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ABSTRACT. An X-FEM formulation is proposed for the case of large sliding frictional interfaces.  

A continuous  augmented  lagrangian  framework  is adopted  for contact and friction. We provide 
an algorithm for the selection of an appropriate discrete space for the lagrange multipliers, 
accounting for the transition between contact and free zones, and also between sliding and 

adherent zones. A 3D numerical test is realized with Code_Aster free software for the compres-
sion of a cylinder cut along a radial section and shows the ability of the model to capture such 

transitions.

RÉSUMÉ. Une formulation d’X-FEM est proposée pour le cas d’une interface frottante avec 
grands glissements. Une formulation continue avec lagrangien augmenté décrit le contact et le 
frottement. Nous détaillons un algorithme qui permet de sélectionner un bon espace des multi-
plicateurs de lagrange, en tenant compte de la transition entre le contact et le décollement, et 
de celle entre le glissement et l’adhérence. Un cas numérique 3D de compression  d’un cylindre
découpé radialement est réalisé avec le logiciel libre Code_Aster et montre l’aptitude de la 

méthode à capturer de telles transitions.

KEYWORDS: X-FEM, frictional contact, large sliding, 3D, LBB, augmented lagrangian.

MOTS-CLÉS : X-FEM, contact frottant, grands glissements, 3D, LBB, lagrangien augmenté.
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1. Introduction

Building 3D meshes for complex industrial structures is difficult, especially when
the mesh has to conform complex geometries of discontinuity surfaces. In this work
we are interested in the eXtended Finite Element Method (X-FEM) witch represents
a discontinuity thanks to an enrichment of the nodal degrees of freedom (d.o.f.) and
thus facilitates the model design (Moës et al., 1999). We focus on the case of a fric-
tional interface.

Several approaches have been proposed to take into account contact and friction in
a small sliding context, with penalty (Dolbow et al., 2001; Khoei et al., 2006; Liu et
al., 2008) or with Lagrangian regularization techniques (Géniaut et al., 2007; Béchet
et al., 2009). The extension to large sliding was developed in (Nistor et al., 2009), by
considering that each integration of a contact contribution is associated to a special
contact element based on a master slave approach. The difference with FEM contact
elements is that slave and master elements are no more constituted by elements dis-
cretizing the interface but are built with enriched bulk elements. It is then possible to
update the master-slave association with sliding evolution, within a fixed point algo-
rithm.

In this paper we present the extension of Nistor’s approach to the frictional case.
The mixed displacement-pressure formulation used is based on a variational formu-
lation from (Ben Dhia et al., 2002) which is based on an augmented lagrangian and
solved by a Generalized Newton algorithm as proposed by (Alart et al., 1991). As it
was discussed in (Babus̃ka, 1973), for mixed methods, particular attention should be
paid to the choice of the discrete space of dual unknowns with respect to the displace-
ment space. The latter should typically not be less than the former, if one wants to sat-
isfy the LBB condition (Brezzi et al., 1991) which ensures the existence and unique-
ness of the solution. A way to recover this condition is to enrich the displacement, for
example with bubble interpolating functions, as shown in (Mourad et al., 2007) for the
case of Dirichlet conditions imposed on an interface. However, because the classical
bubble functions are vanishing on element edges, this strategy shows limited stabi-
lization of the spurious modes when the interface is nearly conform to the elements.
We follow here an alternative choice to reduce the dual space, inspired from (Moës et
al., 2006).

In (Géniaut et al., 2007), the contact and friction unknowns are stored at a node
or at the middle of an element edge, to be in association with the intersection of the
discontinuity and the mesh topology. The corresponding interpolation functions are
thus defined along segments which discretize the interface. To satisfy the LBB condi-
tion, an algorithm was proposed which selects vital and non-vital edges and imposes
equality or linear relations on the contact multiplier of non vital edges with respect to
those of the vital edges. Numerical validations, in the sense of (Chapelle et al., 1993),
were given in 2D and 3D. It was shown in (Nistor et al., 2009) that this property was
still valid for large sliding because the dual unknowns are only stored on the slave
part.
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In the present paper, the same algorithm is used, but the contact unknowns are
interpolated like the displacements, that is with respect to nodal values on the volume
element. The satisfaction of the LBB condition with this construction of the contact
and friction lagrangian space was demonstrated in (Béchet et al., 2009) for a mesh
composed of triangles.

The content of this paper is as follows. In the first section, the continuous mixed
formulation of contact and friction is presented. The second section provides a de-
scription of the X-FEM spatial discretization, emphasizing on the dual space defini-
tion. For the case of a mesh composed of tetrahedral in 3D and triangles in 2D, an
additional rule is provided to select the vital edges at the transition between contact
and free zones, or between sliding and adherent ones. It helps solving the possible
conflict between equality or linear relations linking the multipliers on non vital edges
and the corresponding contact or friction status. The case of hexaedra in 3D and
quadrilateral in 2D, is also discussed.

The third section provides a numerical example to illustrate the robustness of the
method, realized with Code_Aster free software R©( ).
A cylinder cut by a frictional interface along a radial section is submitted to a com-
pression leading to a radial transition from an adherent region in the centre, to a sliding
region and finally to a non-contacting outer zone.

2. Mixed continuous formulation of contact and friction

2.1. Variational forms

The displacement can be large, especially along the discontinuity interface, but we
keep a small strains and stresses hypothesis, considering elastic materials.

Let us denote Ω the domain of interest which boundaries are composed of a part
Γu, Γt and Γc where conditions are imposed on the displacement u, on the pressure
distribution and on the frictional contact, respectively. In this paper, we assume Γc

to represent an interface, i.e. a discontinuity that cuts entirely the domain into Ω1

and Ω2, with interfacial boundaries Γc1 and Γc2, respectively. Considering the inward
normal n to Ω2, we can separate the contact friction force r that Ω2 applies to Ω1 into
its normal part λ and its tangential part rτ as follows:

r = λn + rτ [1]

Considering arbitrarily Γc1 as a reference surface called "slave", and Γc2 as its corre-
sponding "master" surface, we introduce the normal distance between a slave point x1

and its projection x̄1 on Γc2:

dn = (x1 − x̄1) · n. [2]
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The Signorini contact condition reads:

λ ≤ 0, dn ≤ 0, λdn = 0. [3]

The augmented lagrangian regularization is achieved with the augmented multiplier:

gn = λ − ρndn, [4]

where λ is the usual Lagrange multiplier for contact and ρn is a positive scalar homo-
geneous to a pressure over a displacement.

We also introduce χ, the IR− indicator function to obtain from equation [3]:

λ − χ (gn) gn = 0. [5]

We then introduce the tangential relative velocity as:

vτ = (II − n⊗ n) ·
∂

(

u(x1) − u(x̄1)
)

∂t
, [6]

where the left second order tensor is the operator of projection on the plane tangent to
Γc2 at x̄1. Using µ the friction coefficient, we define the cohesionless Coulomb’s law
as:

rτ = µλΛΛΛ with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖ΛΛΛ‖ = 0 if dn < 0,

‖ΛΛΛ‖ ∈]0, 1[ if dn = 0 and ‖vτ‖ = 0,

ΛΛΛ = vτ

‖vτ‖
if dn = 0 and ‖vτ‖ > 0.

[7]

As for contact, an augmented regularization is used with the augmented semi-
multiplier:

gτ = ΛΛΛ + ρτvτ , [8]

with ΛΛΛ the usual semi-multiplier vector for friction and ρτ a positive scalar.

We also introducePB(0,1) the projection operator on the unit ball:

PB(0,1)(x) =

{

x if ‖x‖ < 1,

x
‖x‖ if ‖x‖ ≥ 1,

[9]

to simplify the friction condition [7] into:

ΛΛΛ − χ (gn)PB(0,1)(gτ ) = 0 [10]
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Algorithm 1 Iterative algorithm
- Fixed point on slave-master association and contact basis
- Fixed point on contact status
- Loop on Newton-Raphson iterations (constitutive or geometric non linearities)

Taking into account the augmented lagrangian allows to control the conditioning of
the system (Alart et al., 1991). The contact and tangential reactions being represented
by χ(gn)gn and µχ(gn)gnPB(0,1)(gτ ), respectively, the variational form of the equi-
librium, for any variation of displacement u∗ reads:

∫

Ω
σσσ(ǫǫǫ(u)) : ǫǫǫ(u∗)dΩ −

∫

Γc
χ(gn)gnn · [[u∗]]dΓ

−
∫

Γc
µχ(gn)gnPB(0,1)(gτ ) · (II − n⊗ n) · [[u∗]]dΓ = Lmeca(u∗), [11]

where [[u]] = u(x1) − u(x̄1). The first term is the contribution from internal work,
denoted as the double product between the Cauchy stress tensor σσσ and the virtual strain
ǫǫǫ. The term Lmeca represents the possible contribution from body force and applied
pressure on Γt which are not of interest in this paper. A difference with (Ben Dhia et
al., 2002) can be noted in the dissipative frictional part of equation [11], gn replacing
λ because we have chosen to remove the fixed point algorithm on the friction threshold
(see 2.2).

Following the mixed formulation of (Ben Dhia et al., 2002), we also consider the
variational forms for the contact [5] and friction [10] conditions, for all variations λ∗

and ΛΛΛ∗ as:

∫

Γc

−
1

ρn

(λ − χ(gn)gn)λ∗dΓ = 0 [12]

∫

Γc

1

ρτ

(

ΛΛΛ − χ(gn)PB(0,1)(gτ )
)

·ΛΛΛ∗dΓ = 0. [13]

2.2. Iterative algorithm for non linearities

The iterative algorithm to take into account non linearities is shown in Algorithm
1. The external loop is a fixed point on the change of slave-master contact associa-
tion during large sliding. Note that the unit normal vector n which carries the normal
contact reaction is fixed during an iteration of this loop. The second inner loop is a
fixed point on the contact status, i.e. χ(gn), as in (Dumont, 2001). Finally, the non
linearities coming from the friction law are solved by linearizing the terms of equa-
tions [11],[12] and [13] in the tangent operators of the Newton-Raphson loop. Let us
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consider a Newton iteration, with [u, λ,ΛΛΛ] the initial given fields. Noting [δu, δλ, δΛΛΛ]
the incremental variations, we obtain:

∫

Ω
ǫǫǫ(δu) : ∂σσσ

∂ǫǫǫ : ǫǫǫ(u∗)dΩ −
∫

Γc
χδλ[u∗]ndΓ +

∫

Γc
χρn[δu]n[u∗]ndΓ

−
∫

Γc
χµδλPB(gτ ) · [u∗]τdΓ +

∫

Γc
χµρn[δu]nPB(gτ ) · [u∗]τdΓ

−
∫

Γc
χµgnK(gτ )δΛΛΛ[u∗]τdΓ −

∫

Γc
χµgnρτK(gτ )[δu]τ [u∗]τdΓ

= −
∫

Ω σσσ(ǫǫǫ(u)) : ǫǫǫ(u∗)dΩ + Lmeca(u∗)

+
∫

Γc
χgn[u∗]ndΓ +

∫

Γc
χµgnPB(gτ ) · [u∗]τdΓ, [14]

−
∫

Γc

1−χ
ρn

δλλ∗dΓ −
∫

Γc
χ[δu]nλ∗dΓ =

∫

Γc

1
ρn

(λ − χgn)λ∗dΓ,

[15]

+
∫

Γc

1
ρτ

(II − χK(gτ))δΛΛΛ ·ΛΛΛ∗dΓ −
∫

Γc
χK(gτ)[δu]τ ·ΛΛΛ∗dΓ

= −
∫

Γc

1
ρτ

(ΛΛΛ − χPB(gτ )) ·ΛΛΛ∗dΓ, [16]

with:

K(x) =

{

II if ‖x‖ < 1,

1
‖x‖ (II − x⊗x

‖x‖2 ) if ‖x‖ ≥ 1,
[17]

[x]n = n · [[x]] and [x]τ = (II − n ⊗ n) · [[x]]. [18]

3. X-FEM discretization and LBB condition

3.1. Spatial discretization

Because the contact method of (Ben Dhia et al., 2002) is a continuous formulation,
its adaptation to X-FEM is facilitated. Likewise a FEM approach, the slave contact
surface provides a discretization for the numerical quadrature of contact and friction
integrals in equations [14], [15] and [16]. The main difference is that the slave sur-
face containing the integration points and also the master one are no more defined
by element boundaries, but are interpolated from the intersection points between the
interface and the mesh as proposed in (Nistor et al., 2009). For sake of simplicity,
we restrict our discussion to the case where the surfaces are discretized with linear
segment in 2D, triangles in 3D.
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For each integration point, its projection on the master surface [2] is used to build
a contact element composed of the slave element nodes and the master ones. During
the pairing, the reference coordinates of the integration point in the bulk slave element
and the reference coordinates of its projection in the bulk master element are needed.
Using the corresponding bulk shape functions φm and φs in these two elements, re-
spectively, the slave and master displacements us and um read:

us =
∑ns

j=1 φs
j (u

s
j − as

j ) and um =
∑nm

j=1 φm
j (um

j + am
j ), [19]

where a denotes the additional nodal variables representing the interface discontinuity.
Note that the difference of sign preceding a in the master and slave part corresponds
to the use of a generalized Heaviside function to describe the discontinuity.

Considering equation [19] and introducing the initial spatial coordinateX, we can
discretise [2] and [6] for a given numerical time step ∆t as:

dn =
(

∑ns

j=1 φs
j(X

s
j + us

j − as
j ) −

∑nm

j=1 φm
j (Xm

j + um
j + am

j )
)

· n,

vτ = (II−n⊗n)
∆t

·
(

∑ns

j=1 φs
jΔ(us

j − as
j ) −

∑nm

j=1 φm
j Δ(um

j + am
j )

)

. [20]

The contact unknowns are only defined on the slave part and we choose to interpo-
late the contact and friction forces from the nodes of the bulk element. The contact
lagrangian and friction semi-lagrangian at the integration point then read:

λ =
∑ns

j=1 φs
jλj and ΛΛΛ =

∑ns

j=1 φs
jΛΛΛj . [21]

Using equations [20] and [21], the linearized formulation [14],[15] and [16] can be
expressed in a matrix form as follows, omitting the iteration indexes for sake of clarity:

⎡

⎢

⎢

⎣

Ku + Au + Bu A B

D C 0

E 0 F

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎝

δu

δλ

δΛΛΛ

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

Lu + L1
λ + L1

Λ

L2
λ

L2
Λ

⎞

⎟

⎟

⎠

, [22]

where the first, second and third rows comes from the discretization of equations [14],
[15] and [16], respectively. Ku, Au and Bu are the mechanical, the augmented con-
tact and the augmented friction stiffness matrices, respectively. The matrices A, B
and the second members L1

λ, L
1
Λ come from the contact and friction forces, respec-

tively. Note that the matrix Bu is not symmetric and matrices D and E are not the
transposes of A and B, respectively, due to the linearization of the friction terms,
while a fixed point method on the threshold was used in (Ben Dhia et al., 2002). De-
spite the fact that the global matrix looses symmetry when we consider friction, this
enables to synchronize the changes for the friction augmented semi-multiplier with
respect to the contact one, as in (Alart et al., 1991), thus optimizing the global conver-
gence and limiting the occurrence of oscillation pathologies on the friction status. In
other words, a Newton iteration state always stays inside the Coulomb’s cone [7].
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3.2. Lagrangian space reduction

3.2.1. Introduction of vital edges

With X-FEM, a naive linear P1-P1 interpolation choice for the displacement and
contact friction spaces, respectively (i.e. with a contact d.o.f located at a cut edge)
is not stable and imply oscillations (Géniaut et al., 2005) that we can see on Figure
3 presented hereafter. Our chosen space is a more appropriate one based on the
algorithm presented in (Moës et al., 2006). The basic idea of this algorithm is to
define the score of each node as the number of its connected cut edges, while the
score of a cut edge is given by the minimum score of its contributing nodes. Then
we select cut edges with the highest scores that do not have nodes in common: in
case of a multiple choice we select randomly one of the possible edges. At each step,
we re-compute the node scores without the previously selected edges. The algorithm
stop when all the remaining cut edges have a score equal to one. If the minimum
score is reached on one edge, this edge is vital. If the minimum score is reached on
several edges, their multipliers are imposed to be equal, and only one of these edges
is chosen to be vital. Finally, one group of edges with equal multipliers at the end
of the algorithm is connected by a linear relation to another group of edges sharing
another multiplier if both groups were connected initially by a common edge. The
d.o.f of the non-vital edges are thus linked to the d.o.f of the vital ones with linear
or equality relations. To provide a better approximation of the pressure space, this
algorithm was improved in (Géniaut et al., 2007) to maximize the number of linear
relations with respect to equality ones. However in 3D this leads to convergence
difficulties such as flip-flop. The problem is illustrated in Figure 1, where two sliding
nodes 1 and 2 are linked linearly to a third one. In that case, node 3 cannot be sliding
because ‖ΛΛΛ3‖ < 1. To avoid this problem the linear relation must link the norms of
the friction semi-multipliers (left picture), but the relation becomes non-linear for its
components.

In (Géniaut et al., 2007), only a numerical validation for the LBB condition as
in (Chapelle et al., 1993) was presented. For that reason, we changed the algorithm
for the more recent one of (Béchet et al., 2009) for which an analytical proof of the
LBB condition satisfaction was given for 2D triangular meshes. In the first approach,
the contact pressures were interpolated from unknowns located at cut edges. In the
second approach their interpolation is realized with respect to the nodal values [21]
and for each vital edge, an equality relation is linking the contact d.o.f of the two
vital nodes composing it. Non vital nodes have then to be linked to the neighbouring
vital ones by a chosen linear relation. Moreover due to the difficulty of imposing
non-linear relations on the semi-multiplier components of ΛΛΛ in 3D corresponding to a
linear relation on its norm, we decided to link it to only one of its vital connected node
by an equality relation thus lowering the order of the interpolation which satisfies
implicitly the LBB condition.
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a b

Figure 1. Linear relation for ΛΛΛ, set on the norm (a) or on the component (b)

3.2.2. Integration scheme for contact and friction laws

Because we use linear (for tetrahedra) or bilinear (for hexaedra) interpolation for
the displacement, we have chosen a nodal quadrature scheme to integrate the contact
friction forces in equation [14]. However due to the algorithm reducing the Lagrangian
space, we can lower the numerical quadrature in the contact and friction laws by keep-
ing only integration points at vital edges. This modified integration scheme becomes
mandatory in case of transition between free and contact zones, or adherent and slid-
ing ones. Indeed, in the 2D example of Figure 2, assume edge 1 and 3 are vital while
edge 2 is not:

λ1 = λ2 and λ3 = λ4, [23]

and consider points 1 and 2 are not in contact:

(λ1 + λ2)/2 = 0 and (λ2 + λ3)/2 = 0. [24]

Figure 2. Status and reduced space: point 3 is in contact while 1 and 2 are free

This implies that the contact normal reaction at point 3 is equal to zero and triggers
compensation in the neighbouring locations with excessive normal contact reaction.
The modified integration scheme we propose involves no contribution in the contact
equation [15] from point 2, which is not on a vital edge, and thus solves this conflict.
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Figure 3 shows the results for a simple 2d test with frictional horizontal large slid-
ing of a block overlaid by a top block on which we impose a vertical compression.
The mesh is composed of triangles. In that case, the left part of the interface between
the two blocks is free while the right one is under contact. On the left picture, we com-
pare a FEM case (circles) with a naive X-FEM case (triangles) and an X-FEM case
satisfying the LBB condition (diamonds). The naive approach is marked by strong
oscillations along the whole contacting zone. These oscillations are solved with the
algorithm reducing the lagrangian space. However, near the limit between contact and
free zones, significant oscillations can still be noticed, because of the typical pathol-
ogy previously described. On the right picture, we compare the FEM case (circles)
with the X-FEM case satisfying the LBB (diamonds) and the X-FEM case satisfying
the LBB with the modified integration scheme (squares). The latter eliminates the
oscillations reported above.

Figure 3. Normal contact reaction vs position along the interface. The response for
FEM, naive X-FEM, X-FEM with reduced lagrangian space, and X-FEM with modi-
fied integration rule are represented by circles, triangles, diamonds and squares, re-
spectively

The same demonstration can be applied to the case of adherent/sliding transition. In-
deed, consider in Figure 2 points 1 and 2 to be sliding (see the third equation of [7]):

(‖ΛΛΛ1‖ + ‖ΛΛΛ2‖) /2 = 1 and (‖ΛΛΛ2‖ + ‖ΛΛΛ3‖) /2 = 1, [25]

With the help of equation [23] where λ is replaced by ΛΛΛ, one can notice that
point 3 is not allowed to be adherent. We thus propose the same modified integration
scheme to solve this problem and do not assemble contributions on non vital edges in
the friction equation only [16]. The impact on the global system [22] of the modified
integration scheme is very different for contact and friction. For contact, only matrix
C is changed and the global system is still symmetric, while for friction matrices E
and F are modified leading to another loss of symmetry of the global system.
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Table 1. Vital edge criteria in a group of connected edges
integration points status on the connected edges the vital edge must respect:

all points are free no condition
there is at least one point in contact it must contain
all the points in contact are sliding a contacting point
there is at least one point in contact it must contain an
there is at least one adherent point adherent contacting point

3.2.3. Additional criteria to select a vital edge

When meshes are cut by interfaces, we can obtain groups of connected edges
among which we have the choice to select the vital one. This comes frequently for
triangle and tetraedra meshes.

Figure 4. A group of connected edges, edges 1 an 5 are vital, one in [2, 3, 4] is
randomly vital

For example in Figure 4, edges 1 and 5 are vital, but the LBB condition algorithm
selects randomly a vital edge between 2, 3 or 4. If the integration points on the se-
lected vital edge are not in contact, we can obtain the same kind of conflict as the one
described in 3.2.2. In fact, we must avoid a non contacting integration point to impose
a zero pressure to the other integration points normally in contact. The same demon-
stration applies to friction: we must avoid a sliding integration point to impose a norm
one value on the semi-lagrangian multipliers of other adherent integration points. Ta-
ble 1 summarizes the criteria a vital edge in a group must satisfy. Since the contact
status can change at each contact iteration and since the friction status can change at
each Newton-Raphson iteration, we propose to switch from Algorithm 1 to Algorithm
2 which provides the possibility to change vital edges during the computation.

3.2.4. Particularities of a hexaedra mesh

For the case of meshes with quadrilateral or hexaedra cut by an interface, it is
possible to have a node not connected to a cut edge inside an element cut by the
interface. For example in Figure 5, node 3 is not connected to the other ones. In
order to use the nodal interpolation of the pressure on the crack interface, the lagrange
multiplier unknowns on this nodewill be expressed in terms of the multipliers of nodes
belonging to edges cut by the interface. For sake of simplicity, we choose to link this
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Algorithm 2 Iterative algorithm with NVE and VE denoting, for each group of con-
nected edges, a non-vital edge and the vital edge
- Fixed point on slave-master association and contact basis
- Fixed point on contact status
- Loop on Newton-Raphson iterations
- Compute friction status (sliding or adherent)
- Loop over each group of connected edges
- If VE is sliding and a NVE is adherent⇒ NVE replaces VE
- Compute contact and friction contributions to the system
- Compute contact status (contact or free)
- Loop over each group of connected edges
- If VE is free and a NVE is in contact⇒ NVE replaces VE

node to its direct neighbours on uncut edges with a linear relation, expressed in this
example as:

λ3 = (λ4 + λ2)/2. [26]

As mentioned in 3.2, the extension of this relation to the semi-multiplier of friction
should be done on its norm which leads to a non linear relation on its components in
3D. An alternative is to eliminate the lagrange multipliers of nodes with uncut edges
and to modify the contact friction shape function for the other ones in order to assess
partition of unity on the element. We propose the following distribution by notingN1

and N2 the groups of nodes belonging to edges that are cut or not, respectively:

λ =
∑

i∈N1
φ̃s

i λi with φ̃s
i∈N1

= φs
i +

P

j∈N2
φs

j

card(N1)
, [27]

where card(N1) is the total number of elements in N1.

Figure 5. A cut quadrangle, in that case node 3 is not connected to a cut edge
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4. Numerical example of a 3D cut cylinder under compression

Let us consider the compression of a linear elastic cylinder with elasticity modulus
and Poisson’s ratio set to 80 GPa and 0.2, respectively. This cylinder is cut along a
radial section, and is resting on a quasi-rigid substratum (Figure 6). Constant pres-
sures Pl of 150 MPa and Pt of 50 Mpa are imposed on the lateral and top surfaces,
respectively while the lower part is fixed. The friction coefficient is set to 1.0 on the
interface.

Figure 6. Geometry and boundary conditions are shown on the left with L = 0.04m.
On the right, the deformed configuration is shown for the tetrahedra case with a radial
and vertical amplifications set to 200 and 2000, respectively

Two meshes are considered in the X-FEM cases, with 26880 tetrahedra and 6240 hex-
aedra, respectively. The deformed configuration for the first mesh is shown in Figure
6. The normal contact reaction at the interface and along a radial profile is given in
Figure 7 on the left and right, for the case of the first mesh and the second mesh, re-
spectively. In both cases, we compare the result with respect to that of a FEM model
built with 8160 hexaedra and conforming to the interface.

a b

Figure 7. The normal contact reaction vs radius. Diamonds represent the FEM. Field
squares represent the X-FEM for tetrahedra (a) and hexaedra (b)
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We first note the ability of the method to capture the transition between the adher-
ent region at the centre, characterized by an almost uniform pressure and the sliding
domain where λ increases to reach a zero value when no contact is detected. The
discrepancy with the FEM result remains small for the X-FEM hexaedra case. It in-
creases for the X-FEM tetrahedra case, because of the reduction of the Lagrangian
space as described in 3.2 in order to satisfy the LBB condition.

5. Conclusion

An X-FEM formulation for frictional interfaces with possible large sliding has
been proposed. Contact and friction are described following the augmented La-
grangian approach of (Ben Dhia et al., 2002), but we replaced a fixed point on friction
threshold by the corresponding linearized terms in the tangent operator. This improves
the robustness and convergence of the global iterative algorithm, as suggested in (Alart
et al., 1991). The X-FEM spatial discretization is inspired from (Béchet et al., 2009)
with the displacement interpolation used for the contact and friction unknowns, but ex-
tended to 3D meshes composed of tetrahedra or hexaedra. Large sliding is accounted
for like in (Nistor et al., 2009), with a contact element built as a mixed slave and and
master enriched bulk element.

As proposed by (Béchet et al., 2009), to ensure the satisfaction of the LBB con-
dition, the space of contact and friction unknowns is reduced thanks to an algorithm
that selects vital edges which unknowns are linearly associated to the ones of non vital
edges. The contact status of this vital edge is preeminent over the contact statuses of
non vital edges associated to it, and priority rules were established in case of multiple
choice for the vital edge: : the vital edge must support a contact point. This enables
to solve error in the normal contact reaction coming from the transition between con-
tacting and non contacting regions. The same choice can be applied to the transition
between adherent and sliding regions, where we favour the vital edge to be adherent.
A numerical example of the compression of a 3D cylinder cut along a radial section
illustrates the robustness of the method.
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