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ABSTRACT. By analyzing functional, geometrical and numerical integration aspects, hybrid fric-
tional contact particles-in-elements are derived from the continuous hybrid formulation of 3D
large transformation frictional contact problems given in [BEN 99] [BEN 00a]. The suggested
approach is illustrated by some academic and industrial contact tests.

RÉSUMÉ. Dans ce travail, on propose des éléments hybrides pour les problèmes de contact entre
solides 2D et 3D en grandes transformations. Permettant, entre autres, d’éviter les oscilla-
tions parasites des pressions de contact, ces éléments sont dérivés à partir de discrétisations
“élémentéro-particulaires” d’une formulation hybride continue [BEN 99], [BEN 00a]. Des ré-
sultats numériques, pour des cas académiques et d’autres industriels éclairent notre démarche.

KEYWORDS: contact, friction, hybrid, contact elements.

MOTS-CLÉS : contact, frottement, hybride, éléments contact.

1



1. Introduction

During the last years, significant improvements have been realized for the treat-

ment of frictional contact between two deformable bodies undergoing large transfor-

mations. Let us mention in particular the attempt for deriving discrete F.E.M. for-

mulations from continuous ones in a Lagrangian framework ([LAU 93], [KLA 95],

[PIE 99], [BEN 99], [BEN 00a]). However, some theoretical and numerical aspects

are still to be investigated more deeply. In particular, the fundamental contact element
concept is a question which has not yet been completely clarified. This paper aims to

adress this issue.

Beginning with a continuous hybrid formulation developed in [BEN 99, BEN 00a],

we try in this paper to enlighten the notion of contact element by carrying out some

numerical approximations and by using some mathematical elements. An outline of

the paper is the following : the continuous mixed formulation is recalled in section 2.

To derive discrete mixed contact problems from the continuous one, the target appli-

cation, the functional spaces choice (respecting the Inf-Sup condition), the numerical

integration scheme (leading to finite particules-in-elements methods [BEN 00b]) and

the treatment of surface irregularities by an interpolation technique are discussed in

the section 3. The numerical aspects discussed in section 3 are illustrated by numerical

tests given in the final section.

2. Mixed continuous formulation

Let ��, for � � �� �, be two deformable bodies occupying�
�

in their initial config-

urations and�
�

� in their current ones ; �� and ��
� being two domains of �� . We assume

that these two bodies can come into contact at any time � during their movement. Each

boundary ��� and ���
� is assumed to be as regular as necessary. We denote by � �

 and

��
 the potential contact surfaces of � � in their initial and current configurations, re-

spectively (whith no explicit reference to time to simplify the notations).

By using Signorini and Coulomb laws of unilateral contact and friction, the Virtual
Work and the generalized Action and Reaction Principles, by neglecting inertia terms

and using an upward Euler scheme to approximate tangent velocities, it is established

in [BEN 99], [BEN 00a] that the quasi-static frictional contact problem consists in

finding, at a fictive time ��, a couple of displacement fields � � �������, a normal

pressure field � and a vector-valued semi-lagrangian friction multiplier � satisfying

the following system : (where the reference to the fictive time �� has been omitted to

simplify the notations)
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where we have used the following notations :

����� � ��� is the trace of the second-order tensor � [4]

�� the first Piola-Kirchhoff stress tensor given by a ad hoc behaviour law

����
�� the gradient with respect to reference coordinates � of� �

� � �� ���� �� is the current position�� being the initial one [5]

�� � �� ��	� ��� � 
� is the augmented lagrangian contact multiplier [6]

	� � ���℄℄� is the normal gap [7]

�
 � �� �
	
 ��
 � 
� is the augmented semi-lagrangian friction multiplier

	
 � ���℄℄
 is the increment of the relative tangential displacement [8]


 the negative half-axis indicator function

���	�	 the projection on the unit ball

����� the virtual work of external loads (which may depend on � �

�� the space of admissible displacement fields

� the space of virtual contact semi-multiplier fields

� the space of virtual friction multiplier fields

Moreover for a couple of vector-valued fields� � �� ����� defined on �� � �� , the

quantities ���℄℄� and ���℄℄
 refer to the normal and tangential “jump”-like functions.

More precisely, for� � �������,

���℄℄� � �������������
���

����
���
���

��� � ����������������
����

���℄℄
 � ��	� 
���
���

��	 
���
���

���℄
������������
���

���� [9]
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where 
 refers to the inward unit normal to ��
 and where ��

� is the reference target

application, defined from � � �� into �� at time �� with an appropriate contact-

pairing procedure (cf. subsection ��� for details).

Equations [1], [2] and [3] stand for the Virtual Work Principle taking into account

the contact friction efforts and using the Action and Reaction Principle, the weak

Signorini contact laws formulation and the weak Coulomb friction laws formulation,

respectively. The last term of equation [3] ensures that no friction can take place if

there is no contact. This is a slight modification of the formulation given in [BEN 99]-

[BEN 00a] where it was implicitly assumed that the friction density of forces is equal

to zero where the contact is not effective. However, this modification seems for us of

nice practical interest, at least as far as frictional pressures and not forces are involved

in the problem.

To solve numerically this mixed highly nonlinear problem, two tools are needed.

First we have to define a discretization method. Secondly a solution strategy has to be

specified. The first point is detailed in the sequel. For the second we refer to [BEN 99]

and [BEN 00a].

3. Discretizations

Formally, for the discretization by the finite element method of the problem defined

by [1]-[3], one has to define finite element spaces denoted by (����), (���) and

(���) for the approximation of the three fields �, � and �. The discrete problem

then reads:

Find ���� � ��� � ���� � ���� ���� ���� �

� ��
���

�
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��
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��
�����
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where

����� � ��� � ������� ℄℄� [13]

����
 � ��� � �
 ����� ℄℄
 [14]

and where the domains �� and the interface � are replaced by (generally) approxi-

mate ones denoted by ��
��

and �� , respectively. This is due to the triangulation of

the domains.

Many questions and technical points have now to be discussed, namely:

�� the construction of the target application,

��� the choice of functional spaces,

���� the numerical integration scheme,

�	� the treatise of the contact surface irregularity introduced by the triangulation.

A “contact element” may be a reasonable answer to these issues !

3.1. The target application

Classically the following procedure is used: each point � of � is paired with the

nearest one located on �� and denoted by �. A target application � � can then be

defined as:

����� � � � ������
����

�

�
� �� � �� [15]

where � � � is the euclidian norm. This application can be pulled back to the initial

configuration and then a reference (evolutive) target application� � can also be defined

easily. But notice that the reference target application can be defined by introducing

an admissible physical seek direction  (see figure 1, [BEN 95b] and [BEN 00a] for

details). The influence of such a procedure on numerical results is clarified here by a

test reported in subsection 4.1.

x

x

d

p

p
A

p
A

t

Γ
C

Γ2
C

γ
C

γ2
C

u(p)

u(p)

Figure 1. Target application with a seek direction 

REMARK. — In some contact formulations derived directly in the discrete level the

“non local” caracter of contact (expressed by 15) is approximated : the target point
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is looked for in a pre-defined collection of target “master” elements associated to the

“slave” point. This procedure (with the definition of discrete contact forces) has sug-

gested the (probably incomplete) notion of “contact element” as shown in figure 2.

Slave point

Contact element

Master surface

�������
�������
�������
�������
�������
�������

Figure 2. A representation of contact elements

3.2. Compatible functional spaces

As the formulation is mixed, its numerical approximation requires some care (cf.

e.g. [BRE 78]). In order to avoid some pathological numerical behaviours, the ap-

proximation spaces have to be related by an abstract condition, called the Inf-sup
condition. Very few results concerning this condition, even in the small perturba-

tion contact framework, are available in the literature. Let us recall the one given by

Haslinger, Hlavaček and Nečas [HAS 96] (which is quite similar to the historical one

formulated by Babuška [BAB 73] for a non homogeneous Dirichlet Poisson problem

treated by the lagrangian approach). This condition is stated as follows [HAS 96]

[BAB 73]. Let � and � finite element spaces be associated with regular meshes

of the interior of the domains and the contact boundary. Let �  and �� denote the

respective mesh parameters. Then the Inf-Sup condition is satisfied if:

 � 
 ��� � � [16]

Unfortunately this condition still leaves practical difficulties since the positive constant

 depends on the domains �� in a complex manner and the only way to define it is still

a numerical one which is not quite satisfactory. In a recent work of Bathe and Brezzi

other choices are discussed: by considering the case of plane interfaces, it is shown for

a model problem that a uniform Inf-Sup condition is satisfied for continuous piecewise

linear displacement fields and Lagrange contact multipliers without any restrictive

condition of the type [16]. However the proof does not seem to be extendible to the

case where the contact interface is not plane. We shall however keep in mind this

theoretical result especially when dealing with the numerical integration of contact

terms in the following section.

3.3. Contact integration scheme

Even when the discrete fields are elementwise polynomial, the contact terms of the

discrete problem [10]-[14] involve the integration of functions which are not elemen-
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twise polynomial. This is mainly due to:

�� the incompatibility of approximation spaces (see figure 2),

��� the heterogeneous character of contact: within an element belonging to the contact

interface : one can find quite different status, namely contacting and noncontacting

points, the first being either sticking or sliding (see figure 3). These status are math-

ematically expressed by the irregular function 
 and the projection on the unit ball

which is also irregular.

Keeping all this in mind, the question is now how to evaluate contact terms ? For

this purpose, let us consider the following representative contact coupling term (see

equation [1])

� �� �

�
��


���������
�	�
��
���

�
�

�	�
��
���

�
�
	� [17]

where � �	�
��

and�
�	�
��

stand for basis functions in ��� and��
��

, respectively.

Let us assume that the mesh of � is the trace of the mesh of�� on � and that contin-

uous piecewise linear finite elements are used for the approximation of the three fields.

Clearly, the integral � �� cannot be evaluated exactly and one can only choose, in some

sense, the points on which the impenetrability is enforced. The choice of the nodes

located on the boundary �� allows the recovering of the well-known node-on-facets

strategy. But at this stage, one can also use either classical Gauss or Gauss-Lobato

or Simpson integration schemes. Whatever the integration scheme used, it leads to

approximate contact terms and the theoretical question of Inf-sup condition has to be

reformulated, at this level. We refer here to the work of Oden and Kikuchi [KIK 88]

for a Simpson integration scheme in a particular situation. Here an attempt is made to

measure the influence of the integration scheme. It is believed that if the integration

scheme is developed with sufficient precision, the theoretical compatibility results

recalled in the previous sub-section will be recovered (for plane contact interfaces

when equal-order interpolation spaces are used). We suggest then to evaluate the con-

tact terms by using sub-elements Simpson integration schemes, rather than high-order

Gauss ones. By using several sub-elements, we try to evaluate accurately the irregular

contact terms in order to recover the theoretical Inf-Sup condition mentioned in the

previous subsection (at least when this condition is satisfied). The influence of our

finite-elements/particules high level integration strategy on numerical results is shown

in subsection (5.2).

REMARK. — The method we describe above is costly. The reader is referred to

[BEN 01] for another more economic approach which is also ¨quasi-symmetric¨.

Now, without going into details, let us also stress the fact that the element level is

not sufficient for the numerical evaluation of � ��
 . Rather one has to carry out loops

based on both elements �� � �� and sampling contact points �������	��� belonging

to �� (defined by the numerical scheme). For each point �� of ��, one has to find
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Figure 3. Incompatibility- Element heterogeneity of contact

out the target element �� (belonging to the trace of the mesh of �� on ��) and the

target point ��
� � ��, by solving local nonlinear problems (this is the price to pay for

large transformations contact problems and for flexibility needs). Once this is done,

element/particle coupling contact terms can be evaluated and assembled directly in the

global contact coupling term in a rather classical manner. Hence, particle contributions

are substituted for element ones. This is the reason for which this discrete method was

called finite element/particle method [BEN 00b].

3.4. Normal field regularization

The approximation of contact problems by means of the finite element method in-

troduces generally polygonal (2D) or polyhedral (3D) approximation of the domains.

This leads to only piecewise regular normal fields. The discontinuity of the normal

field may create some pathologies such as numerical shocks [KRS 00]. In order to

get rid of these pathologies, classical regularization procedures were suggested in the

literature. These are based mainly in spline curves or surfaces [KRS 00]. The main

drawbacks of this regularization is �� the hight cost for industrial problems, ��� the per-

turbation of the contact surfaces (see figure 4) which has been analyzed in [BEN 95a]

Γc

Perturbed contact surface 

Irregular initial contact surface 

Figure 4. Spline regularization

An alternative regularization method is studied here. First by using a rather clas-

sical averaging technique taking into account the measure of the elements, the normal

field 
 can be made single-valued everywhere on � �
�

. Secondly, by using only the

values of the normals at the nodes of � �
�

, an interpolated continuous piecewise linear
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vector-valued normal field 
������ is defined on ��� (see figure 5). Notice here the

(continuous-based) weighting procedure used to create the regularized normal field.

The importance of this regularization method is shown by the numerical test (4.4).

γ
c

A

B

C

D

2

nInterp

nInterp

nInterp

n
A

n
B

n
C n

D

Figure 5. Normal-vector interpolation

4. Numerical results

The following numerical results aim to show the effectiveness of each of the pre-

viously discussed points.

4.1. Target applications

To measure the influence of the target application, the classical symmetric Hertz
problem is considered (see figure 6). This problem is solved under an axisymme-

try condition properties. The material proprieties of the two half-spheres are: � �
�
�


 �� and � � 
��. The meshes take into account the symmetry of the prob-

lem. Each one has 205 nodes with 15 linear triangular elements and 162 isoparametric

bilinear quadrilateral ones.

We have tested two “target” applications one based on the “proximity” notion and

the other based on the �� � seek direction, respecting precisely the physical symmetry

of the problem. Due to the symmetry of the problem (same geometry, same meshes,

symmetrical prescribed displacement on each half-sphere), the vertical displacement

’DY’ of the point � has to be equal to zero and the friction load has to be equal

to zero. By the proximity pairing procedure we find a non null vertical displacement

’DY’, while by taking �� � as a seek direction the correct result is retrieved. Moreover,

by activating friction phenomena, we have found that the friction forces are not equal

to zero when the “proximity” method is used. The fact that these friction loads should

be equal to zero (as expected physically) is also retrieved by taking the physical seek

direction �� �.
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Figure 6. Hertz problem: Deformed meshes

Method Displacement ’DY’ of A

Proximity approach -5.05E-04

�� � seek direction 3.88375E-16

Table 1. Influence of the pairing method

4.2. Numerical integration test

To illustrate the problem of numerical integration, we have chosen a frictionless

contact between two blocs with nonmatching contact interfaces (the benchmark of

Taylor and Papadopoulos). A vertical displacement � � is imposed to the upper-bloc

on its upper-edge, while the other is clamped on its lower edge as shown in figure 7.

For this problem we have used !�Simpson schemes.

������������

U0

Figure 7. Two block problem - Nonmatching contact interfaces

By !�Simpson scheme for the evaluation of the integral of a function over the

reference 1-D element �
� �℄, we mean an integration method in which the classical ref-

erence element �
� �℄ is divided into �� equal sub-elements and the use of the Simpson
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integration scheme on each sub-element.Three integration schemes are tested (! � 
,

! � � and ! � �). The integration points coordinates and the weights are given in

the following table.

      0−Simpson integration scheme
 Integration Point     Abscissae     Weight 
      1 0.0 1/6 
      2 0.5 2/3 
      3 1.0 1/6 
      1−Simpson integration scheme

 Integration Point    Abscissae        Weight
       1 0.0 1/12 
       2 0.25 1/3 
       3 0.5 1/6 
       4 0.75 1/3 
       5 1.0 1/12 

      2−Simpson integration scheme

Integration Point   Abscissae        Weight 
       1 0.0 1/24 
       2 0.125 1/6 
       3 0.25 1/12 
       4 0.375 1/6 
       5 0.5 1/12 
       6 0.625 1/6 
       7 0.75 1/12 
       8 0.875 1/6 
       9 1.0 1/24 

Figure 8. Sub-element technique using!�Simpson integration scheme

The normal contact multiplier profiles are integration scheme dependent as illus-

trated in figure 9.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
1.14

1.16

1.18

1.2

1.22

1.24

1.26
x 10

5

Simpson schema level 2
Simpson schema level 1
Simpson

Figure 9. Normal contact multiplier � on contact interface

The spurious oscillation amplitude decreases by increasing the number of integra-

tion points. It is noted that with increasing integration points, we obtain more accurate

integral approximations. Notice also that an alternative approach consists in creating

a virtual interface compatible to both nonmatching interfaces by using the Arlequin
method. We have tested the effectiveness of this approach. The result is not reported

here but it shows that an “precise” integration scheme gives the correct contact solu-

tion. This exact integration can be achieved by introducing (rather heavy in the �"
case) geometrical tools to define a compatible integration mesh, namely a mesh for

which the behaviour of the different fields involved in the problem (10)-(14) are ele-

mentwise regular.
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ZOOM

Figure 10. Influence of the regularization of the normal field (a)– without regulariza-
tion (b)– with regularization

Let us here stress the fact that this procedure is an appropriate answer for mor-

tar like elements used to handle equality constraints [BER 94]. But this is still an

approximation for general unilateral contact interfaces.

4.3. Regularization of the normal field

To illustrate this geometrical aspect we have chosen a simple 2D example of non-

conforming contact interfaces. We consider an elastic cord of thickness �, wrapped

on an elastic cylinder whose inner and outer radius are � � and �, respectively. A pre-

scribed vertical displacement #� � � is applied to the two ends of the cord whereas the

interior surface of the cylinder is clamped. We have chosen an isotropic elastic consti-

tutive material law with � � ������ � 
� and � � 
���, following the data given by

[PAP 98]. In addition we have treated this example under large transformations and

under frictionless and plane strain hypotheses. A classical treatment (without regu-

larization of the normal vector) introduces an artificial dissymmetry (cf. figure 11-a).

With the use of the regularization the symmetry is recovered (cf. figure 11-b). An-

other expected benefit behaviour of our solution strategy, especially when friction is

involved.

4.4. Application to stretching problem

We treat here the benchmark test given by Wagoner et al [WAG 88]. It consists

in stretching an elestoplasic sheet with a hemispherical punch. (see figure 11): The

hardening law is the following :

�� � �����
�
 � ���
����� [18]

The Young modulus � and the Poisson ration � are equal to � � ��

��$!! � and

� � 
��. The friction coefficient is equal to � � 
��. In figure 12, we have plotted

the deformed structure. This test shows the effectiveness of our solution strategy even

when many other nonlinearities (elasto-plasticity, large deformations ) are involved in

the frictional contact mecanical problem.
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Figure 11. The Wagoner Benchmark

Figure 12. Deformed structures for two different positions of the punch

Other industrial applications are now being tested. The results will be given in a

forthcoming work.
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