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CONTROLLING THE RATES OF A CHAIN OF HARMONIC OSCILLATORS
WITH A POINT LANGEVIN THERMOSTAT

AMIRALI HANNANI, MINH NHAT PHUNG, MINH-BINH TRAN, AND EMMANUEL TRELAT

ABSTRACT. We consider the control problem for an infinite chain of coupled harmonic oscillators
with a Langevin thermostat at the origin. We study the effect of two types of open-loop boundary
controls, impulsive control and linear memory-feedback control, in the high frequency limit. We
investigate their action on the reflection-transmission coefficients for the wave energy for the
scattering of the thermostat. Our study shows that impulsive boundary controls have no impact
on the rates and are thus not appropriate to act on the system, despite their physical meaning
and relevance. In contrast, the second kind of control that we propose, which is less standard
and uses the past of the state solution of the system, is adequate and relevant. We prove that
any triple of rates satisfying appropriate assumptions is asymptotically reachable thanks to linear
memory-feedback controls that we design explicitly.
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1. INTRODUCTION

Heat reservoirs at temperature T are commonly modeled by the Langevin stochastic dynamics.
When the bulk evolution is governed by a discrete wave equation, a small parameter ¢ > 0
is introduced to dictate the ratio between microscopic and macroscopic space-time units. In
general, the noise is chosen so that by the stochastic mechanism, there is only a finite amount of
momentum exchanged in a finite interval of time. As thus, each particle undergoes only a finite
number of collisions in any finite interval of time. It is common to let € tend to 0, which is often
referred to as taking the kinetic limit for the system (for instance, see [10], [I1], [I3]). When a
chain has no microscopic boundary, the energy density evolution is often described by a linear
kinetic equation.

A useful tool to localize in space the energy per frequency mode is the Wigner distribution,
introduced in [I5]. In the absence of the thermostat, by adding a small conservative noise exchang-
ing velocities, the authors of [2] prove that, in the kinetic limit ¢ — 0, the Wigner distribution
converges to the solution of the kinetic transport equation

oW (t,x, k) +vg(k)0. W (t,z,k) =27 / Rk, k') (W(t,z, k') — W(t,z,k)) dk, (1)
T
for all (¢,z,k) € [0,400) x T x R. The explicit scattering kernel R(k, k') > 0 is given by
R(k) = / ARk, k) ~ K2 for [k < 1.
T

We also refer to [3] for a related situation. Here and in the sequel T is the unit torus, identify with
the interval [—1/2,1/2] with periodic endpoints. The parameter 79 > 0 is the scattering rate for
the microscopic chain. The group velocity is defined by vy (k) = w(k)/2m, w(k) is the dispersion
relation of the chain.

When a heat bath at temperature T is applied to one particle, which is labeled 0, with a coupling
strength v; > 0, the action of the heat bath is not affected by the scale of the small parameter
€. As a consequence, when a thermostat is included in the system, its presence can be regarded
as a singular perturbation of the dynamics of the system. Mathematically speaking, when ¢ — 0,
in [6 O], it has been proved that the thermostat enforces that phonons of wave number k are
generated with rate rq(k)T, incoming k-phonons can be transmitted with probability r¢(k) and
reflected with probability r,(k), which means that one needs to introduce the boundary conditions

at y=0on :
W (t,0" k) = r.(k)W(t,07, —k) + re (k)W (t,07, k) + ro(k)T, for 0 <k <1/2,
W (t,07, k) = r.(k)W(t,07, k) + ri(k)W(t,07, k) + ro(k)T, for —1/2 < k < 0.

Those quantities are properly normalized according to rq(k)+ri(k)+r,(k) = 1, so that W (t,y, k) =
T is a thermal equilibrium.

In the recent years, there have been significant progresses on the control theory for kinetic
models [T}, [4, 12]. The goal of our work is to initiate the study of the Wigner distributions for
stochastic discrete wave equations under the point of view of control theory. To be more precise,
in the setting of the stochastic discrete wave equations considered in [6l, 9], the three important
parameters r4(k), ri(k), (k) are respectively the probabilities for absorption, transmission and
reflection, and the rate of creation of a phonon of mode k. Within the control theory viewpoint,
we investigate the following question:

Question A - Controllability at the kinetic limit: if we add a control function, having a
relevant physical meaning, to the wave system/equation, can we control the above three important
rates: transmission, reflection/ absorption, and creation of a phonon of mode k in ?

(2)
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To address Question A, we consider two possible types of open-loop boundary controls.

The first boundary control is inpulsive (see Section |3 and consists of adding the term F'(¢)dg
to the system. At the kinetic limit such a control has an impact only at the boundary, causing a
shoot-up explained by the friction v at the boundary. Like the thermostat, the control force F(t)
can be seen as a wave at all frequencies but only the frequency of the oscillators are kept; all other
frequencies are damped by oscillations at the macroscopic limit. Physically, this type of control
corresponds to adding a force F'(t) at the boundary. Similar physical phenomena (subjecting a
chain of oscillators to a point force) have been considered recently in [7]. The difference with our
work lies in the nature of the force: L! in time in our case vs. periodic in time in theirs. Another
difference is the scaling regime that we consider for the control of the kinetic limit, in contrast to
their setup that corresponds to the diffusive scaling. Our control is impulsive in the sense that it
creates a new term in the kinetic limit equation (see further), namely, a Dirac delta measure
along the characteristic (x — vg(k)t). This means that the control is too strong and the whole
dynamics of the chain follows the control and not its own dynamics. Even when we take a smooth
function F, an extra Dirac delta measure along the characteristic (x — vq(k)t) pops up in the
final equation, as proved in . It follows that the probabilities for absorption, transmission and
reflection, and the rate of creation of a phonon of mode k are not controllable using this control
(see Remark [2).

The second type of open-loop boundary control is a linear memory-feedback control (see Section
on the stochastic process of the wave consisting of adding the convolution term F x adp,,. In
control theory, the time-convolution integral for a continuous-time system calculates the output
of a system to a given input using the response of the system. Therefore it is natural to utilize
time-convolution as a tool to control the system at any time ¢ given that the anterior states of
the system are known. In this respect, the control uses feedback from previous times to control
outputs at the current time and is often called memory-feedback. Since the control in this case
follows closely the dynamics of the system, the “impulsive” behavior in which a delta function
pops up in the final result can be avoided. Noticing that the three quantities r, ¢, 7. depend
on the friction v, a control F'x agdp,, can be imposed on this parameter v, which sticks to the
stochastic process agy. Thanks to this feedback-type boundary control, eventually the effect of
the control on the kinetic limit is much better: the three rates (rq,r,7,) can be changed at the
kinetic limit. We will prove that for a given class of function rates (rq, r¢, ), enjoying appropriate
conditions, it is possible to find a control F' asymptotically steering the rates to desired target
functions (see Corollary [6]).

Another type of control, which seems to be technically harder is the so-called “internal control”,
for which, the control acts on several points of the chain, will be studied in future work. Let
us mention that instead of a Langevin thermostat, one may also consider a Poisson scattering
mechanism at the boundary. Such mechanisms are studied in [§]. Controlling the rate of such
problems seems doable via our methods.

Acknowledgments: The authors would like to express their gratitude to Tomasz Komorowski,
Stefano Olla, Herbert Spohn and Enrique Zuazua for several useful remarks, guidance, and in-
structions on the topic.

2. SETTING AND NOTATIONS

Following [6], 9], we consider the evolution of an infinite particle system governed by the Hamil-
tonian

H(e,B) = 3 Y02t S Guwbubur = 5 3 llal® + (B.0 %)

nez nn'€Z nez
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where n € Z, (o, Bp) is the position and momentum of the particle n, and (o, 8) = {(an, Bn), n €
Z}. The assumption on o will be specified later. The Hamiltonian dynamics with stochastic source
without control reads

B(t) = an(t),
dan(t) = —(o* B(t))ndt + ( — vao(t)dt + V2UTdR(t))on, n € Z,

where {R(t), t > 0} is a Wiener process on a probability space with proper filtration (€2, F¢, E)
and an initial probability measure p. on £2(Z). In this setting, we couple the particle whose label
is 0 to a Langevin thermostat at temperature 7" and we assume that the friction is v > 0. The
convolution of two functions on Z is

(f *g)n = Z fn—n’gn’- (3)
n'€Z

The wave function is given by
Un(t) := (@ * B(t))n + ian(t) (4)
in which {@y, n € Z} is w(k) := y/d (k). The Fourier transform of the wave function is

A~ A~

bt k) = w(k)B(t k) +ia(t, k) VkeT.

The Fourier transform of f,, € /2(Z) and the inverse Fourier transform of f € L2(T) are

f(k:) = an exp{—2mink}, f, = /Tf(/c) exp{2mink}dk, ne€Z, keT.

TEZ

We also have

G (81) = 5[0 1) = (6.~ aoft) = [ Tm i k)

The initial condition can be written as (k) = (0, k).
Following [9], the energy and correlation are assumed to satisfy

(k) p(h)p. =0, kheT,

sup 3 el = sup {B12a ) < o0 (5)
e€(0,1] ;27 €€(0,1]

where the expectation for y. is denoted (-),.. The expectation for the two processes, the Wiener
process and the initial measure u., is denoted by E..

For a function O(z, k), we denote by O:RxZ—C,O:RxT — C the Fourier transforms of
O in the k and z variables, respectively, and the Laplace transform for the time variable is

e - | T e g ()t

0

We have some specific notations for the Laplace transform of few functions in this work and we
define them when we need. Also, for now, if we don’t say anything further, we assume the domain
for convergence of the Laplace transform is C; = {z € C : Re(z) > 0}. We keep the notations
Re(z),Im(z), z* for the real part, imaginary part and complex conjugate of z.

The Laplace transform of the Wiener process is denoted by

R = L(R).
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One can observe that R is a Gaussian process, determined by its covariance which is given by:
B 1
Z\+ Zy’

Recall the convolution notation in . We also use the notation x for convolutions with respect
to the time variable t, as

E(R(Z1)R(Z5)) ReZ1,ReZy > 0.

foglt) = /0 £t — 5)g(s)ds.

We use this for convenience. To avoid confusion, we have a convention that we only use this
notation when dealing with functions F,©, ¥, C,,. We define those functions later.
The ¢ time scaling of a function f is defined by

FE@) = f(t/e). (6)
For the estimates, we use the following symbols: for f,g: D — R, we write
f S g if there exists C > 0: f(z) < Cg(z),x € D.
We write f =g if f Sgand g < f.

Our estimation usually involves ¢ — 07, hence when we use those symbols we mean that D is a
small positive neighborhood of 0 for the variable € and C' does not depend on €.
We now state a few basic assumptions.

2.1. Assumptions on the initial wave. The Wigner distribution is defined by

O.WER)y == S B [$O05" ()] 0"

nn'€Z

n+n'
2

,n—n'), (7)

for every test function O € .(R x T) in the Schwartz space. Recalling that G has two variables,
O is the Fourier transform with respect to the first variable, and O is the Fourier transform with
respect to the second variable, defined by

O(&, k) :/6_2“i£x0(:v,k:)d:v,
R

O(z,n) :/e%ka(az,k)dk‘.
T

The Wigner distribution is also defined by its Fourier transform, as

We(t €, k) = SE. [0 (1 k — e6/20 Otk +2/2)| (®)
OWOW)y = | Wet.€ k)0 (€ k)dédk.
TxR

For the Wigner distribution’s Laplace transform, we use the notation

For most parts, we will find the limit of the Laplace transform 7. instead of directly find the
limit of W.. When we want to mention about the initial condition of the Wigner distribution, we
omit the time variable and we write

We(&, k) = W(0,£, k).
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We define the space .4 as the completion of . (R x T) for the norm
0.1 = [ sup|O(e.blde
R k€T

and we consider it dual space 4.
The energy of the wave grows at most linearly in time, hence

sup [[WE(#)]y < oo,
t€[0,7]

for every 7 > 0. Therefore, the family of all W (®) is sequentially weak-star compact in (L!([0, 7]; A4))*.
Considering subsequences is necessary, we can then assume that

Wg(g, k) converges weakly in .4 to Wy € LYR x T).

For the estimates later on, an additional assumption on the initial state is needed, namely, that

A C
W.(&, k)| < @%1 (9)

for (£,k) € Ty x T,e € (0,1] (Ty. is the periodic torus [—e~1,e7!]). Here, C1, k are positive
constants and the Japanese bracket is defined by

(@)r = V1 + 2.

Note that, for any x > 0, fR<x)H§1_“daz converges.

2.2. Assumptions on the dispersion relation. The coupling between two points n,n’ € Z is
denoted by

Op_n € C.
We assume that there exist Cy, C'3 > 0 such that
|| < Coe™IMl/Cs Vn € Z.
This assumption implies that the Fourier transform & is smooth. We also assume that
0 is even,
o(k) >0, k#D0,
6"(0) >0, if 5(0)=0.
The dispersion relation is defined using this coupling
w(k) =+/o(k).

By definition, the function k — w(k) is non-negative, even, and is smooth on T\ {0}. In our work,
we assume that w is a smooth and positive function.

The torus T is divided into the negative branch [—1/2, 0] and positive branch [0, 1/2]. Since w is
an even function, it makes sense to work on the positive branch, then pass the result to the negative
branch. We add the assumption that w is decreasing on the negative branch, or equivalently,
increasing on the positive branch. The minimum and maximum values of the dispersion relation
are

Wmin = W(O),

Wmax = w(—1/2) = w(1/2).
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We also define two inverse functions ¢ : [Wmin, Wmax] — [0, 1/2] and ¢ : [Wmin, Wmax] — [—1/2,0].
Since w increases on the positive branch and is continuous, given any @ € [wmin, Wmax| there exists
a unique k € [0,1/2] such that w(k) = w. The value of p(w) is set as k. We define ¢4 by

P4 (w(k)) = [k|
and ¢_ by
o (w(k)) = —[kl|.
We assume that the derivatives of the inverses have the following properties
P (@) = +(@ — wmin) " 01(@), T — wnin < 1, (10)
@1 (@) = £ (Wmax — D) 202(@),  Wmax — T < 1, (11)

where ¢1 and @9 are smooth positive functions. For example (see [2]):
w(k) = \/wg + (1 — cos(27k)),
where wp,y > 0. For @ € [wp, \/w + 2], we have

—2 2

@) =+ arcsi
w) = — arcsin
P+ p 2y

and

)=+ © :
7(@) 7r\/27+w§—52\/52—w8
When w — wp < 1, we define

W

p1r{w) = )
®) /27 + wi — W?VW + wo
and when /w3 + 2y — @ < 1, we define

_ w
P2(W) = :
T/ \/wg + 27+E\/w2 fwg
Finally, we introduce some notations related to the dispersion relation:
De(k,&) = e ' w(k +e£/2) —w(k —£/2)]  for k€ T,€ € Ty,
DX (k&) = e w(k + &) — w(k)] for k € T,& € Ty, (12)
DZ (k&) = e w(k) — w(k — €€)] for k € T,& € Tye.
When € — 0, D.(k, &), DF(k,€), DZ (k, &) all converge to w'(k)E.

3. IMPULSIVE CONTROL

3.1. Setting and Main Theorem. We further assume that (1(k)),. = 0 for any k& so that
scattering terms containing this expectation in their product vanish. Actually, it would be enough
to assume that

P(e,k) = (k). and
eV/274|P(e, k — e£/2)| is bounded for each fixed k,¢&, (13)

In , d is such that P is small enough so that when the control acts on the wave, the new term
involving P will disappear when taking the limit. To be more precise, d is such that 1/2 — d is
small.
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In this part, our control term is associated with a real-valued function F(¢) and we assume that
eV2L(F)(eZ + iw(k — €£/2)) converges to F(k) for fixed ¢, for some continuous function F.
(14)
This assumption comes from a basic relation between Laplace and Fourier transforms. For F €
LY([0, +00)) we have
+o0o

. +oo R
lim £(F)(Z + iw) = lim e AW Rt dt = / e WR(t)dt = F(w/27). (15)
Z—0 Z—0 0 0

We use the notation ' for the Fourier transform in the time variable.
To ensure that the energy will grow at most linearly in time, we make another assumption on
F', namely, that there exists Cy > 0 such that

t/e
sup / eF?(s)ds < Cyt,Vt > 0.
e€€(0,1] JO
We now state our main theorem for inpulsive control. We consider the system of equations
Ba(t) = an(t), (16)
dop (t) = — (o * B(t))ndt + (—vapdt + F(t)dt + V2UTdR(t))do n- (17)
Theorem 1. Consider the wave system governed by and along with all assumptions
stated in sections @ and @ For any 7 > 0 and O € L([0,7]; .4") we have
lim [ (O(t), Wo()).ydt / O (t, 2, k)W (¢, x, k)dwdkdt, (18)
£=0.Jo 0 JRxT
where
Wi(t,z, k) = Wo(x — vg(k)t, k) 100, (k)e)e () + 7a(K)T L0 4, (k) ()
+re(B)Wo(z — vg(k)t, k) Lo u, (k) () + 10 (R)Wo (=2 + vg(k)t, —K) 10,0, (k) ()
k)|ra(k k)|?

1%

Remark 2. In view of Question A, posed in our introduction, we observe that the three rates
Tq, 7,7 are not modified under the influence of the impulsive control F(t)dp,. The control
appears in the term Mé(m — &' (k)t) in (19)(recall that F is given by (14): this is
where the control F'(t)dy , appears in ) With respect to the main result of [9], the latter term
is the new additional one.

Therefore, despite its physical meaning and relevance, such an impulsive control is not appro-
priate to act on the thermostat system. In the next section, we will propose another type of
control called memory-feedback because it uses the information provided by the past of the state
solution. This alternative kind of control enables us to act on the triple rates.

We recall some definitions. The group velocity is denoted

We then define
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. —1_TRe v vra(k)

(k) =1 = RO ] T 2oy ()]
_wre(k)

) = Hoy )

where 6 is defined further in . Recall that the terms rq,7; and 7, represent the absorption
rate, transmission rate and reflection rate. Section [9] shows the properties of 6 yielding some
other properties of rq, ¢, 7).

In the proof of Theorem [I} to analyze the kinetic limit, the Wigner distribution is splitted into
13 terms that we categorize into 4 types.

(1) Terms do not involving the control: one of the thermal term , the ballistic term ,
the first and the second scattering terms , . These terms are estimated using the
results of [9)].

(2) Terms with a single Wiener process: and (37)). Since the expectation of the Wiener
process is zero, thus these terms are zero.

(3) Terms involving one occurence of F in the product: those terms are , the third, the

fourth, the fifth and the sixth scattering terms, , , , .
(4) Terms involving two occurences of F' in the product: and ((64)).

We will see that only the first and the fourth types have non-zero kinetic limits. All others vanish
at the limit.

3.2. Preliminary computations. We write di) using the system of equations (see [5l [14] for a
related nonlinear problem)

dip(t, k) = d(w(k)B(t, k) + idé(t, k)
= w(k)a(t, k)dt + i(—w?(k)Bdt — vag(t)dt + F(t)dt + V2uTdR(t))
= —iw(k)O(t, k)dt — ivag(t)dt + iF(t)dt + V2uTidR(t). (20)
Solving the linear ODE gives

. ~ t . t .
O(t, k) = e @B (k) — il// e @R E=9) 0 (s)ds + z/ e @Rt p(5)ds
0 0

t .
+ivV2uT / e wkE=3)qR(s). (21)
0
Noting that by definition of inverse Fourier transform,
ao(t) = [ Tm(i(e, k), (22)
T

and that the real part of e~ *)(t=5) is cos(w(t — 5)), we infer from and that
t t
ap(t) =V(t) — I// / cos (w(k)(t — s)) ap(s)dsdk + / / cos (w(k)(t —s)) F(s)dsdk
T Jo T Jo
t
VT / / cos (w(k)(t — s)) dR(s)dk,
T Jo

= U(t) — vCy % ag(t) + Cy x F(t) + V20T C,y % dR(2), (23)

where

W(t) = / 1 ((k)e~ ) db. (24)
T
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and
CL(t) = / cos(w(k)t)dk. (25)
T
We can compute the Laplace transform
Z
w(Z) = | ————dk. 2
£C)D) = [ g (26)

Recall that Re(Z) > 0 so Re(L(C,)(Z)) > 0.
Using the Laplace transform on and the fact that

o0

~ 1

0(2) = T vE(C)(Z) ;(—Vﬁ(cw)(z))jy (27)
we get
a0(Z) = L(ag)(Z) = OL(Y)(Z) + OL(C)Z)L(F)(Z) + V2wTO(Z2)L(CL)(Z)R(Z)
— dL(D) + %(1 —B)L(F) + VITOLICL)R(Z). (28)

We will write © as the inverse Laplace transform of © and it can be understood using the infinite
sum of convolution terms

O(dt) = dos(dt) + L7HO — 1) = dou(dt) + Y _(—v)"(+"CL)dt,
n=1
where (x"C,,) is the n-time convolution of C,, with itself.

Applying the Laplace transform to , and using we obtain

L0 ) (2) = LR = wao(2) +iL(F)(Z) + 2T R(Z)

Z +iw(k)
(k) — v L(P)(Z) +iO(2)L(F)(Z) +iV20TO(Z)R(Z)
N Z +iw(k) .

Therefore, by inverse Laplace transform,
' . t t
Ot k) = e @Rl (k) — il// Ou(t — s, k)¥(s)ds + z/ O, (t — s,k)F(s)ds
0 0

+ivVowT / t Ou(t — s, k)dR(s), (29)
where :
014 = | -0 (gs).
Denoting by 0
O“(t, k) = /0 t ek g(ds) = M0, (t, k), (30)

we have the important identity

O(eZ — zw(k))

L(©) (- k))(2) = Z
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It can be proved that O©(eZ —iw(k)) is bounded by 1. Hence, using @5)), (26), (27), and Fatou’s
Lemma, O(e\ —iw(k)) converges (a.e. and in any LP) when Z — 0. We also write

lim ©(cZ —iw(k)) = 0(k). (31)

e—0t

Note that we can truncate the wave so that it vanishes around k£ where w'(k) = 0. We have
1/;1(()’ k) = @(@X@(k% (32)
dipt (t, k) = {—iw(k)qﬂl(t, k) — % / [ (8, k') — " (¢, KD dE + F(t)} dt +ivV2uTdR(t). (33)
T
P20, k) = (k) (1 = xo(h)),
a2t = { ~iw )it e k) - 5 [102(0K) = 320K |
T

In here, x,(k) is a smooth function with values in [0, 1] such that it is equal to 0 on [T](p) and to
1on T\ [T](e) with
[T)(e) = {k : dist(k, [T](0)) < o}, (34)
[T](0) = {k : &'(k) = 0}.

We will choose o sufficiently small so that the part near the place where w’ vanishes, will also be
sufficiently small. Note that, since w is smooth, we have w'(k) = 0 at —%, 0 and %
We now split the wave into several terms to determine the kinetic limit.

3.3. Thermal terms. The thermal part of the wave is considered independently from the initial
state of the wave system. Therefore, for the thermal part, we put ¢)(k) = 0. With that assumption,

becomes
. t t
Yt k) = z/ Ou(t —s,k)F(s)ds + iV 21/T/ Ou(t — s,k)dR(s).
0 0

The Wigner distribution’s definition gives

We(t, &, k) = %Ea v Ou(t/c — s,k + £€/2) F(s)ds Ot/s O (t)e — s,k —e£/2)F(s)ds  (35)
+V2uT /0 e O (t/e — s,k + £/2)F(s)ds Ot/e OF(t/e — s,k —£/2)dR(s)  (36)
2T Ot/g O (t/e — s,k — £€/2) F(s)ds Ot/e O, (t/c — s,k +c£/2)dR(s)  (37)
+ 20T Ot/g Ou(t/e — s,k + £/2)dR(s) Ot/E O5(t/e — s,k —e€/2)dR(s)| . (38)

3.3.1. First thermal term. Since the term is independent from any random process, its
Laplace transform is

SL (0w )k +26/2)(0 x F)O( k= 2€/2)) (39)
We rewrite the convolution ©, x F' using as

t t
O * F(t, k) = / O, (t — s, k)F(s)ds = / 0¥ (t — s, k)P P (s)ds
0 0
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= /Ot 0% (t — s, k)e @Rt (s)ds
= ¢~ WRtQw 4 F (1), (40)
where
Fi(t) = F(t)e @kt (41)
We also rewrite the conjugation,
OF * F(t, k) = e O%)* « Fi(t). (42)
Using , and , the product of the two convolutions is
(Oux F(t,k+¢£/2))(OF x F(t, k —e£/2))
= e "PABINOY x Fy e o) (8, + 26 /2)((0°) % g po) (8 k — 2£/2). (43)
Now, we use , , and the formula of the Laplace transform of a product to get
o dm [ U x B OLE) * B 4 iDL(8,8) — )i

437 L—oo
€ i [ @ .
= gip A [ LUOM) NGkt /DL o) ()
L((O)ONZ +iDe(k,€) = (I = €/2L(Fimcgsa)(e(Z +iDe(h,€) = O))dC
_ i lim ctil (:)(EC —iw(k +€£/2))
447 L—oo Jo_iL, ¢

L(F)(e¢ —iw(k +€£/2))

O(e(Z +iDc(k, §) — ¢) +iw(k — e£/2))
Z + ZDE(kvg) - (
where we follow the notation of @ From and , taking the limit € — 0 we obtain
cil 2 2
4im L—oo Jo—i, ((Z +iw'(k)§ — ()

The next few steps are just basic calculus. We have

L(F)(e(Z 4+ iD:(k,€) — ¢) +iw(k — e£/2))dC,

1 1 1 1
((Z+iw'(k)E=C) ~ Z+iw(k)E (C T Z iR - C) '
We also have the identity

cHil L . L,
i = (] e )
=m. (45)
Hence, equals
0R)P|FE)? - Jvg(k)|ra (k)| F (k)2

2(Z + ' (k)E) 2v(Z +iw'(k)€)

3.3.2. Second and third thermal terms. Consider the terms ,. They have one dR(s) each,
and because they follow a Gaussian distribution, those terms vanish.
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3.3.3. Last thermal term. Consider the term .
Because of the correlation of Wiener process, the term is the same as the thermal term in
[9, chapter 4]. Therefore, it contributes to the limit of #; as
vT|0(k)[?
Z(Z + i (k)E)

The limit can be rewritten as
T'|vg(k)|ra(k)
Z(Z + i (k)€)

3.4. Scattering terms. From (| . we have
OWL(t,€ k) = SE- | (9O (t,k +2€/2)) 9Otk — £6/2) + (90" (8. k — 26/2) ) 9O (1, k + =€/2)

Then, we compute each term of ([46)) by replacing 7' = 0 in (20): "

(B0t ke +6/2) )6 (1, k - e¢/2) (47)
= 2 [l +6/2)0 (4 + 6/2) — vl (1) + i F O] O (1, - <6/2),

(0 (1, k - 2¢/2)) DO (&, k + 2¢/2) (48)

~

= % [W(k — & /2 (1, k — e£/2) + ival (1) — iFE) (1 )] DOtk + 2£/2).
We infer from and that

W (t,€, k) = —iD.(k, W (1., ) (49)
= 2B [ia§) (009" (4 k - e6/2) — ia§) (DO (1, k + ¢/2)] (50)
VB [FO0I 1,k — c6/2) ~ FO0) 1,k + €/2)] (51)

Using the Laplace transform on (49), (50) and (51]), we obtain
(Z +iDe(k, VW2(Z,6, k) = W&, k) (52)
— 3 [S:(Z,k — £/2) + SI(Z,k +£€/2) (53)
L (F(;“)a@ (GOt b+ 6/2)] — B[ (8, k - sa/zm) (2), (54)

where

8.2, k) = iL (Ecaf ()0 (1, 1)) (55)

S*(Z,k) = —iL (Egag@*(tw@)(t, k)) :

To handle the term we split into seven terms. First, rewrite and in convolution
form with 7' = 0:

Ot k) = e (k) — ivO, « U(t) + O, « F(t), (56)
aot) = O x U(t) + %F(t) _ %@*F(t). (57)
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Then S. is the sum of the Laplace transforms of I, 11, 1119, v  v® vi® v,
(1) I is obtained as the product of the first term of and the first term of ([56)):

(1, k) = i [g % W(0)e 01 (k)] = it /0 Wt ) () O(ds). (58)
(2) II. is obtained as the product of the first term of and the second term of (56):
I (t,k) =iE. [©x U(t) (ivO, x VU(t))] = —v /Ot /Ot OL(t — s, k)(VU(s)U(t — &')),.dsO(ds"). (59)
(3) III. is obtained as the product of the first term of and the third term of ([56)):
III.(t, k) =iE: [(© % V(1)) (—iO), x F(t))] = /Ot O (s,k)F(t — S)d8</0t U(t—s)O(ds')),.. (60)
(4) IV is obtained as the product of the second term of and *:
1Vt ) = 8. | (LF@)) 3°(0.0)] = PO (00 (61)
(5) V; is obtained as the product of the third term of and the first term of :
—1

Vit =g | (~5 05 F ) (0 m)] = CF(t— 5)0(ds)e O (), (62)

v

(6) V. is obtained as the product of the third term of and the second term of (56):

VI(t k) = iE. K—i@ X F(t)) (i % \li(t))] - /Ot Pt — s)@(ds)(/ot O1(s' k)W (t — §)ds') ..
(63)

(7) VI, is obtained as the product of the third term of and the third term of (56):

VIL(t k) = iE. [(—i@*F(t)) (—i@Z*F(t))] _ —% /0 "Rt — s)0(ds)! /O "0 (s, W) F(t — $)ds') .

(64)
We next show how to treat the scattering terms.
The ballistic term is the term generated from We(n, k) in (52). The limit is
O(&, k) (& k) dédk — O(&, k)&dgdk:, as € — 0, (65)

RXT Z +1iD.(k,§) RXT Z +iw'(k)§
where O is the test function used in .

3.4.1. The first scattering term. The first scattering term is obtained in using I, defined by
(58). The result is straightforward from [9]. A more general result is obtained in Section [4.4.2]
In this case, it is

W€ k) [ Ok
 Jo RO 7 [, 7 e el

under the same limit with .
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3.4.2. The second scattering term. The second scattering term is obtained in (b3) using 1,
defined by (59). Like the first scattering term, we use the computations in Section

v ra(R)Wo(€ k) [ O*(&k) :
4/RxTr Z + iw! (k)¢ /RZ+iw’(k:)§d§d£ dk

v [ radB)Wo(€,=k) [ O*(&k)
*4/M 7 — i (k)¢ /RZH (e e k.

under the same limit with .
The sum of the first and second scattering terms is

_ Wol€ k) O (& R)ug(R)] .,

Lor=0 [ e 7 e e
Wo(€',—k) O%(E Rlug(k)] .,

+/R><’J1‘(Tr(k)) R Z —iw (k)¢ Z +iw (k)€ d¢ dgdk,

under the same limit with .

3.4.3. The fourth scattering terms. The fourth scattering terms are obtained in using IV,

defined by (61). We see that —%(E(IVEE)(-, k—e&/2))+ E(IVE(E)*(-, k+e€£/2)) is the same as the
term (54]) but with a different sign. Therefore, the fourth scattering term and term cancel
each other. The limit is 0.

3.4.4. The fifth scattering terms. The fifth scattering terms are obtained in using V¢, defined
by . We have

LVIONZ, k- e¢/2) = eL(Ve)(eZ, k — ££/2)
= —71'65(@ *x F)(eZ —iw(k —e&/2))P(e, k — e£/2)

—1e

= 7@(52 —iw(k —e€/2))L(F)(eZ — iw(k — e€/2))P(e, k — €£/2).
By , and , the limit is 0.

3.4.5. The third and the sixth scattering terms. From , , , we compute

-2 /HM £ (1119 k= 2€/2) + T (- ) + 2¢/2)) (Z)foi’(lzg)dfdk
1z /X c (w( (k= £€/2) + VIE (- k +e€/2)) (Z)fo)%dgdk
= 5[ lmom) o G [ e (1) o G s
l R Iy e
o~ [ [ stz Oz(lezc) i(f/g 2)) gk + | SV giﬁ,’ l’;__;é/ 2 dgdk] .
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Here, we use the notations

S (7 k) = / ee 2SI (t, k)dt,
0

SHIx(7 k) = / ce 2SI (t, k)dt,
0

SYN(Z, k) = / e 2V I(t, k)dt,
0

S;/I*(Z,k):/ ce”ZEV I (t, k)dt.
0

Let us compute + . The sum + is similar.

To this end, we have

Sz k)=¢ / e PRI (t, k)dt
0

(o) t
= / e~ Zet / e@WBE=9)Q 4 F(s)(0  U(t)),_dsdt.
0 0

Hence

117 _ > —Zet !
Re S (Z,k) = 5/ e / cos(w(k)s)(O x F)(s) cos(w(k)t)(© x W(t)),. dsdt
0 0

o] t
—Zet i * s) sin(w * sdt.
—|—6/0 e /0 sin(w(k)s)(© x F)(s) sin(w(k)t)(© % ¥(t)),.dsdt

Proceeding similarly with VI, we get

ReSY!(Z, k) = a/oo e et cos(w(k)t)(@*F)(t)(/ ds cos(w(k)s)© x W(s)ds),, dt
0 0

+e /000 e % sin(w(k)t)(© x F) (t)(/o dssin(w(k)s)O x ¥(s)ds),, dt.

Therefore, using integrations by parts, we have

Re M (7 k) + Re SY1(Z, k)
=27z /000 e~ %t </0 Cos(w(k:)s)(@*F)(s)ds> </0 cos(w(k)s)(© x W)(s)ds) . dt
+ €27 /000 e~ %t </0 sin(w(k:)s)(@*F)(s)ds) </0 sin(w(k)s)(© x ¥)(s)ds),. dt.

Using the identity:

v = g ( [eWiiom - [0 om),

we expand the term as
2
€

Tz‘Z o zet /Ot /OtCOS(w(k)S) cos(w(k)s")

0

X / / F(s —u) < / e—iw(h><8’—“’>¢(o,h)dh> O(du)O(du')dsds' dt
0 JO T I

€
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~ % th/ / cos(w(k)s) cos(w(k)s")
X /O /0 F(s—u) < / el (s' =) ] (0,h)dh>u€ O(du)O(du')dsds'dt. (72)

Let us estimate , the term being estimated similarly. After that, we subtract —
to get . Using the identity
Spp = 1 / pia(t' 1)
’ 2T R

Aet into e A(H)/2 the term becomes

7 [ —Ze(t+t') /2 bt /
: e cos(w(k)s) cos(w(k)s")
2t Jo 0 Jo

and changing e~

/ ) / ) F(s—u) < / —w(h)(s"=u) (0, h)dh> O(du)O(du')dsds' b, ydtdt’

He

2z / / / (V1) 2o 40) 2 / / cos(w(k)s) cos(w(k)s)

/ / F(s —u) < / e W)= @(o,h)dh> O(du)O(du')dsds' dtdt'da.
0 JO n

€

Rewriting the domain of integration,
(u,5.1) € [0,8] x [0,] x [0,00] = (£, 5,u) € [5, 0] x [u, o] x [0, ],

this term is equal to

4171'//613 e, h)A(h,k, Z)Ar(k, Z)dhda,

where
B 1 O(Ze/2 —ia — iw(k)) O(Ze/2 —ia + iw(k))
Alh b 2) = 57 —a) <Z5/2 "0 — i) —w(h)) " Ze)2 —ia+ iw(k) +w(h))> !
and
r(k,2) / / cos(w(k)s)F (s —u) /OO e~ 220 11150 (du)
Z5/2 Tia / / cos(w(k)s)F(s — u)e™#8/219)3 050 (du)

= s Jy (O L) e 2 i) Ol

yem(Ze/2Hiariw)up(BY( 7 /2 + ia + iw(k)))

1
~ 2(Z2/2 + ia)
+O(Ze/2 + ia+ iw(k)L(F)(Ze/2 +ia + m(k;))) .

(é(ze/z Via—iw(k))L(F)(Ze/2 +ia — iw(k))
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Making the change variable a — €a, is equal to:

Z 1
16im /R/Tp(g’ Mot e

X {é(s(Z/Q +ia) — iw(k))L(F)(e(Z/2 + ia) — iw(k))

O(e(Z/2 —ia) — iw(k))
Z/2 —ia —ie~Yw(k) — w(h))

O(c(Z/2 + ia) + iw(k)L(F)(e(Z/2 + ia) + iw(k:))} dhda (73)

A 1
+ mm/R/TP(E’ Nz T e

X {(:)(E(Z/Q +ia) — iw(k)L(F)(e(Z)2 + ia) — iw(k))

£0(e(Z/2 —ia) + iw(k))
e(Z/2 —ia) +i(w(k) +w(h))
We expect that most of the contribution at the limit comes from ([73|). We will prove that the

limit of is zero. From , , , using the bound of test function O*, and the bound
|Z + 4Dt (k,n)| > Re(Z), it suffices to estimate

+ O(e(Z/2 + ia) + iw(k) L(F)((Z/2 + ia) + iw(k))} dhda. (74)

e(Z/2 —ia) + iw(k) + iw(h) ’ S (75)
For ¢ sufficient small, |e(Z/2 — ia) + iw(k) + iw(h)| 2 2wmin > 0, and follows.

Next, we handle the term (73). If |w(k) — w(h)| 2 e¥ for some d; € [0,d) then we do the same
as to show that the integral on this domain is small. We consider the domain |w(k) —w(h)| <
1€ for some p1,d; to be specified later.

Recall that we consider the truncated wave with some small number o to be chosen later.

In the domain, k € —1,—7 5 —2.2] U [3—4,3], we choose 01 < £f,dl = 0. Then,
h € [T](e) according to 10)) and (L1 As a result P(E h) = 0 on this domain.

We will focus on: k E [-1+¢,-2lugi- Q] and h such that |w(k) — w(h)| < g1eh for
some small p;. Because |w(k) — ( ] = ]w (K")||k — h| = |k — h|, we consider h € [—g1e®, 1]

for some small p;.
We perform the change of variables h — k — &’ where ¢’ € [—p1e® ™!, p1e® 1. The term
becomes

i /. / S 7 S N
1647 ore1 (Z/2)2 + a?

x {@(5(2/2 +ia) — iw(k))L(F)(e(Z/2 + ia) — iw(k))

O(e(Z/2 — ia) — iw(k))
Z/2 —ia —ie Y w(k) — w(k —eg’))

+ O(e(2/2 + ia) + iw(k)) L(F)(£(Z)2 + ia) + iw(k))}

We approximate using the derivative of w, that is

i L) " —
167 oy TSz a2

X {@(5(2/2 +ia) — iw(k))L(F)((Z/2 + ia) — iw(k))
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+ 6(c(2/2+ ia) + (k) £(F)((2/2 + ia) + iwo(k) ) @(;;5/_2; ia) (Z'“)(g,))dg da.  (77)

We have
€ €
' Z/2 —ia—ie Y (w(k) —w(k —ef))  Z/2—ia— o' (k)¢
B w(k) —w(k —ef) + ' (k)eg
1(Z)2 —ia —ie Y (w(k) —w(k —e€)))(Z/2 — ia — iw' (k)E')
and |w(k) — w(k — &€’) + W' (k)| =~ |W"(K')(e€)?] < 03e?@. Besides, by the Cauchy-Schwarz
inequality, we have

9

1
(Z)2 —ia —ie N w(k) —w(k —e&))(Z/2 — ia — iw'(k)E)
< 1 + 1
~NZ)2 —ia—ie Nw(k) —w(k —e&))]?  |Z/2 —ia — i (k)E'|?
1 1

YT ot e w(k) —wik— €)F 1+ o+ SRER
Next, we apply the estimate

/ da < 1
R (1+a®) 1+ (a+0)2) ~ 1+0%
the difference — is estimated by
pc2di—1td / Red2h—1,
TRy O S

In the latter estimation, we recall that 1/2 — d is small, so d > 1/3, and we choose d; = 1/3. As
a result, e424~1 tends to 0 as € — 0.
We now estimate for some small p;. Using , and , we only need to estimate

. /Q1/E déﬂ _ Ed /ngdll dgl
—or/eh |Z/2 —ia — i (k)| —oieti-1 /Re(Z/2)2 + (W (k)€ + a — Im(Z/2))?

W' (k)oreM1~t+a—Im(Z/2)

d

w' (k) —w'(k)o1e¥1 1 +a—Im(Z/2)
The limit of term ([78)) is 0. This implies that the term also has limit 0.

~ el log(eB™1). (78)

arcsinh(x)

3.4.6. The seventh scattering terms. The seventh scattering terms are obtained in using V11,
defined by (64). We have a transformation for VII.(t, k) using and

VIL( k) = 1/ (t— ) ds/@* VF(s)ds

-1 [t ' t ,
- - ezw(k)s ezw(k)(t—s )F(t _ S/)@(dsl)/ (@u)*(t N S,k)e_zw(k)sF(S)dS
0

v Jo

- %((eiw(k)'@) * FiE(4))((6%)* % Fr(1)).

Next, we compute L£(V'I IE(E))(Z , k—e&/2) using the formula for the Laplace transform of a product
LVIIO)NZ,k —8/2)



20 A. HANNANI, M. N. PHUNG, M.-B. TRAN, AND E. TRELAT

-1 c+ilL )

= lim L((“00) x FXO) (o, k — e£/2)L((0%)" » F ) (Z — ¢, k — £/2)d¢
2uim Lo Jo_ g
_52 c+iL

= lim O(e¢ —iw(k — e€/2))L(F)(e¢ — iw(k — €£/2))

2uim Lo Jo_yip
LUO%))Ne(Z = ),k = e§/2)L(F)(e(Z = ¢) + iw(k — £§/2))d(
—c c+il

= lim O(e¢ —iw(k — e€/2))L(F)(e¢ — iw(k — €£/2))

i L>oo Jo_yiL

LUO)INZ = (k= e€/2)L(F)(e(Z = ¢) + iw(k — £€/2))d¢
—€

ct+il
= _—° lim / O(eC — iw(k — e€/2))L(F)(eC — iw(k — ££/2))

2vim L—oo J ;]

O(e(Z - g)Z+ _Mg(k —e£/2)) L(F)(e(Z =€) +iw(k — e€/2))dC. (79)

At the limit € — 0, the term gives
-1 c+il 2 2
Ui [T ORPIFRR
2vim L—oo c—il 7 — C
Now, the integral is estimated using . We get
—|0(k)P|F (k)
2v '

(80)

Expanding in , the result is
16(k)|?|F (k)|
2(Z 4+ ' (k)E)

3.5. Proof of Theorem 1. We use 1&1 in and use the bound on the initial condition ,

and the growth of energy of 1&1 is at most linear, which is similar to &; meanwhile, the energy of
? is decreasing

limsup sup /W (Z,6, k) —#WMZ, € k) |dk

e—0t 56’]1‘2/5
= limsup sup EEE [/ / et (1/)( (t, k+ g)i/) “(t, k — —5)
e—0t §€T2/52 T |Jo 2

1Otk + %)@1(8)*(75, k— 5)) dt‘ dk}

. € > e 2
1 7EE Re Zt (e) k 7(e)x k— >
<oy g5 [ (000 i)
— Otk + 5)@@1(5 (t,k — 25)> dt‘dk}
li EE(Q I: > —ReZt 2(e) k 55 2(e k— g Idk:|
<t o g [ O S G
29 29

2 (8, k +

+ limsup sup ¢E. [/ eReZt/ )wl ©* (¢, k — )dt‘ dk]
em0+ €€Ty), 0 T
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< /OOO e~ ReZtlim sup ek, L2 <H1/12 t/e) H + H&l(t/E)HLQ(T)) dt

e—0t

Rt/e)|

< plo) (p(g) - /Ot e ReZttdt) < 1.

In this estimate, p(0)? is a bound for sup, sEngpH%Q. We see that the limit p(p) is 0 as p tends
to 0 by the dominated convergence theorem. If we denote #'! to be the limit of #.! then for

O0* € Z(R x T) we have

O*(f,k)%/l(Z,f, k)d¢dk — O*(§ kYW (Z,E, k)dfdk’
RxT RxT

O* (&, k)y#MZ, ¢, k)dedk — O* (& k)W (Z,€, k)dfdk‘
RxT RxT

O* (&, k)W (Z, &, k)dsdk — O* (&, k) W(Z,€, k)dﬁdk‘
RxT RxT

S (o).

With the assumption that ¢) vanishes on [T](o), we combine all mentioned 13 terms and get

(Z.6.k) = Tvg(k)lra(k) Wo(&, k) [og(R)[(re(k) = 1) [ Wo(¢/, k)d€
Y Z(Z + iw’(k))f Z +iw' (k) Z +iw' (k)¢ R Z + i (k)¢
L |ve(k In Wo 5’ —k' dé’ !vg(/f)lra(’f)IJT(/%)\2
tz + W’ ( v(Z +iaw'(k)E)
This result remain true without the above assumptlon since it does not depend on .
To get W in the main theorem, we take the inverse Laplace and Fourier transform of each term.

Let us make precise the technical computations:
Term with T

lim sup
e—0t

<

_'_

—z27rvg )73

Ak — 1271'15 *
/}Ro (€. k)L (Z(Zﬂw( ) e = // i O (z, k) dude
:/O*(x,k) (1[0,00)(56)—1[ug(k)t,oo)($))d9€Z/O*(x)l[o,vg(k)t}(x)dx- (81)
R R

Ballistic term:

A% -1 W()(f,k) _ —i2mvg (k)€ Ji2mz€ y* Y
/Ro (& k)L (Z—i—iw’(kz)§> (t)dg_/R/Re € G2RTE O (o0 BYT (€, k) dwdé

- /R O* (a, k) Wo(z — vy (k)t, k)da. (82)

Transmitted term:

Wo &, )O*(gjk)\vg(k)\ ,
/ / < Z +iw' (k)¢ (Z +iw’(k)§)> (t)dg'd€

/ / 20" (2 k) oy () / (e (e 2ma (¢! k)) (1)) de'dén

_ /R /0 0y () [0 (2, k) Wo (g (k) (E — ), K)o (@ — vy (K)s)dsda
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= [ 0" k) Wale = vy 8, )Ly iy o) (83)

Reflecting term:

1 Wol€, —R)O*(E k)lug (k) ,
/R/Rﬁ <<Z —iw'(k)€N(Z + iw’(kz)f)) et

= [ [ ermE0r @ mlug ] [ (e« (2O ¢ ) (0) deded
RJR R

t
:/R/O [vg(k)|O™(z, k)Wo(vg(k)(t — s), —k)d(x — ve(k)t)dsdx

_ /R O (2, k) Wo (g (k)t — 2, —k) 10 0, 19 () (84)

The new boundary control term:

Ak -1 1 _ 127 (z—vg (k)t)E M
[orene (e ) 0= [ [ o 0" (w, K)dd
- / O" (&, k)5 (x — vy (k)t)da.
R
We have proved that

lim (O, We(t)) , = O*(x, k)W (t, z, k)dkdx
€ RxT

for any t and any O € (R x T). The theorem follows.

4. LINEAR MEMORY-FEEDBACK CONTROL

4.1. Setting and Main Theorem. In this section, we add a convolution control term F' x
ag(t)do,n. To simplify the problem we actually add (F + vdg(dt)) * ao(t)do,n. Note that vdy(dt) *
ap(t) = vag cancels —vag in the original equation. Hence, we will consider the system of equa-
tions:

Bn(t) = Oén(t), (85)
day (t) = — (o * B(t))ndt + (F * ag(t)dt + V2UTdR(t))do r- (86)

We assume that F' € C*°((0,+00)) N L™((0,+00)),m € [1,00). Recall that we have and
the Fourier transform F' is a bounded and continuous function.

We assume that
s ((w(k)

This inequality allows us to keep the control over the energy of the wave in the domain [T](o)
defined in ([34]).
We redefine the three new rates and use them for our main theorem

ra (k) = = Re(F(w(k)/2m)) 'ff (<IZ)>‘|2’ (88)
PPy = 14 BET @ R)2m)0p (k) | |Fw(k)/2m)Plor (k)] (89)

[vg(K)] Alvg(K)[? ’
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) — [ 0)/2m) P00 () 90)
o, ()P

Theorem 3. Consider the system of equations and ( with the initial conditions stated in
sectwnsl andl Then, for any T >0 and G € L ([O Tl; 427) we have

/ G, W) dt = / [ G BYW At ) dadidt,
0 0 RxT

where

I/TTF(k:)
Re(F(w(k)/2m))
+ 7 (R)Wo( — vg(k)t, k) L0 u(kye) () + 77 (R)Wo(=2 + v (k)t, —k) 1[0, (k1) ().

W(t,z, k) = Wo(x — vg(k)t, k)10, (k)ge () —

10,0, (k)1 (2)

Remark 4. On the well-posedness of —, we recall in which the solution ¢ is uniquely
determined by for the full interval [0, 00) of time.

Remark 5. In view of addressing Question A, posed in the introduction, we observe that the
three rates (r 5 ,rf,rF) can now be controlled under the influence of the linear memory-feedback
control. An “inverse problem” question is: given a triple of functions (ry, 7, 7,) as target rates,
can we determine if (14,7, 7-) can be asymptotically reached following ——, i.e. can
we find F' that satisfies there exists a family Fn such that Fl is equal to F' in finite time and
rfN , rtF N ,rf N respectively converge almost everywhere to 74,7, 7. on T. If there exists such a
control function F', we say that a triple of functions (74, 7¢,7,) is “asymptotically reachable”. We
state some assumptions on the target rates to make a sufficient condition for “asymptotically
reachable”:

(H1) The three functions are even on T;
) The three functions have their sum equal to 1;
) m¢(k),rr(k) > 0 and there exists ¢; > 0 such that r4(k) > ¢; for k € (0,1/2);
) The three functions are continuous on (0,1/2);
H5) /ri(k) + \/rr(k) > 1 for all k € T;
H6) fooo Re(F(u)) cos(ut)du = [ Im(F (u)) sin(ut)du for all t > 0.
F' is defined by
. RE( ) = |vg(k)|(re(k) — rr(k) —1) for k € (0,1/2);
o IM(k) = \/4]1)9 )[?rr(k) — RE(k)? for k € (0,1/2);
e 'T'(k) = RE(k )—i—ZIM(k) for k € (0,1/2);
e TH(k) =14 FT(k)limz_,0 L(C,)(Z —iw(k)) for k € (0,1/2);
o F(u) = FT(p+(u))/TH(p4+(u)) for u € (Wmin, Wmax)-

)
Corollary 6. If a triple (rq,r¢, ) satisfies|(H1) - |(H6) then it is asymptotically reachable.

4.2. Preliminary computations. Recalling , we write , as:
dp(t, k) = —iw(k)O(t, k)dt + iF * ap(t)dt + ivV20TdR(t). (91)
Solving , we obtain

t
Ot k) = e (k) 4+ ie” R« F x ag(t) + ivV20T / e Wk =) qR(s). (92)
0
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Hence,
ap(t) =V (t) + Cp * Fxap(t) + V2T C,, * dR(t), (93)
where we have used the notation of . To solve , we define, formally,
~ 1
Or(Z) = for Z € Cy.

1= L(F)(2)L(C)(2)

We are going to see that Oy is well defined and is bounded, similarly to O. First, we infer from

that

. ~ . _ 1
P Or U =) = ) e i £(C0) (7 — (k) o

Note that, limz .o £(C,)(Z —iw(k)) = L (% - 1) if (k) # 0. By (87), the limit limy_,0 Op(Z —

iw(k)) exists and is denoted by 0 (k). When 6(k) = 0, we have |£(C,,)(Z —iw(k))| — oo, and we
also get 0 (k) = 0. Since (k) is defined almost everywhere so is O (k).
The boundedness of O p(Z —iw(k)) comes from (87)) and it is satisfied almost everywhere. This

can be proved as follows. By ., we get ‘1 M ( Lo )’ > C > 0, for a constant

v 0(k)
C. Indeed, the function Re(F) is bounded continuous and Re F(w(k)/(2m))) < 0 so there exist

: (F(w(k
C’,C" > 0 such that C" > |F(w(k)/(27))| > | Re(F(w(k)/(27)))| > C”. Thus
F(w(k)/(2m)) (1 |F(w(k )/(27T))|
e (5 >‘1>‘

v (k v

() G-

1" "\ 2
cneny (@),
v \F\Q
Using , let us prove that the sum of the three rates is 1
. F*(w(k) /27
P (k) 2m)05 (k) = wilbpn
1 — F*(w(k)/27m) lime_y £(Cy,) (e — iw(k))

1
— | (w(k)/2m) : - —__
F(w(k)/2m) — |F(w(k)/2m)|? lime—0 L(C) (e — iw(k))
From [9], Section 10], we have Re(lim._,o £L(C,,)(e —iw(k))) = @y Thus, using Re z = 2| Re 1
we get

1
> —
v

Ro( 7 (wl(k)/22)01 (k) =  Re(F((8)/20) = (k) 2P ) 106 ()P
As a consequence,
rE (k) +rf (k) +rl (k) = 1. (95)
We write in the form
Dt k) = e B (k) +i0F x F« W(t) + ivV2oTOF « R(t), (96)

where

t .
OF (t, k) = / R (I=9Q 1 (ds).
0
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We will also consider

t . .
OF(t.) = [ 000 p(ds) = =IOL ),
0

£l )2 k) = 27 _T)

Using [T](o) defined by (34), we define two waves similar to (32):
V10, k) = (k) xo (k).

dipt(t, k) = {—iw(k (t,k) + o // Yt — s, k') — M (t — s,k’)]dsdk’}dt
+iV2uTdR(t),

(0, k) = (k) (1 = x,(k)),
dip?(t, k) = {—z’w(k (t, k) + o // [Pt — s, k') — ¢2*(t—s,k’)]dsdk’}dt.

4.3. Thermal term. For this term we consider the initial wave to be 0 due to the independence
between the initial wave and the thermostat. In that case, we compute

We(Z,E k) = ”ZT/ ~(ZHDk)s @Y (e7Ls, k4 ££/2) (O9)" (e 718, k — e€/2) ds
0
IZiE /* O (o€ — iw(h + 6/2)Op ({7 + iD:(h,) =€) — il = £€/2))
 Z 2mi Lo o, ((Z +iDc(k, &) — ()
Taking the limit € — 0 and using , we obtain
vT0p (k) VT |vg(k)|vg (k)

2(Z +i(k)E)  Re(F(w(k)/(2m)Z(Z + iw! (k)€)

4.4. Scattering terms. For scattering terms, we consider T' = 0 like in the previous part. The
derivative of the Wigner transform is given by

QW (t,€, k) = —iDe(k, )We(t, &, k)
+ B |i(F > 0)SO(0))E* (¢, k — e€/2) — i(F « ©)E ()& (¢, k + eg/z)} .

4.4.1. The ballistic term. The ballistic term is unchanged with respect to (65). The term only
involves the initial condition of the wave, neither the control nor the thermostat affect this term.

4.4.2. The first scattering term. The first scattering term is given by

I(t, k, F) = ie™®)? / t<F*x1:(t—s)z/3 *(k)) . OF (ds)

t—s
=5 [ ] wd e as)
We have
SHZ,k, F) = L) (Z,k, F)

fo%) t—s
22/0 EZt/ / / )@ (k)ip(h)), e @BV eI 4 dhe (ds) dt
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3 2% 2 et pi(w(k)—w w s+s
:2/T<¢ (R)D(h),e / / / 21 iR+ 440 () ds' dhn
+s’

€ (W= (k)d(h) u / / o4 (s+s") giw(k)(s+s") !
€ F S8 w S8
/)\8 o) — (s e O(ds)ds'dh
)

e <*<k<>> (g i
_ /MH(W() L L) — (k)Or (e — iw(k)dh.

Changing the variables from k to k' — &&’/2 and h to k' + €£’/2, we call the new domain
T. C Ty x T. We get

O*(&,k +¢€/2)SH(Z, k, F)
R e
/ W(& K)L(F)(eZ — iw(K —££/2))0p(eZ — iw(K — £ /2))O* (£, K +e£/2 — e€'/2)

. (eZ + i(w(k' + €€’ /2) — w(k' — €€’ /2)))(Z + iDZ (K — £€'/2,€))

= Wo (&, k) F* (w(k')/(2m))08 (k) O* (€, )

R2XT (Z + i (K)E)(Z + iw' (K')E)

Similarly, we have

O* (&, k —¢/2)S(Z,k, F) dedk =9 Wi (&K F(w(K)/(2m))05(k)O* (€, )

RXT Z +iDZ (k,€) R2xT (Z +iw' (k")) (Z — iw' (K)E)

Taking the sum and using the fact that W (n,k) = Wo(—n,k), we get the limit of the first
scattering term

de' dedk

de' dedk.

de'dedk.

ey Wo(fl,k‘)O*(f,ki) /
/RQXTRe (F*(w(k)/2m)or (k) T )7 + e ek

4.4.3. The second scattering term. The second scattering term is given by

(t,k, F) / / OF (t — s, k) (F x U(s)Fx U(t — §')),.dsO(ds).

We compute
Re SI1(Z,k, F) = Re L(II®))(Z, k, F)

ey /01t e—eZt < (/Ot cos(w(k)s) (Or * F \Il)(s)ds) (/Ot cos(w(k)s) (Or * F x \Il)(s)ds> >u dt

€

(97)

+e27 /Ot e <4t < (/Ot sin(w(k)s)(Op x F x \I/)(s)ds) (/Ot sin(w(k)s)(gr * F % \I!)(s)ds) >M dt.

€

(98)

Let us handle the term . The term is handled similarly.
We write

£Z [T e / / cos(w(k)s) cos(w(k)s) /O ) /0 .

x / o) (s—u) giw(h)(s' ') <q/)( )q;*(h’)> dh' dhOp x F(du)OF x F(du)ds'dsdt
T2 He
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[ s [ [ [ [

X / / e~ wh)(s=u) i)' ~u)Q by F(du'\O p * F(du)ds'dsdt'dtdh/ dhda

/ / 1/3 Y0¥ (h )> A(h,k, A\, F)A* (K k,\, F)dh dhda, (99)
T2 pe
in which

A(h,k,Z,F):/ cos(w(k)s)/ e_iw(h)(s_“)/ e(TEZR2HN GO« F(du)ds
0 0 s

1 L(F)(eZ)2 —ia —iw(k)Op(cZ/2 — ia — iw(k)) (100)
2(eZ/2 —ia) eZ/2 —ia—i(w(k) —w(h))

1 L(F)(eZ)2 —ia+ iw(k))Op(eZ/2 — ia + iw(k))

T oez2—ia) 2772 —ia + i(w(k) + w(h) , - (101)
and A* is defined similarly, that is
wr) B 1 L(F)(eZ)2 +ia + iw(k))Op(cZ/2 + ia + iw(k))

A"k 2, F) = 2(eZ/2 4+ ia) eZ/2+ia+ i(w(k) — w(h)) (102)

1 L(F)(eZ)2 +ia — iw(k))Op(eZ/2 + ia — iw(k))
2 Z/2 1 ia) cZ/2 +ia— i(w(k) + w(h)) - (103)

We will see that among the four terms in the expansion of (99), using (100), (101)), (102) and
(103]) only the term generated by (100) and (102)) contributes to the high frequency limit. To
derive the limit, we need some lemmas. Those lemmas are a generalized version of those in [9].

Lemma 7. The following limit holds true

1 1 N Tkl

i [ e fo (P05 0)

| L) E2/2 — ica — iw(k)Or(2/2 — ica — iw(k)) |
(w(k

He

Z/2 —ia —ig~! ) —w(h))

L(F)(eZ/2 +ica — iw(k))Op(eZ/2 + ica — iw(k))
Z/2 4 ia —ie~Hw(k) + w(h'))

X dh'dhdkda = 0

To use this lemma, we change a into £a in . It implies that the term

162775 /R (2/2)12 T /Tg € <¢<hw*(h,)>,ﬁe

" L(F)(eZ)2 —ica —iw(k))Op(eZ/2 — ica — iw(k))
Z/2 —ia —ieY(w(k) — w(h))
L(F)(eZ)2 +ica + iw(k))Op(eZ/2 + ica + iw(k))
Z/2+ia+ie Y (w(k) — w(W))
is the only term contributing in the limit. By changing the variables from h into k' + &£’/2 and
B’ into k' — €&’ /2, we need to consider

Z/ 1 / W.(¢, k)
167 RxTy. (Z/2)% 4+ a? Tx12 Z/2 —ia — ie N w(k) —w(k' +e&'/2))

dh'/dhda




28 A. HANNANI, M. N. PHUNG, M.-B. TRAN, AND E. TRELAT
~ 2
L(F)(eZ/2 — ica — iw(k))Op(cZ/2 — ica — iw(k))( O%(6.k + 2€/2)

Z/2+ia+ iE_l(w(k) —w(k' —ef'/2)) X 7+ ZD?(k,f) dk'd§ dkd€da.

X

In the integral, we have the set 72 = {(f’,k’) e < g6z, K] < 1—%|§’|} C Tye x T, o is in (34).

The set is defined this way due to the assumption (9). If |¢'| > 585 then [W.| < &%/2; it makes
the whole term tend to 0.

We define
_Z 1 We(¢, £k +€"/2)
L0 E) =0 |, T /T Z2—ia—ie (k) —wlk £ (€ + €/2)
~ 2
(L(F)(szm —iea— iw(k)Op(eZ/2 —ica—iwk)|  On(e ktes2)
Z/2+ia+ie~(w(k) —w(k T e(¢ —€7)/2)) Z +iDZ (k,€) e dhdida.

In this integral,
1—el¢|

T, = {(k,f/,f”) RETIE) < S b 2€"/2) < signk = sign(k + (& + 5")/2)} .

The set is defined thanks to the change of variables k" into +k 4 e¢£” /2.
We also define the following integrals:

) _Z 1 We(¢, 4k + " /2)
L) =5 | TRy, T a0 O
|£(P)(e2/2 ~ iz — iw(k)Or(Ze/2 — iza — k)| Gre k1 2e/2)
Z)2 + ia + ieY(w(k) —w(k Fe€ — €)/2)) . Z+iDZ(k,£)

de” d¢' dkdéda;

_Z 1 We (¢, £k +££"/2)
228 F) = 55 /M% 227 + a2 /T Z[2—ia L i ()€ + €/
|C(F)e2/2 — ia — iw(k)Or(Z/2 — ica k)| (e k1 2/)

72 +ia £ i (k) (& — €")/2 X 1D (h©) dg"dg’ dkd¢ da;

X

72,6, F) =

z / 1 / We(€, £k + £ /2)
327 JrxT,). (Z/2)? 4+ a? T3, Z/2 —ia +iw! (k) (& +&")/2

Fem)/enr®] o)

IR Tt @ €2 Z+iDi (ke o

Z 1 / Wo(€', k)

(4) - = —_
L) = o [ PR T @ Jrse 22— 0 ()€ + )2

Pem/eoe®| e
7R tiatid B -2 " Z i (k)E

de" d¢' dkdeda.
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Lemma 8. We have the following approximations:

lim ‘Ii(Z,s, F)-10(2,e, F)‘ —0;

e—0
lim ‘Iil)(Z,g,F) . Ij(f)(z,g,F)‘ ~0:
e—0

m |(7(2.e,F) ~ I (2,2, F)| = 0;

Ii

e—0
lim ‘If’)(Z,e, F) -7z, F)( —0.
e—0

As a consequence,

limZ. (Z,¢, F) = Y(Z, F).

e—0
Lemma 9.

O* (&, k+eg/2)  O*(&k —et/2)
Z +iD (k&) Z+iDz (k,£)

lim Im SH(Z, k, F) (
e—0 RxT

>%M:&

We apply to 11(4) the following identity

dz 271
= hen 1 0>1 ).
/R<z—z+><z—z_> 5 vhen Im(4) > 0> Im(s.)

The variable z is a F w'(k)€” in our case, d€” is integrated out first. Then, we also integrate with
respect to a:

VA

W\ gy~ Z L [E(w(k)/2m) |0 (k)" Wo(€, £k) ~ OEk)
O = [ e s 7% w8 7w e e
[ IR@B/@n)PorRPWE ) OER) .,
o N0 ) PRI

By repeating these steps, the term will produce the same result as . That concludes
O* (k—e€/2)

Z1iD- (ko) 5° the result get

the computation for S!Z(Z, k, F). We also have the same result for

doubled. The second scattering term limit is

/ E@E)/Cr)POrRPWER) - OGHR) o
TxR?

4og(k)|(Z + iw(k)E) 7 +iw' (k)€
o)/ o) P PE. k) OEk)
o A ) Z s e e

4.5. Proof of Theorem 3. The technical detail for this part is similar to that of the impulsive
control. We see that , , , and do not depend on the rates. Thus, we do not
repeat the same arguments to derive the theorem although the rates are different.
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4.6. Proof of Corollary 5. In this section, we show how to design controls that asymptotically
steer the system to some desired rates (14,7, 7,) in the kinetic limit. First, we state some basic
properties that the rates must satisfy and the implications in finding a control.

1) By (88), (89), and (90), the target rates must be defined when w'(k) # 0. Hence the
domain of definition is (—1/2,0) U (0,1/2). Since w(-) is an even function, the three rates
are even functions. We reduce the domain of definition to the positive branch (0,1/2).

(2) By , the sum of the three rates is 1 and hence we only need to know two among the
three rates (rq,r, 7). We focus on r; and 7.

(3) All the rates are positive functions. As a result, we have r{ + " < 1. To simplify we
assume that there exists ¢; > 0 such that

re(k) +rp(k) <1—¢ VEeT.
(4) For k € (0,1/2), from [9, Section 10], we have

im i) = T ([ dn L @(k) = @min | Cuolw(k))
Py A CE =) = ) </0 )+ ) T =) TR )

where C,, o is a continuous, bounded and real-valued function. Combining this with the

continuity of F, it follows that the rates are continuous on (0,1/2).
(5) By the triangular inequality, we have

B (w(k)/(2m)) 01 (k)
V) + ) SO

F*(w(k)/(2m))0F (k)
2Jvg (k)]

> 1. (104)

To sum up, we con51der two continuous functions r¢, 7 on

an

It

0,1/2) such that (k) +r.(k) <1—¢;
d )+ /rr(k) > 1. These are assumptlons m (H5)
We deﬁne

RE(k) = |vg(k)| (r¢(k) — rr(k) — 1) VEk € (0,1/2).

follows from and that RE(k) = Re(F(w(k)/(2n))0r(k)).
We also define

K) = \/Alug () 2r.(k) — RE(K)? VK € (0,1/2),

which is well-defined because, using 1 ,

by

4lvg(k)[*r.(k) — RE(k)? yvg 2(re(k) + ) — 1) (/re(k 1)
\/TJr \/TH \/TJr \/TH)

Finally, we define a complex-valued function FT'(k), which corresponds to F(w(k)/(2r))0r(k)

FT(k) = RE(K) +iIM(k) Yk e (0,1/2).
By (94), the function corresponding to 6z (k) is defined by
TH(k) =1+ FT(k) lim £(Cy)(Z = ico(k)).
%

We claim that |[TH (k)| > ¢1/4 for any k € (0,1/2). To prove this claim, we consider two cases:
either Im(limy_,0 £(C,) (A —iw(k))) > 0 or Im(limy_,0 £(C,) (X —iw(k))) < 0. In the first case,

Re(TH(k)) = 1 + RE(k) Re(lim £(C)(Z — iw(k))) + IM (k) Im(lim £(C,,)(Z — iw(k)))
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>1-

L+r.(k) —re(k)  1+ri(k) —re(k)
2 B 2 -
In the second case, we have either

(M (k) Tin(Jimm £(C.)(Z — iw(k)))] <

1
& Re(TH(k)) > Tt(’fi —relk) | rt(2k) La
1M (k) Im(lim £(C.))(Z — iw(k)))| > Lt ’"t(ki —re(k).
and then

Im(TH (k) = RE(k) Im(lim £(C,)(Z — iw(k))) + IM (k) Re(lim £(C.))(Z — iw(k)))

\/7
> V70— r L 7] — ()2 2 YOt 2B £ 2n®)
The claim is proved. In particular, TH (k) # 0 for every k € (0,1/2), so we can define F(u) =
FT (o4 (w))/TH(py(u)),u € (Wnins Wmax), which corresponds to F*(w(k)/2).
The next step consists of computing the inverse Fourier of F. Recall that the control function
F' is real-valued and is only defined on [0, +00) to facilitate the Laplace transform. It is more
convenient to use the half-line Fourier transform defined by

= /Ooo f(t) cos(st)dt
= /OO f(t) sin(st)dt
0

for all f € LY([0,+00)) N L2([0,+0c0)). We obtain f¢, f¢ € L%([0,+o0)). It is also possible to
define the inverses in the case the transformed functions are also in L' by

_ % /0 - /0 " F(t) cos(st)dt cos(sz)ds,
-2 /0 ” /0 " F(t) sin(st)dt sin(sz)ds.

By , if there is a control F' € L', we have
lim L(F)(Z + iw) = F¢(w) — iF*(w).
Z—0

We see that Re(F) and Im(F) correspond to F¢ and F*, respectively. Thus, the existence of F
depends on whether we have

/OO Re(F(u)) cos(ut)du = /OO Im(F(u)) sin(ut)du,
0 0

for all £ > 0. This happens because if F' exists then both sides equal §F(t). Therefore, on the
target rates, we expect them to satisfy assumptions [(H1)|- [(H6)]
For a triple of rates that satisfy assumptions [(H1)|- [(H6)| let us design an explicit control

function F' by

F(t) :2/0 Re(F (1)) cos(ut)du.

s
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It is easy to see that F is continuous. Therefore,

d" 2 [ — d”
g (t) /0 Re(F(u)) m cos(ut)du

are continuous for all n. This means that F' must belong to C°°(0,+00). We also note that
IF| < 8lvg (K)|rr (k)

Cc1
F € L*0,+00).
We define a family of function Fiy € C° € C* N L™, m > 1. For each N € N, Fy is the
product of F' with a smooth function with values in [0, 1] such that it is equal to 1 on [0, N]
and to 0 on [N + 1,+00). It is clear that Fy converges to F in L% Thus, F§ , I’} converge to
F¢ =Re(F),F* =Im(F) in L?, respectively. Take a subsequence if necessary, we obtain a family
Fy such that F7%(-/27) converges almost everywhere to F. We have

i Fe(k)
FT) = R ) im0 £(C)(Z — (k)

and F is supported on [Wmin, Wmax], in particular F € L2?(0,+00), and thus also

and

) i Ptk /2m)
Fy(w(k)/2m)0r (k) = 1 — Fi(w(k)/2m) limz o L(Cw)(Z — iw(k))

Hence, 5 (w(k)/2m)0r (k) converges almost everywhere to FT(k). We also have
(k) = RE(k)* 4+ IM (k)* _ ]FT(I{:)F’
Afvg ()2 Alvg(K)[?
RE(k) Re(FT(k)) n |FT(I€)]2
|vg ()| |vg ()| Afvg(k)[?
By %ﬂd , we get that rf N rEN converge almost everywhere to ¢, 7, on (0,1/2). By
H?2

. F
and the result is extended to ri’™, r N, rEN converge almost everywhere to 74,7, 7, on T.

ri(k) =1+ +r.(k)=1+
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