retrieve/pii/S0045793018307709

[12] A. Wachs, Particle-scale computational approaches to model dry and saturated granular flows of non-
Brownian, non-cohesive, and non-spherical rigid bodies, Acta Mechanica 230 (6) (2019) 1919–1980.
doi:10.1007/s00707-019-02389-9.
URL http://link.springer.com/10.1007/s00707-019-02389-9

[13] A. Lin, S.-P. Han, On the Distance between Two Ellipsoids, SIAM J. Optim. 13 (2002) 298–308. doi:
https://doi.org/10.1137/S1052623401396510.
URL https://epubs.siam.org/doi/10.1137/S1052623401396510

[14] E. Gilbert, D. Johnson, S. Keerthi, A fast procedure for computing the distance between complex
objects in three-dimensional space, IEEE Journal on Robotics and Automation 4 (2) (1988) 193–203.
doi:10.1109/56.2083.
URL http://ieeexplore.ieee.org/document/2083/

[15] A. Wachs, L. Girolami, G. Vinay, G. Ferrer, Grains3D, a flexible DEM approach for particles of arbitrary
convex shape — Part I: Numerical model and validations, Powder Technology 224 (2012) 374–389.
doi:10.1016/j.powtec.2012.03.023.
URL https://linkinghub.elsevier.com/retrieve/pii/S003259101200191X

[16] L. Seelen, J. Padding, J. Kuipers, A granular Discrete Element Method for arbitrary convex particle
shapes: Method and packing generation, Chemical Engineering Science 189 (2018) 84–101. doi:10.
1016/j.ces.2018.05.034.
URL https://linkinghub.elsevier.com/retrieve/pii/S0009250918303312

[17] S. Zhao, J. Zhao, A poly-superellipsoid-based approach on particle morphology for DEM modeling of
granular media, International Journal for Numerical and Analytical Methods in Geomechanics 43 (13)
(2019) 2147–2169. doi:10.1002/nag.2951.
URL https://onlinelibrary.wiley.com/doi/10.1002/nag.2951

[18] M. E. Abbasov, New optimization algorithm for finding distance between two convex sets, in: 2015
International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP), IEEE,
Saint Petersburg, Russia, 2015, pp. 293–294. doi:10.1109/SCP.2015.7342128.
URL http://ieeexplore.ieee.org/document/7342128/

[19] M. E. Abbasov, Charged ball method for solving some computational geometry problems, Vestnik St.
Petersburg University, Mathematics 50 (3) (2017) 209–216. doi:10.3103/S1063454117030025.
URL http://link.springer.com/10.3103/S1063454117030025

[20] M. E. Abbasov, F. Aliev, Modifications of the Charged Balls Method, Open Computer Science 10 (1)
(2020) 30–32. doi:10.1515/comp-2020-0008.
URL http://www.degruyter.com/view/j/comp.2020.10.issue-1/comp-2020-0008/
comp-2020-0008.xml

57

http://link.springer.com/10.1007/s00707-018-2346-5
http://link.springer.com/10.1007/s00707-018-2346-5
https://doi.org/10.1007/s00707-018-2346-5
http://link.springer.com/10.1007/s00707-018-2346-5
https://linkinghub.elsevier.com/retrieve/pii/S0301932216302221
https://linkinghub.elsevier.com/retrieve/pii/S0301932216302221
https://doi.org/10.1016/j.ijmultiphaseflow.2016.10.013
https://doi.org/10.1016/j.ijmultiphaseflow.2016.10.013
https://linkinghub.elsevier.com/retrieve/pii/S0301932216302221
https://linkinghub.elsevier.com/retrieve/pii/S0045793018307709
https://linkinghub.elsevier.com/retrieve/pii/S0045793018307709
https://doi.org/10.1016/j.compfluid.2018.10.016
https://doi.org/10.1016/j.compfluid.2018.10.016
https://linkinghub.elsevier.com/retrieve/pii/S0045793018307709
http://link.springer.com/10.1007/s00707-019-02389-9
http://link.springer.com/10.1007/s00707-019-02389-9
https://doi.org/10.1007/s00707-019-02389-9
http://link.springer.com/10.1007/s00707-019-02389-9
https://epubs.siam.org/doi/10.1137/S1052623401396510
https://doi.org/https://doi.org/10.1137/S1052623401396510
https://doi.org/https://doi.org/10.1137/S1052623401396510
https://epubs.siam.org/doi/10.1137/S1052623401396510
http://ieeexplore.ieee.org/document/2083/
http://ieeexplore.ieee.org/document/2083/
https://doi.org/10.1109/56.2083
http://ieeexplore.ieee.org/document/2083/
https://linkinghub.elsevier.com/retrieve/pii/S003259101200191X
https://linkinghub.elsevier.com/retrieve/pii/S003259101200191X
https://doi.org/10.1016/j.powtec.2012.03.023
https://linkinghub.elsevier.com/retrieve/pii/S003259101200191X
https://linkinghub.elsevier.com/retrieve/pii/S0009250918303312
https://linkinghub.elsevier.com/retrieve/pii/S0009250918303312
https://doi.org/10.1016/j.ces.2018.05.034
https://doi.org/10.1016/j.ces.2018.05.034
https://linkinghub.elsevier.com/retrieve/pii/S0009250918303312
https://onlinelibrary.wiley.com/doi/10.1002/nag.2951
https://onlinelibrary.wiley.com/doi/10.1002/nag.2951
https://doi.org/10.1002/nag.2951
https://onlinelibrary.wiley.com/doi/10.1002/nag.2951
http://ieeexplore.ieee.org/document/7342128/
https://doi.org/10.1109/SCP.2015.7342128
http://ieeexplore.ieee.org/document/7342128/
http://link.springer.com/10.3103/S1063454117030025
https://doi.org/10.3103/S1063454117030025
http://link.springer.com/10.3103/S1063454117030025
http://www.degruyter.com/view/j/comp.2020.10.issue-1/comp-2020-0008/comp-2020-0008.xml
https://doi.org/10.1515/comp-2020-0008
http://www.degruyter.com/view/j/comp.2020.10.issue-1/comp-2020-0008/comp-2020-0008.xml
http://www.degruyter.com/view/j/comp.2020.10.issue-1/comp-2020-0008/comp-2020-0008.xml


[21] G. S. Tamasyan, A. A. Chumakov, Finding the distance between ellipsoids, Journal of Applied and
Industrial Mathematics 8 (3) (2014) 400–410. doi:10.1134/S1990478914030132.
URL http://link.springer.com/10.1134/S1990478914030132

[22] A. Y. Uteshev, M. V. Yashina, Computation of the distance from an ellipsoid to a linear surface
and a quadric in $\mathbb{R}^n$, Doklady Mathematics 77 (2) (2008) 269–272. doi:10.1134/
S1064562408020270.
URL http://link.springer.com/10.1134/S1064562408020270

[23] R. Jain, S. Tschisgale, J. Fröhlich, Impact of shape: DNS of sediment transport with non-spherical
particles, Journal of Fluid Mechanics 916 (2021) A38. doi:10.1017/jfm.2021.214.
URL https://www.cambridge.org/core/product/identifier/S0022112021002147/type/journal_
article

[24] R. Jain, S. Tschisgale, J. Fröhlich, A collision model for DNS with ellipsoidal particles in viscous
fluid, International Journal of Multiphase Flow (2022) 104009doi:10.1016/j.ijmultiphaseflow.
2022.104009.
URL https://linkinghub.elsevier.com/retrieve/pii/S0301932222000313

[25] G. van den Bergen, A Fast and Robust GJK Implementation for Collision Detection of Convex Objects,
Journal of Graphics Tools 4 (2) (1999) 7–25. doi:10.1080/10867651.1999.10487502.
URL http://www.tandfonline.com/doi/abs/10.1080/10867651.1999.10487502

[26] X. Jia, Y.-K. Choi, B. Mourrain, W. Wang, An algebraic approach to continuous collision detection for
ellipsoids, Computer Aided Geometric Design 28 (3) (2011) 164–176. doi:10.1016/j.cagd.2011.01.
004.
URL https://linkinghub.elsevier.com/retrieve/pii/S016783961100015X

[27] D. Poelaert, J. Schniewind, F. Janssens, Surface Area and Curvature of the general Ellipsoid,
arXiv:1104.5145 [math]ArXiv: 1104.5145 (Apr. 2011).
URL http://arxiv.org/abs/1104.5145

[28] W. Wang, J. Wang, M.-S. Kim, An algebraic condition for the separation of two ellipsoids, Computer
Aided Geometric Design 18 (6) (2001) 531–539. doi:10.1016/S0167-8396(01)00049-8.
URL https://linkinghub.elsevier.com/retrieve/pii/S0167839601000498

[29] E. Ghossein, M. Lévesque, Random generation of periodic hard ellipsoids based on molecular dynamics:
A computationally-efficient algorithm, Journal of Computational Physics 253 (2013) 471–490. doi:
10.1016/j.jcp.2013.07.004.
URL https://linkinghub.elsevier.com/retrieve/pii/S0021999113004750

58

http://link.springer.com/10.1134/S1990478914030132
https://doi.org/10.1134/S1990478914030132
http://link.springer.com/10.1134/S1990478914030132
http://link.springer.com/10.1134/S1064562408020270
http://link.springer.com/10.1134/S1064562408020270
https://doi.org/10.1134/S1064562408020270
https://doi.org/10.1134/S1064562408020270
http://link.springer.com/10.1134/S1064562408020270
https://www.cambridge.org/core/product/identifier/S0022112021002147/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112021002147/type/journal_article
https://doi.org/10.1017/jfm.2021.214
https://www.cambridge.org/core/product/identifier/S0022112021002147/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112021002147/type/journal_article
https://linkinghub.elsevier.com/retrieve/pii/S0301932222000313
https://linkinghub.elsevier.com/retrieve/pii/S0301932222000313
https://doi.org/10.1016/j.ijmultiphaseflow.2022.104009
https://doi.org/10.1016/j.ijmultiphaseflow.2022.104009
https://linkinghub.elsevier.com/retrieve/pii/S0301932222000313
http://www.tandfonline.com/doi/abs/10.1080/10867651.1999.10487502
https://doi.org/10.1080/10867651.1999.10487502
http://www.tandfonline.com/doi/abs/10.1080/10867651.1999.10487502
https://linkinghub.elsevier.com/retrieve/pii/S016783961100015X
https://linkinghub.elsevier.com/retrieve/pii/S016783961100015X
https://doi.org/10.1016/j.cagd.2011.01.004
https://doi.org/10.1016/j.cagd.2011.01.004
https://linkinghub.elsevier.com/retrieve/pii/S016783961100015X
http://arxiv.org/abs/1104.5145
http://arxiv.org/abs/1104.5145
https://linkinghub.elsevier.com/retrieve/pii/S0167839601000498
https://doi.org/10.1016/S0167-8396(01)00049-8
https://linkinghub.elsevier.com/retrieve/pii/S0167839601000498
https://linkinghub.elsevier.com/retrieve/pii/S0021999113004750
https://linkinghub.elsevier.com/retrieve/pii/S0021999113004750
https://doi.org/10.1016/j.jcp.2013.07.004
https://doi.org/10.1016/j.jcp.2013.07.004
https://linkinghub.elsevier.com/retrieve/pii/S0021999113004750

	Introduction
	Algorithms description
	The "Moving Balls" algorithm lindistance2002
	Convergence criterion
	Overlapping ellipsoids
	Summary of the numerical process

	The Gilbert–Johnson–Keerthi algorithm gilbertfast1988 
	General operation of the GJK algorithm
	Computation of the support mapping
	The GJK distance sub-algorithm
	Computational process
	How to reconstruct the minimizing points belonging to the ellipsoids

	Newton-Coulomb Method abbasovnew2015 
	Initial version of the Newton-Coulomb method abbasovnew2015 
	Necessity to modify the initial method
	Description of the modified Newton-Coulomb Method
	Convergence criterion
	Ellipsoids overlap
	Summary of the numerical process

	Exterior Penalty Function Method tamasyanfinding2014
	Reformulating the problem
	Computing the direction of descent
	Solving Problem (2.61)
	Convergence criterion
	Ellipsoids overlap
	Summary of the numerical process

	Jain et al.' algorithm jaincollision2019 
	Geometrical procedure
	Choice of the constants Cm
	Convergence criterion
	Ellipsoids overlap
	Summary of the numerical process


	Algorithms validation
	Goals
	Description of the validation case
	Approach for the numerical study on the validation case 3.2
	Numerical results
	Moving Balls algorithm
	GJK algorithm
	Newton-Coulomb Method
	Exterior Penalty Function method
	Jain et al.'s algorithm

	Conclusions

	Statistical study of the computing time on randomly-generated arrays of ellipsoids
	Methodology
	Arrays generation
	Approach for the computing time statistical study

	Identification of the convergence thresholds
	MB algorithm
	GJK algorithm

	Computing-costs comparison
	Independence of the ratio t MBt GJK  from the volume fraction p
	Study of the ratio t MBt GJK  as a function of aspect ratio Ar and desired accuracy d


	Conclusion
	Mathematical description of ellipsoids
	Curvature of an ellipsoid
	Overlap detection algorithm
	The algorithm of Jia et al. jiaalgebraic2011
	The original criterion of Wang wangalgebraic2001
	Reformulation of Wang et al.' criterion
	Numerical schedule

	Homogeneous coordinates

	Computation of the intersection point(s) between an ellipsoid and a segment
	Reformulating the stopping criterion on angles
	How to scale  
	Relation between the stopping criterion on angles  and the error made by the algorithm
	Possible versions of implementation
	Version 1: constant-value 
	Version 2: evolving 

	Consistency check

	Convex analysis notions

