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ADELIC APPROXIMATION ON SPHERES

ÉRIC GAUDRON

Abstract. We establish an adelic version of Dirichlet’s approximation theorem on spheres. Let
K be a number field, E be a rigid adelic space over K and q : E → K be a quadratic form. Let v
be a place of K and α ∈ E⊗K Kv such that q(α) = 1. We produce an explicit constant c having
the following property. If there exists x ∈ E such that q(x) = 1 then, for any T > c, there exists
(υ,φ) ∈ E × K, with max (‖υ‖E,v , |φ|v) ≤ T and max (‖υ‖E,w, |φ|w) controlled for any place
w, satisfying q(υ) = φ2 6= 0 and |q(αφ − υ)|v ≤ c|φ|v/T . This remains true for some infinite
algebraic extensions as well as for a compact set of places of K. Our statements generalize and
improve on earlier results by Kleinbock & Merrill (2015) and Moshchevitin (2017). The proofs
rely on the quadratic Siegel’s lemma in a rigid adelic space obtained by the author and Rémond
(2017).

1. Introduction

Let n ≥ 1 be an integer and q : Rn → R be a positive-definite quadratic form. The Euclidean
variant of Dirichlet’s approximation theorem asserts that, for any α ∈ Rn and any real number
T > 0, there exists (υ,φ) ∈ (Zn × Z) \ {0} such that

0 ≤ φ ≤ T and q (αφ− υ) ≤ n(det q)1/n

T 2/n
,

where det q is the determinant of the symmetric matrix A(q) associated to the quadratic form q (in
the canonical basis of Rn). Its proof consists in applying Minkowski’s theorem to the lattice Zn×Z
endowed with the Euclidean structure q(αφ−υ)+aφ2 for a well-chosen positive real number a. In
2015, Kleinbock and Merrill published a similar statement in the particular case q(x) = x2

1+· · ·+x2
n

but with the additional property q(υ) = φ2 satisfied by the solution (υ,φ) [KM]. In their result
q(αφ−υ) is bounded by c(n)φ/T for some positive constant c(n). A generalization to any positive-
definite quadratic form such that A(q) ∈ Mn(Z) has been achieved by Moshchevitin [Mo] who,
besides, gave an explicit constant depending on n and det q.

The aim of this article is to improve these constants while simplifying the proofs and providing
an adelic generalization. Our first result makes use of the Hermite constant γn in dimension n
which is the greatest first minimum of unimodular lattices in the Euclidean space Rn.

Theorem 1.1. Let q : Rn → R be a positive-definite quadratic form such that A(q) has integral
coefficients. Assume that there exists x ∈ Qn such that q(x) = 1. Then, for all α ∈ Rn such that
q(α) = 1, for all real number T ≥ (2γn)n/2

√
det q, there exist υ ∈ Zn and φ ∈ Z with 1 ≤ φ ≤ T

satisfying

q

(
υ

φ

)
= 1 and q

(
α− υ

φ

)
≤
√

8(2γn)n det q

φT
.

Applying this statement to

T ′ = max

(
T,

(2γn)n det q

T

)
for T > 0, which always satisfies the condition T ′ ≥ (2γn)n/2

√
det q, leads to a variant where T

is only assumed to be positive. Besides the real number
√

8(2γn)n det q is smaller than the nth
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2 ÉRIC GAUDRON

root of the constant κf which is in [Mo, Theorem 1] but we were unable to determine whether the
dependency in det q is optimal or not.

The proof consists in finding a small isotropic vector (υ,φ) of the quadratic form Q(x, y) =
q(x)− y2 with the quadratic Siegel’s lemma obtained by the author and Rémond [GR2, Theorem
1.2]. In order to ensure the smallness of q(αφ − υ) we twist the product norm on Rn × R with
a well-chosen isometry of Q, which is the argument at the heart of Kleinbock and Merrill’s proof
(written differently). Our proof is also inspired by Moshchevitin’s proof, but we avoid any choice
of basis. A generalization involving an algebraic extension K of Q and several (archimedean or
ultrametric) places of K will be given in § 4. The main argument of the proof is the same as the
one of Theorem 1.1, but some new difficulties appear since the condition φ 6= 0 is not automatic
when q is not anisotropic. That is why we prefer to start by proving this particular case.

Acknowledgement. I thank Gaël Rémond for his remarks on a previous version of this article.

2. Proof of Theorem 1.1

Let α ∈ Rn such that q(α) = 1. Denote by b : Rn × Rn → R be the symmetric bilinear form
associated to q.

2.1. The Euclidean lattice. Fix a real number t ≥ 1. For any (x, y) ∈ Rn × R, let us consider

X =
1

2

(
1

t
+ t

)
b(x, α) +

1

2

(
1

t
− t
)
y and Y =

1

2

(
1

t
− t
)
b(x, α) +

1

2

(
1

t
+ t

)
y

as well as the linear map ξ defined by ξ(x, y) = (x− b(x, α)α+ Xα,Y). It is an automorphism of
Rn×R of determinant 1. Indeed, since q(α) 6= 0, the q-orthogonal subspace {x ∈ Rn ; b(x, α) = 0}
is a supplement to R.α in Rn. The choice of a basis e1, . . . , en−1 of this hyperplane provides a basis
(e1, 0), . . . , (en−1, 0), (α, 0), (0, 1) of Rn × R in which the matrix of ξ is written(

In−1 0
0 A

)
where A =

1

2

(
1/t + t 1/t− t
1/t− t 1/t + t

)
has determinant 1.

Thus, the Euclidean norm ‖(x, y)‖ = (q(x) + y2)1/2 on Rn × R induces another norm ‖(x, y)‖t =
‖ξ(x, y)‖. In that way, we get an Euclidean lattice Et = (Zn × Z, ‖ · ‖t) whose volume does not
depend on t:

Lemma 2.1. The volume of Et is equal to
√

det q.

Proof. The volume of Et is also that of ξ(Zn × Z) with respect to the norm ‖ · ‖ that is, |det ξ| ×
vol(Zn × Z, ‖ · ‖) =

√
det q. �

2.2. The quadratic form. Consider the regular quadratic form Q(x, y) = q(x) − y2 on Qn ×
Q which is isotropic by hypothesis. Using that x − b(x, α)α is q-orthogonal to α, the equality
Q(ξ(x, y)) = Q(x, y) can be checked for all (x, y) ∈ Rn × R with a direct calculation. In other
words:

Lemma 2.2. The map ξ is isometric with respect to Q.

At last, at every place p of Q, we can consider the norm ‖B‖p of the bilinear form B associated
to Q defined by

‖B‖∞ = sup

{
|B((x, y), (x′, y′))|
‖(x, y)‖t‖(x′, y′)‖t

| (x, y), (x′, y′) ∈ (Rn × R) \ {0}
}

in the archimedean case and by ‖B‖p = max0≤i,j≤n |B(ei, ej)|p where {e0, . . . , en} is the canonical
basis of Zn+1 and the absolute value | · |p on Qp normalised with |p|p = p−1. By definition, the
height H(Q) of Q is the product of all the norms ‖B‖p over the places p of Q. Here we have
the formula B((x, y), (x′, y′)) = b(x, x′) − yy′ which immediatly implies ‖B‖p = 1 for all prime
number p since b has integral coefficients. Moreover, as ξ is a global isometry with respect to Q,
we also have ‖B‖∞ = sup {|B((x, y), (x′, y′))| | ‖(x, y)‖ = ‖(x′, y′)‖ = 1}. Then, Cauchy-Schwarz
inequality applied to the positive-definite quadratic form q(x) + y2 = ‖(x, y)‖2 gives ‖B‖∞ = 1.
Hence, the height H(Q) of Q equals to 1.
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2.3. The quadratic Siegel’s lemma. We now apply [GR2, Theorem 1.3] to the quadratic space
(Et, Q) over Q (of dimension n+ 1) and we get (υ,φ) ∈ Zn × N≥1 such that Q(υ,φ) = 0 and

‖(υ,φ)‖t ≤ (2γnH(Q))
n/2

H(Et)

(the height of a vector of Et equals to the norm of a multiple of this element, see [Ga2, Example 2
p.46]). The height H(Et) of Et is nothing but the volume of (Zn × Z, ‖ · ‖t) [Ga2, p. 43] that is,√

det q by Lemma 2.1. Also note that the constant cBV
Q (n) in the original statement is simply γn/2n

(see § 4.1). As H(Q) = 1 we get ‖(υ,φ)‖t ≤ (2γn)
n/2√

det q with q(υ/φ) = 1.

2.4. Conclusion. We observe that

q

(
α− υ

φ

)
=

2

φ
(φ− b(υ, α)) =

2

φt
(Y− X)

where X,Y are relative to (υ,φ). Hence, since X2 + Y2 ≤ q(υ − b(υ, α)α) + X2 + Y2 = ‖(υ,φ)‖2t ,
Cauchy-Schwarz inequality provides the bound q

(
α− υ

φ

)
≤ 2
√

2‖(υ,φ)‖t/φt. Next we note that,
since t ≥ 1,

φ =
1

2

(
t− 1

t

)
X +

1

2

(
t+

1

t

)
Y ≤ tmax (|X|, |Y|) ≤ t‖(υ,φ)‖t.

We replace ‖(υ,φ)‖t by (2γn)
n/2√

det q and we set T = t (2γn)
n/2√

det q to end the proof of
Theorem 1.1.

3. Extended statement

In Theorem 1.1 the form q plays two distinct roles since it is used both to define the set (ellipsoid)
where the approximation takes place and to measure the quality of approximation. We can give
a more general statement in which two quadratic forms appear: we will approximate points on
q = 1 using another quadratic form q0 to measure the size of the approximation. Here it is natural
to retain the hypothesis that q0 be positive-definite but we can relax the condition on q, allowing
some non definite forms.

Let E be a vector space over a field K and q : E → K a quadratic form. The isotropy index
i(q) of q is the maximal dimension of totally isotropic subspaces of q. The induced quadratic
form Q(x, y) = q(x) − y2 on E × K verifies i(Q) − i(q) ∈ {0, 1}. In fact i(Q) = i(q) + 1 when
the anisotropic part of q in the Witt decomposition takes the value 1. Given a positive-definite
quadratic form q0 : Rn → R, we denote by ‖ · ‖ =

√
q0 the associated Euclidean norm on Rn

and by λ1 = min {‖λ‖ | λ ∈ Zn \ {0}} the first minimum of the Euclidean lattice (Zn, ‖ · ‖). A
quadratic form q(x) = txA(q)x associated with a symmetric matrix A(q) ∈ Mn(R) (not necessarily
positive-definite) also inherits a norm by the formula

‖q‖∞ = max
{

txA(q)y | x, y ∈ Rn, ‖x‖ = ‖y‖ = 1
}
.

In this context we have the following statement.

Theorem 3.1. Let α ∈ Rn such that q(α) = 1. Define

T0 = nn/2 (2 max (1, ‖q‖∞))
(n−i(q))/2 ‖α‖

√
det q0

and T = max
(
T

1/(i(q)+1)
0 , (

√
2/λ1)i(q)T0

)
. Assume that A(q) ∈ Mn(Z) and that i(Q) > i(q) where

Q(x, y) = q(x) − y2. Then, for all real number T ≥ T, there exists (υ,φ) ∈ Zn × Z satisfying
q(υ) = φ2 6= 0,

‖υ‖2 + (φ‖α‖)2 ≤ (‖α‖‖b(·, α)‖op,∞T )
2 and |q(αφ− υ)| ≤ 2

√
2T2φ

T
× ‖b(·, α)‖op,∞.

Here ‖b(·, α)‖op,∞ denotes the operator norm of the linear form x 7→ b(x, α) = txA(q)α on
(Rn, ‖ · ‖). It can be bounded by ‖q‖∞‖α‖. If the proof of Theorem 3.1 follows the same lines as
those of Theorem 1.1, the new difficulty is to ensure φ 6= 0 even though q is not assumed to be
definite. To solve this problem, we introduce a maximal totally Q-isotropic sublattice Ω of Zn ×Z
of small volume and we distinguish two cases according to the value of the first minimum of Ω.
The proof is a special case of that of Theorem 4.1 (see § 4.4). Let us just say that the quantity nn
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in T0 is a bound for γi(q)+1
i(q)+1γ

n−i(q)
n−i(q) which appears in T0 during the proof (see Theorem 4.1 and the

discussion at the end of the article).

4. Adelic generalization

4.1. Let K/Q be an algebraic extension. Its set of places has a structure of topological measure
space (V (K), σ) described in [GR1, § 2]. For v ∈ V (K) we denote by Kv the topological completion
of K at v and | · |v is the unique absolute value on Kv such that |p|v ∈ {1, p, p−1} for every prime
number p. The module |f | of an integrable bounded function f : V (K) → (0 + ∞) such that
{v ∈ V (K) ; f(v) 6= 1} is contained in a compact subset is the positive real number

|f | = exp

(∫
V (K)

log (f(v)) dσ(v)

)
.

Given an integer n ≥ 1, a place v ∈ V (K) and x = (x1, . . . , xn) ∈ Rn, write

mv(x) =

{(
x2

1 + · · ·+ x2
n

)1/2 if v | ∞
max (x1, . . . , xn) if v -∞.

Then |x|v = mv(|x1|v, . . . , |xn|v) defines a norm on Kn
v for all v ∈ V (K). Let AK = K ⊗Q AQ

be the adèles of K. A rigid adelic space (of dimension n) is a n-dimensional K-vector space E
endowed with norms ‖ · ‖E,v on Ev = E⊗K Kv for all v ∈ V (K), satisfying the following property:
there exist an isomorphism ϕ : E → Kn and an adelic matrix (Av)v∈V (K) ∈ GLn(AK) such that

∀x ∈ Ev, ‖x‖E,v = |Avϕv(x)|v

where ϕv = ϕ ⊗ idKv : Ev → Kn
v is the natural extension of ϕ to Ev. The height H(E) of E is

the module of v 7→ |detAv|v and the height HE(x) of x ∈ E \ {0} is the module of v 7→ ‖x‖E,v.
The dual space E∨ has a rigid adelic structure given by the transpose map tϕ−1 : E∨ → Kn and
(tA−1

v )v∈V (K). Besides the product E ×K has a natural rigid adelic structure given by the norms
‖(x, y)‖E×K,v = mv(‖x‖E,v, |y|v) for all (x, y) ∈ Ev ×Kv.

To a rigid adelic space E over K can be attached its first minimum of Roy-Thunder λΛ
1 (E) =

inf {HE(x) ; x ∈ E \ {0}} and its first minimum of Bombieri-Vaaler λBV
1 (E) which is the infimum

of r > 0 such that there exists x ∈ E\{0} satisfying supv|∞ ‖x‖E,v ≤ r and supv-∞ ‖x‖E,v ≤ 1 (note
that λΛ

1 (E) ≤ λBV
1 (E)). The last minimum λ∗n(E) is defined in the same way where x is replaced

by the vectors of a basis of E. They give rise to the following constants: Given ∗ ∈ {Λ,BV} and a
positive integer n, let us define

c∗K(n) = sup
E

λ∗1(E)n

H(E)
∈ (0,+∞]

where E varies among the rigid adelic spaces overK of dimension n. Recall that Minkowski’s second
theorem implies (λ∗1(E))n−1λ∗n(E) ≤ c∗K(n)H(E) [GR1, Theorem 4.12] and, if we set c1(K) =
cBV
K (1), then λBV

i (E) ≤ c1(K)Λi(E) for all 1 ≤ i ≤ n [GR1, Proposition 4.8] and so cBV
K (n) ≤

c1(K)ncΛK(n). For all ∗, we have c∗Q(n) = γ
n/2
n and c∗K(n) ≤ (nδK/Q)n/2 when K is a number field

of root discriminant δK/Q [GR1, Proposition 5.1]. It is also known [GR1, § 5.2] that c∗Q(1) = 1 and,
for n ≥ 2,

c∗Q(n) = exp

(
n

2

(
1

2
+ · · ·+ 1

n

))
.

However, the constant c∗K(n) may be infinite when n ≥ 2. For instance, this is the case when K
is a Northcott field of infinite degree (see Corollary 1.2 and Proposition 4.10 of [GR1]). We say
that K is a Siegel field if cΛK(n) is finite for all n ≥ 1. At last, a quadratic space (E, q) is a rigid
adelic space E endowed with a quadratic form q : E → K. For v ∈ V (K) and b : E × E → K the
symmetric bilinear form associated to q, the norm ‖q‖v is the supremum of |b(x, y)|v/‖x‖E,v‖y‖E,v
for non-zero x, y ∈ E ⊗K Kv. The height H(q) of q is the module of v 7→ ‖q‖v if q 6= 0 and 0
otherwise. We also write H(1, q) for the module of v 7→ max (1, ‖q‖v).
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4.2. Main statements. Let K/Q be a Siegel field and let (E, q) be an adelic quadratic space
over K of dimension n ≥ 1. We present two statements according to the isotropy index of the
quadratic form Q(x, y) = q(x)− y2 on E ×K, which, as we have seen, is equal to i(q) or i(q) + 1.
Let us begin with the case i(Q) = i(q) + 1. For v ∈ V (K), write εv = 1 if v | ∞ and 0 otherwise.

Theorem 4.1. Let V ⊂ V (K) be a compact subset. Let (αv, tv)v∈V (K) ∈ (E ×K)⊗K AK be such
that q(αv) = 1 and |tv|v > 1 for all v ∈ V . Let α : V (K) → R the function defined by α(v) =
‖αv‖E,v if v ∈ V and α(v) = 1 if v 6∈ V . Let us assume that the quadratic form Q(x, y) = q(x)−y2

on E ×K has its isotropy index i(Q) equal to i(q) + 1. Define

T0 = cBV
K (i(Q))cΛK(n+ 1− i(Q)) (2H(1, q))

(n+1−i(Q))/2 |α|H(E)

and

T = max

(
T

1/i(Q)
0 ,

(√
2/λBV

1 (E)
)i(Q)−1

T0

)
.

We assume that c1(K) is finite (in particular T is finite). For v ∈ V , define

Tv = (2T)εv‖αv‖E,v‖b(·, αv)‖E∨,v|tv/2|v.

Then, for all ε > 0, there exists (υ,φ) ∈ E ×K satisfying q(υ) = φ2 6= 0 and such that:

(1) ∀ v 6∈ V, mv (‖υ‖E,v, |φ|v) ≤ ((1 + ε)T)
εv ,

(2) ∀ v ∈ V, mv (‖υ‖E,v, |φ|v‖αv‖E,v) ≤ (1 + ε)
εv Tv

and

(3) ∀ v ∈ V, |q (αvφ− υ)|v ≤
(

(1 + ε)2
√

2T2
)εv ( |φ|v

Tv

)
‖αv‖E,v‖b(·, αv)‖2E∨,v.

The number ‖b(·, αv)‖E∨,v is the operator norm of the linear form x 7→ b(x, αv) on Ev. Besides
the number |α| is the module of the map α (see the beginning of § 4.1). When K is a number field
we can take ε = 0. A discussion about the constant of T0 is made at the end of the article.

Our second statement concerns the other case i(Q) = i(q).

Theorem 4.2. Consider

T1 = 4 min

(
c1(K),

cBV
K (n+ 1− i(Q))

cΛK(n+ 1− i(Q))

)2
( √

2

λBV
1 (E)

)i(Q)

T2
0

(where T0 has been defined in the previous theorem). If i(Q) = i(q) ≥ 1 then Theorem 4.1 remains
true provided T0 which is in the definition of T be replaced by max {T0,T1}.

4.3. Preparatory statements. In this part we prove three auxiliary results useful for the proofs
of Theorems 4.1 and 4.2. The notation are those of these statements.

Since only the absolute value of tv occurs, we can assume tv = |tv|v if v ∈ V is archimedean.
For v ∈ V , define Xv,Yv ∈ Kv with the formulas of § 2.1, where (α, t) is replaced by (αv, tv), and
b : E×E → K is still the symmetric bilinear form associated to q. Let Et be the rigid adelic space
E ×K where each norm at v ∈ V has been twisted in the following way:

∀(x, y) ∈ Ev ×Kv, ‖(x, y)‖Et,v = mv (‖x− b(x, αv)αv + Xvαv‖E,v, ‖Yvαv‖E,v)

(when v 6∈ V , we have ‖(x, y)‖Et,v = mv (‖x‖E,v, |y|v) = ‖(x, y)‖E×K,v). So, to build this norm,
we first modify the norm on E ×K at v by multiplying the second component by α(v) and then
we compose with the automorphism ξv(x, y) = (x− b(x, αv)αv + Xvαv,Yv) of Ev ×Kv, which has
determinant 1. In particular we have H(Et) = |α|H(E ×K) = |α|H(E). Here are two properties
of the norm ‖ · ‖Et,v.

Lemma 4.3. For all v ∈ V , x ∈ E ⊗K Kv and y ∈ Kv, we have

mv(‖x‖E,v, ‖yαv‖E,v) ≤ 2εv |tv/2|v (‖b(·, αv)‖E∨,v‖αv‖E,v) ‖(x, y)‖Et,v.
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Proof. The question is to bound the operator norm of ξ−1
v when Ev × Kv is endowed with

the norm mv(‖x‖E,v, ‖yαv‖E,v). For any (x, y) ∈ Ev × Kv, we have the formula ξ−1
v (x, y) =

(x− b(x, αv)αv + X′vαv,Y
′
v) where

X′v =
1

2

(
tv +

1

tv

)
b(x, αv) +

1

2

(
tv −

1

tv

)
y and Y′v =

1

2

(
tv −

1

tv

)
b(x, αv) +

1

2

(
tv +

1

tv

)
y.

When v ∈ V is ultrametric, we have

max (‖X′vαv‖v, ‖Y′vαv‖E,v) ≤ max (‖x‖E,v, ‖yαv‖E,v)× |tv/2|v‖b(·, αv)‖E∨,v‖αv‖E,v
since |tv|v ≥ 1 and

(4) |b(x, αv)|v ≤ ‖b(·, αv)‖E∨,v‖x‖E,v and 1 = |b(αv, αv)|v ≤ ‖b(·, αv)‖E∨,v‖αv‖E,v.
We easily deduce that the same bound holds for max (‖x− b(x, αv)αv + X′vαv‖E,v, ‖Y′vαv‖E,v),
which gives the desired result. When v is archimedean, observe that

mv (‖x− b(x, αv)αv + X′vαv‖E,v, ‖Y′vαv‖E,v)
2 ≤ (‖x‖E,v + ‖ (X′v − b(x, αv))αv‖E,v)

2
+ ‖Y′vαv‖2E,v.

We note

‖ (X′v − b(x, αv))αv‖E,v ≤
1

2

(
tv +

1

tv
− 2

)
‖b(x, αv)αv‖E,v +

1

2

(
tv −

1

tv

)
‖yαv‖E,v

and

‖Y′vαv‖E,v ≤
1

2

(
tv −

1

tv

)
‖b(x, αv)αv‖E,v +

1

2

(
tv +

1

tv

)
‖yαv‖E,v.

Then, using (4), we can factorize by the product ‖b(·, αv)‖E∨,v‖αv‖E,v and we see that

(2mv (‖x− b(x, αv)αv + X′vαv‖E,v, ‖Y′vαv‖E,v) /‖b(·, αv)‖E∨,v‖αv‖E,v)
2

is bounded by((
tv +

1

tv

)
‖x‖E,v +

(
tv −

1

tv

)
‖yαv‖E,v

)2

+

((
tv −

1

tv

)
‖x‖E,v +

(
tv +

1

tv

)
‖yαv‖E,v

)2

.

We develop this expression and substitute the product 2‖x‖E,v‖yαv‖E,v by ‖x‖2E,v + ‖yαv‖2E,v to
finally obtain the desired bound 4t2vmv (‖x‖E,v, ‖yαv‖E,v)2. �

When y = 0 we can prove a better estimate, which does not depend on tv.

Lemma 4.4. For all v ∈ V (K) and x ∈ E ⊗K Kv, we have ‖x‖E,v ≤ 2εv/2‖(x, 0)‖Et,v.

Proof. If v ∈ V (K) \ V then ‖(x, 0)‖Et,v = ‖(x, 0)‖E×K,v = ‖x‖E,v and the result is clear. Let
v ∈ V be an archimedean place and x ∈ E ⊗K Kv. From the definition of the v-norm of Et, the
number ‖(x, 0)‖2Et,v

equals∥∥∥x− b(x, αv)αv +
1

2

(
tv +

1

tv

)
b(x, αv)αv

∥∥∥2

E,v
+
∣∣∣1
2

(
tv −

1

tv

)
b(x, αv)

∣∣∣2
v
‖αv‖2E,v.

Put θ = 1
2

(
tv + 1

tv
− 2
)
b(x, αv)αv and bound from below the first norm by |‖x‖E,v − ‖θ‖E,v|

(reverse triangle inequality). Also note that tv − 1/tv ≥ tv + 1/tv − 2 ≥ 0 since tv is a real number
greater than 1. In particular the norm of (tv − 1/tv)b(x, αv)αv/2 is greater or equal than ‖θ‖E,v.
We conclude with

‖(x, 0)‖2Et,v ≥ (‖x‖E,v − ‖θ‖E,v)2
+ ‖θ‖2E,v ≥

‖x‖2E,v
2

.

When v ∈ V is ultrametric, the norm ‖(x, 0)‖Et,v is

max

(∥∥∥x− b(x, αv)αv +
1

2

(
tv +

1

tv

)
b(x, αv)αv

∥∥∥
E,v

,
∥∥∥1

2

(
tv −

1

tv

)
b(x, αv)αv

∥∥∥
E,v

)
.

Since |tv|v > 1 we have |tv − 1/tv|v = |tv|v = |tv + 1/tv − 2|v so that

‖(x, 0)‖Et,v = max (‖x+ θ‖E,v, ‖θ‖E,v) ≥ ‖x‖E,v.
�

At last, we also need the following statement.
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Lemma 4.5. The height of Q satisfies H(Q) ≤ H(1, q).

Proof. Let B be the bilinear form associated to Q and v ∈ V (K). Let x, x′ ∈ Ev and y, y′ ∈ Kv.
From the expression B((x, y), (x′, y′)) = b(x, x′)− yy′, we get

|B((x, y), (x′, y′))|v ≤ |b(x, x′)|v + |y|v|y′|v ≤ ‖q‖v‖x‖E,v‖x′‖E,v + |y|v|y′|v
(the sum can be replaced by a maximum when v is ultrametric). We factorize by max (1, ‖q‖v)
and we use the Cauchy inequality to obtain

|B((x, y), (x′, y′))|v ≤ max (1, ‖q‖v)‖(x, y)‖E×K,v‖(x′, y′)‖E×K,v,
which implies ‖Q‖v ≤ max (1, ‖q‖v) when v 6∈ V since, in this case, ‖ · ‖Et,v = ‖ · ‖E×K,v. When
v ∈ V , we observe that B((x, y), (x′, y′)) = b(x, x′)− b(yαv, y′αv) and so

|B((x, y), (x′, y′))|v ≤ ‖q‖vmv(‖x‖E,v, ‖yαv‖E,v)mv(‖x′‖E,v, ‖y′αv‖E,v).
Now, since B is invariant by ξv (Lemma 2.2), if we replace (x, y) and (x′, y′) by their images by
ξv, we deduce |B((x, y), (x′, y′))|v ≤ ‖q‖v‖(x, y)‖Et,v‖(x′, y′)‖Et,v then ‖Q‖v ≤ ‖q‖v. Thus, in all
cases we have ‖Q‖v ≤ max (1, ‖q‖v) which leads to H(Q) ≤ H(1, q). �

4.4. Proof of Theorem 4.1. According to [GR2, Corollary 3.2], there exists a maximal Q-
isotropic subspace {0} 6= F ⊂ Et (of dimension i(Q)) such that (1 + ε)−1/2n ≤ 2H(Q)Λ1(Et/F )2.
Bounding from above Λ1(Et/F ) by

(
cΛK(n+ 1− i(Q))H(Et/F )

)1/(n+1−i(Q)) and using H(Et/F ) =
H(Et)/H(F ) = |α|H(E)/H(F ), we deduce the upper bound

H(F ) ≤ (1 + ε)1/2cΛK(n+ 1− i(Q)) (2H(Q))
(n+1−i(Q))/2 |α|H(E)

which leads to H(F ) ≤ (1 + ε)1/2T0/c
BV
K (i(Q)) with Lemma 4.5. Since i(Q) > i(q), we have

F 6⊂ E × {0}. To build the vector (υ,φ) of Theorem 4.1, we distinguish two cases.
(i) If λBV

1 (F ) < λBV
1 (E)/

√
2, we consider 0 < ε′ ≤ ε such that (1 + ε′)1/2λBV

1 (F ) < λBV
1 (E)/

√
2

and (υ,φ) ∈ F \ {0} such that ‖(υ,φ)‖Et,v ≤
(
(1 + ε′)1/2λBV

1 (F )
)εv for all v ∈ V (K). By

Lemma 4.4 and the choice of ε′, we have φ 6= 0. Moreover λBV
1 (F ) ≤

(
cBV
K (i(Q))H(F )

)1/i(Q), so
that ‖(υ,φ)‖Et,v ≤ ((1 + ε)T)

εv for all v ∈ V (K).
(ii) If λBV

1 (F ) ≥ λBV
1 (E)/

√
2, we consider (υ,φ) ∈ F such that φ 6= 0 and ‖(υ,φ)‖Et,v ≤(

(1 + ε)1/2λBV
i(Q)(F )

)εv
for all v ∈ V (K). We can do that since F 6⊂ E × {0} and every basis of F

contains a vector whose last coordinate is non-zero. We bound

λBV
i(Q)(F ) ≤ cBV

K (i(Q))H(F )

λBV
1 (F )i(Q)−1

≤ (1 + ε)1/2T.

Thus, in both cases, there exists (υ,φ) ∈ E × K such that φ 6= 0, q(υ) = φ2 (because (υ,φ) ∈
F is Q-isotropic) and ‖(υ,φ)‖Et,v ≤ ((1 + ε)T)

εv for all v ∈ V (K). These inequalities yield
the first assertion of Theorem 4.1, since when v 6∈ V , we have ‖(υ,φ)‖Et,v = ‖(υ,φ)‖E×K,v =
mv

(
‖υ‖E,v, |φ|v

)
. Now, let us consider v ∈ V . The second assertion of Theorem 4.1 is a direct

consequence of Lemma 4.3 and the definition of Tv. At last, for (3), note that q(αvφ − υ) =
2(Yv − Xv)φ/tv. From

|Xv|v = |b (υ− b(υ, αv)αv + Xvαv, αv) |v ≤ ‖b(·, αv)‖E∨,v‖υ− b(υ, αv)αv + Xvαv‖E,v
and |Yv|v = |b(Yvαv, αv)|v ≤ ‖b(·, αv)‖E∨,v‖Yvαv‖E,v we deduce

|Yv − Xv|v ≤ (
√

2)εv‖b(·, αv)‖E∨,v‖(υ,φ)‖Et,v

and so
|q (αvφ− υ)|v ≤

∣∣∣∣2φtv
∣∣∣∣
v

‖b(·, αv)‖E∨,v

(
(1 + ε)

√
2T
)εv

.

We conclude with the formula linking tv and Tv. �

Theorem 3.1 can be deduced from Theorem 4.1: Choose K = Q and the singleton V = {∞}
(archimedean place of Q). Take E = Qn with the norms | · |p at p ∈ V (Q) \ {∞} and ‖x‖E,∞ =√
q0(x). In other words E corresponds to the Euclidean lattice (Zn,√q0) and, in particular, we

have H(E) =
√

det q0 and λBV
1 (E) = λ1. The integrality hypothesis on the coefficients of A(q)

gives ‖q‖p ≤ 1 for all p 6=∞ so that H(1, q) = max (1, ‖q‖∞). Also choose t∞ = T/T. The equality
i(Q) = i(q) + 1 as well as the bound cBV

Q (i(q) + 1)cΛQ(n− i(q)) ≤ nn (see § 4.6) allow to conclude.
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Theorem 1.1 also follows from Theorem 4.1 in the same way by further choosing q0 = q. This
implies |α| = ‖α‖E,∞ = ‖b(·, α)‖E∨,∞ = ‖q‖∞ = H(1, q) = 1. Besides, since i(Q) = 1, we have
both T = T0 and cBV

Q (i(Q))cΛQ(n+ 1− i(Q)) = cΛQ(n) = γ
n/2
n .

4.5. Proof of Theorem 4.2. The proof of Theorem 4.1 still works the same way when the
maximal Q-isotropic subspace F introduced at the beginning of the proof satisfies F 6⊂ E × {0}.
Thus, in this case, Theorem 4.2 is proved. So now we can assume that F ⊂ E × {0}. We shall
consider the image of F by a certain Q-isometry, image not contained in E × {0}, with which we
shall apply the same method as Theorem 4.1. More precisely, we claim that there exist a ∈ Et/F
and a maximal Q-isotropic subspace Fa ⊂ Et satisfying the following three conditions: (i) Fa 6⊂
E ×{0}, (ii) HEt/F (a) ≤ 2(1 + ε)1/4nλBV

n+1−i(Q)(Et/F ) and (iii) H(Fa) ≤ 2H(Q)HEt/F (a)2H(F ).
Indeed, the space Fa comes from the key lemma of [GR2, § 3], whereas the element a ∈ Et/F
is chosen in the same way as the beginning of the proof of [GR2, Theorem 7.1] (page 234 with,
here, Z(I) = E × {0}). Besides, the minimum λBV

n+1−i(Q)(Et/F ) can be bounded in two different
ways: either by c1(K)Λn+1−i(Q)(Et/F ) [GR1, Proposition 4.8] and then by c1(K)cΛK(n + 1 −
i(Q))H(Et/F )/Λ1(Et/F )n−i(Q) or, directly, by cBV

K (n+ 1− i(Q))H(Et/F )/λBV
1 (Et/F )n−i(Q) and

then by cBV
K (n + 1 − i(Q))H(Et/F )/Λ1(Et/F )n−i(Q) since λBV

1 (Et/F ) ≥ Λ1(Et/F ). In both
cases, we bound from below Λ1(Et/F ) by (1 + ε)−1/4n (2H(Q))

−1/2 (definition of F ). Thus (with
i(Q) ≥ 1) λBV

n+1−i(Q)(Et/F ) is smaller than

(1 + ε)(n−1)/4n min
(
c1(K)cΛK(n+ 1− i(Q)), cBV

K (n+ 1− i(Q))
)

(2H(Q))
(n−i(Q))/2 H(Et)

H(F )
.

This information put in the previous estimate of H(Fa) implies

H(Fa) ≤ (1 + ε)1/2 × 4 min
(
c1(K)cΛK(n+ 1− i(Q)), cBV

K (n+ 1− i(Q))
)2

× (2H(Q))
n+1−i(Q)

(|α|H(E))
2
/H(F ).

We have H(F ) ≥ λBV
1 (F )i(Q)/cBV

K (i(Q)) and, since F ⊂ E×{0}, we also have λBV
1 (F ) ≥ λBV

1 (E×
{0}) so λBV

1 (F ) ≥ λBV
1 (E)/

√
2 by Lemma 4.4. Reporting these estimates in the previous bound for

H(Fa), we obtain H(Fa) ≤ (1 + ε)1/2T1/c
BV
K (i(Q)) with Lemma 4.5. It is then enough to resume

the demonstration of Theorem 4.1 by replacing F by Fa (and so T0 by T1) to conclude. �

4.6. The constant cBV
K (i(Q))cΛK(n + 1 − i(Q)) in T0 is finite (only) when K is Siegel field with

c1(K) < +∞. This happens e.g. when K is number field or [K : K] ≤ 2 or, also, when K = ∪nKn

is the union of a tower of number fields (Kn)n∈N of bounded root discriminants [GR1, Lemma 5.8].
Besides, the following estimates, valid for all n ≥ 1 and i ∈ {0, . . . , n− 1}, may be of interest:

(1) when K is a number field of root discriminant δK/Q, we have

cBV
K (i+ 1)cΛK(n− i) ≤ nn/2δ(n+1)/2

K/Q ,

(2) when K = Q, we have

cBV
Q (i+ 1)cΛQ(n− i) ≤ cΛQ(n) ≤ nn/2.

The first one derives from cBV
K (n) ≤ (nδK/Q)n/2 and the bound (i + 1)i+1(n − i)n−i ≤ nn (the

function a 7→ (a + i) log(a + i) − a log a is increasing). The second bound is a consequence of the
formula given for c∗Q(n) coupled with the estimate aHa + bHb ≤ (a+ b− 1)Ha+b−1 + 1 satisfied by
the harmonic number Ha = 1+1/2+ · · ·+1/a for all positive integers a, b and proven by induction
on b.
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