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Abstract—A well-known learning task in big data stream
mining is classification. Extensively studied in the offline setting,
in the streaming setting – where data are evolving and even
infinite – it is still a challenge. In the offline setting, training
needs to store all the data in memory for the learning task; yet,
in the streaming setting, this is impossible to do due to the massive
amount of data that is generated in real-time. To cope with these
resource issues, this paper proposes and analyzes several evolving
naive Bayes classification algorithms, based on the well-known
count-min sketch, in order to minimize the space needed to store
the training data. The proposed algorithms also adapt concept
drift approaches, such as ADWIN, to deal with the fact that
streaming data may be evolving and change over time. However,
handling sparse, very high-dimensional data in such framework
is highly challenging. Therefore, we include the hashing trick, a
technique for dimensionality reduction, to compress that down
to a lower dimensional space, which leads to a large memory
saving.

We give a theoretical analysis which demonstrates that our
proposed algorithms provide a similar accuracy quality to the
classical big data stream mining algorithms using a reasonable
amount of resources. We validate these theoretical results by an
extensive evaluation on both synthetic and real-world datasets.

Index Terms—Data stream classification, Naive Bayes, Count-
min sketch, Hashing trick, Concept drift

I. INTRODUCTION

The last few decades have seen a tremendous pace in the
pervasiveness of technology, including, more and more, sys-
tems and applications that generate streams of data: sequences
of instances that are for all purposes unbounded, but also
sporadic and transient.

Among one of the most popular tasks in data mining and
machine learning is classification [1]. When dealing with big
data streams, classification algorithms for static datasets have
been proved to be of limited effectiveness. Thus, an important
number of classification algorithms [2] have been suggested
to deal with evolving and streaming data (e.g., decision trees
[3]–[6], naive Bayes [7], [8], bagging [9]).

The difference between classifiers for statics datasets (batch
classifiers) and data stream classifiers (also know as online
classifiers) resides in the way how learning and prediction
are performed. Unlike batch classification, online classifiers
must deal with the data incrementally and only use one-pass
processing. Moreover, and most importantly, they must use
a limited amount of time (to allow analysis of each instance

without delay), and a limited amount of space (not needing to
store a huge amount of data for the prediction task).

Several techniques have been proposed to cope with evolv-
ing data stream and its challenges previously mentioned.
Among others, sketching algorithms or sketches, a class of
specialized algorithms that can produce approximate results
efficiently with mathematically proven error bounds. They are
useful to process fast data using fewer resources.

Our contributions: In this paper, we focus on these im-
portant challenges in classification over data streams, by using
sketching techniques for data streams. Sketching techniques
are well-known for keeping small, but approximate, synopses
of data.

The main focus of our work attempts to extend the stream
naive Bayes algorithm to deal with massive data by keeping
the fractional counts of the amount of data seen so far in a
count-min sketch. Our main contributions can be summarized
as follows:

• Our first proposed algorithm, named the Sketch Naive
Bayes SketchNB algorithm (Section IV-A), stores data
with high-quality approximations in the sketch which
allows both fast predictions and uses a minimal amount
of space for training.

• Our second algorithm, the Adaptive Sketch Naive Bayes
AdaSketchNB algorithm (Section IV-B), extends the
SketchNB algorithm to deal with evolving data using a
concept drift mechanism, namely ADWIN [10].

• Finally, in the challenging context of evolving data
streams, many domains generate very high attribute
dimensional data, so, we proposed a third contribu-
tion to the two stated algorithms, SketchNBHT and
AdaSketchNBHT (Section IV-C), that aims to ad-
dress high dimensionality using the hashing trick tech-
nique [11] (Section II-C2).

The remainder of this paper is organized as follows. In Sec-
tion II, we present the main components of our contributions.
Section III reviews related work. In Section IV, we present our
approaches in classifying streaming data. Section V discusses
the different experiments performed on both artificial and real
datasets. Finally, we draw our conclusion in Section VI.



II. BACKGROUND

A. Notation

We define here the notations that will be used throughout
this paper. We assume that the data stream S contains an
infinite number of instances X1, X2, . . . , XN , . . . , where each
instance is a vector containing a integral attributes, denoted
by Xi = (x1i , x

2
i , . . . , x

a
i ). We will denote by N the number of

instances encountered thus far in the stream. The classification
problem is to assign each instance Xi to a class cj ∈ C.

B. Naive Bayes Classifier

One of the most often used classifiers is naive Bayes [12].
It uses the assumption that the attributes are all independent
of each other and w.r.t. the class label uses Bayes’s theorem to
compute the posterior probability of a class given the evidence
(the training data). This assumption is obviously not always
true in practice, yet the naive Bayes classifier has a surprisingly
strong performance in real-world scenarios.

Using Bayes’s Theorem one can compute the probability of
each class:

P (C | A1, . . . , Aa) =
P (A1, . . . , Aa | C) · P (C)

P (A1, . . . , Aa)
(1)

where P (C|A1, . . . , Aa) is the posterior probability of the
target class given the attributes, P (C) is the prior proba-
bility of the class, P (A1, . . . , Aa|C) is the likelihood, and
P (A1, . . . , Aa) is the prior probability of attributes.

Once the probabilities are computed, the class having the
highest probability is chosen as the predicted class.

The training in naive Bayes is straightforward. To compute
class probabilities, we estimate them as a fraction of the
instances seen thus far, as follows:

• Estimate P (C) as the fraction of records having C = cj ,

P (C = cj) =
Count(C = cj)

N

• Estimate P (X = A1, ..., Aa|C) as the fraction of records
with C = cj for which X = A1, ..., Aa,

P (X = Ai|C = cj) =
Count(X = Ai ∧ C = cj)

Count(C = cj)

We use this attribute independence assumption to construct
our naive Bayes algorithm with count-min sketch.

C. Data Summarization Techniques

This section states the two key components of our solutions
for mining data streams.

1) Count-Min Sketch: Applications can now generate data
at rates and volumes which cannot be reasonably stored.
To cope with the vast scale of information, one way is to
use synopsis techniques [13]–[15]. Among them, the Count-
Min Sketch (CMS) [16] which is a generalization of Bloom
filters [17] used for counting items of a given type, using
approximate counts that are theoretically sound.

CMS consists of a two-dimensional array of w · d cells of
counters, having a width w of columns, and a depth d of rows.
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Fig. 1: Count-min sketch.

w and d are controlled by the approximation parameters ε and
δ, such that, with probability 1 − δ, the approximate counts
obtained from the sketch are within an absolute error ε of
the true counts. Each row in d is a different hash function
h1, h2, . . . , hd; each hi is used to determine in which of the
w counters on row i a count is incremented. Figure 1 illustrates
the CMS.

Depending on the ε and δ parameters, the CMS should be
initialized using the following dimensions: d = e

ε and w =
ln 1

δ , with all cells set to 0.
Each time a new instance arrives in the data stream S,

and for each attribute and class, each hash function hi is
applied and the corresponding counter (in the range 1, . . . , w)
is incremented. When an instance needs to be classified, the
corresponding counts using the same hash functions need to
be retrieved, i.e., when training the classifier, one needs to
look at all cells for the attribute and the class being estimated.
This is done by taking the minimum overall values in the
corresponding cells. This is because, since each cell has been
incremented each time an attribute has been seen, each cell
represents an upper bound on the actual value.

Assuming a data stream with N arrivals, let ci be the true
count of an item being estimated. It has been shown in [16]
that the estimated count for an item i is at least ci since all
the inserts are non-negative, and due to collisions, the counts
can be over-estimated to at most ci + ε ·N with probability at
least 1− δ, i.e., an upper bound to the estimate.

2) Hashing Trick: Hashing Trick (HT), also known as
feature hashing [11], is another popular data summarization
technique for dimensionality reduction. It is used when deal-
ing with a massive number of features, i.e., sparse high-
dimensional data, and we want to compress that down to a
few features. To do so, hashing trick has been used to make
the analysis of sparse and large data tractable in practice.
The idea behind the hashing trick is presented in Figure 2,
where the sparse feature values are mapped into a lower
dimensional feature space; we then have a space-efficient way
of vectorizing features, from the original input space consisting
in a dimensions to a new vector of m dimensions, where
m� a. If we have a list of keys that represent features from
the input instance, then, for each key we can calculate the hash
function. After applying the hash function, each key is mapped
to a specific cell of a fixed size hash table that constitutes a
much lower-dimensional representation of the input vector. So,
these cells in the vector store frequencies which are the keys’
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Fig. 2: Hashing trick.

counts, i.e., its index and its position in the feature vector.
An important point to make is that, generally, the quality of

models changes when the size of the hash table increases. Usu-
ally, the larger the hash table size is, the better is the model.
However, an optimal point can be picked which guarantees
almost perfect model, while the output dimension size is not
to be very large.

The hashing trick has the appealing properties of being very
fast, simple, and sparsity preserving. An important advantage
to point out is that this technique is very memory efficient
because the feature vector size is limited, making it a clear
candidate for using, especially for online learning on streams.

III. RELATED WORK

The problem of classification has been studied for both
offline and online settings. An important issue to address in
the data stream scenario is the computational efficiency of
classifiers because of the potentially infinite nature of data
stream. Quite a number of classification algorithms for static
datasets that have already been thoroughly studied have been
extended to handle evolving distributions.

A well-known decision tree learner for the data stream is
the Hoeffding tree algorithm [3], also known as Very Fast
Decision Tree (VFDT). It is an incremental, anytime decision
tree induction algorithm that uses the Hoeffding bound to
select the optimal splitting attributes.

However, this learner assumes that the distribution gener-
ating instances does not change over time. So, to cope with
an evolving data stream, a drift detection algorithm is usually
coupled with it. In [18] an adaptive algorithm was proposed,
Hoeffding Adaptive Tree (HAT), extending the VFDT to deal
with concept drifts. It uses ADWIN, a change detector and
estimator, to monitor the performance of branches on the tree
and to replace them with new branches when their accuracy
decreases if the new branches are more accurate [18]. These
algorithms require more memory with the growth of tree
expansion, also, waste computational speed due to the time
spent in choosing the optimal attribute to split.

K-Nearest Neighbors (KNN) is another algorithm that has
been adapted to the data stream setting. It does not require
any work during training but it uses the entire dataset to
predict the class labels for test examples. The challenge with

adapting KNN to the stream setting is that it is not possible to
store the entire stream for the prediction phase. An envisaged
solution to solve this issue is to manage the examples that are
remembered so that they fit into limited memory and to merge
new examples with the closest ones already in memory. Yet,
searching for the nearest neighbors still costly in terms of time
and memory [19].

Little research has focused on using efficient data structures
designed to reduce memory usage such as CMS with stan-
dard classifiers. Kveton et al. [20] proposed three graphical
model sketches algorithms that estimate the marginal and
the joint probabilities within a Bayesian network. Authors
experimented with the special case of Bayesian networks,
naive Bayes. After analyzing them, it was proved that GM-
FactorSketch is the best approximation. The main idea of the
algorithm is to use 2a− 1 sketch tables, one for each variable
and one for each variable-parent pair in the graph. Given a
test example, it retrieves the approximated count for each
attribute from each corresponding sketch tables to compute
the conditional probabilities and to predict thereafter the class
label. None of the above-mentioned algorithms are efficient
in terms of memory with large datasets, as evidenced in our
experimental section.

IV. SKETCH-BASED NAIVE BAYES ALGORITHMS

The main idea behind the sketch-based algorithms is the
application of CMS for memory efficiency.

As discussed in the previous section, sketch-based tech-
niques summarize massive data streams using limited space
by using multiple hash functions to decrease the probability
of having wrong counts due to collisions.

A. SketchNB Algorithm

Our first contribution in this paper attempts to adapt the
CMS to the classic naive Bayes classifier by leveraging its
strong theoretical guarantees.

The independence assumption in naive Bayes means that
each attribute can be counted separately; this simplifies the
learning for a large number of attributes, and allows us to use
the sketch efficiently.

During the classification process, the sketch table will be
used in two steps:

• Learning: updating the sketch table for each attribute each
time a new instance arrives.

• Prediction: retrieving the counts of a given instance using
the CMS, and use them to compute the naive Bayes
probability (see equation 1).

Let us start by discussing the learning process using the
CMS, as described in Algorithm 1. Once an instance Xi =
(x1i , x

2
i ...x

a
i ) is received, the classification algorithm starts by

updating the sketch with the counts of the attributes value by
inserting each of the attribute value as 〈a, xai , c〉. The sketch
table will thus contain the counts of the attributes values, using
each of the d hash functions a times according to the number
of attributes, so O(d · a) times in total.



Figure 1 shows the updating process of the sketch table
where an attribute value xji is mapped to one counter in
each row using hash functions. Each of those counts gets
incremented whenever a particular similar attribute value in
the same class is seen. Therefore, each of those numbers is
going to be an upper bound. Since all of them are going to
be an upper bound, only the minimum can be taken for the
prediction phase using the same hash functions used during
the update process.

Algorithm 1 Learning phase: SketchNB Updates

procedure UPDATESKETCH(labeled data stream: S, ep-
silon: ε, delta: δ)

Create the sketch with w · d, . w =
[
e
ε

]
, d =

[
ln 1
δ

]
while There are instances in S do

For each attribute value xki from instance Xi in S,
Increment the corresponding cells by 1 using d hash

functions in the range [1..w].

Obverse that Algorithm 2 assumes that we have one stream
used to present training instances, and a stream S′ for pre-
dictions; this works by presenting, at each timestamp j, an
unlabeled instance Xj . To predict the class, we need to use
equation (1), the counts in the CMS table, and thus compute
an estimation of the class having the highest probability.

Algorithm 2 Prediction phase: Sketch Estimations

procedure ESTIMATESKETCH(data stream: S′, count-min
sketch)

For each attribute value from the received test instance
in S′,

Retrieve the counts for all the a attributes given the
attribute value and attribute index for each class label in C,

Compute the probabilities for all the classes using Bayes
equation (1),

Report the class label to the instance with the highest
probability.

To determine the efficiency of the proposed SketchNB
algorithm, we need to analyze the behavior of the sketch table
since we are retrieving approximate counts from it. It has been
shown that for all the inserts, the counts are non-negative and
may be over-estimated because of collisions [16].

Let fj(xki ) be the fractional count of the attribute value xki
from the instance Xi in the jth class. Its estimated fractional
count is denoted by f̂j(xki ).

The estimate f̂j(xki ) has the following guarantees: fj(xki ) ≤
f̂j(x

k
i ); and with probability at least (1− δ),

f̂j(x
k
i ) ≤ fj(xki ) +N · a · ε (2)

Using one sketch table with size
[
e
ε × ln

1
δ

]
, after the

processing of N a-dimensional data in the stream, the counts
are over-estimated to within N ·a ·ε of their true values. Since
we are using naive Bayes, as described in the second step of
Algorithm 2, for each incoming instance, each class c from the

set C, and each attribute a, we are doing multiple extractions
at the same time by retrieving m = C · a counts:

Theorem 1. With probability at least 1 −∆ = (1 − δ)m we
have:

m∧
k=1

(f̂j(x
k
i ) ≤ fj(xki ) +Naε) = True (3)

This means that we need to set in the sketch,

δ = 1− m
√

1−∆ (4)

or

d = ln
1

1− m
√

1−∆
(5)

The above result will be used to set a crucial parameter to
construct the sketch which is δ in order to fix the depth of the
sketch table. The obtained δ will lead to a deeper sketch that
would be able to maintain the entire stream. Consequently, we
will obtain a more accurate estimation of counts by avoiding
collisions.

We would like to determine the accuracy of SketchNB
algorithm. The process of this algorithm is described in the
pseudocode of Algorithm 2. It consists on retrieving, from the
sketch table, the fractional counts for each attribute value so
one can apply the naive Bayes equation for each class label.
In order for this to happen, we need to compute the product
of the estimated fractional counts for each hash function in
1, . . . , ln 1

δ .

Theorem 2. We have:

a∏
k=1

f̂j(x
k
i ) ≤

a∏
k=1

(fj(x
k
i ) +Naε) (6)

Then, with probability at least (1−∆),

a∏
k=1

f̂j(x
k
i ) ≤

a∏
k=1

fj(x
k
i ) +

a∑
p=1

a!

p!(a− p)!
(ε′)p (7)

Proof. Let ε′ = Naε, and f̂j(x
k
i ) be the estimated fractional

count of the attribute value xki in the jth cluster. Given an
instance Xi:

f̂j(x
1
i ) · f̂j(x2i )... · f̂j(xai ) ≤ (fj(x

1
i ) + ε′) · (fj(x2i ) + ε′)

(8)
... · (fj(xai ) + ε′)
= fj(x

1
i )...fj(x

a
i ) + fj(x

1
i ) · ε′

+ fj(x
2
i ) · ε′...+ fj(x

a
i ) · ε′

+ fj(x
1
i ) · fj(x2i ) · ε′... (9)

Since all the frequencies are non-negative, we know that the
range of possible fractional counts is [0, 1], i.e. at most 1,
thus, 1 will be an upper bound to the fractional counts. So,
with certainty we know that f̂j(xki ) · ε′ ≤ ε′, and any product



of the estimated fractional counts is always less than 1. So,
by applying Pascal’s triangle, we obtain:

a∏
k=1

f̂j(x
k
i ) ≤

a∏
k=1

fj(x
k
i ) + fj(x

1
i ) · ε′+ fj(x

2
i ) · ε′...

+ fj(x
a
i ) · ε′+ fj(x

1
i ) · fj(x2i ) · ε′...

≤
a∏
k=1

fj(x
k
i ) +

a∑
p=1

a!

p!(a− p)!
(ε′)p

=

a∏
k=1

fj(x
k
i ) +

a∑
p=1

Cpa(ε′)p (10)

This completes the proof.

This observation shows that, with probability 1 − ∆, the
quantity of error due to collisions is at worst equal to
a∑
p=1

Cpa(ε′)p which leads to the following corollary:

Corollary 1. Let E be big epsilon and N be the size of
the stream. An immediate result from equation (10) is the
following:

ε =
a
√
aNE + 1− 1

aN
(11)

or

w =
eaN

a
√
aNE + 1− 1

(12)

Proof. Let ε′ = aNε. After processing N a-dimensional
instances in the stream, the quantity of error caused by
collisions in Theorem 2 must be the same as aNE according
to Theorem 1.

a∑
p=1

Cpa(aNε)p = aNE

C0
a(aNε)0 +

a∑
p=1

Cpa(aNε)p = aNE + 1

a∑
p=0

Cpa(aNε)p = aNE + 1

a∑
p=0

Cpa(aNε)p1a−p = aNE + 1

(aNε+ 1)a = aNE + 1

aNε+ 1 = a
√
aNE + 1

ε =
a
√
aNE + 1− 1

aN

This completes the proof.

Our proposed SketchNB algorithm possesses strong theoret-
ical guarantees when setting the depth and width of the sketch
using equations (11) and (4) respectively. This means that, in
order to keep the guarantees overall attributes and classes, we
need to set a much deeper and wider sketch table than for only
one counter.

Moreover, equations (11) and (12) assume the size of the
stream is known. In real-world scenarios, where the stream
can be infinitely increasing, this means that our sketch, along
with the hash functions, will need to increase with the size of
the stream.

The theoretical parameters derived by us here provide good
results, but they can lead to a relatively large sketch; in some
cases, this may not be desirable due to space reasons. We
can however perform some optimizations to the space needed.
The size of the stream, N , can be too large and even infinite;
instead, it can simply be a “sliding window” over which error
guarantee is provided. To achieve this, we introduce a scaling
constant b to the computations, in the following manner. First,
we can set ε as follows:

ε = b ·
a
√
aNE + 1− 1

aN
,

then choose the width w as follows:

w =
eaN

b( a
√
aNE + 1− 1)

. (13)

Note that the depth d still remains the same: it depends only
on the parameter ∆. It is also necessary to point out that b > 1.
When a increases, the sketch table size increases accordingly.
A higher value of b reduces the width of the sketch table. In
this work, b will be picked up experimentally..

B. AdaSketchNB Algorithm

One crucial issue when dealing with a very large stream is
the fact that the underlying distribution of the data can change
at any moment, a phenomenon known as concept drift, and
we direct the reader to [21] for a survey of this concept.

A widely popular algorithm that handles concept drift is
ADaptive WINdowing (ADWIN) [10], a change detector and
estimator, also used in a few machine learning algorithms such
as Hoeffding adaptive tree [18] and leveraging bagging [9].

The main idea of ADWIN is to maintain a variable-length
window W with the most recently seen instances with the
property that the window has the maximal length statistically
consistent with the hypothesis “there has been no change in
the average value inside the window” [10].

In our context, it is also important to incorporate a change
detector, and we choose ADWIN here due to its strong
theoretical guarantees and good practical results.

Against this background, we propose a second algorithm,
AdaSketchNB described in Algorithm 3, that incorporates to
the SketchNB algorithm an adaptive strategy using ADWIN
change detector in the learning phase, for the entire sketch
table, in order to track drifts. It works on the data distribution
by detecting the change in the class label.

Given a stream S, when a new training instance Xi =
(x1i , x

2
i ...x

a
i ) arrives, we compare the predicted class label

(under our current model) and the true class label. Then, we
update the sliding window W by adding 1 if this comparison
holds true, 0 otherwise. Once a change is detected in the
distribution, i.e., the newly generated instances changed from
the original class distribution of the classifier built up to now,



Algorithm 3 Learning phase: AdaSketchNB Updates

procedure UPDATESKETCH(labeled data stream: S, Sliding
window: W , epsilon: ε, delta: δ)

begin
Create the sketch with w · d, . w =

[
e
ε

]
, d =

[
ln 1
δ

]
while there are instances in S do

For each attribute value xki from instance Xi in S,
Increment the corresponding cells by 1 using d hash

functions in the range [1..w],
if true class = predicted class then

Add 1 to W ,
else

Add 0 to W .
if a change is detected then

Reset the sketch table and W .

the sketch table and W will be re-initialized to learn the new
model, corresponding to the new distribution. The prediction
phase remains the same as the basic SketchNB algorithm.

C. SketchNBHT and AdaSketchNB HT Algorithms

It is an undeniable fact that the sketches summarize massive
data streams within a limited space, but hashing trick can be
used for further optimization with large datasets.

Our third contribution, SketchNBHT and AdaSketchNBHT
algorithms, attempts to enhance the SketchNB and the AdaS-
ketchNB in terms of memory and processing time while
maintaining high accuracy. Indeed, it could perform better by
integrating the hashing trick technique.

In fact, to make the analysis of high-dimensional and large
datasets tractable, firstly, we adjust the size of the input
dimension by applying the hashing trick algorithm to instances
one by one. We obtain thereafter instances with significantly
smaller dimension than the original one, then we process them
by either the update procedure in Algorithm 1 or 3 if we are
dealing with SketchNBHT or AdaSketchNBHT respectively.

By applying the hashing trick on an input vector, we are
supposed to obtain a numerical representation (Section II-C2)
which prevents it from fitting to the sketch table. Instead, we
are obtaining a binary vector by updating a cell only once, i.e.,
we do not increment the cells, we just put 1 if a cell contains
0, and if it contains already 1, it remains the same. Thus, we
get a discretized representation able to fit in the sketch table
and also avoid wrong values due to collisions.

Then, we store the instances in the sketch table in the same
way as the SketchNB algorithm. So, instead of updating a
times the sketch table, we update it henceforth only m times,
where m� a.

In other words, the hashing trick is treated as an internal
preprocessing and transforming instances within the SketchNB
and AdaSketchNB algorithms. Using this manner, we guaran-
tee that out of memory error that may occur with standard
classifiers for data streams will not happen using the hashing
trick and the sketches.

Table I: Overview of the datasets

Dataset #Instances #Attributes #Classes Type
SEA 1,000,000 3 2 Synthetic
RBF 1,000,000 10 5 Synthetic
LED 1,000,000 24 10 Synthetic
LEDg 1,000,000 24 10 Synthetic
AGR 1,000,000 9 2 Synthetic
HYP 1,000,000 10 2 Synthetic
Tweets1 10,000 1,000 2 Synthetic
Tweets2 10,000 10,000 2 Synthetic
KDD99 494,020 41 23 Real
Cover 581,012 54 7 Real
Elec 45,312 8 2 Real
Poker 829,201 10 10 Real
Enron 1,702 1,054 2 Real
IMDB 120,919 1,001 2 Real
CNAE 1,080 856 9 Real

V. EXPERIMENTS

We conduct several experiments to assess the classifica-
tion performance of the aforementioned proposals, SketchNB,
AdaSketchNB, SketchNBHT and AdaSketchNBHT algo-
rithms. To evaluate them, we are interested in three main
dimensions; the accuracy as the final percentage of instances
correctly classified, the memory (bytes), and the time (sec-
onds) required to learn and predict from data.

A. Datasets

We use 8 synthetic and 7 real world datasets on our exper-
iments, where 5 of them contain high-dimensional data. The
synthetic datasets created using the data generators provided
by MOA [22] include drifts. In the case of real datasets, we
do not know whether a drift exists or not, but we still evaluate
it using the ADWIN variants of the algorithms.

Table I presents a short description of each dataset, and
further details are provided in what follows.

SEA. The SEA Generator proposed by [23]. It is generated
with 3 attributes and 2 decision classes with concept drift and
simulates 3 gradual drifts.

RBF. The RBF (Radial Basis Function) generator creates
centroids at random positions, and each one has a standard
deviation, a weight and a class label. This dataset simulates
drift by moving the centroids with constant speed.

LED. The LED generator originates from the CART book
[24] and simulates concept drifts. It produces 24 attributes,
of which 17 are irrelevant. The goal is to predict the digit
displayed on the LED display. We generate also LEDg that
simulates 3 gradual drifts.

AGR. The AGRAWAL generator [25] creates data stream
with 9 attributes and 2 classes. A factor is used to change the
original value of the data. AGR is used to simulate 3 gradual
drift in the generated stream.

HYP. The HYPERPLANE generator [26] used to generate
streams with gradual concept drift by changing the values of
its weights. We parameterize HYP with 10 attributes and a
magnitude of change equals to 0.001.



Tweets. Tweets is a text generator that simulates sentiment
analysis on tweets, where messages can be classified into
two categories depending on whether they convey positive
or negative feelings. Tweets1 and Tweets2 produce 1,000 and
10,000 attributes respectively.

KDD99. KDD cup’991 for network intrusion detection. This
dataset contains 41 attributes and 23 classes. It has been often
used to evaluate big data streams algorithms’ performance.

Cover. The forest covertype dataset obtained from US Forest
Service (USFS) Region 2 Resource Information System (RIS)
data. It contains 54 attributes and 7 classes.

Elec. The Electricity market dataset described firstly by
[27]. In this marked the prices changes every 5 minutes and
are affected by demand, supply, season, weather and time. It
contains two possible class labels identifying the changes of
the price relative to a moving average of the last 24h.

Poker. The Poker hand dataset consists of 829,201 instances
and 10 attributes. Each instance of the Poker-Hand dataset is
an example of a hand consisting of five playing cards.

Enron. The Enron corpus dataset is a large set of email
messages that was made public during the legal investigation
concerning the Enron corporation [28]. This cleaned version
of Enron consists of 1,702 instances and 1,054 attributes.

IMDB. IMDB2 movie reviews dataset was first proposed
for sentiment analysis [29], where reviews have been prepro-
cessed, and each review is encoded as a sequence of word
indexes (integers).

CNAE. CNAE is the national classification of economic
activities dataset, initially used in [30]. It contains 1,080
instances, each of 856 attributes, representing descriptions of
Brazilian companies categorized into 9 classes. The original
texts were preprocessed to obtain the current highly sparse
dataset.

Handling continuous attributes in data stream classifiers is a
bit tricky; one way to deal with this issue is to consider that the
datasets will follow a series of Gaussian distributions. We use a
simpler way here to preprocess the datasets and transform all
numeric attributes into discrete attributes. The discretization
was performed using WEKA [31], where each numerical
attribute was discretized to an equal-width histogram having
10 bins.

B. Results

The experiments were performed, implemented and evalu-
ated in JAVA using the MOA framework [22] and the datasets
explained in Section V-A. They were conducted on a machine
equipped with an Intel Core i5 CPU speed of 2.60GHz
processor and 4 GB of main memory.

Despite theoretical bounds on the size of the sketch, we
need to optimize the sketch table parameters to allow better
space usage. To do so, we use both of the synthetic and real
datasets to parameterize the sketch table size for each dataset,
by controlling the parameter b.

1http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2http://waikato.github.io/meka/datasets/

Fig. 3: Classification accuracy with different size of the sketch for
different synthetic datasets.

Table II: Accuracy (%) comparison of SNB, GMS, NB, KNN, ASNB,
AdNB, and HAT. Bold values indicate the best results per dataset.

Dataset Non-adaptive Adaptive
SNB GMS NB KNN AdSNB AdNB HAT

SEA 84.64 70.83 84.64 69.95 86.70 86.70 86.70
RBF 44.66 32.62 45.43 35.14 47.14 45.91 82.73
LED 73.94 73.82 73.94 44.02 73.90 73.90 70.87
LEDg 54.02 54.23 54.02 43.18 72.71 73.09 72.60
AGR 70.95 61.67 70.96 68.19 79.98 82.53 89.34
HYP 90.16 81.93 90.16 64.18 90.88 91.16 81.32
Tweet1 87.50 - 89.26 68.73 87.54 89.26 84.64
Tweet2 74.42 - 91.41 77.72 74.42 91.41 85.38
Syn ∅ 72.54 - 75.23 58.89 76.66 79.24 81.73
KDD99 89.72 97.43 95.51 99.69 91.17 99.59 98.93
Cover 62.08 50.69 62.86 80.07 95.80 83.17 86.56
Elec 66.64 63.90 66.53 73.89 71.70 73.31 72.48
Poker 56.81 56.43 58.84 74.98 69.22 74.58 74.73
Enron 75.50 - 77.44 95.24 84.61 85.61 91.83
IMDB 64.98 - 68.38 70.42 68.52 70.67 70.71
CNAE 56.30 - 62.13 62.13 56.30 62.13 68.80
Real ∅ 67.43 - 70.24 79.49 76.76 78.43 80.55
O. ∅ 70.16 - 72.90 68.50 76.71 78.86 81.18

In order to fix the value of the constant b in equation (13),
we perform some experiments. We set the default values for
different parameters to the sketch table, ∆ = 0.1, E = 0.01
and N = 105 for equations (5) and (12) to fix the sketch table
size, and we set the default confidence bound to ADWIN.

Figure 3 illustrates the appropriate width for the first 6
synthetic datasets, i.e., what is the basic width that leads to an
accurate model for each dataset. We notice that for the same
number of attributes and classes, e.g., LED and LEDg , we
obtain the same width that is able to maintain the entire data
stream. Therefrom we can fix the value of the constant b for
each dataset experimentally reported in Table IV.

With the parameters set, Tables II, III and IV present the
results on all datasets. We compared SketchNB (SNB) and
AdaSketchNB (AdSNB) classifiers to well-known state-of-the-
art algorithms: the Naive Bayes (NB), the K-Nearest Neighbor
(KNN) with k = 100, the GMFactorSketch (GMS) with
default parameters ε = 0.01, δ = 0.1. We compared also
to adaptive classifiers such as the Hoeffding Adaptive Tree
(HAT), and the adaptive NB (AdNB) with ADWIN.



Table III: Memory (B) comparison of SNB, GMS, NB, KNN, ASNB,
AdNB, and HAT. Bold values indicate the best results per dataset.

Dataset Non-adaptive Adaptive
SNB GMS NB KNN AdSNB AdNB HAT

SEA 5,568 49,312 4,880 58,280 7,832 7,704 2.48E6
RBF 18,824 226,072 18,520 100,920 19,768 20,688 3.61E6
LED 23,568 644,544 27,704 187,896 22,792 30,168 1.27E6
LEDg 23,568 644,544 27,704 187,896 22,792 30,528 623,856
AGR 19,360 201,000 12,520 92,760 14,992 15,344 3.85E6
HYP 20,624 225,952 15,248 100,824 17,264 17,568 925,600
Tweet1 569,880 - 645,456 7.52E6 582,144 647,440 1.71E6
Tweet2 6.03E6 - 6.55E6 7.5E7 6.04E6 6.39E6 1.23E7
Syn ∅ 839,598 - 912,687 1.04E7 840,600 895,121 3.38E6
KDD99 106,632 1.32E6 123,496 303,200 108,456 61,088 57,048
Cover 55,736 1.71E6 60,488 377,832 61,440 46,344 19,936
Elec 14,776 178,464 11,944 88,712 14,560 13,120 42,432
Poker 16,568 223,952 19,800 98,760 18,608 17,688 278,528
Enron 565,104 - 688,752 7.13E6 534,264 690,400 275,624
IMDB 1.41E6 - 1.57E6 7.53E6 1.37E6 1.54E6 2.91E6
CNAE 1.16E6 - 1.58E6 1.58E6 1.23E6 1.58E6 571,064
Real ∅ 474,706 - 578,263 2.44E6 554,384 563,117 593,306
O. ∅ 221,977 - 270,343 6.69E6 707,033 740,186 2.08E6

Table IV: Time (sec) comparison of SNB, GMS, NB, KNN, ASNB,
AdNB, and HAT. Bold values indicate the best results per dataset.

Dataset Non-adaptive Adaptive
bSNB GMS NB KNN AdSNB AdNB HAT

SEA 1.75 2.08 1.49 10.91 2.87 2.03 7.75 675
RBF 6.62 9.65 3.73 31.2 9.6 4.5 17.67 7,191
LED 15.9 41.03 5.67 64.21 30.79 7.28 21.08 14,692
LEDg 15.93 43.45 5.73 68.83 29.23 7.25 23.09 14,692
AGR 4.09 5.94 3.1 26.05 5.47 3.57 9.12 3,678
HYP 4.51 6.42 3.42 27.79 4.11 3.77 9.8 5,448
Tweet1 4.79 - 4.17 29.21 6.77 2.89 5.57 7,514,600
Tweet2 73.44 - 51.04 385.23 91.43 44.78 65.93 6.48E8
Syn ∅ 15.87 - 9.79 80.43 22.53 9.51 20 -
KDD99 40.02 90.75 12.78 51.66 64.42 7.86 18.11 15,074
Cover 18.92 50 7.67 64.42 32.74 7.09 19.55 59,675
Elec 0.33 0.42 0.18 1.06 0.35 0.22 0.67 4,555
Poker 6.87 12.3 2.36 22.03 11.67 11.67 7.95 4,859
Enron 0.98 - 0.63 6.07 1.29 0.62 0.97 15,340,000
IMDB 53.45 - 27.07 273.73 68.36 32.89 113.38 6,525,300
CNAE 1.38 - 0.52 0.67 2.26 0.65 1.71 7,231,800
Real ∅ 17.41 - 7.31 59,95 25.8 8.71 23.2 -
O. ∅ 16.54 - 8.63 70.87 24.06 9.14 21.49 -

It turns out that some classifiers are useless and could not
process some datasets which are marked by the cells with “-”.

We observe that the accuracy of SketchNB is almost the
same when comparing to NB for all the datasets, even despite
using probabilistic counts to estimate the fractional counts. In
comparison with KNN, we notice that SketchNB is more accu-
rate for all the datasets except the real ones. Such difference
can be explained by the independence assumptions between
attributes of NB.

Since GMS builds two sketch tables for each attribute, it
is obvious that it will be more memory and time consuming
because we are using only one big sketch. More than this,
GMS cannot work with large datasets, e.g., Tweet1.

In order to simulate the proposed change detector classifier
AdaSketchNB, we compare against the AdNB and the HAT.
In Table II, on overall average, we observe that AdaSketchNB
achieves, practically, the same accuracy as AdNB whilst using
a less amount of resources (see Table III). In comparison

Table V: Accuracy (%) comparison of SNBHT , GMSHT , NBHT ,
KNNHT , ASNBHT , AdNBHT , and HATHT . Bold values indicate
the best results per dataset.

Dataset Non-adaptive Adaptive
SNBHT GMSHT NBHT KNNHT ASNBHT AdNBHT HATHT

Tweet1 77.99 61.84 78.80 68.04 77.99 78.80 77.53
Tweet2 79.25 74.76 79.66 75.27 79.25 79.66 78.96
Enron 70.22 - 71.69 89.54 83.14 76.11 -
IMDB 68.40 - 69.98 70.27 69.73 69.55 70.44
CNAE 58.38 53.24 64.20 47.05 58.92 64.20 62.81
O ∅ 70.85 - 72.87 70.03 73.80 73.67 -

with the HAT, the gain in memory exceeds the slight loss
in accuracy. This is due to using, in addition to the sketch, the
ADWIN change detector and estimator [10].

To assess the benefits in terms of resources usage we ob-
serve the behavior of memory results is similar to the behavior
of time results, i.e., when the memory usage increases, the
time processing also increases. For some datasets, NB is more
space-efficient than SketchNB (especially for datasets with a
low number of attributes and classes,e.g., SEA, AGR) which
is quite natural as simpler learners usually require less time
for training and prediction. With large datasets (in terms of
the number of attributes and classes), e.g. Tweet1 and Tweet2,
SketchNB and AdaSketchNB consume fewer resources than
NB and AdNB respectively due to the use of a space-saving
structure, the CMS. In comparison with GMS, KNN, and HAT,
the proposed algorithms are more space and time efficient.

Despite the gain with SketchNB and AdaSketchNB clas-
sifiers over different datasets, still wholly not satisfy-
ing. Therefore, we proposed SketchNBHT (SNBHT ) and
AdaSketchNBHT (ASNBHT ), a third contribution that con-
sists on preprocessing internally instances of SketchNB and
AdaSketchNB coupled with the hashing trick.

Figure 4 presents the results of these experiments, where
each dataset is processed with 6 different output dimension.
We report in Tables V, VI and VII the overall average accu-
racy, memory and processing time over the different values of
dimension for each dataset.

For all datasets with different space dimension, the
SketchNBHT ’s accuracy is similar to NB using a feasible
amount of resources. E.g., Figure 6a depicts the ability of
SketchNBHT and AdaSketchNBHT to achieve similar accu-
racy to NB and AdNB on Tweet1, and in Figure 6b and 6c
we can see that they lead to large memory savings in lower
time processing.

Comparing the results from Figure 4 and its corresponding
average (Tables V, VI and VII), SketchNBHT outperforms
also GMSHT and KNNHT (excepts for accuracy with this
latter). Nevertheless, the gain in memory and time is more in-
teresting. Also with the adaptive classifiers, AdaSketchNBHT
is more accurate than HATHT for some datasets and uses much
less memory.

VI. CONCLUSION

In this paper, we presented SketchNB, AdaSketchNB,
SketchNBHT , and AdaSketchNBHT algorithms, new classi-
fiers for big data streams. The SketchNB algorithm extends the



Table VI: Memory (B) comparison of SNBHT , GMSHT , NBHT ,
KNNHT , ASNBHT , AdNBHT , and HATHT . Bold values indicate
the best results per dataset.

Dataset Non-adaptive Adaptive
SNBHT GMSHT NBHT KNNHT ASNBHT AdNBHT HATHT

Tweet1 3,648 1,001,109 6,817 236,328 5,472 8,801 76,896
Tweet2 3,721 1,001,109 6,817 236,328 5,545 8,801 62,404
Enron 3,619 - 7,760 265,373 4,381 9,341 -
IMDB 4,528 - 6,817 236,288 5,580 8,157 93,113
CNAE 14,133 1,001,165 19,623 236,848 15,935 21,103 23,689
O ∅ 5,930 - 9,567 242,233 7,382 11,241 -

Table VII: Time (%) comparison of SNBHT , GMSHT , NBHT ,
KNNHT , ASNBHT , AdNBHT , and HATHT . Bold values indicate
the best results per dataset.

Dataset Non-adaptive Adaptive
SNBHT GMSHT NBHT KNNHT ASNBHT AdNBHT HATHT

Tweet1 2.66 3.03 3.16 3.59 2.84 2.84 2.97
Tweet2 29.72 43.06 43.48 37.93 29.63 33.28 34.11
Enron 0.42 - 0.47 0.61 0.44 0.41 -
IMDB 14.59 - 13.54 25.57 14.38 13.58 14.75
CNAE 0.44 0.51 0.40 0.52 0.46 0.41 0.49
O ∅ 9.55 - 12.2 13.64 9.56 9.51 -

naive Bayes classifier using the count-min sketch to reduce the
memory needed. Then we proposed AdaSketchNB, an adap-
tive version of SketchNB to handle concept drift. Finally, we
coupled SketchNB and its adaptive version with the hashing
trick technique for further gain with high-dimensional data to
obtain SketchNBHT and AdaSketchNBHT . We explained the
learning process of these classifiers using sketches showing
strong theoretical guarantees.

We compared these classifiers in an extensive evaluation
with well-known classifiers showing that GMS, NB, HAT,
and KNN were outperformed in memory by SketchNB and
AdaSketchNB with large datasets. We showed also that using
the hashing trick and the count-min sketch, SketchNBHT and
AdaSketchNBHT obtain good results in terms of classification
performance (accuracy, memory and time) when compared to
other state-of-the-art classifiers.
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[18] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data streams,”
in International Symposium on Intelligent Data Analysis. Springer,
2009, pp. 249–260.

[19] A. Bifet, B. Pfahringer, J. Read, and G. Holmes, “Efficient data stream
classification via probabilistic adaptive windows,” in Proceedings of the
28th annual ACM symposium on applied computing. ACM, 2013, pp.
801–806.

[20] B. Kveton, H. Bui, M. Ghavamzadeh, G. Theocharous, S. Muthukrish-
nan, and S. Sun, “Graphical model sketch,” in Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases.
Springer, 2016, pp. 81–97.
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Fig. 4: Sorted plots of Accuracy, Memory and Time over the output dimension. a Accuracy Tweet1. b Memory Tweet1. c Time Tweet1. d
Accuracy Tweet2. e Memory Tweet2. f Time Tweet2. g Accuracy Enron. h Memory Enron. i Time Enron. j Accuracy IMDB. k Memory
IMDB. l Time IMDB. m Accuracy CNAE. n Memory CNAE. o Time CNAE.


