
HAL Id: hal-04507609
https://hal.science/hal-04507609v2

Submitted on 21 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Condense and Distill: fast distillation of large
floating-point sums via condensation

Stef Graillat, Théo Mary

To cite this version:
Stef Graillat, Théo Mary. Condense and Distill: fast distillation of large floating-point sums via
condensation. SIAM Journal on Scientific Computing, In press. �hal-04507609v2�

https://hal.science/hal-04507609v2
https://hal.archives-ouvertes.fr

CONDENSE AND DISTILL: FAST DISTILLATION OF1

LARGE FLOATING-POINT SUMS VIA CONDENSATION∗2

STEF GRAILLAT† AND THEO MARY†3

Abstract. Floating-point summation is a fundamental task at the heart of many scientific computing appli-4
cations. When the sum is very ill conditioned, computing it accurately can become challenging. One can employ5
distillation methods, which consist in transforming an ill-conditioned sum into an equivalent, but well-conditioned6
one. However, distillation is a very expensive process. In this article, we propose Condense & Distill, a new dis-7
tillation method that relies on a preprocessing step that we call condensation, because it transforms the original8
sum into a far smaller sum, which can then be distilled inexpensively. This condensation step exploits a new, key9
observation that floating-point addition is exact when the addends have both the same exponent and the same least10
significant bit. Condense & Distill thus requires accessing the exponent field of the summands. Compared with11
state-of-the-art summation methods with the same requirement such as the Demmel–Hida method [SIAM J. Sci.12
Comput., 25 (2003), pp. 1214–1248], Condense & Distill presents the significant benefit of running entirely in the13
working precision, with no need for extra precision. At the same time, it preserves the main advantages of the14
Demmel–Hida method compared with other methods, in particular those based on error-free transformations such as15
AccSum [SIAM J. Sci. Comput., 31 (2008), pp. 189–224]: namely, its cost is independent of the conditioning, and16
it exhibits near perfect parallel scaling. We present numerical experiments that confirm that Condense & Distill can17
reliably and efficiently distill large ill-conditioned sums, and performs favorably compared with other state-of-the-art18
summation methods.19

Key words. summation, floating-point arithmetic, rounding error analysis, distillation, ill-conditioning20

AMS subject classifications. 65G50, 65Y04, 65Y05, 65Y2021

1. Introduction. The summation of n floating-point numbers,22

n∑
i=1

xi,23

is one of the most fundamental tasks of scientific computing. In several applications, computing24

the sum accurately is challenging because it is both large and ill-conditioned, that is, its conditon25

number26

κ =

∑n
i=1 |xi|

|
∑n

i=1 xi|
(1.1)27

is large. For only moderately large values of κ, a possible approach is to simply evaluate the sum in28

higher precision arithmetic, such as the IEEE quadruple precision (fp128) arithmetic. However, this29

approach is no longer viable for really large values of κ, since in this case even quadruple precision30

is not sufficient to obtain an accurate result.31

Floating-point summation has been studied for a long time. In his seminal book [2], Higham32

devoted an entire chapter to summation algorithms. Here we cannot review all the papers that deal33

with floating-point summations. We will only present the two main families of algorithms and their34

principle. A recent paper with an overview of other summation algorithms can be found in [4].35

Several methods have been proposed to handle extremely ill-conditioned sums, the most popular36

of which we can categorize in two broad classes.37

∗Version of March 16, 2024.
†Sorbonne Université, CNRS, LIP6, Paris, France (stef.graillat@lip6.fr, theo.mary@lip6.fr)

1

This manuscript is for review purposes only.

mailto:stef.graillat@lip6.fr, theo.mary@lip6.fr

• The first class relies on the finite number of exponents in typical (IEEE) floating-point38

arithmetic and on the fact that numbers with exponents not too far apart can be added39

exactly using extended precision accumulators. This is for example the case of Kulisch’s40

accumulator [3], which sums all numbers in a very long accumulator, or of the Demmel–Hida41

algorithm [1], which sums together numbers of comparable exponent using higher precision42

arithmetic, such as quadruple precision. This strategy is also used in HybridSum [11] and43

OnlineExactSum [12].44

• The second class exploits the fact that the error incurred by floating-point addition is itself45

a floating-point number. This error can be computed exactly via error-free transformations46

such as Fast2Sum. This class includes in particular the AccSummethod [8], which computes47

a faithful rounding of the sum irrespective of its conditioning, and the PrecSum method [9],48

which computes the sum as if using K-fold precision (for a given K). Those algorithms49

have been improved respectively as FastAccSum and FastPrecSum in [7].50

The methods from the first class have a double weakness: they require access to the exponent of51

the floating-point numbers, which can be expensive, and they require the use of extended precision52

accumulators. In contrast, the methods from the second class only require standard arithmetic53

operations on the summands. However, they also require a much larger number of floating-point54

operations, and their cost strongly depends on the conditioning. Moreover, they are much less55

parallel than the methods from the first class. In any case, both classes of methods can be quite56

expensive.57

Many of the summation methods able to handle ill-conditioned sums rely on the process of58

distillation. Distillation consists in iteratively transforming the original, ill-conditioned sum into an59

equivalent but well-conditioned sum that can then be evaluated accurately. This is especially the60

case of the second class of methods mentioned above, although the first class can also be used to61

design distillation methods, see for example [1, sec. 5] for the Demmel–Hida method.62

In this article, we propose a method to transform the original sum into another, equivalent63

sum, which is not necessarily better conditioned, but which is far smaller. The smaller sum can64

then be distilled inexpensively by any of the distillation methods mentioned above. We call the first65

transformation of the sum into a smaller equivalent one the process of condensation. In the natural66

language, condensation carries indeed the idea of compacting or contracting a large, complex system67

into a smaller, simpler one. Moreover, and quite appropriately, in the original physical meaning68

of the words, condensation (the process of transforming gas to liquid) is a crucial component of69

the process of distillation (the process of separating substances from a liquid). The entire process70

(condensing the original sum into a smaller one and then distillating it) thus gives rise to a new71

method to handle large ill-conditioned sums, which we call the Condense & Distill method.72

The condensation step is based on the key observation that floating-point numbers with ex-73

ponents not too far apart can be added exactly, even in the working precision, as long as some74

congruence condition of their least significant digits is satisfied. In particular, base-two numbers75

with the same exponent and the same least significant bit can be added exactly in the working76

precision. Condense & Distill thus belongs to the first class of summation methods mentioned77

above, since it requires access to the exponent of the summands. It is most similar to the Demmel–78

Hida method: it also adds together numbers of the same exponent, but does not require any79

extra precision. The entire condensation process can be performed in the working precision; only80

the final condensed sum needs to be distilled using extended precision (or, for that matter, any81

other distillation method). This is achieved at the cost of accessing the least significant bit of82

the summands, which is a negligible overhead compared with the cost of accessing their exponent.83

2

This manuscript is for review purposes only.

Therefore, Condense & Distill allows for significant improvements, not only in terms of performance84

(because operations in the working precision are faster), but also in terms of robustness/portability.85

For example, our algorithm can easily accomodate quadruple precision as the working precision.86

Compared with the second class of summation methods (AccSum, etc.), Condense & Distill shares87

the main strengths of the first class: its performance can be made completely independent of the88

conditioning of the sum, and it exhibits nearly perfect parallel scaling.89

The rest of this article is organized as follows. In section 2, we carry out an analysis to determine90

conditions for the floating-point addition x+y to be exact. We leverage this analysis in section 3 to91

develop the Condense & Distill method. We experimentally showcase the use of Condense & Distill92

against traditional distillation algorithms in section 4, where we also analyze the parallel scaling of93

our algorithm. Finally we provide our concluding remarks in section 5.94

2. When is x+ y exact?. Consider a floating-point number system F with base β, exponent95

range (emin, emax), and significand of length t ≥ 2. To denote x ∈ F we will use the notation96

x = ±(βex + kxεex), εex = βex+1−t, kx ∈ N,97

where ex is the unbiased exponent of x and εex is the space between adjacent floating-point numbers98

in the interval [βex , βex+1]. Note that kx < (β − 1)βt−1 since x < βex+1.99

Given x, y ∈ F of the same sign, conditions for the subtraction x− y to be exact are known by100

Sterbenz lemma (see [10] or [6]). In this section, we determine conditions for the addition x+ y to101

be exact. We begin with the very general result below.102

Theorem 2.1. Let x, y ∈ F of the same sign σ = ±1 such that103

x = σ(βex + kxεex),104

y = σ(βey + kyεey).105106

Assuming (without loss of generality) that |x| ≤ |y|, then x+ y ∈ F, and thus the addition is exact,107

iff one of the following conditions is met:108

(i) x = 0;109

(ii) |x+ y| < βey+1, ey − ex ≤ t− 1, and kx ≡ 0 mod βey−ex ;110

(iii) |x+ y| = βey+1, ey + 1 ≤ emax, ey − ex ≤ t− 1, and kx ≡ 0 mod βey−ex ;111

(iv) |x+ y| > βey+1, ey + 1 ≤ emax, ey − ex ≤ t− 2, and kx + kyβ
ey−ex ≡ 0 mod βey−ex+1.112

Proof. Case (i) is trivial. For the remaining cases, we consider positive x and y, the negative113

case being analagous. We first note that x + y ∈ [βey , βey+2], so that if x + y is to be exact its114

exponent can only be ey or ey + 1.115

• Let us first consider the case (ii), where x + y < βey+1. Then x + y ∈ F iff εey divides116

x + y − βey = kyεey + x, that is, iff εey divides x = βex + kxεex . We first prove that it is117

necessary for εey = βey+1−t to divide βex , which is only possible if ey − ex ≤ t− 1. If this118

condition is not met, then ex ≤ ey − t and so βex ≤ εey/β; moreover, kxεex < (β− 1)βex ≤119

(β − 1)βey−t = (β − 1)εey/β and therefore εey > x cannot divide x. We conclude that120

ey − ex ≤ t − 1 is a necessary condition for x + y ∈ F (when x ̸= 0). The condition121

is not sufficient, since εey must also divide kxεex , which happens iff kx is congruent to122

0 mod βey−ex . This concludes case (ii).123

• Case (iii) is identical to case (ii), except we must guarantee that βey+1 exists by barring124

overflow with the condition ey + 1 ≤ emax.125

3

This manuscript is for review purposes only.

• In case (iv), βey+1 < x + y < βey+2, we also need ey + 1 ≤ emax to bar overflow. Then,126

x + y ∈ F iff εey+1 divides x + y − βey+1 = βey (1 − β) + kyεey + x. First, we note that127

εey+1 = βey+2−t divides βey for t ≥ 2, so x + y ∈ F iff εey+1 divides kyεey + βex + kxεex .128

Second, we prove that it is necessary for εey+1 to divide βex , which requires ey−ex ≤ t−2.129

Indeed, if this condition is not met, ex ≤ ey + 1− t, and so x < βex+1 ≤ βey+2−t = εey+1.130

Thus x+y < y+εey+1 < βey+1+εey+1, but we are in the case x+y > βey+1, so x+y /∈ F.131

Therefore ey−ex ≤ t−2 is necessary and εey+1 divides βex . Moreover, for the condition to132

be sufficient, we also need εey+1 to divide kyεey +kxεex , which happens when kx+kyβ
ey−ex133

is congruent to 0 mod βey−ex+1.134

Theorem 2.1 fully characterizes the conditions for the addition of two floating-point numbers135

x+ y to be exact. The conditions essentially boil down to two components: the exponents of x and136

y must not be too far apart, and their mantissas must satisfy some congruence condition. Making137

use of this characterization in practice could however be complex. Interestingly, the conditions138

become much simpler if we specialize them to numbers sharing the same exponent (ex = ey).139

Corollary 2.2. Let x, y ∈ F of same sign σ = ±1 and same exponent e, such that140

x = σ(βe + kxεe),141

y = σ(βe + kyεe).142143

Then x+ y ∈ F, and thus the addition is exact, iff either144

(i) |x+ y| < βe+1 or145

(ii) e+ 1 ≤ emax and kx + ky ≡ 0 mod β.146

Case (i) of Corollary 2.2 corresponds to cases (i) and (ii) of Theorem 2.1, while case (ii) of the147

corollary corresponds to cases (iii) and (iv) of the theorem. Note that case (i) of the corollary is only148

possible for β > 2, since in binary floating-point arithmetic, the sum of two numbers in the range149

(2e, 2e+1] necessarily yields a number in the range (2e+1, 2e+2]. Moreover, recall that floating-point150

numbers can be expressed as151

x = βe−t
t∑

i=1

diβ
t−i, (2.1)152

where the digits di satisfy 0 ≤ di ≤ β−1 with d1 ̸= 0 for normalized numbers. Since β divides βt−i153

for i < t, the condition kx + ky ≡ 0 mod β further simplifies to a condition on the least significant154

digits dxt and dyt of x and y:155

dxt + dyt ≡ 0 mod β, (2.2)156

that is, dxt + dyt must be either 0 or β. For β = 2, this further simplifies to dxt = dyt , yielding the157

following result.158

Corollary 2.3. If x, y ∈ F with β = 2 have the same sign, exponent, and least significant bit,159

then barring overflow their addition is exact.160

Corollary 2.3 provides a necessary condition that is much simpler to check, since it only requires161

to access the sign, exponent, and least significant bit of x and y. In the next section we propose162

an algorithm that exploits this observation to condense a large sum into an equivalent one with far163

fewer summands.164

4

This manuscript is for review purposes only.

3. Fast distillation via condensation. We now describe the Condense & Distill algorithm,165

which exploits Corollary 2.3 to compute rapidly and exactly166

s =

n∑
i=1

xi, xi ∈ F. (3.1)167

Condense & Distill consists of two steps. The first step is to condense the sum by adding pairs168

of summands sharing the same exponent, sign, and least significant bit (hereinafter abbreviated as169

LSB), until no such pairs remain. As we will prove below, the number of remaining summands is170

then bounded by a small value. This first condensation step therefore transforms the original sum171

into another sum with a much smaller number of summands. The second step is to then distill this172

much smaller sum via any traditional distillation method. The condensation step thus serves as a173

preprocessing to accelerate the distillation step.174

To prove the algorithm’s exactness and cost, we conceptually describe it as building a forest175

(a disjoint set of trees). We first place the summands xi as leaf nodes on a level determined by176

their exponent. Then we repeatedly sum pairs of siblings with identical sign and LSB and place the177

(exact) result on the level above, until all pairs of siblings have either a different sign or a different178

LSB. At this point there thus remains at most 4 nodes per level, and the number of non-empty179

levels is itself bounded by L = ⌈log2 n⌉ + d, where d is a constant independent of n that equals180

the number of different exponents among the summands xi. L is certainly bounded by the total181

number of possible exponent values of the floating-point system (e.g., 2047 with IEEE binary64),182

and can be much smaller for typical datasets which do not cover the entire exponent range. The183

final result is therefore given as the exact unevaluated sum of at most 4L floating-point numbers.184

0.25 0.3125 0.375 0.375 0.4375 0.4375

0.625 0.75 0.625 0.625 0.75 0.75 0.875

1.25 1.5 1.5

3

Fig. 3.1. Illustration of the proposed summation algorithm for a simple floating-point system with t = 3. The
shaded nodes are the remaining values whose unevaluated sum is equal to the exact result. Ellipse and rectangle
nodes correspond to numbers with an LSB of 0 and 1, respectively.

We illustrate this algorithm in Figure 3.1, using a simple floating-point system F with t = 3.185

The eleven leaf nodes correspond to the input summands xi, whose exact sum is s = 5.8125 (we186

only consider positive summands here for simplicity, negative numbers would be treated separately187

and similarly). All non-leaf nodes correspond to partial results obtained during the computation188

and, to easily check that they are indeed floating-point numbers, we provide the list of elements of189

5

This manuscript is for review purposes only.

F in the interval (0.25, 3):190

0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3.191

Ellipse nodes correspond to numbers with an LSB equal to 0, and can thus be summed exactly with192

other ellipse nodes on the same level. Rectangle nodes correspond to numbers with an LSB equal193

to 1, and can similarly be summed exactly with other rectangle nodes on the same level. The five194

shaded nodes are the root nodes and correspond to the remaining numbers that cannot be summed195

exactly with another node on the same level. They form an unevaluated sum whose result is equal196

to the exact sum:197

s = 0.375 + 0.4375 + 0.75 + 1.25 + 3.198

It is interesting to remark that the addition of some of these numbers can be represented exactly,199

namely 0.75 + 1.25 = 2 ∈ F. This is indeed consistent with Theorem 2.1: defining x = 0.75 and200

y = 1.25, we have ex = −1, ey = 0, kx = 2, ky = 1, and the condition (iv) of the theorem holds:201

kx + kyβ
ey−ex = 4 ≡ 0 mod 22. However, our algorithm will not exploit this because it only tries202

to sum numbers of identical exponent, for which we only need to check the LSB.203

It is important to note that the forest structure of the algorithm is purely conceptual and does204

not actually need to be built. We also do not need access to all summands previous to the beginning205

of the computation. Algorithm 3.1 describes an online implementation (which adds summands as206

they become available, and in any order) that requires at most 4L accumulators.207

We note that the assumption in Corollary 2.3 that x and y have the same sign is not required:208

if their signs are different, the subtraction x+ y is exact by Sterbenz’s lemma, since numbers with209

the same exponent certainly satisfy x/2 ≤ y ≤ 2x, and this holds regardless of the LSB of x and y.210

Therefore, the algorithm could also add pairs of summands with the same exponent and different211

signs, reducing the maximum number of accumulators (and terms in the unevaluated result) from212

4L to 2L. However, the drawback is that we would need to recompute the exponent of the result213

of each addition, since the exponent of a subtraction of two numbers with the same exponent can214

have an arbitrarily small exponent depending on how close the two numbers are. In contrast, by215

restricting the pairs to have the same sign, we know that the exponent of x+ y is exactly one more216

than that of x and y.217

4. Numerical experiments. We present a set of numerical experiments to assess the perfor-218

mance of the Condense & Distill method and its behavior with respect to various parameters such219

as the dimension n and the condition number κ. We also present a parallel implementation of the220

method and study its scalability.221

4.1. Experimental protocol. All the experiments were performed on one node of the Olympe222

supercomputer, equipped with two 18-core Intel Skylake processors. All code was compiled with223

gfortran version 9.3.0 and with the -O3 optimization flag.224

We test the methods on ill-conditioned sums randomly generated as follows. Assuming n =225

2k+1 is odd (if n is even we simply add one extra zero summand), we generate k random summands226

xi in the range [10−e, 10e], where e is a fixed parameter that determines the width of the dynamic227

range of the xi values; we have used e = 32 throughout all experiments. We set another k summands228

to −xi and set the last summand to 10e/κ. Finally we randomly shuffle all summands. The exact229

sum is equal to 10e/κ, and its conditioning is of the order of κ.230

4.2. Comparison with Demmel–Hida and AccSum. We begin by comparing the perfor-231

mance of our new Condense & Distill method with that of the Demmel–Hida and AccSum methods.232

6

This manuscript is for review purposes only.

Algorithm 3.1 Condense & Distill method.

1: Input: n summands xi and a distillation method distill

2: Output: s =
∑n

i=1 xi

3: Initialize Acc(e, s, b) to 0 for e = emin : emax, s ∈ {−1, 1}, b ∈ {0, 1}.
4: for all xi in any order do
5: e = exponent(xi)
6: s = sign(xi)
7: b = LSB(xi)
8: insert(Acc, xi, e, s, b)
9: end for

10: xcondensed = gather(Acc)
11: s = distill(xcondensed)

12: function insert(Acc, x, e, s, b)
13: if Acc(e, s, b) = 0 then
14: Acc(e, s, b) = x
15: else
16: x′ = Acc(e, s, b) + x
17: Acc(e, s, b) = 0
18: b′ = LSB(x′)
19: insert(Acc, x′, e+ 1, s, b′)
20: end if
21: end function

22: function xcondensed = gather(Acc)
23: i = 0
24: for all nonzero Acc(e, s, b) do
25: i = i+ 1
26: xcondensed(i) = Acc(e, s, b)
27: end for
28: end function

Figure 4.1 plots the time cost of each method for varying κ and for two fixed values of n, n = 107233

(left) or n = 108 (right). The figure shows that, as expected, the cost of the Condense & Distill234

and Demmel–Hida methods is independent of κ, with Condense & Distill being roughly 35% faster235

because it avoids using quadruple precision. In contrast, the cost of AccSum strongly depends236

on κ, growing at a rate of roughly log κ. As a result, the time comparison between AccSum and237

Condense & Distill depends on κ: for only moderately ill-conditioned sums, AccSum is faster, but238

as κ increases Condense & Distill (and even Demmel–Hida) eventually outperforms AccSum, po-239

tentially by very large factors if the sum is extremely ill conditioned. The cutoff value of κ for240

which Condense & Distill outperforms AccSum also seems to decrease as n increases: it is equal to241

κ ≃ 1035 for n = 107 and κ ≃ 1020 for n = 108.242

We confirm this last trend in Figure 4.2, where we compare the performance of the methods for243

an increasing n and a fixed value of κ. The figure shows that Condense & Distill becomes more and244

7

This manuscript is for review purposes only.

10
10

10
20

10
30

10
40

10
50

10
60

10
70

10
80

10
90

10
10
0

5

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im
e
(s
)

AccSum
Demmel{Hida
Condense & Distill

10
10

10
20

10
30

10
40

10
50

10
60

10
70

10
80

10
90

10
10
0

5

0

1

2

3

4

5

6

7

T
im

e
(s

)

AccSum
Demmel{Hida
Condense & Distill

Fig. 4.1. Comparison between the Demmel–Hida, AccSum, and Condense & Distill algorithms, as a function
of the condition number κ and for two dimensions n = 107 (top) and n = 108 (bottom). All algorithms are run
sequentially (1 thread).

more competitive with respect to AccSum as n increases. While AccSum is faster for small sums, it245

is eventually outperformed by Condense & Distill and even by Demmel–Hida, for sufficiently large246

sums. The cutoff value of n for which Condense & Distill outperforms AccSum similarly decreases247

as κ increases: for example, it is equal to n ≃ 107 for κ = 1030 and n ≃ 106 for κ = 1060.248

4.3. Parallel scaling. In the previous comparison, the methods are executed sequentially249

(using only 1 thread) but, as mentioned, Condense & Distill, like Demmel–Hida and similar meth-250

8

This manuscript is for review purposes only.

105 106 107 108 109

n

10!2

10!1

100

101

T
im

e
(s

)

AccSum
Demmel{Hida
Condense & Distill

105 106 107 108 109

n

10!2

10!1

100

101

T
im

e
(s

)

AccSum
Demmel{Hida
Condense & Distill

Fig. 4.2. Comparison between the Demmel–Hida, AccSum, and Condense & Distill algorithms, as a function
of the number of summands n and for two condition numbers κ = 1030 (top) and κ = 1060 (bottom). All algorithms
are run sequentially (1 thread).

ods, is very amenable to parallelism. We have implemented a parallel version of Condense & Distill,251

which can exploit p threads by splitting the summands into p blocks and condensing each block252

in parallel. This yields a condensed sum with at most 4Lp summands, which can be sequentially253

condensed into an even smaller sum with at most 4L summands, before being sequentially distilled.254

Figure 4.3 analyzes the parallel scaling of this method with a varying number of threads from 1 to255

36. We consider both strong scaling (right plot, with fixed n = 108) and weak scaling (left plot,256

with n = 3× 106 per thread). The method exhibits near perfect scaling, as expected.257

As mentioned, similar scaling can also be expected from the Demmel–Hida method. In contrast,258

9

This manuscript is for review purposes only.

100 101

Number of threads

10!1

100

T
im

e
(s

)

Condense & Distill
ideal scaling

0 10 20 30

Number of threads

0

0.02

0.04

0.06

0.08

T
im

e
(s
)

Condense & Distill
ideal scaling

Fig. 4.3. Parallel scaling of Condense & Distill, using from 1 to 36 threads. Top: strong scaling (n = 108 is
fixed). Bottom: weak scaling (n = 3× 106 per thread).

AccSum and similar methods offer much less parallelism. We do not study the parallel scaling of259

AccSum here, but refer to [5], which shows that AccSumK can achieve at best a parallel efficiency260

of only 50%. Therefore, in a parallel setting, we can expect the performance comparison between261

Condense & Distill and AccSum to be even more in favor of the former, even for small values of κ.262

4.4. Quadruple precision as the working precision. We finally illustrate how condensa-263

tion can be even more beneficial in the case where the working precision is quadruple precision,264

which may for example be necessary for applications requiring a high level of accuracy. In this265

situation Condense & Distill is clearly at an advantage compared with both Demmel–Hida and266

10

This manuscript is for review purposes only.

10
10

10
20

10
30

10
40

10
50

10
60

10
70

10
80

10
90

10
10
0

5

0

1

2

3

4

5

T
im

e
(s

)

AccSum
Condense & Distill

Fig. 4.4. Comparison between AccSum and Condense & Distill using quadruple precision as the working
precision (n = 107, both algorithms are executed using 1 thread).

AccSum. Indeed, since Demmel–Hida requires extended precision, using quadruple precision as267

the working precision would require access to an even higher precision, which is unavaible on most268

architectures. The only solution would be to rely on an arbitrary precision library, but this would269

likely be very expensive and we do not explore this option further. As for AccSum, it can easily be270

executed in quadruple precision since it also runs entirely in the working precision. However, the271

cost comparison with Condense & Distill tips even more in favor of the latter, because the relative272

cost of accessing the summands exponent is smaller with respect to the cost of arithmetic operations273

(which are much more expensive in quadruple precision). This is illustrated in Figure 4.4, which274

shows that Condense & Distill achieves even larger speedups with respect to AccSum, and even for275

small condition numbers.276

5. Conclusion. We have proposed a new distillation method, Condense & Distill (Algo-277

rithm 3.1), which employs a preprocessing condensation step to turn a large ill-conditioned sum278

into a still ill-conditioned, but far smaller sum, which is then distilled inexpensively via traditional279

distillation methods. The condensation step relies on Corollary 2.3, which proves that floating-point280

numbers with the same exponent and least significant bit can be added exactly. Compared with281

other summation methods that also require accessing the exponent field of the summands, such as282

the Demmel–Hida method [1], Condense & Distill can run entirely in the working precision. As a283

result, Condense & Distill is faster, and is also more portable since it does not require any extra284

precision to be available. Compared with distillation methods based on error-free transformations,285

such as AccSum [8], Condense & Distill’s cost does not increase with the conditioning, and exhibits286

much better parallel scaling. Overall, we have thus shown Condense & Distill to be an efficient287

method to distill large ill-conditioned sums.288

11

This manuscript is for review purposes only.

Acknowledgments. We thank Massimiliano Fasi and Mantas Mikaitis for a discussion at the289

2022 Creativity workshop in Manchester, organized by Nick Higham and Dennis Sherwood, that290

led to the observation that numbers with the same exponent and least significant bit can be added291

exactly.292

Funding. This work was partially supported by the InterFLOP (ANR-20-CE46-0009), NuS-293

CAP (ANR-20-CE48-0014), and MixHPC (ANR-23-CE46-0005-01) projects of the French National294

Agency for Research (ANR).295

REFERENCES296

[1] J. Demmel and Y. Hida, Accurate and efficient floating point summation, SIAM Journal on Scientific Com-297
puting, 25 (2004), pp. 1214–1248.298

[2] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics,299
Philadelphia, PA, USA, second ed., 2002.300

[3] U. W. Kulisch and W. L. Miranker, The arithmetic of the digital computer: A new approach, SIAM Review,301
28 (1986), pp. 1–40.302

[4] M. Lange, Toward accurate and fast summation, ACM Trans. Math. Softw., 48 (2022).303
[5] X. Lei, T. Gu, S. Graillat, H. Jiang, and J. Qi, A fast parallel high-precision summation algorithm based304

on accsumk, Journal of Computational and Applied Mathematics, 406 (2022), p. 113827.305
[6] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond,306

N. Revol, and S. Torres, Handbook of floating-point arithmetic, Birkhäuser/Springer, Cham, second ed.,307
2018.308

[7] S. M. Rump, Ultimately fast accurate summation, SIAM Journal on Scientific Computing, 31 (2009), pp. 3466–309
3502.310

[8] S. M. Rump, T. Ogita, and S. Oishi, Accurate floating-point summation part i: Faithful rounding, SIAM311
Journal on Scientific Computing, 31 (2008), pp. 189–224.312

[9] S. M. Rump, T. Ogita, and S. Oishi, Fast high precision summation, Nonlinear Theory and Its Applications,313
IEICE, 1 (2010), pp. 2–24.314

[10] P. H. Sterbenz, Floating-point computation, Prentice-Hall Inc., Englewood Cliffs, N.J., 1974. Prentice-Hall315
Series in Automatic Computation.316

[11] Y.-K. Zhu and W. B. Hayes, Correct rounding and hybrid approach to exact floating-point summation, SIAM317
J. Sci. Comput., 31 (2009), pp. 2981–3001.318

[12] Y.-K. Zhu and W. B. Hayes, Algorithm 908: Online exact summation of floating-point streams, ACM Trans-319
actions on Mathematical Software (TOMS), 37 (2010), pp. 1–13.320

12

This manuscript is for review purposes only.

	Introduction
	When is x+y exact?
	Fast distillation via condensation
	Numerical experiments
	Experimental protocol
	Comparison with Demmel–Hida and AccSum
	Parallel scaling
	Quadruple precision as the working precision

	Conclusion
	References

