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Abstract. Resolving Partial Differential Equations (PDEs) through numerical discretization methods like
the Finite Element Method presents persistent challenges associated with computational complexity, despite
achieving a satisfactory solution approximation. To surmount these computational hurdles, interpolation
techniques are employed to precompute models offline, facilitating rapid online solutions within a metamodel.
Probability distribution frameworks play a crucial role in data modeling across various fields such as physics,
statistics, and machine learning. Optimal Transport (OT) has emerged as a robust approach for probability
distribution interpolation due to its ability to account for spatial dependencies and continuity. However,
interpolating in high-dimensional spaces encounters challenges stemming from the curse of dimensionality.
The article offers insights into the application of OT, addressing associated challenges and proposing a novel
methodology. This approach utilizes the distinctive arrangement of an ANOVA-based sampling to interpolate
between more than two distributions using a step-by-step matching algorithm. Subsequently, the ANOVA-
PGD method is employed to construct the metamodel, providing a comprehensive solution to address the
complexities inherent in distribution interpolation.

Keywords: Model order reduction / optimal transport / proper generalized decomposition / bayrcentric
projection

1 Introduction
Many problems in science and engineering can be mod-
elled mathematically by a system of Partial Differential
Equations (PDEs). Generally, solving numerically these
equations requires a numerical method e.g. the Finite
Element (FE) method which approximates the problem
solution from its approximation in each element of the
mesh covering the domain [1]. This process may be time-
consuming and computationally expensive, specifically
when a new configuration associated with the problem
parameters has to be evaluated.
One possible approach is to use interpolation to build

offline a model that can rapidly calculate online a new
solution of the problem at any given point in the para-
metric space, without requiring expensive computation
resources. These techniques are already used in a wide
range of scientific and engineering applications, such as
parametrised Model Order Reduction techniques (pMOR)
[2], because the ability to evaluate solutions in near
real time leads to a more effective exploration of the
parametric space.

* e-mail: maurine.jacot@ensam.eu

However, interpolating in a high-dimensional space
faces the so-called curse of dimensionality [3]. Many
methodologies exploiting sparsity assumptions have been
proposed to alleviate these difficulties [4–6] and succeed in
constructing high-dimensional models from limited data.
Furthermore, the choice of a suitable technique for inter-

polation and the resulting performance is impacted by
how data is represented and the purpose for which it is
being used.
In the fields of physics, statistics, and machine learn-

ing, the framework of probability distributions is widely
used for modelling and representing data by associat-
ing a probability measure to a collection of samples that
form a solution [7]. This enables to describe and model
the statistical characteristics of the data and to develop
a probabilistic model for predicting and interpolating
efficiently.
The continuous field description of a collection sam-

ples is viewed as a continuous probability density function
assigning a probability density (also called weight) to each
point of a regular grid that discretises the space (usually a
Euclidean space). In the Finite Element method, the solu-
tion of a problem is typically represented by a continuous
field (e.g. velocity, stress). The nodal values are defined
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Fig. 1. (left) Continuous field description of data associated with a discretised probability density (also called weight) for each
point of the regular grid. (right) Particle cloud description associated with a set of particles (point clouds).

at fixed points in space where the physical quantity is
evaluated. The particle cloud description of data refers to
describing the probability distribution by a set of particles
characterised by a mass and a position. Figure 1 illustrates
the two types of descriptions.
One of the most accurate and mathematically rigorous

approaches to interpolate between distributions into the
particle cloud description is to follow the movement of
individual particles, within the Optimal Transport (OT)
framework [8].
Optimal Transport, also known as the Wasserstein dis-

tance or transportation distance was formalised in 1781
by the French mathematician Gaspard Monge and is a
mathematical framework that deals with the optimal way
to transport mass from one probability distribution to
another [9]. The goal is to find the most efficient way to
transform one distribution into another while minimizing
a certain cost or distance metric.
The basic idea is to consider the two probability distri-

butions as piles of mass, and the transportation plan as a
way to move mass from one pile to another. The cost of
transporting mass from one point to another is typically
given by a cost function, and the optimal transport prob-
lem involves finding the optimal way to move mass that
minimizes the total cost [10,11].
Despite the recent advances in the field, such as

the entropy regularised Optimal Transport and more
precisely, the Sinkhorn-Knopp algorithm [12], solving
an Optimal Transport problem can be computationally
expensive and not well suited for an online approach
[13]. First, if distributions are matched using the Opti-
mal Transport theory in theirs continuous descriptions, it
involves tackling an online transportation problem that
requires solving partial differential equations. Thus, to
decrease this complexity, distributions in their contin-
uous form needs to be discretized into a collection of
particles. However, the choice of the type of discretiza-
tion can have a significant impact on the accuracy and
efficiency.
A technique for discretization uses the Smoothed Par-

ticle Hydrodynamics (SPH) decomposition, as explained
in [14]. In this method, all particles have the same mass,
and their positions are established by solving an optimiza-
tion problem. Contrastingly, an alternative method using
Finite Element discretization eliminates the need for solv-
ing an optimization problem. In this setting, the positions

of particles align with the locations in the continuous field
within the Finite Element discretization, and the mass
assigned to each particle is directly proportional to the
magnitude of the continuous field at the corresponding
particle location. Ultimately, even if the distributions are
discretized, performing online Optimal Transport between
collections of particles presents challenges, as it entails
solving a discrete linear programming problem, which can
be both numerically costly and statistically inefficient in
an offline-online approach [15].
In practice, to be able to interpolate between distri-

butions, it is also common to consider more than two
distributions simultaneously. The concept of interpolation
between more than two distributions is relevant in various
fields, including Machine Learning and Statistics. In these
context, Euclidean distance is often used as a measure
of dissimilarity or similarity between these distributions
as is it applied in [16]. When interpolating between more
than two distributions using the Wasserstein distance, the
mathematical theory does not have a solid foundation. In
fact, the goal is to define a matching between an arbitrary
number of discretes densities where the distributions are
discretized into collections of particles [17].
Some approaches have been developed to overcome this

problem, in particular the Wassertein Barycenters [18]
which aim to find a representative that lies “in between” a
set of given collections of particles. However, this method
is often computationally intractable and cannot ensure
a fast real time (online) solution for new data points
due to the complexity of the problem and its formula-
tion and, moreover, it is difficult to operate in highly
multidimensional settings.
The aim of this paper is to provide a reliable approach

for real-time evaluations of distributions of a paramet-
ric problem by using Optimal Transport by constructing
a parametric metamodel. Once the metamodel is con-
structed, it can be deployed for real-time use. This means
that the model is capable of making predictions or provid-
ing insights on new data as it becomes available, without
significant delays.
The approach proceeds in two phases: an offline training

in the parametric space and an online application.
In the offline phase, we introduce a structured sam-

pling represented as a cross-centred sampling that will
explore the influence of each dimension of the parametric
space D. Numerical simulations are performed for each
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point of the sampling (problem parameters), solving a
PDE defined in a domain and subjected to initial and
boundary conditions. To manipulate efficiently the model
and apply transport, the data has to be transformed into
a particle cloud description, i.e. expressed in the form
of particles with a mass and position. Performing SPH
decomposition indeed involves solving an optimization
problem, which can be computationally demanding. How-
ever, despite this computational cost, the structure of the
SPH decomposition is often more efficient than alternative
methods.
To avoid the computational cost of discretizing each

distribution in their continuous form following the SPH
decomposition, we introduce a new methodology where
only the first distribution is discretized following the SPH
decomposition and the optimal matching is performed
using a step by step matching algorithm in the proposed
sampling where the others distributions are discretized
based on the Finite Element localization and the match-
ing problem is solved based on the use of the notion of
barycentric projection [19].
By using this approach, the dimensionality of the

matching problem is reduced from matching the distri-
butions in pairs, rather than matching all distributions
simultaneously. Finally, the parametric displacement field
between solutions associated to sampling points is learned
using a Model Order Reduction technique, the ANOVA-
PGD [6].
While the distinct arrangement of the sampling provides

an opportunity to acquire knowledge of the paramet-
ric displacement field with reduced computational effort,
it is possible that these sampling points may not cover
the entire parametric space. This limitation can result in
errors in the predictions made by the metamodel during
online operation. To enhance the accuracy of the surro-
gate parametric metamodel, additional sampling points
are generated using a Latin Hypercube Sampling (LHS)
with associated solutions and then decomposed into parti-
cles. The difference between the projected positions of the
particles and their actual positions will be used for com-
puting a correction component. The surrogate parametric
metamodel is then self-enriched by taking into account
the correction. Testing points are then used to verify the
accuracy of the corrected metamodel.
Finally, the self-enriched parametric surrogate paramet-

ric metamodel is used online to predict the particles’
position and therefore the solution of the problem for any
point of the parametric space.
The paper is organised as follows. Section 2 first

details in a nutshell the theory of Optimal Transport. In
Section 3, the construction of the parametric surrogate
parametric metamodel using the ANOVA-PGD technique
is detailed as well as its enrichment. The step by step
matching algorithm using a structured sampling is pre-
sented. Section 4 presents the global methodology and
the error evaluation. Two physical problems are intro-
duced in the Section 5 and the proposed methodology
is applied. Conclusion and remarks are finally discussed
in Section 6.

2 Theory of optimal transport

The objective of this section is to revisit the mathematical
and numerical aspects of Optimal Transport. We restrict
to present only the fundamentals that will be discussed
later and used in the proposed methodology. To obtain
further information regarding the theory, readers can refer
to: [20], [21], [22] to cite a few.

2.1 Monge’s problem

The Optimal Transport problem was first introduced in
1781 by the mathematician Gaspard Monge. His idea con-
sists in finding the cheapest way to transport a pile of sand
to a hole in the ground while minimising the distance that
sand must travel.
We denote two independent and distributed discrete

samples α and β on two compact metric spaces (X ,Y)
that correspond to the source and target distributions,

respectively α =

n∑
i=1

aiδxi
and β =

m∑
j=1

bjδyj
. In our case

X and Y are both subspaces of a common larger metric
space and are endowed with the same metric. The Monge
Problem (MP) searches for a map T : {x1, x2, ...xn} →
{y1, y2, ...ym} that associates each point xi to a sin-
gle point yj , while minimising the sum of the costs
c(xi, yj) = d(xi, yj)

2. T must satisfy the mass conserva-
tion ∀j ∈ [m], bj =

∑
i:T (xi)=yj

ai, where the push-forward

measure T♯α is defined by T♯α =

n∑
i=1

aiδT (xi). The Monge

Problem can be formulated as a non-convex optimisation
problem:

(MP) M(α, β) = min
T#α=β

n∑
i=1

c(xi, T (xi)). (1)

2.2 Kantorovich relaxation and linear programming
problem

The Monge formulation defines an ill-posed problem,
since sometimes there is no transport map to solve the
constraint T♯α = β. The main idea of Kantorovich is
the relaxation of the deterministic transport map. At
any point xi, the mass can be split and transported
from a source towards several targets. Thus, we adopt
a probabilistic transportation. Numerically, the Kan-
torovich relaxation leads to a strictly convex problem
that is easier to solve. Instead of a map T , a trans-
portation plan γ ∈ Γ(α, β) is used, where Γ(α, β) is the
set of measure couplings between two discrete probability
measures α and β. Specifically, γ : (X ,Y) 7→ R+ is a func-
tion that satisfies

∫
γ(x, y)dxdy = 1,

∫
γ(x, •)dx = β and∫

γ(•, y)dy = α. For the sake of simplicity, γ also refers
to the discretised version of the transport plan, which
belongs to Rn×m

+ . Then, to define the optimal transport
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Fig. 2. Linear displacement interpolation between the source
distribution α and the target distribution β.

map γ∗ ∈ Γ(α, β), the Kantorovitch Problem (KP) reads:

(KP) γ∗ = argmin
γ∈Γ(α,β)

n∑
i=1

m∑
j=1

c(xi, yj)γi,j . (2)

where c(x, y)dγ(x, y) is the transport cost associated with
a transportation plan γ ∈ Γ(α, β) and can be interpreted
as the work needed to move one unit of mass from x
to y. The p-Wassertein distance for p ∈ [1,∞[ measures
similarity between distributions and is one natural way of
defining the cost:

Wp(α, β) =

 min
γ∈Γ(α,β)

∑
i,j

γi,jd(xi, yj)
p

1/p

(3)

The linear problem in equation (2) can be solved using
the network simplex in O ((n+m)nm log(n+m)) [23],
such as proposed by the solver in open source Python
Library POT [24] and will return the optimal transport
plan γ∗.

2.3 Interpolation using optimal transport

OT defines a distanceWp between two discrete probability
measures α and β. To interpolate between two distribu-
tions, the minimisation of the cost yields the map T which
matches each point of the source α to one in the target dis-
tribution β. Then, the linear displacement interpolation is
obtained by moving each mass along the line defined by
(1 − t)xi + tT (xi) for t ∈ [0, 1] as it is illustrated in the
Figure 2. For W2, the interpolation is called displacement
interpolation [25].
Once the displacement interpolation between two mea-

sures is defined, it can be generalised to an interpolation
between more measures using the concept of Wassertein
barycenters as it is presented in [11].

2.4 Notion of barycentric projection

In the context of the Kantorovitch formulation, the map
T is not defined, therefore an extra step is required
to perform the interpolation, the so-called barycentric
projection [19]. Once an optimal coupling γ∗ has been
computed, one needs to map xi from X to Y. For each
source sample, the barycentric mapping is expressed as

follows:

xi ∈ X 7→ 1∑
j γ

∗
i,j

∑
j

γ∗
i,jyj ∈ Y (4)

3 Offline learning approach using optimal
transport

In the fields of statistical and machine learning, Optimal
Transport has gained significant attention due to its abil-
ity to compare, align and model probability distributions
while underlying geometry and structure of data. It is
therefore an appealing route to create parametric models
when more traditional methods fail due to the presence of
localised features in the data.
When dealing with many parameters, in order to obtain

a precise approximation of the system, a sufficient num-
ber of sampling points generated from a ND-dimensional
sampling should be used. However, this leads to solving
optimal transport with many distributions, and therefore
to high-dimensional matching problems. Learning trans-
portation plans in this context is a challenge due to the
curse of dimensionality. One effective approach to address
this issue involves utilizing the concept of Wasserstein
barycenter that aims to find a representative distribution
that lies “in between” a set of given probability distri-
butions. It can be thought of as a way to compute a
central or average distribution that captures the essen-
tial characteristics of the input distributions. However,
the computational complexity of this approach can be
high, especially when dealing with high multidimensional
settings and cannot ensure a fast real time (online) solu-
tion for new data points. Therefore, finding an offline
representation of the solution to the OT problem and
learning its parametric dependencies is essential to evalu-
ate online a new configuration of the system. In addition,
finding a strategy to efficiently compute transportation
plans is crucial since, as the number of parameters and
therefore of data samples increases, the traditional opti-
mization methods become computationally expensive or
even infeasible.
Motivated by such an idea, our offline learning approach

follows a step by step matching algorithm based on
the structure of an adequate sampling. Point clouds are
matched successively by pairs based on the notion of
barycentric projection. The distinct arrangement of the
sampling provides a way to learn the displacement field
between numerous sets of point clouds. Finally, we intro-
duce a non-linear regression technique, the ANOVA-PGD,
to learn the parametric model of the transportation plan.
This technique is presented in this section.

3.1 Definition of a structured sampling

Computing parametric solutions based on surrogates
(metamodels or response surfaces) requires to define a
design of experiments (also called sampling) to work
with. We consider the parametric space D where ND
parameters (also known as dimensions) are introduced,
p =

(
p1, ..., pND

)
. The chosen sampling is a centred cross
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Fig. 3. Cross-centred sampling (DoE) considered as example
with anchor point pa.

that explores the influence of each dimension individually
[6] and is composed of B sampling points, b ∈ [[B]] around
the so-called anchor point pa. Figure 3 shows an exam-
ple of sampling with ND = 3 used to demonstrate our
proposed methodology.

3.2 Step by step matching algorithm based
on barycentric projection

Our approach relies on a step-by-step algorithm designed
to address the challenge of estimating transportation
plans in a high-dimensional space. While the Optimal
Transport framework, as explained in Section 2, is cen-
tered around matching two distributions, extending this
matching to more than two distributions introduces
increased complexity. Additionally, if the distributions
are represented by a continuous field, discretizing them
into a set of particles can be computationally expensive,
especially when using Smoothed Particle Hydrodynamics
(SPH) decomposition.
To mitigate these challenges, we operate within the

defined parametric space D and leverage a distinctive
arrangement of sampling. The distributions at the anchor
point are discretized following the SPH decomposition,
while the other distributions are decomposed using the
Finite Element discretization. Subsequently, each pair of
point clouds is matched sequentially by solving a clas-
sical Optimal Transport problem. The results are then
projected using a barycentric projection, facilitating inter-
polation between the two distributions. This principle is
described in Figure 4.
We first provide some essential notation. Let B be a set

of points defining a cross-centred sampling as shown in the
Figure 3. B is decomposed into Nc overlapping subsets,
nc ∈ [[Nc]] which correspond to the number of branches
of the cross. Then, each branch contains the associated
Nb sampling points with the same anchor point, nb ∈
[[Nb]] and an associated solution of a high-fidelity problem
represented by a continuous field, fnc

nb
: ΩN ⊂ R2 → R

with f0, the solution at the anchor point. Each dimension
of the problem contains Nc = 2 branches. Figure 5 shows
the different parts that compose the sampling presented
in the Figure 3 with the associated high-fidelity solutions.
For every nc ∈ [[Nc]], our step by step matching

algorithm follows a four-steps procedure:

1. High-fidelity solutions: High-fidelity solutions are
generated based on the resolution of PDEs with
the FE method, for instance, on the points of the
cross-centred sampling presented in Figure 5 which
is expected to express the individual effect of each
dimension. Solutions of the problem are denoted
fnc
nb

: ΩN ⊂ R2 → R and correspond to the solution
of each node j ∈ [[N ]] of the mesh. The mesh is the
same for all the solutions and the spatial coordinates
of each node are denoted (xj , yj) and stored in a vec-
tor X as it is shown in the Figure 6. Then, solutions
are normalised in the domain Ω, denoted as a dis-
tribution φnc

nb
and correspond to the integral of the

solution at each node of the mesh.
2. Discretisation into point cloud: The distribu-
tion at the anchor point φ0 is discretised based on
the SPH decomposition, into a 2D point cloud and
denoted φ̄0. For the others distributions, we consider
that particles are positioned on the FE points and
theirs masses are proportional to the high-fidelity
solution at each point.
For that, we consider a numerical solution f as

f : Ω ⊂ R2 → R+. The solution is first normalised
over the domain to transform features on a similar
scale such that:

φ =
f

I
with I =

∫
Ω

fdΩ. (5)

Then, following the Smoothed-Particle Hydrody-
namics method (SPH), the continuous function is
discretised in a set of points referred to as particles
[17].
Indeed, the idea is to decompose φ into a sum

of P Gaussian functions, i ∈ [[P ]], centred on the
coordinates of each particle, located at µx and µy,

and stored in the vector µ ∈ R(P×2). The sum
of all the Gaussian functions should represent the
approximated distribution φ such as:

φ ≈ φ̄ =

P∑
i=1

Gµi,σ(x), (6)

where Gµi,σ is a 2D-Gaussian with the standard
deviation σ (a model hyperparameter) and the mean
µi. This decomposition is obtained by minimizing
∥φ̄− φ∥2.

3. Transport plan: An optimal transport plan γ∗1,nc

is computed by resolving the Kantorovitch problem
in the equation (2) between the particle’s positions
µnc

0 and φnc
1 as is it presented in Figure 7.

4. Projection: Particles are projected from µ0 using
the notion of barycentric projection following the
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Fig. 4. (left) Optimal matching between two distributions represented by point clouds. (middle) Barycentric projection focusing
in one matched particle on the first point cloud. (left) Particles optimal matching following the barycentric projection that allow
to interpolate between these two collections of particles.

Fig. 5. Different parts composing the initial cross-centred sampling introduced in the Figure 3.

Fig. 6. Example of a element mesh with associated spatial
coordinates.

methodology presented in Figure 4. The projection
is performed between each pair of discretized dis-
tributions

(
µnc

nb
,µnc

nb+1

)
by computing the transport

plan between µnc
nb
and φnc

nb+1 iteratively.

Each point cloud representation of a distribution φnc
nb
is

characterised by µx and µy of each particle stored in the
vector µnb

nc
. A natural way to estimate the particles’ posi-

tion µnc
nb+1, would be to approximate it using the optimal

transport plan γ∗nc,nb between the source represented by

a point cloud µnc
nb
and the target φnc

nb+1 distributions rep-
resented by a continuous field. By relying on the notion
of barycentric projection presented in the Section 2.4, the
mapping of the i-th component of µnc

nb+1 which allows
to reconstruct to the distribution φ̄nc

nb+1 is approached as
below and presented in Figure 8:

(
µnc

nb+1

)
i
=

1∑m
j=1 γ

∗nc,nb

ij

m∑
j=1

γ∗nc,nb

ij (X)j , (7)

whereX is the vector that contains the spatial coordinates
of the mesh (xj , yj) as shown in Figure 6 and γ∗nc,nb is
the transportation plan between µnc

nb
and φnc

nb+1.
Then, the four-step procedure is repeated for each part

nc of the sampling. At the end, we obtain the particles’
positions µB from all the B distributions corresponding
to the sampling points presented in the Figure 3. The
particles’ positions allow to recover the distribution φB

using equation (6). The number of particles P and the
standard deviation of each particle σ are fixed from the
decomposition of the first distribution φ0 and are the same
for all the distributions.

3.3 Construction of the surrogate parametric
metamodel

Real-time applications require fast and accurate computa-
tions, often with limited resources. Hence, the parametric
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Fig. 7. Optimal matching between two point clouds (collections of particles.)

Fig. 8. Projection of particles µnc
nb+1 from µnc

nb
using the notion of barycentric projection proposed in equation (7).

displacement field between points in the sampling is
learned using non-intrusive Model Order Reduction tech-
niques. We ensure to find a sparse approximation that will
allow estimating the particles’ parametric displacement,
to be able to represent the solution for any parameter
choice without having to compute the associated solution.

3.3.1 Model Order Reduction using ANOVA-Proper
Generalized Decomposition (ANOVA-PGD)

The ANOVA-PGD consists in combining the Analysis of
Variance and the sparse Proper Generalized Decomposi-
tion (sPGD), to approximate solutions which depend on
multiple parameters.
ANOVA-PGD works by decomposing the solution as

a sum of functions defined with respect to the anchor
point pa [26] and then using interpolation to approximate
the terms depending on a single dimension (parameter),
definingND one-dimensional approximation problem. The
difference between this approximation and the data,
referred to as the residual, is then learned using a sparse
PGD (sPGD).
We apply the ANOVA-PGD to learn the particles’ posi-

tions stored in a vector µ which will allow to reconstruct
distributions φ̄. Then, following the use of a sampling,
it is possible to define a parametric vector µ(p) where
p are the parameters of the problem in the parametric
space D. The ANOVA decomposition of a function µ(p)
is an orthogonal decomposition based on the analysis of

variance and written as a sum of orthogonal functions [6]:

µ(p) = µ
(
p1, . . . , pND

)
= µ0 +

ND∑
i=1

µi

(
pi
)

+

ND∑
1≤i1,i2≤ND

µi1,i2

(
pi1 , pi2

)
+ . . .+ µ1,...,ND

(
p1, . . . , pND

)
(8)

The anchored-ANOVA allows computing all the one-
dimensional functions from the DoE introduced in the
Section 3.1 and presented in Figure 3. Then, the remain-
ing terms of the ANOVA decomposition are grouped in
the residual, function of all the variables, defined as:

µRES(p) = µ(p)− µANOV A(p), (9)

where µRES is approximated with the Sparse Proper Gen-
eralized Decomposition [27] and µANOV A(p) contains the
first terms of the sum such as:

µANOV A(p) = µ0 +

ND∑
i=1

µi

(
pi
)
, (10)

where the constant term µ0 is the point cloud at the
anchor point pa.
Once the model is built and µ can be obtained for any

choice of the parameter, φ can be recovered from µ using
the formula in (6). To recover f from φ, the total mass
I(p) is learned with a different surrogate parametric meta-
model following the same methodology (ANOVA-PGD
based regression).
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Fig. 9. Example of enrichment of the cross-centred sampling
points introduced in the Figure 3. The blue points are the addi-
tional sampling points from a LHS.

3.3.2 Enrichment and correction of the parametric
surrogate parametric metamodel

The question that arises now is, how to ensure that the
surrogate parametric metamodel predicts particles’ posi-
tion µ in new points of the parametric space which fall
outside of the cross and how to correct it?
One possibility is to consider additional parameter

configurations based on the use of a Latin Hyper-
cube Sampling (LHS) with the associated high-fidelity
solution to self-enrich the parametric surrogate para-
metric metamodel. One example of LHS is depicted in
Figure 9 and represented by the blue points. The sam-
pling points are split into two sets: the training set Btrain,
btrain ∈ [[Btrain]] that will allow to self-enrich the paramet-
ric model and the testing set Btest, btest ∈ [[Btest]] in order
to evaluate the approximation.
For each new sampling point, the parametric reduced

order model trained with the cross-centred sampling
predicts the particles’ position µ̂btrain

which allow recon-
structing the distribution φ̂btrain

. The transport plan
between the predicted distribution and the reference one
resulting from the normalised high-fidelity model distri-
bution φbtrain is calculated. The displacement related to
this transport plan represents a correction to add to
the predicted particles’ position µ̂btrain

. This approach
is performed for every new point in the sampling. This
correction is then learned as the residual of the ANOVA-
PGD presented in 3.3.1. A larger learning sampling points
leads to a better enrichment and therefore more precise
predictions from the model for new unseen configurations.
To sump-up, for each new parameter configuration

btrain ∈ [[Btrain]], the model is corrected following a
four-step process:

1. Enrichment: New high-fidelity solutions are gen-
erated associated to the additional sampling points

and normalised φbtrain
on the domain Ω. Normalised

solutions correspond to the weight at each node of
the mesh X = (xj , yj).

2. Prediction: The surrogate parametric metamodel
introduced in the Section 3.3.1 (Eq. (10)) is used
to predict φ̂btrain based on the particles’ position
µ̂btrain

of the Gaussian functions for each new
simulation btrain.

3. Transport plan: An Optimal Transport plan is
computed between the prediction of each distribu-
tion φ̂btrain

and the normalised high-fidelity model
distribution φbtrain

by solving the Kantorovitch
problem (Eq. (2)).

4. Correction and training: Using the barycentric
projection presented in equation (7), the prediction
of the particles’ positions µ̂btrain

is corrected and
denoted µ̂c

btrain
. The parametric surrogate paramet-

ric metamodel is then self-enriched with µ̂c
btrain

from
the LHS sampling.

In detail, this approach corrects the prediction of the
initial surrogate parametric metamodel by adding an addi-
tional term known as a correction term to each particle’s
displacement and denoted (δbtrain)i for the i-th particle
and are obtained from the matching between the output
of the initial ROM and the new high-fidelity simulations.
Enrichment is necessary to include the effect of the inter-
action between the parameters to the particles’ positions.
The corrected particles’ position are obtained such as:(

µ̂c
btrain

)
i
=

(
µ̂btrain

)
i
+ (δbtrain)i , (11)

as illustrated in Figure 10.

4 Model overview and online evaluation

In this section, we first summarise the methodology pre-
sented so far to build the offline phase. Then, the online
model is evaluated for the testing configurations and the
errors are calculated.

4.1 Model overview

The construction of the parametric model is composed of
two phases: an offline phase of the surrogate construction
and its online evaluation. In the offline phase, the aim is
to build a surrogate parametric metamodel by combin-
ing Optimal Transport and the ANOVA-PGD technique
to be able to predict online the solution for any set of
parameters in the parametric space D.
The model is built by the following steps:

� High-fidelity simulations: A database of high-
fidelity solutions fb from the parametric space D
is obtained using a cross-centred sampling (DoE).
Continuous solutions are normalised and denoted as
distributions φb.

� SPH decomposition and matching: The distri-
bution at the anchor point φ0 is decomposed into P
particles and, by dividing the sampling into subsets,
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Fig. 10. Methodology of the enrichment and correction of the parametric surrogate parametric metamodel for the btrain new
sampling point.

a step by step matching is performed using Opti-
mal Transport and barycentric projection. Then, the
particles’ positions in each distribution b ∈ [[B]] are
obtained and stored in the vector µb.

� Surrogate parametric metamodel training:
The ANOVA-PGD technique is used to construct
a surrogate parametric metamodel of the particles’
position. The inputs are the parameters values of
the problem p (cross-centred sampling points) and
the outputs are the predicted particles’ positions µB .
The Ib norm used for the normalization of fb is also
learned with another metamodel.

� Surrogate parametric metamodel enrichment
and correction: Btrain additional sampling points
are generated from a sparse sampling technique such
as LHS. These new sampling points are used to
run high-fidelity simulations. They are then used
with the surrogate parametric metamodel to pre-
dict the particles’ positions µBtrain

. The surrogate
parametric metamodel is corrected by adding an
additional term to these predictions, coming from
the matching performed between the predictions and
the normalised high-fidelity solutions. The ANOVA-
PGD is self-enriched with the predicted-corrected
particles’ positions denoted µ̂c

Btrain
. New sampling

points Btest from the Latin Hypercube sampling pro-
posed in Figure 9 are used to check and quantify the
accuracy of the model.

� Online evaluation: The surrogate parametric
metamodel can be used for any set of unknown
parameters and will predict the distribution φ̂
using the particles’ position as presented in the
equation (6). To recover f̂ , φ̂ is multiplied by the
predicted norm Î.

4.2 Error evaluation

To evaluate the accuracy of the surrogate parametric
metamodel Btest, btest ∈ [[Btest]] sampling points from the
LHS in Figure 9 are used. Then, predicted solutions f̂btest
are compared with the reference solutions fbtest obtained
from high-fidelity solutions. To recover the denormalised
prediction f̂btest , we first reconstruct φ̂btest using the pre-
dicted particles’ positions µ̂btest following equation (6) and

Table 1. Parametric space

Parameters Minimum Maximum
Coordinated of the Gaussian heat
source Sx (cm)

0.2 2.8

Coordinated of the Gaussian heat
source Sy (cm)

0.2 2.8

Initial temperature T0 (◦C) 30 70

then multiply the result by the predicted mass Îbtest . The
relative error is calculated as follows:

Err =
∥fbtest − f̂btest∥2

∥fbtest∥2
. (12)

5 Numerical applications

In order to illustrate and analyse the proposed method-
ology, two different 2D heat problems are studied. In
both cases, we consider a rectangular plate of dimensions
[0, 3] × [0, 3] made of a conductive material (isotropic).
The 2D heat equation is solved using the Finite Ele-
ment (FE) method implemented in FEniCS [28] in the
domain Ω. We consider the parametric space D were three
parameters (also known as dimensions) are introduced,
p =

(
p1, p2, p3

)
which correspond respectively to Sx, Sy,

the coordinates of the Gaussian heat source and the initial
temperature T0. The sampling is the one presented in the
Figure 9 referred to the parameter intervals in Table 1.
We also referred to the element mesh in Figure 6.

5.1 Parametric 2D heat equation problem with one
Gaussian heat source

First, we consider one unique heat source with the
parameters p = (Sx, Sy, T0). Then, the 2D problem reads:
k

(
∂2T

∂x2
+

∂2T

∂y2

)
= ρCP

∂T

∂t
in Ω× [0, tf ),

∇T · n = 0 on ∂Ω

T (x, y, t = 0) = T0
1

2πσ2 exp
− (x−Sx)2+(y−Sy)2

2σ2 in Ω,

(13)
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Fig. 11. Comparison between the reference solutions and the predicted solutions for Btest = 6.

Table 2. Relative errors obtained between the predicted
solutions and the real solutions for Btest = 6.

Testing points pBtest Relative error
p1 = (Sx = 0.96, Sy = 1.10, T0 = 57.94) 0.1012
p2 = (Sx = 1.62, Sy = 2.2, T0 = 59.16) 0.07888
p3 = (Sx = 2.40, Sy = 2.10, T0 = 53.81) 0.0930
p4 = (Sx = 1.66, Sy = 0.75, T0 = 31.04) 0.0891
p5 = (Sx = 1.61, Sy = 0.72, T0 = 33.08) 0.07828
p6 = (Sx = 0.76, Sy = 0.659, T0 = 44.7) 0.09723

In this case, and for each parameter configuration
pm, m ∈ [[M ]], where M = B + Btrain is the number of
sampling points of the structured sampling plus the num-
ber of sampling points of the LHS as it shown in the
Figure 9, T (x, y, t = tf )m is a high-fidelity solution. After
the normalisation, they are denoted φi. Then, based on
the methodology described in Section 4, a surrogate para-
metric metamodel is created and returns a predicted
particles’ position µ̂M . The number of particles and the
standard deviation are fixed with P = 1500 particles and
σ = 0.035. In the sPGD part, Mmodes = 100 modes were
used with a classical polynomial basis. To evaluate the
relative error of the surrogate parametric metamodel,
equation (12) is used with Btest = 6 distributions. Results
are presented in the Table 2.
The Figure 11 shows a comparison between reference

solutions f from the high-fidelity model and reconstructed
predicted solutions f̂ from the surrogate parametric
metamodel for Btest = 6.

5.2 Parametric 2D heat equation problem with two
Gaussian heat sources

In the previous physical problem, the solution can be eas-
ily approximated by a Model Order Reduction technique
because of the localised solution due to one Gaussian heat

source. To evaluate our approach, a more complex numer-
ical example is formulated in this section while taking
into consideration two Gaussian heat sources. Then, the
2D heat problem with the parameters p = (Sx, Sy, T0)
sampled as shown in Figure 9 reads:



k

(
∂2T

∂x2
+

∂2T

∂y2

)
= ρCP

∂T

∂t
in Ω× [0, tf ),

∇T · n = 0 on ∂Ω

T (x, y, t = 0) = T0
1

2πσ2 exp
− (x−Sx)2+(y−Sy)2

2σ2

+1.2 · T0
1

2πσ2 exp
− (x−Sx)2+(y−Sy)2

2σ2 in Ω,

(14)
As presented in the first case, and for each parame-

ter configuration pm, m ∈ [[M ]], where M = B + Btrain

is the number of sampling points of the structured sam-
pling plus the number of sampling points of the LHS as it
shown in the Figure 9, T (x, y, t = tf )m is a high-fidelity
solution. After the normalisation, they are denoted φi.
Then, based on the methodology presented Section 4, a
surrogate parametric metamodel is created and returns
predicted particles’ position µ̂M . The number of particles
and the standard deviation are fixed with P = 1500 parti-
cles and σ = 0.05. In the sPGD part,Mmodes = 100modes
were used with a classical polynomial basis. To evaluate
the error of the surrogate parametric metamodel, equa-
tion (12) is used with Btest = 6 distributions. Results are
presented in the Table 3.
Then, Figure 12 shows a comparison between reference

solutions f from the high-fidelity model and reconstructed
predicted solutions f̂ from the surrogate parametric
metamodel for Btest = 6.

6 Conclusion

In this paper, with the aim of speeding up the offline stage
and increasing the accuracy of the former methodology,
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Table 3. Relative errors obtained between the predicted
solutions and the real solutions for Btest = 6.

Testing points pBtest Relative error
p1 = (Sx = 0.49, Sy = 1.10, T0 = 57.94) 0.09412
p2 = (Sx = 1.62, Sy = 2.2, T0 = 59.16) 0.08015
p3 = (Sx = 2.40, Sy = 2.10, T0 = 53.81) 0.09407
p4 = (Sx = 1.66, Sy = 0.75, T0 = 31.04) 0.09044
p5 = (Sx = 1.61, Sy = 0.72, T0 = 33.08) 0.08164
p6 = (Sx = 0.76, Sy = 0.659, T0 = 44.7) 0.10078

Fig. 12. Comparison between reference solutions and predicted
solutions for Btest = 6.

we address Optimal Transport as a step by step match-
ing algorithm, matching solutions by pairs rather than all
together.
Relying on the ANOVA-PGD and its corresponding

sampling strategy, the dimensionality of the complex
matching problem is drastically reduced leading to an
easily solved optimization problem. Moreover, based on
the notion of barycentric projection, we no longer need to
decompose all the solutions into Gaussian functions but
just the one for the ANOVA anchor point. Also, the use of
the ANOVA-PGD methodology ensures that the quantity
of offline calculations remains reasonable as a result of the
linear increase in sampling.
Finally, the ANOVA-PGD based surrogate is self-

enriched with a classical LHS, relying again on the
barycentric projection approach. This method enables the
use of particle cloud representation of data, which may not
typically be employed for this particular problem. To eval-
uate the efficiency, the work is in progress at extending
our approach in a given complex industrial problem.
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