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MONADIC EXPRESSIONS AND THEIR DERIVATIVES

Samira Attou1, Ludovic Mignot2,*, Clément Miklarz2

and Florent Nicart2

Abstract. There are several well-known ways to compute derivatives of regular expressions due
to Brzozowski, Antimirov or Lombardy and Sakarovitch. We propose another one which abstracts
the underlying data structures (e.g. sets or linear combinations) using the notion of monad. As an
example of this generalization advantage, we first introduce a new derivation technique based on the
graded module monad and then show an application of this technique to generalize the parsing of
expressions with capture groups and back references. We also extend operators defining expressions
to any n-ary functions over value sets, such as classical operations (like negation or intersection for
Boolean weights) or more exotic ones (like algebraic mean for rational weights). Moreover, we present
how to compute a (non-necessarily finite) automaton from such an extended expression, using the
Colcombet and Petrisan categorical definition of automata. These category theory concepts allow us to
perform this construction in a unified way, whatever the underlying monad. Finally, to illustrate our
work, we present a Haskell implementation of these notions using advanced techniques of functional
programming, and we provide a web interface to manipulate concrete examples.
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1. Introduction

Regular expressions are a classical way to represent associations between words and value sets. As an example,
classical regular expressions denote sets of words and regular expressions with multiplicities denote formal series.
From a regular expression, solving the membership test (determining whether a word belongs to the denoted
language) or the weighting test (determining the weight of a word in the denoted formal series) can be solved,
following Kleene theorems [1, 2] by computing a finite automaton, such as the position automaton [3? –5].

Another family of methods to solve these tests is the family of derivative computations, that does not require
the construction of a whole automaton. The common point of these techniques is to transform the test for
an arbitrary word into the test for the empty word, which can be easily solved in a purely syntactical way
(i.e. by induction over the structure of expressions). Brzozowski [6] shows how to compute, from a regular
expression E and a word w, a regular expression dw(E) denoting the set of words w′ such that ww′ belongs
to the language denoted by E. Solving the membership test hence becomes the membership test for the empty
word in the expression dw(E). Antimirov [7] modifies this method in order to produce sets of expressions instead

Keywords and phrases: derivatives of (weighted) regular expressions, monads, automata constructions, haskell implementation
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of expressions, i.e. defines the partial derivatives ∂w(E) as a set of expressions the sum of which denotes the
same language as dw(E). While the number of derivatives is exponential w.r.t. the length |E| of E in the
worst case1, the partial derivatives produce at most a linear number of expressions w.r.t. |E|. Lombardy and
Sakarovitch [8] extend these methods to expressions with multiplicities. Finally, Sulzmann and Lu [9] apply
these derivation techniques to parse POSIX expressions.

It is well-known that these methods are based on a common operation, the quotient of languages. Furthermore,
Antimirov’s method can be interpreted as the derivation of regular expression with multiplicities in the Boolean
semiring. However, the Brzozowski computation does not produce the same expressions (i.e. equality over the
syntax trees) as the Antimirov one.

Main contributions: In this paper, which is an extended version of a contribution to NCMA 2022 [10],
we present a unification of these computations by applying notions of category theory to the category of sets,
and show how to compute categorical automata as defined in [11], by reinterpreting the work started in the
“habilitation à diriger des recherches” of one of the authors [12]. We make use of classical monads to model
well-known derivatives computations. Furthermore, we deal with extended expressions in a general way: in this
paper, expressions can support extended operators like complement, intersection, but also any n-ary function
(algebraic mean, extrema multiplications, etc.). The main difference with [12] is that we formally state the
languages and series that the expressions denote in an inherent way w.r.t. the underlying monads.

More precisely, this paper presents:

� an extension of expressions to any n-ary function over the value set,
� a monadic generalization of expressions,
� a solution for the membership/weight test for these expressions,
� a computation of categorical derivative automata,
� a new monad that fits with the extension to n-ary functions,
� an illustration implemented in Haskell using advanced functional programming,
� an extension to capture groups and back references expressions.

Motivation: The unification of derivation techniques is a goal by itself. Moreover, the formal tools used
to achieve this unification are also useful: Monads offer both theoretical and practical advantages. Indeed,
from a theoretical point of view, these structures allow the abstraction of properties and focus on the principal
mechanisms that allow solving the membership and weight problems. Besides, the introduction of exotic monads
can also facilitate the study of finiteness of derivated terms. From a practical point of view, monads are easy
to implement (even in some other languages than Haskell) and allow us to produce compact and safe code.
Finally, we can easily combine different algebraic structures or add some technical functionalities (capture
groups, logging, nondeterminism, etc.) thanks to notions like monad transformers [13] that we consider in this
paper.

This paper is structured as follows. In Section 2, we gather some preliminary material, like algebraic structures
or category theory notions. We also introduce some functions well-known to the Haskell community that can
allow us to reduce the size of our equations. We then structurally define the expressions we deal with, the
associated series and the weight test for the empty word in Section 3. In order to extend this test to any
arbitrary word, we first state in Section 4 some properties required by the monads we consider. Once this
so-called support is determined, we show in Section 5 how to compute the derivatives. The computation of
derivative automata is explained in Section 6. A new monad and its associated derivatives computation is given
in Section 7. An implementation is presented in Section 8. Finally, we show how to (alternatively to [9]) compute
derivatives of capture group expressions in Section 9 and show that as far as the same operators are concerned,
the derivative formulae are the same whatever the underlying monad is.

1as far as rules of associativity, commutativity and idempotence of the sum are considered, possibly infinite otherwise.
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2. Preliminaries

For classical notions of category theory, the reader should refer to [14].
We denote by S → S′ the set of functions from a set S to a set S′. The notation λx → f(x) is the classical

way to define an anonymous version of a function f . As an example, the function λx → x+ 1 is the successor
function.

A monoid is a set S endowed with an associative operation and a unit element. A semiring is a structure
(S,×,+, 1, 0) such that (S,×, 1) is a monoid, (S,+, 0) is a commutative monoid, × distributes over + and 0 is
an annihilator for ×. A starred semiring is a semiring with a unary function ⋆ such that

k⋆ = 1 + k × k⋆ = 1 + k⋆ × k.

A K-series over the free monoid (Σ∗, ·, ε) associated with an alphabet Σ, for a semiring K = (K,×,+, 1, 0),
is a function from Σ∗ to K. The set of K-series can be endowed with the structure of semiring as follows:

1(w) =

{
1 if w = ε,

0 otherwise,
0(w) = 0,

(S1 + S2)(w) = S1(w) + S2(w), (S1 × S2)(w) =
∑

u·v=w

S1(u)× S2(v).

Furthermore, if S1(ε) = 0 (i.e. S1 is said to be proper), the star of S1 is the series defined by

(S1)
⋆
(ε) = 1, (S1)

⋆
(w) =

∑
n≤|w|,w=u1···un,uj ̸=ε

S1(u1)× · · · × S1(un).

Finally, any function f in Kn → K can be extended to combine n series into a new one as follows:

(f(S1, . . . , Sn))(w) = f(S1(w), . . . , Sn(w)). (2.1)

A functor (more precisely, a functor over a subcategory of the category of sets) F associates with each set
S a set F (S) and with each function f in S → S′ a function F (f) from F (S) to F (S′) such that

F (id) = id, F (f ◦ g) = F (f) ◦ F (g),

where id is the identity function and ◦ the classical function composition.
A monad (more precisely, a monad over a subcategory of the category of sets) M is a functor endowed with
two (families of) functions

� pure, from a set S to the set M(S),
� bind, sending any function f in S → M(S′) to M(S) → M(S′),

such that the three following conditions are satisfied:

bind(f)(pure(s)) = f(s), bind(pure) = id,

bind(g)(bind(f)(m)) = bind(λx → bind(g)(f(x)))(m).

Amonad can be viewed as an algebraic data structure allowing us to apply particular coherent transformations
over the elements it might contain while preserving the properties of the data structure. Let us introduce now
three monads that we will use in the following of this paper.
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Example 2.1. The Maybe monad is a functor that allows us to extend a set with one element denoted by
Nothing. It is an elegant way to model a partial function to a set S as a total function to the set Maybe(S).
More precisely, the Maybe monad associates:

� any set S with the set Maybe(S) = {Just(s) | s ∈ S} ∪ {Nothing}, where Just and Nothing are two
syntactic tokens allowing us to extend a set with one value;

� any function f with the function Maybe(f) defined by

Maybe(f)(Just(s)) = Just(f(s)), Maybe(f)(Nothing) = Nothing

� is endowed with the functions pure and bind defined by:

pure(s) = Just(s),
bind(f)(Just(s)) = f(s),

bind(f)(Nothing) = Nothing.

Example 2.2. The Set monad is a functor that can be used to extend computations perform on a set S to
computations over the subsets of S. It is classically considered to model non-deterministic computations and
their compositions. More precisely, the Set monad associates:

� with any set S the set 2S ,
� with any function f the function Set(f) defined by Set(f)(R) =

⋃
r∈R{f(r)},

� is endowed with the functions pure and bind defined by:

pure(s) = {s}, bind(f)(R) =
⋃
r∈R

f(r).

Example 2.3. The LinComb(K) monad, for a given semiring K, is a functor that allows us to easily extend
computations perform on a set S to computations over the linear combinations over S. It can be used to model
non-deterministic weighted computations and their compositions, as probabilistic measures. More precisely, the
LinComb(K) monad, for K = (K,×,+, 1, 0), associates:

� with any set S the set of K-linear combinations of elements of S, where a linear combination is a finite
(formal, commutative) sum of couples (denoted by ⊞) in K × S where (k, s)⊞ (k′, s) = (k + k′, s),

� with any function f the function LinComb(K)(f) defined by

LinComb(K)(f)(R) = ⊞
(k,r)∈R

(k, f(r)),

� is endowed with the functions pure and bind defined by:

pure(s) = (1, s), bind(f)(R) = ⊞
(k,r)∈R

k ⊗ f(r),

where k ⊗R = ⊞
(k′,r)∈R

(k × k′, r).

Sometimes, monad names can be very long (e.g., LinComb(K)). For the sake of concision, we use the following
operators from the Haskell community to abstract the ambient monad:

f <$> s = M(f)(s), m >>= f = bind(f)(m).
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If<$> can be used to lift unary functions to the monadic level,>>= and pure can be used to lift any n-ary function
f in S1 × · · · × Sn → S, defining a function liftn sending S1 × · · · × Sn → S to M(S1)× · · · ×M(Sn) → M(S)
as follows:

liftn(f)(m1, . . . ,mn) =m1 >>= (λs1 → . . .

mn >>= (λsn → pure(f(s1, . . . , sn))) . . .)

Let us consider the set 1 = {⊤} with only one element. The images of this set by some previously defined
monads can be evaluated as value sets classically used to weight words in association with classical regular
expressions. As an example, Maybe(1) and Set(1) are isomorphic to the Boolean set, and any set LinComb(K)(1)
can be converted into the underlying set of K. This property allows us to extend coherently classical expressions
to monadic expressions, where the type of the weights is therefore given by the ambient monad.

3. Monadic expressions

In this section, we extend the well-known notion of regular expressions to monadic expressions. This extension
allows us to provide a unified version of classical algorithms to solve the membership/weight test, by generalizing
derivatives computations using monads. More precisely, we show in this section how to compute the weight of
the empty word by a recursive computation, unifying the classical computations of Brzozowski [6], Antimirov [7]
and Lombardy and Sakarovitch [8].

As seen in the previous section, elements in M(1) can be evaluated as classical value sets for some particular
monads. Hence, we use these elements not only for the weights associated with words by expressions, but also
for the elements that act over the denoted series, e.g., scalar multiplication in classical weighted expressions
over a semiring .

In the following, in addition to classical operators (+, · and ∗), we denote:

� the action of an element over a series by ⊙,
� the application of a function named f by the same symbol f .

Definition 3.1. Let M be a monad. An M -monadic expression E over an alphabet Σ is inductively defined
as follows:

E = a, E = ε, E = ∅,
E = E1 + E2, E = E1 · E2, E = E∗1 ,

E = α⊙ E1, E = E1 ⊙ α, E = f (E1, . . . , En) ,

where a is a symbol in Σ, E1, . . . , En are n M -monadic expressions over Σ, α is an element of M(1) and f is a
function from (M(1))

n
to M(1).

We denote by Exp(Σ) the set of monadic expressions over an alphabet Σ.

Example 3.2. Notice that any n-ary function can be used in the generalization we exhibit. As an
example of functions that can be used in our extension of classical operators, one can define the function
ExtDist(x1, x2, x3) = max(x1, x2, x3)−min(x1, x2, x3) from N3 to N.

Similarly to classical regular expressions, monadic expressions associate a weight with any word. Such a
relation can be denoted via a formal series. However, before defining this notion, in order to simplify our study,
we choose to only consider proper expressions. Let us first show how to characterize them by the computation
of a nullability value.

Definition 3.3. Let M be a monad such that the structure (M(1),+,×, ⋆, 1, 0) is a starred semiring. The
nullability value of an M -monadic expression E over an alphabet Σ is the element Null(E) of M(1) inductively
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defined as follows:

Null(ε) = 1, Null(∅) = 0,

Null(a) = 0, Null(E1 + E2) = Null(E1) + Null(E2),

Null(E1 · E2) = Null(E1)× Null(E2), Null(E∗1 ) = Null(E1)
⋆
,

Null(α⊙ E1) = α× Null(E1), Null(E1 ⊙ α) = Null(E1)× α,

Null(f(E1, . . . , En)) = f(Null(E1), . . . , Null(En)),

where a is a symbol in Σ, (E1, . . . , En) are n M -monadic expressions over Σ, α is an element of M(1) and f is
a function from (M(1))

n
to M(1).

When the considered semiring is not a starred one, the computation of the nullability value may diverge.
Thus, in order to compute it, let us consider the Maybe monad to elegantly deal with such a partial function.

Definition 3.4. Let M be a monad such that the structure (M(1),+,×, 1, 0) is a semiring. The partial nul-
lability value of an M -monadic expression E over an alphabet Σ is the element PartNull(E) of Maybe(M(1))
defined as follows:

PartNull(ε) = Just(1), PartNull(∅) = Just(0), PartNull(a) = Just(0),

PartNull(E1 + E2) = lift2(+)(PartNull(E1), PartNull(E2)),

PartNull(E1 · E2) = lift2(×)(PartNull(E1), PartNull(E2)),

PartNull(E∗1 ) =

{
Just(1) if PartNull(E1) = Just(0),

Nothing otherwise,

PartNull(α⊙ E1) = (λE → α× E)<$> PartNull(E1),

PartNull(E1 ⊙ α) = (λE → E × α)<$> PartNull(E1),

PartNull(f(E1, . . . , En)) = liftn(f)(PartNull(E1), . . . , PartNull(En)),

where a is a symbol in Σ, (E1, . . . , En) are n M -monadic expressions over Σ, α is an element of M(1) and f is
a function from (M(1))

n
to M(1).

An expression E is proper if its partial nullability value is not Nothing, i.e. if it is a value Just(v). In this
case, v is its nullability value, denoted by Null(E) (by abuse).

Definition 3.5. Let M be a monad such that the structure (M(1),+,×, 1, 0) is a semiring, and E be a M -
monadic proper expression over an alphabet Σ. The series S(E) associated with E is inductively defined as
follows:

S(ε)(w) =

{
1 if w = ε,

0 otherwise,
S(∅)(w) = 0, S(a)(w) =

{
1 if w = a,

0 otherwise,

S(E1 + E2) = S(E1) + S(E2), S(E1 · E2) = S(E1)× S(E2), S(E∗1 ) = (S(E1))
⋆
,

S(α⊙ E1)(w) = α× S(E1)(w), S(E1 ⊙ α)(w) = S(E1)(w)× α,

S(f(E1, . . . , En)) = f(S(E1), . . . , S(En)),
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where a is a symbol in Σ, (E1, . . . , En) are n M -monadic expressions over Σ, α is an element of M(1) and f is
a function from (M(1))

n
to M(1).

From now on, we consider the set Exp(Σ) of M -monadic expressions over Σ to be endowed with the structure
of a semiring, and two expressions denoting the same series to be equal. The weight associated with a word w in
Σ∗ by E is the value weightw(E) = S(E)(w). The nullability of a proper expression is the weight it associates
with ε, following Definition 3.4 and Definition 3.5 by a trivial induction over the structure of expression setting
w to ε in Definition 3.5 .

Proposition 3.6. Let M be a monad such that the structure (M(1),+,×, 1, 0) is a semiring. Let E be an
M -monadic proper expression over Σ. Then:

Null(E) = weightε(E).

The previous proposition implies that the weight of the empty word can be syntactically computed (i.e.
inductively computed from a monadic expression). Now, let us show how to extend the computation of this
weight from ε to any other word by defining the computation of derivatives for monadic expressions.

4. Monadic supports for expressions

A K-left-semimodule, for a semiring K = (K,×,+, 1, 0), is a commutative monoid (S,±, 0) endowed with a
function ▷ from K × S to S such that:

(k × k′) ▷ s = k ▷ (k′ ▷ s), (k + k′) ▷ s = k ▷ s± k′ ▷ s,

k ▷ (s± s′) = k ▷ s± k ▷ s′, 1 ▷ s = s, 0 ▷ s = k ▷ 0 = 0.

A K-right-semimodule can be defined symmetrically.
An operad [15, 16] is a structure (O, (◦j)j∈N, id) where O is a graded set (i.e. O =

⋃
n∈N On), id is an element

of O1, ◦j is a function defined for any three integers (i, j, k)2 with 0 < j ≤ k in Ok × Oi → Ok+i−1 such that
for any elements p1 ∈ Om, p2 ∈ On, p3 ∈ Op:

∀j such that 0 < j ≤ m: id ◦1 p1 = p1 ◦j id = p1,

∀j, j′ such that 0 < j ≤ m and 0 < j′ ≤ n: p1 ◦j (p2 ◦j′ p3) = (p1 ◦j p2) ◦j+j′−1 p3,

∀j, j′ such that 0 < j′ ≤ j ≤ m: (p1 ◦j p2) ◦j′ p3 = (p1 ◦j′ p3) ◦j+p−1 p2.

Combining these compositions ◦j , one can define a composition ◦ sending Ok × Oi1 × · · · × Oik to Oi1+···+ik :
for any element (p, q1, . . . , qk) in Ok ×Ok,

p ◦ (q1, . . . , qk) = (· · · ((p ◦k qk) ◦k−1 qk−1 · · · ) · · · ) ◦1 q1.

Conversely, the composition ◦ can define the compositions ◦j using the identity element: for any two elements
(p, q) in Ok ×Oi, for any integer 0 < j ≤ k:

p ◦j q = p ◦ (id, . . . , id︸ ︷︷ ︸
j−1 times

, q, id, . . . , id︸ ︷︷ ︸
k−j times

).

As an example, the set of n-ary functions over a set, with the identity function as unit, forms an operad.

2every couple (i, k) unambiguously defines the domain and codomain of a function ◦j
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A module over an operad (O, ◦, id) is a set S endowed with a function ⋇ from On × Sn to S such that

f ⋇ (f1 ⋇ (s1,1, . . . , s1,i1), . . . , fn ⋇ (sn,1, . . . , sn,in))

= (f ◦ (f1, . . . , fn))⋇ (s1,1, . . . , s1,i1 , . . . , sn,1, . . . , sn,in).

The extension of the computation of derivatives could be performed for any monad. Indeed, any monad could
be used to define well-typed auxiliary functions that mimic the classical computations. However, some properties
should be satisfied in order to compute weights equivalently to Definition 3.5. Therefore, in the following we
consider a restricted kind of monads.

A monadic support is a structure (M,+,×, 1, 0,±, 0,⋉, ▷, ◁,⋇) satisfying:

� M is a monad,
� R = (M(1),+,×, 1, 0) is a semiring,
� M = (M(Exp(Σ)),±, 0) is a monoid,
� (M,⋉) is a Exp(Σ)-right-semimodule,
� (M, ▷) is a R-left-semimodule,
� (M, ◁) is a R-right-semimodule,
� (M(Exp(Σ)),⋇) is a module for the operad of the functions over M(1).

An expressive support is a monadic support (M,+,×, 1, 0,±, 0,⋉, ▷, ◁,⋇) endowed with a function toExp from
M(Exp(Σ)) to Exp(Σ) satisfying the following conditions:

weightw(toExp(m)) = m>>= weightw (4.1)

toExp(m⋉ F ) = toExp(m) · F, (4.2)

toExp(m±m′) = toExp(m) + toExp(m′), (4.3)

toExp(m ▷ x) = toExp(m)⊙ x, (4.4)

toExp(x ◁ m) = x⊙ toExp(m), (4.5)

toExp(f ⋇ (m1, . . . ,mn)) = f(toExp(m1), . . . , toExp(mn)). (4.6)

Let us now illustrate this notion with three expressive supports that will allow us to model well-known derivatives
computations.

Example 4.1 (The Maybe support). A support can be defined for the Maybe monad, mimicking the Boolean
semiring for the space of values, where Nothing is the false Boolean value and Just(⊤) is the true Boolean
value. The actions of these Boolean-like values are either to cancel a computation or to leave it unchanged,
allowing us to easily chain computations such as Brzozowski derivatives. More formally, we set:

toExp(Nothing) = 0, toExp(Just(E)) = E,

Nothing+m = m,

m+ Nothing = m,

Just(⊤) + Just(⊤) = Just(⊤),

Nothing×m = Nothing,

m× Nothing = Nothing,

Just(⊤)× Just(⊤) = Just(⊤),

Nothing±m = m, m± Nothing = m, Just(E)± Just(E′) = Just(E + E′),

1 = Just(⊤), 0 = Nothing, 0 = Nothing,

m⋉ F = (λE → E · F )<$>m,

m ▷m′ = m>>= (λx → m′), m ◁ m′ = m′ >>= (λx → m),

f ⋇ (m1, . . . ,mn) = pure(f(toExp(m1), . . . , toExp(mn))).
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Example 4.2 (The Set support). A support can be defined for the Set monad, mimicking the Boolean semiring
for the space of values, where ∅ is the false Boolean value, {⊤} is the true Boolean value, + is the set union and
× the intersection, mimicking the Boolean disjunction and conjunction. The actions of these Boolean-like values
are either to cancel a computation or to leave it unchanged. However, unlike the Maybe monad, the Set monad
allows us to non-determistically split a computation into several parts and compose associated computations,
allowing us to easily chain Antimirov derivatives. More formally, we set:

toExp({E1, . . . , En}) = E1 + · · ·+ En,

+ = ∪, × = ∩, ± = ∪, 1 = {⊤}, 0 = ∅, 0 = ∅,
m⋉ F = (λE → E · F )<$>m,

m ▷m′ = m>>= (λx → m′), m ◁ m′ = m′ >>= (λx → m),

f ⋇ (m1, . . . ,mn) = pure(f(toExp(m1), . . . , toExp(mn))).

Example 4.3 (The LinComb(K) support). A support can be defined for the LinComb(K) monad, mimicking
the semiring K for the space of values, where any value (k,⊤) in LinComb(K)(1) can be seen as the scalar k of
K. The actions of these values allow us to weight the computations using linear combinations. More formally,
we set:

toExp((k1, E1)⊞ · · ·⊞ (kn, En)) = k1 ⊙ E1 + · · ·+ kn ⊙ En,

+ = ⊞, (k,⊤)× (k′,⊤) = (k × k′,⊤), 1 = (1,⊤), 0 = (0,⊤),

± = ⊞, 0 = (0,⊤),

m⋉ F = (λE → E · F )<$>m,

m ▷m′ = m>>= (λx → m′), m ◁ k = (λE → E ⊙ k)<$>m,

f ⋇ (m1, . . . ,mn) = pure(f(toExp(m1), . . . , toExp(mn))).

5. Monadic derivatives

In the following, (M,+,×, 1, 0,±, 0,⋉, ▷, ◁,⋇, toExp) is an expressive support.
Let us now show how to solve the membership/weight test for monadic expressions by unifying and gener-

alizing the three already known methods using derivatives computations due to Brzozowski [6], Antimirov [7]
and Lombardy and Sakarovitch [8].

As usual, the derivative of an expression w.r.t. a symbol is a purely syntactical version of the quotient
operation that can be performed over the associated languages or series, where the quotient of a series S w.r.t.
a symbol a associates with the word w the same weight as the series S associates with the word aw.

This computations holds inductively over the structure of expressions. As an example if S is a series associated
with an expression E1 · E2, then its derivative w.r.t. a symbol a, which basically filters the words that start
with a and then removes this symbol keeping the suffixes, is computed from two parts:

1. we can filter the words that start with a in E1 and remove this symbol keeping the suffixes, (which is a
recursive call of the derivative computation over E1) and then monadically catenate E2 with the monadic
derivatives (using the operation ⋉ of the support),

2. or we can consider the weight of the empty word in E1 (a.k.a. Null(E1)), filter the words that start with a
in E2 and remove this symbol keeping the suffixes (which is a recursive call of the derivative computation
over E2), and combine the results with the support operation ▷,

and finally combining the two parts with the support sum ±. Let us now exhibit the whole computation.
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Definition 5.1. The derivative of an M -monadic expression E over Σ w.r.t. a symbol a in Σ is the element
da(E) in M(Exp(Σ)) inductively defined as follows:

da(ε) = 0, da(∅) = 0, da(b) =

{
pure(ε) if a = b,

0 otherwise,

da(E1 + E2) = da(E1)± da(E2), da(E
∗
1 ) = da(E1)⋉ E∗1 ,

da(E1 · E2) = da(E1)⋉ E2 ± Null(E1) ▷ da(E2),

da(α⊙ E1) = α ▷ da(E1), da(E1 ⊙ α) = da(E1) ◁ α,

da(f(E1, . . . , En)) = f ⋇ (da(E1), . . . , da(En))

where b is a symbol in Σ, (E1, . . . , En) are n M -monadic expressions over Σ, α is an element of M(1) and f is
a function from (M(1))

n
to M(1).

The link between derivatives and series can be stated as follows, which is an alternative description of the
classical quotient.

Proposition 5.2. Let E be an M -monadic expression over an alphabet Σ, a be a symbol in Σ and w be a word
in Σ∗. Then:

weightaw(E) = da(E)>>= weightw.

Proof. Let us proceed by induction over the structure of E. All the classical cases (i.e. the function operator
left aside) can be proved following the classical methods ([6–8]). Therefore, let us consider this last case.

da(f(E1, . . . , En))>>= weightw

= weightw(toExp(da(f(E1, . . . , En)))) (Eq (4.1))

= weightw(toExp(f ⋇ (da(E1), . . . , da(En))) (Def 5.1))

= weightw(f(toExp(da(E1)), . . . , toExp(da(En)))) (Eq (4.6))

= f(weightw(toExp(da(E1))), . . . , weightw(toExp(da(En)))) (Def 3.5,Eq (2.1))

= f(da(E1)>>= weightw, . . . , da(En)>>= weightw) (Eq (4.1))

= f(weightaw(E1), . . . , weightaw(En)) (Ind. hyp.)

= weightaw(f(E1, . . . , En)) (Def 3.5,Eq (2.1))

Let us define how to extend the derivative computation from symbols to words, using the monadic functions.

Definition 5.3. The derivative of an M -monadic expression E over Σ w.r.t. a word w in Σ∗ is the element
dw(E) in M(Exp(Σ)) inductively defined as follows:

dε(E) = pure(E), da·v(E) = da(E)>>= dv,

where a is a symbol in Σ and v a word in Σ∗.

Finally, it can be easily shown, by induction over the length of the words, following Proposition 5.2, that
the derivatives computation can be used to define a syntactical computation of the weight of a word associated
with an expression.
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Theorem 5.4. Let E be an M -monadic expression over an alphabet Σ and w be a word in Σ∗. Then:

weightw(E) = dw(E)>>= Null.

Notice that, restraining monadic expressions to regular ones,

� the Maybe support leads to the classical derivatives [6],
� the Set support leads to the partial derivatives [7],
� the LinComb support leads to the derivatives with multiplicities [8].

Example 5.5. Let us consider the function ExtDist defined in Example 3.2 and the LinComb(N)-monadic
expression E = ExtDist(a∗b∗ + b∗a∗, b∗a∗b∗, a∗b∗a∗). The respective weights of the words aaa and aab can
be determined by repetitively compute the derivative w.r.t. the symbols a and b, and by finally computing the
weight of the empty word with the function Null as follows:

da(E) = ExtDist(a∗b∗ + a∗, a∗b∗, a∗b∗a∗ + a∗)

daa(E) = ExtDist(a∗b∗ + a∗, a∗b∗, a∗b∗a∗ + 2⊙ a∗)

daaa(E) = ExtDist(a∗b∗ + a∗, a∗b∗, a∗b∗a∗ + 3⊙ a∗)

daab(E) = ExtDist(b∗, b∗, b∗a∗)

weightaaa(E) = daaa(E)>>= Null

= ExtDist(1 + 1, 1, 1 + 3) = 4− 1 = 3

weightaab(E) = daab(E)>>= Null = ExtDist(1, 1, 1) = 0

In the next section, we show how to compute the derivative automaton associated with an expression.

6. Automata construction

Let us now show how to compute the derivatives automata classically associated with the derivatives com-
putations. In order to abstract the ambient monads, let us promote the classical automaton definition to the
categorical level 3, using a definition relatively close to the one of Colcombet and Petrisan [11].

A category C is defined by:

� a class ObjC of objects,
� for any two objects A and B, a set HomC(A,B) of morphisms,
� for any three objects A, B and C, an associative composition function ◦C in HomC(B,C) −→
HomC(A,B) −→ HomC(A,C),

� for any object A, an identity morphism idA in HomC(A,A), such that for any morphisms f in HomC(A,B)
and g in HomC(B,A), f ◦C idA = f and idA ◦C g = g.

Given a category C, a C-automaton is a tuple (Σ, I, Q, F, i, δ, f) where

� Σ is a set of symbols (the alphabet),
� I is the initial object, in Obj(C),
� Q is the state object, in Obj(C),
� F is the final object, in Obj(C),
� i is the initial morphism, in HomC(I,Q),
� δ is the transition function, in Σ −→ HomC(Q,Q),
� f is the value morphism, in HomC(Q,F ).

3see [14] for an introduction to category theory.
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The function δ can be extended as a monoid morphism from the free monoid (Σ∗, ·, ε) to the morphism
monoid (HomC(Q,Q), ◦C , idQ), leading to the following weight definition.

The weight associated by a C-automaton A = (Σ, I, Q, F, i, δ, f) with a word w in Σ∗ is the morphism
weight(w) in HomC(I, F ) defined by

weight(w) = f ◦C δ(w) ◦C i.

If the ambient category is the category of sets, and if I = 1, then the weight of a word is equivalently
an element of F , following the isomorphism sending any element f of F over the function sending ⊤ to f .
Consequently, a deterministic (complete) automaton is equivalently a Set-automaton with 1 as the initial object
and B as the final object, since in this case:

� I (the initial object) is 1,
� Q (the state object) is any set,
� F (the final object) is the Boolean set B,
� i (the initial morphism) is a function from 1 to Q, defining i(⊤) as the initial state of the DFA,
� δ (the transition function) is a function in Σ → Q → Q,
� f (the value morphism) is a function from Q to B, defining the set of final states.

Given a monad M , the Kleisli composition [17] of two morphisms f ∈ HomC(A,B) and g ∈ HomC(B,C) is
the morphism (f >=>g)(x) = f(x)>>= g in HomC(A,C). This composition defines a category, called the Kleisli
category [17] K(M) of M , where:

� the objects are the sets,
� the morphisms between two sets A and B are the functions between A and M(B),
� the identity is the function pure.

Considering these categories:

� a deterministic automaton is equivalently a K(Maybe)-automaton,
� a nondeterministic automaton is equivalently a K(Set)-automaton,
� a weighted automaton over a semiring K is equivalently a K(LinComb(K))-automaton,

all with 1 as both the initial object and the final object. As an example, in a K(Set)-automaton, I (the initial
object) is 1, Q (the state object) is any set, F (the final object) is 1, i (the initial morphism) is a function from
1 to Set(Q), defining i(⊤) as the set of the initial states of the NFA, δ (the transition function) is a function
in Σ → Q → Set(Q), f (the value morphism) is a function from Q to Set(1), defining the set of final states
(which are the states q of Q satisfying f(q) = {⊤}).

Furthermore, for a given expression E, if i = pure(E), δ(a)(E′) = da(E
′) and f = Null, we can compute the

well-known derivative automata using the three previously defined supports, and the accessible part of these
automata are finite ones as far as classical expressions are concerned [6–8].

More precisely, extended expressions can lead to infinite automata, as shown in the next example.

Example 6.1. Considering the computations of Example 5.5, it can be shown that

dan(E) = ExtDist(a∗b∗ + a∗, a∗b∗, a∗b∗a∗ + n⊙ a∗).

Hence, there is not a finite number of derivated terms, that are the states in the classical derivative automaton.
This infinite automaton is represented in Figure 1, where the final weights of the states are represented by
double edges. The sink states are omitted.

In the following section, let us show how to model a new monad in order to solve this problem.
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Figure 1. The (infinite) derivative weighted automaton associated with E.

7. The graded module monad

Let us consider an operad O = (O, ◦, id) and the association sending:

� any set S to
⋃

n∈N On × Sn,
� any f in S → S′ to the function g in

⋃
n∈N On × Sn →

⋃
n∈N On × S′n:

g(o, (s1, . . . , sn)) = (o, (f(s1), . . . , f(sn)))

It can be checked that this is a functor, denoted by GradMod(O). Moreover, it forms a monad considering the
two following functions:

pure(s) = (id, s),

(o, (s1, . . . , sn))>>= f = (o ◦ (o1, . . . , on), (s1,1, . . . , s1,i1 , . . . , sn,1, . . . , sn,in))

where f(sj) = (oj , sj,1, . . . , sj,ij ). However, notice that GradMod(O)(1) cannot be easily evaluated as a value
space. Indeed, the values it contains are composed by a first component that is a (not necessarily 0-ary) n-ary
function, and a second one that is a vector of n ⊤, the only element in 1. We would prefer to obtain a classical
scalar value, which would be a value in O0. Thus, let us compose it with another monad. As an example, let
us consider a semiring K = (K,×,+, 1, 0) and the operad O of the n-ary functions over K. Hence, let us define
the functor4 GradComb(O,K) that sends S to GradMod(O)(LinComb(K)(S)).

To show that this combination is a monad, let us first define a function α sending GradComb(O,K)(S) to
GradMod(O)(S). It can be easily done by converting a linear combination into an operadic combination, i.e. an
element in GradMod(O)(S), with the following function toOp:

toOp((k1, s1)⊞ · · ·⊞ (kn, sn))

= (λ(x1, . . . , xn) → k1 × x1 + · · ·+ kn × xn, (s1, . . . , sn)),

α(o, (L1, . . . ,Ln)) = (o ◦ (o1, . . . , on), (s1,1, . . . , s1,i1 , . . . , sn,1, . . . , sn,in))

4it is folk knowledge that the composition of two functors is a functor.
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where (oj , (sj,1, . . . , sj,ij )) = toOp(Lj) .
Consequently, we can define the monadic functions as follows:

pure(s) = (id, (1, s)),

(o, (L1, . . . ,Ln))>>= f = α(o, (L1, . . . ,Ln))>>= f

where

� the left-hand side occurrence of >>= is the bind function of the GradComb(O,K), the function to be defined;
� the right-hand side occurrence of >>= is the bind function of the GradMod(O) monad.

Let us finally define an expressive support for this monad:

toExp(o, (L1, . . . ,Ln)) = o(toExp(L1), . . . , toExp(Ln)),

(o, (L1, . . . ,Ln)) + (o′, (L′1, . . . ,L′n′)) = (o+ o′, (L1, . . . ,Ln,L′1, . . . ,L′n′))
(o, (L1, . . . ,Ln))× (o′, (L′1, . . . ,L′n′)) = (o× o′, (L1, . . . ,Ln,L′1, . . . ,L′n′))

± = +, 1 = (id, (1,⊤)), 0 = (id, (0,⊤)), 0 = (id, (0,⊤)),

m⋉ F = pure(toExp(m) · F ),

(o, (M1, . . . ,Mk)) ▷ (o
′, (L1, . . . ,Ln)) = (o(M1, . . . ,Mk)× o′, (L1, . . . ,Ln)),

(o, (L1, . . . ,Ln)) ◁ (o
′, (M1, . . . ,Mk)) = (o× o′(M1, . . . ,Mk), (L1, . . . ,Ln))

f ⋇ ((o1, (L1,1, . . . ,L1,i1)), . . . , (on, (Ln,1, . . . ,Ln,in)))

= (f ◦ (o1, . . . , on), (L1,1, . . . ,L1,i1 , . . . ,Ln,1, . . . ,Ln,in))

where (o+ o′)(x1, . . . , xn+n′) = o(x1, . . . , xn) + o′(xn+1, . . . , xn+n′)

(o× o′)(x1, . . . , xn+n′) = o(x1, . . . , xn)× o′(xn+1, . . . , xn+n′)

This support can then be used to compute automata through monadic derivatives, as shown in the following
example.

Example 7.1. Let us consider that two elements in GradComb(O,K)(Exp(Σ)) are equivalent, denoted by ≡, if
they have the same image by toExp. Let us consider the expression E = ExtDist(a∗b∗+ b∗a∗, b∗a∗b∗, a∗b∗a∗) of
Example 5.5. The respective weights of the words aaa and aab can be determined by repetitively compute the
derivative w.r.t. the symbols a and b, and by finally computing the weight of the empty word with the function
Null as follows:

da(E) = ExtDist⋇ ((+, (a∗b∗, a∗)), (id, a∗b∗), (+, (a∗b∗a∗, a∗)))

= (ExtDist ◦ (+, id,+), (a∗b∗, a∗, a∗b∗, a∗b∗a∗, a∗))

daa(E) = (ExtDist ◦ (+, id,+ ◦ (+, id)), (a∗b∗, a∗, a∗b∗, a∗b∗a∗, a∗, a∗))

≡ (ExtDist ◦ (+, id,+ ◦ (id, 2×)), (a∗b∗, a∗, a∗b∗, a∗b∗a∗, a∗))

daaa(E) ≡ (ExtDist ◦ (+, id,+ ◦ (id, 3×)), (a∗b∗, a∗, a∗b∗, a∗b∗a∗, a∗))

daab(E) ≡ (ExtDist ◦ (+, id,+), (b∗, ∅, b∗, b∗a∗, ∅))
≡ (ExtDist, (b∗, b∗, b∗a∗))

weightaaa(E) = daaa(E)>>= Null

= ExtDist ◦ (+, id,+)(1, 1, 1, 1, 3)

= ExtDist(1 + 1, 1, 1 + 3) = 4− 1 = 3

weightaab(E) = daab(E)>>= Null = ExtDist(1, 1, 1) = 0
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Figure 2. The Associated Derivative Automaton of ExtDist(a∗b∗ + b∗a∗, b∗a∗b∗, a∗b∗a∗).

Using this monad, the number of derivated terms, that is the number of states in the associated derivative
automaton, is finite. Indeed, the computations are delayed in the transition structure during the evaluation
instead of being syntactically represented in the expressions computed via derivatives . This automaton is
represented in Figure 2. Notice that the dashed rectangle represent the functions that are composed during the
traversal associated with a word. The final weights are represented by double edges. The sink states are omitted.
The state b∗ is duplicated to simplify the representation.

However, notice that not every monadic expression produces a finite set of derivated terms, as shown in the
next example.

Example 7.2. Let us consider the expression E of Example 5.5 and the expression F = E · c∗. It can be shown
that

dan(F ) = toExp(dan(E)) · c∗

= ExtDist(a∗b∗ + a∗, a∗b∗, a∗b∗a∗ + n⊙ a∗) · c∗.

Let us notice that each new application of the derivative operation w.r.t. the symbol a embeds a new expression,
distinct from the previous ones. Consequently, the set of derivatives of F , i.e. the set {dw(F ) | w ∈ Σ∗} is not
finite, and so is not the derivative automaton of F .

The study of the necessary and sufficient conditions of monads that lead to a finite set of derivated terms is
one of the next steps of our work. However, classical regular expressions still produce a finite set of derivated
terms, since the performed computations remain the same as previous methods.
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8. Haskell implementation

The membership/weight test has been implemented in Haskell, via a graphical interface where an expression
E and a word w can be entered. Then the weight of the world w in E is computed for several monads:

� a Boolean via the supports associated with the monads Maybe, Set, LinComb (Bool) and
GradedModuleOfLinComb (Bool);

� an integer via the supports associated with the monads LinComb (Int) and GradedModuleOfLinComb

(Int);
� a double via the supports associated with the monads LinComb (Double) and GradedModuleOfLinComb

(Double).

Notice that no automaton computation is needed. The membership/weight test can be syntactically performed
via the computation of derivatives, that necessarily halts as far as a finite word is concerned:

1. first, the derivatives of E w.r.t. w are inductively computed following Definition 5.1 and Definition 5.3;
2. then, the weight is computed following Theorem 5.4.

These notions are implemented using advanced functional programming elements:

� The notion of monad over a sub-category of sets is a typeclass using the Constraint kind to specify a
sub-category;

� n-ary functions and their operadic structures are implemented using fixed length vectors, the size of which
is determined at compilation using type level programming;

� The notion of graded module is implemented through an existential type to deal with unknown arities:
Its monadic structure is based on an extension of heterogeneous lists, the graded vectors, typed w.r.t. the
list of the arities of the elements it contains;

� The parser and some type level functions are based on dependently typed programming with single-
tons [18], allowing, for example, determining the type of the monads or the arity of the functions involved
at run-time;

� An application is available on GitHub [19] illustrating the computations:
◦ the backend uses servant to define an API;
◦ the frontend is defined using Reflex, a functional reactive programming engine and cross compiled in
JavaScript with GHCJS.

As an example, the monadic expression of the previous examples can be entered in the web application
as the following input:

ExtDist(a*.b*+b*.a*,b*.a*.b*,a*.b*.a*).

9. Capture groups

Standard POSIX regular expressions[20] and Perl compatible regular expressions[21] offer a mechanism to
memorize a part of the matching input string and make reference to that part subsequently. Users of common
tools such as grep or sed make use of this extensively. The pattern is captured by surrounding the corresponding
sub-expression with parenthesis and reference to it can be made with \n where n is the number of the parenthesis
group. For example:

> echo "user=Turing:Alan" | sed -r ’s/.*=(.*):(.*)/Hi \2 \1 !/’

Hi Alan Turing !

We give here an equivalent definition along with derivation formulae and a monadic definition where the
capture groups behave according to the POSIX specification. More precisely, when a capture group has been
involved more than one time due to a stared sub-expression, the value of the corresponding variable corresponds
to the last capture:

https://hackage.haskell.org/package/servant
https://hackage.haskell.org/package/reflex
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> echo "babbaabbaaab" |sed -r ’s/(b(a*)b)*/X\2X/’

XaaaX

We also allow the nesting of back-references in the matching part of the expression:

> echo "xxaaabaayy" | grep -E "(a*)b\1"

xxaaabaayy

9.1. Syntax of expressions with capture groups

A capture-group expression E over a symbol alphabet Σ and a variable alphabet Γ (or Σ,Γ-expression for
short) is inductively defined as

E = a, E = ε, E = ∅,
E = F +G, E = F ·G, E = F ∗,

E = (F )x, E = x,

where F and G are two Σ,Γ-expressions, a is a symbol in Σ, u is in Σ∗ and x is a variable in Γ. In the
POSIX syntax, capture groups are implicitly mapped with variables respectively with the order of the opening
parenthesis of a pair. Here, each capture group is associated explicitly to a variable by indexing the closing
parenthesis with the name of this variable.

Example 9.1. Considering the last sed example, we will write the matching expression this way :

E = ((a∗)xbx)
∗
.

9.2. Contextual expressions and their contextual languages

In order to define the contextual language and the derivation of capture-group expressions, we need to extend
the syntax of the expressions in order to attach to any capture group the current part of the input string captured
during an execution.

A contextual capture-group expression E over a symbol alphabet Σ and a variable alphabet Γ (or Σ,Γ-
expression for short) is inductively defined as

E = a, E = ε, E = ∅,
E = F +G, E = F ·G, E = F ∗,

E = (F )ux, E = x,

where F and G are two Σ,Γ-expressions, a is a symbol in Σ, u is in Σ∗ and x is a variable in Γ.
Notice that a Σ,Γ-expression is equivalent to a contextual capture-group expression where u = ε for every

occurrence of capture group.
In the following, we consider that a context is a function from Γ to Maybe(Σ∗), modelling the possibility that

a variable was initialized (or not) during the parsing. The set of contexts is denoted by Ctxt(Γ,Σ).
Using these notions of contexts, let us now explain the semantics of contextual capture-group expressions.

While parsing, a context is built to memorize the different associations words / variables . Therefore, a
(contextual) language associated with an expression is a set of couples built from a language and the context
that was used to compute it.

The classic atomic cases (a symbol, the empty word or the empty set) are easy to define, preserving the
context. Another one is the case of a variable x: the context is applied here to compute the associated word (if
it exists) and is preserved.

The recursive cases are interpreted as follows :
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� The contextual language of a sum of two expressions is the union of their contextual languages, computed
independently.

� The contextual language of a catenation of two expressions F and G is computed in three steps. First,
the contextual language of F is computed. Secondly, for each couple (L, ctxt) of this contextual language,
the function ctxt is considered as the new context to compute the contextual language of G, leading to
new couples (L′, ctxt′). Finally, for each of these combinations, a couple (L · L′, ctxt′) is added to form
the resulting contextual language.

� The contextual language of a starred expression is, classically, the infinite union of iterated catenations.
� The contextual language of a captured expression (F )

u
x is computed in two steps. First, the contextual

language of F is computed. Then, for each couple (L, ctxt) of it, a word w is chosen in L and the context
ctxt must be updated coherently.

More formally, the contextual language of a Σ,Γ-expression E associated with a context ctxt in Ctxt(Γ,Σ)
is the subset Lctxt(E) of 2Σ

∗ × Ctxt(Γ,Σ) inductively defined as follows:

Lctxt(a) = {({a}, ctxt)},
Lctxt(ε) = {({ε}, ctxt)},
Lctxt(∅) = ∅,

Lctxt(x) =

{
∅ if ctxt(x) = Nothing,

{({w}, ctxt)} otherwise if ctxt(x) = Just(w),

Lctxt(F +G) = Lctxt(F ) ∪ Lctxt(G),

Lctxt(F ·G) =
⋃

(L1,ctxt1)∈Lctxt(F ),

(L2,ctxt2)∈Lctxt1 (G)

{(L1 · L2, ctxt2)},

Lctxt(F ∗) =
⋃
n∈N

(Lctxt(F ))
n
,

Lctxt((F )
u
x) =

⋃
(L1,ctxt1)∈Lctxt(F ),

w∈L1

{({w}, [ctxt1]x←uw)},

where F and G are two Σ,Γ-expressions, a is a symbol in Σ, x is a variable in Γ, u is in Σ∗, Ln is defined, for
any set L of couples (language, context) by

Ln =



⋃
(L,ctxt)∈L

{({ε}, ctxt)} if n = 0,⋃
(L1,ctxt1)∈L,

(L2,ctxt2)∈Ln−1

{(L1 · L2, ctxt2)} otherwise,

and [ctxt]x←w is the context defined by

[ctxt]x←w(y) =

{
Just(w) if x = y,

ctxt(y) otherwise.
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The contextual language of an expression E is the set of couples obtained from an uninitialised context, where
nothing is associated with any variable, that is the set

Lλ →Nothing(E).

Finally, the language denoted by an expression E is the set of words obtained by forgetting the contexts, that
is the set ⋃

(L, )∈Lλ →Nothing(E)

L.

Example 9.2. Let us consider the three following expressions over the symbol alphabet {a, b, c} and the variable
alphabet {x}:

E1 = ((a∗)xbx)
∗
, E2 = cx, E = E1 · E2.

The language denoted by E2 is empty, since it is computed from the empty context, where nothing is associated
with x. However, parsing E1 allows us to compute contexts that define word values to associate with x. Let
us thus show how is defined the contextual language of E1:

� the contextual language of (a∗)x is the set

⋃
n∈N

{({an}, λx → Just(an))}

where each word an is recorded in a context;
� the contextual language of (a∗)xbx is the set

⋃
n∈N

{({anban}, λx → Just(an))}

where each word an is recorded in a context applied to evaluate the variable x;
� the contextual language of E1 is the union of the two following sets S1 and S2:

S1 = {({ε}, λx → Nothing)}
S2 = {({anban | n ∈ N}∗ · {ambam}, λx → Just(am)) | m ∈ N}

where each iteration of the outermost star produces a new record for the variable x in the context; however,
notice that only the last one is recorded at the end of the process.

Finally, the language of E is obtained by considering the contexts obtained from the parsing of E1 to evaluate
the occurrence of x in E2, leading to the set⋃

m∈N
({anban | n ∈ N}∗ · {ambamcam}).

Obviously, some classical equations still hold with these computations:
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Lemma 9.3. Let E, F and G be three Σ,Γ-expressions and ctxt be a context in Ctxt(Γ,Σ). The two following
equations hold:

Lctxt(E · (F +G)) = Lctxt(E · F + E ·G)

Lctxt(F ∗) = Lctxt(ε+ F · F ∗)

Proof. Let us proceed by equality sequences:

Lctxt(E · (F +G)) =
⋃

(L1,ctxt1)∈Lctxt(E),

(L2,ctxt2)∈Lctxt1 (F+G)

{(L1 · L2, ctxt2)}
(By definition of
the language of
a catenation)

=
⋃

(L1,ctxt1)∈Lctxt(E),

(L2,ctxt2)∈Lctxt1 (F )∪Lctxt1 (G)

{(L1 · L2, ctxt2)}
(By definition of
the language of

a sum)

=
⋃

(L1,ctxt1)∈Lctxt(E),

(L2,ctxt2)∈Lctxt1 (F )

{(L1 · L2, ctxt2)}

∪
⋃

(L1,ctxt1)∈Lctxt(E),

(L2,ctxt2)∈Lctxt1 (G)

{(L1 · L2, ctxt2)}
(By definition of

the union)

= Lctxt(E · F ) ∪ Lctxt(E ·G)
(By definition of
the language of
a catenation)

= Lctxt(E · F + E ·G)
(By definition of
the language of

a sum)

Lctxt(F ∗) =
⋃
n∈N

(Lctxt(F ))
n

(By definition of
the language of

a star)

= (Lctxt(F ))
0 ∪

⋃
n∈N,n≥1

(Lctxt(F ))
n

(By definition of N)

= (Lctxt(F ))
0 ∪

⋃
n∈N

Lctxt(F ) · (Lctxt(F ))
n

(By definition of n)

= (Lctxt(F ))
0 ∪ Lctxt(F ) ·

⋃
n∈N

(Lctxt(F ))
n

(By factorization of
Lctxt(F ),

from previous point)

= Lctxt(ε+ F · F ∗)
(By definition of

the language of the
expression ε+ F · F ∗)
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In order to solve the membership test for the contextual capture-group expressions, let us extend the classical
derivation method. But first, let us show how to extend the nullability predicate, needed at the end of the process.

9.3. Nullability computation

The nullability predicate allows us to determine whether the empty word belongs to the language denoted by
an expression. As far as capture groups are concerned, a context has to be computed. Therefore, the nullability
predicate can be represented as a set of contexts the application of which produces a language that contains
the empty word.

As we have seen, the nullability depends on the current context. Given an expression and a context ctxt, the
nullability predicate is a set in 2Ctxt(Γ,Σ), computed as follows:

Nullctxt(ε) = {ctxt}
Nullctxt(∅) = ∅
Nullctxt(a) = ∅

Nullctxt(x) =

{
{ctxt} if ctxt(x) = Just(ε)

∅ otherwise.

Nullctxt(E + F ) = Nullctxt(E) ∪Nullctxt(F )

Nullctxt(E · F ) =
⋃

ctxt′∈Nullctxt(F ),

ctxt′′∈Nullctxt
′
(G)

{ctxt′′}

Nullctxt(E∗) = {ctxt}

Nullctxt((E)
u
x) =

⋃
ctxt′∈Nullctxt(F )

{[ctxt′]x←u}

where E and F are two Σ,Γ-expressions, a is a symbol in Σ, x is a variable in Γ and u is in Σ∗.

Example 9.4. Let us consider the three expressions of Example 9.2:

E1 = ((a∗)xbx)
∗
, E2 = cx, E = E1 · E2.

For any context ctxt,

Nullctxt(E1) = {ctxt}, Nullctxt(E2) = ∅, Nullctxt(E) = ∅.

Indeed,

� the contextual language of the expression E1 always contains the empty word, since it is a starred
expression, and the context is preserved;

� the contextual languages of the expressions E2 and E never contains the empty word, since E2 starts with
the symbol c and since E is a catenation of E1 and E2, implying the presence of the symbol c.

The nullability predicate allows us to determine whether there exists a couple in the contextual language of
an expression such that its first component contains the empty word.

Proposition 9.5. Let E be a Σ,Γ-expression and ctxt be a context in Ctxt(Γ,Σ). Then the two following
conditions are equivalent:

� Nullctxt(E) ̸= ∅,
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� ∃(L, ) ∈ Lctxt(E) | ε ∈ L.

Proof. By induction over the structure of E:

� If E = a ∈ Σ or E = ∅, the property holds since Nullctxt(E) is empty and since there is no couple (L, ctxt′)
in Lctxt(E) with ε in L.

� If E = ε, the following two conditions hold,

Nullctxt(E) = {ctxt}, Lctxt(E) = {({ε}, ctxt)},

satisfying the stated condition.
� If E = F +G, the following two conditions hold:

Nullctxt(F +G) = Nullctxt(F ) ∪Nullctxt(G), Lctxt(F +G) = Lctxt(F ) ∪ Lctxt(G).

Since, by induction hypothesis, the following two conditions hold

Nullctxt(F ) ̸= ∅ ⇔ ∃(L, ctxt′) ∈ Lctxt(F ) | ε ∈ L,

Nullctxt(G) ̸= ∅ ⇔ ∃(L, ctxt′) ∈ Lctxt(G) | ε ∈ L,

the proposition holds.
� If E = F ·G, the two following conditions hold:

Nullctxt(F ·G) =
⋃

ctxt′∈Nullctxt(F ),

ctxt′′∈Nullctxt
′
(G),

{ctxt′′},

Lctxt(F ·G) =
⋃

(L,ctxt′)∈Lctxt(F ),

(L′,ctxt′′)∈Lctxt′ (G),

{(L · L′, ctxt′′)}.

Since, by induction hypothesis, the two following conditions hold,

Nullctxt(F ) ̸= ∅ ⇔ ∃(L, ctxt′) ∈ Lctxt(F ) | ε ∈ L,

Nullctxt
′
(G) ̸= ∅ ⇔ ∃(L, ctxt′′) ∈ Lctxt

′
(G) | ε ∈ L,

the proposition holds.
� If E = F ∗, since the two following conditions hold

Nullctxt(F ∗) = {ctxt}, Lctxt(F )
0
= {({ε}, ctxt)} ∈ Lctxt(F ∗),

the stated condition holds.
� If E = (F )

u
x, both following conditions hold:

Nullctxt((F )
u
x) =

⋃
ctxt′∈Nullctxt(F )

{[ctxt′]x←u},

Lctxt((F )
u
x) =

⋃
(L,ctxt′)∈Lctxt(F ),

w∈L

{({w}, [ctxt′]x←uw)}.
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Then, following induction hypothesis,

Nullctxt(F ) ̸= ∅ ⇔ ∃(L, ctxt′) ∈ Lctxt(F ) | ε ∈ L,

the stated condition holds.
� If E = x, both following conditions hold:

Nullctxt(x) =

{
{ctxt} if ctxt(x) = Just(ε)

∅ otherwise,

Lctxt(x) =

{
∅ if ctxt(x) = Nothing,

{({w}, ctxt)} otherwise if ctxt(x) = Just(w).

Therefore, the proposition holds.

9.4. Derivation formulae

Similarly to the nullability predicate, the derivation computation builds the context while parsing the expres-
sion. Therefore, the derivative of an expression with respect to a context is a set of couples (expression, context),
inductively computed as follows, for any Σ,Γ-expression and for any context ctxt in Ctxt(Γ,Σ):

dctxta (ε) = ∅
dctxta (∅) = ∅

dctxta (b) =

{
∅ if a ̸= b,

{(ε, ctxt)} otherwise,

dctxta (x) =

{
dctxta (w) if ctxt(x) = Just(w)

∅ otherwise

dctxta (F +G) = dctxta (F ) ∪ dctxta (G)

dctxta (F ·G) =
⋃

(ctxt′,F ′)∈dctxt
a (F )

{(F ′ ·G, ctxt′)} ∪
⋃

ctxt′∈Nullctxt(F )

dctxt
′

a (G)

dctxta (F ∗) =
⋃

(ctxt′,F ′)∈dctxt
a (F )

{(F ′ · F ∗, ctxt′)}

dctxta ((F )
u
x) =

⋃
(ctxt′,F ′)∈dctxt

a (F )

{((F ′)u·ax , ctxt′)}

where F and G are two Σ,Γ-expressions, a is a symbol in Σ, x is a variable in Γ and u is in Σ∗.

Example 9.6. Let us consider the three expressions of Example 9.2:

E1 = ((a∗)xbx)
∗
, E2 = cx, E = E1 · E2.

Then, for any context ctxt, the derivatives of E w.r.t. the symbols a, b and c are the following ones:

dctxta (E) = {((a∗)axbx((a
∗)xbx)

∗
cx, ctxt)},

dctxtb (E) = {(x((a∗)xbx)
∗
cx, [ctxt]x←ε)},
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dctxtc (E) = {(x, ctxt)}.

Indeed,

� the computation of the derivative of E w.r.t. a does not modify the context but (syntactically) memorizes
that the symbol a was read once during the parsing (producing the subexpression (a∗)

a
x);

� the computation of the derivative of E w.r.t. b forces the context to associate x with ε; indeed, the capture
group associated with x, (a∗)x, needs to be evaluated to ε in order the symbol b to be the first symbol
read during the parsing;

� the computation of the derivative of E w.r.t. a does not modify the context since the expression E1 is a
starred expression, which contextual language contains ε for any context, allowing c to be the first symbol
read during the parsing.

The derivation of an expression allows us to syntactically express the computation of the quotient of the
language components in contextual languages, where the quotient w−1(L) is the set {w′ | ww′ ∈ L}.

Proposition 9.7. Let E be a Σ,Γ-expression, ctxt be a context in Ctxt(Γ,Σ) and a be a symbol in Σ. Then:

⋃
(E′,ctxt′)∈dctxt

a (E)

Lctxt
′
(E′) =

⋃
(L′,ctxt′)∈Lctxt(E)

{(a−1(L′), ctxt′)}

Proof. By induction over the structure of E, assimilating ∅ and {(∅, ctxt)} for any context ctxt.

� If E = ε or E = ∅, the property vacuously holds.
� If E = b ∈ Σ, ⋃

(E′,ctxt′)∈dctxt
a (b)

Lctxt
′
(E′)

=

{
∅ if b ̸= a,

{({ε}, ctxt)} otherwise,

(By definition of
the derivative

of b )

= {(a−1({b}), ctxt)} (By definition of a−1)

=
⋃

(L′,ctxt′)∈Lctxt(b)

{(a−1(L′), ctxt′)}
(By definition of
the contextual
language of b ).

� If E = F +G, ⋃
(E′,ctxt′)∈dctxt

a (F+G)

Lctxt
′
(E′)

=
⋃

(E′,ctxt′)∈dctxt
a (F )∪dctxt

a (G)

Lctxt
′
(E′)

(By definition of
the derivative
of a sum)

=
⋃

(E′,ctxt′)∈dctxt
a (F )

Lctxt
′
(E′)

∪
⋃

(E′,ctxt′)∈dctxt
a (G)

Lctxt
′
(E′)

(By definition of
the union)
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=
⋃

(L′,ctxt′)∈Lctxt(F )

{(a−1(L′), ctxt′)}

∪
⋃

(L′,ctxt′)∈Lctxt(G)

{(a−1(L′), ctxt′)} (Following the
induction hypothesis)

=
⋃

(L′,ctxt′)∈Lctxt(F )∪Lctxt(G)

{(a−1(L′), ctxt′)} (By definition of
the union)

=
⋃

(L′,ctxt′)∈Lctxt(F+G)

{(a−1(L′), ctxt′)}
(By definition of
the language of

a sum).

� If E = F ·G, ⋃
(E′,ctxt′)∈dctxt

a (F ·G)

Lctxt
′
(E′)

=
⋃

(ctxt′,F ′)∈dctxt
a (F )

Lctxt
′
(F ′ ·G)

∪
⋃

ctxt′∈Nullctxt(F ),

(G′,ctxt′′)∈dctxt′
a (G)

Lctxt
′′
(G′)

(By definition of
the derivative
of a catenation)

=
⋃

(ctxt′,F ′)∈dctxt
a (F ),

(L1,ctxt1)∈Lctxt(F ′),

(L2,ctxt2)∈Lctxt1 (G)

{(L1 · L2, ctxt2)}

∪
⋃

ctxt′∈Nullctxt(F ),

(G′,ctxt′′)∈dctxt′
a (G)

Lctxt
′′
(G′)

(By definition of
the language

of a catenation)

=
⋃

(L1,ctxt1)∈Lctxt(F ),

(L2,ctxt2)∈Lctxt1 (G)

{(a−1(L1) · L2, ctxt2)}

∪
⋃

ctxt1∈Nullctxt(F ),

(L2,ctxt2)∈Lctxt1 (G)

{(a−1(L2), ctxt2)}
(Following the

induction hypothesis

=
⋃

(L1,ctxt1)∈Lctxt(F ),

(L2,ctxt2)∈Lctxt1 (G)

{(a−1(L1) · L2, ctxt2)}

∪
⋃

(L1,ctxt1)∈Lctxt(F ),
ε∈L1,

(L2,ctxt2)∈Lctxt1 (G)

{(a−1(L2), ctxt2)}
(According to

Proposition 9.5)

=
⋃

(L1,ctxt1)∈Lctxt(F ),

(L2,ctxt2)∈Lctxt1 (G)

{(a−1(L1 · L2), ctxt2)}
(By definition of

a−1 for a
a catenation)
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=
⋃

(L′,ctxt′)∈Lctxt(F ·G)

{(a−1(L′), ctxt′)}
(By definition of
the catenation of

languages).

� If E = F ∗, ⋃
(E′,ctxt′)∈dctxt

a (F∗)

Lctxt
′
(E′)

=
⋃

(ctxt′,F ′)∈dctxt
a (F )

Lctxt
′
(F ′ · F ∗)

(By definition of
the derivative
of a star)

=
⋃

(ctxt′,F ′)∈dctxt
a (F ),

(L1,ctxt1)∈Lctxt(F ′),

(L2,ctxt2)∈Lctxt1 (F∗)

{(L1 · L2, ctxt2)}
(By definition of
the language of
a catenation)

=
⋃

(L1,ctxt1)∈Lctxt(F ),

(L2,ctxt2)∈Lctxt1 (F∗)

{(a−1(L1) · L2, ctxt2)}
(Following the

induction hypothesis)

=
⋃

(L1,ctxt1)∈Lctxt(F ),

(L2,ctxt2)∈Lctxt1 (F∗)

{(a−1(L1 · L2), ctxt2)}
(By definition of

a−1)

=
⋃

(L′,ctxt′)∈Lctxt(F ·F∗)

{(a−1(L′), ctxt′)}
(By definition of
the language

of a catenation)

=
⋃

(L′,ctxt′)∈Lctxt(ε+F ·F∗)

{(a−1(L′), ctxt′)} (By definition of
of a−1)

=
⋃

(L′,ctxt′)∈Lctxt(F∗)

{(a−1(L′), ctxt′)} (From Lemma 9.3)

� If E = (F )
u
x, ⋃

(E′,ctxt′)∈dctxt
a ((F )ux)

Lctxt
′
(E′)

=
⋃

(ctxt′,F ′)∈dctxt
a (F )

Lctxt
′
((F ′)

u·a
x )

(By definition of
the derivative

of a capture group)

=
⋃

(ctxt′,F ′)∈dctxt
a (F )

(L1,ctxt1)∈Lctxt′ (F ′),
w∈L1

{({w}, [ctxt1]x←uaw)}
(By definition of
the language of
a capture group)

=
⋃

(L1,ctxt1)∈Lctxt(F ),

w∈a−1(L1)

{({w}, [ctxt1]x←uaw)}
(Following the

induction hypothesis)
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=
⋃

(L1,ctxt1)∈Lctxt(F ),
aw∈L1

{({w}, [ctxt1]x←uaw)}
(By definition

of a−1)

=
⋃

(L1,ctxt1)∈Lctxt(F ),
aw∈L1

{(a−1({aw}), [ctxt1]x←uaw)}
(By definition

of a−1)

=
⋃

(L1,ctxt1)∈Lctxt(F ),
w∈L1

{(a−1({w}), [ctxt1]x←uw)}
(By definition

of a−1)

=
⋃

(L′,ctxt′)∈Lctxt((F )ux)

{(a−1(L′), ctxt′)} (By definition
of a−1)

� If E = x,

⋃
(E′,ctxt′)∈dctxt

a (x)

Lctxt
′
(E′)

=


⋃

(E′,ctxt′)∈dctxt
a (w)

Lctxt
′
(E′) if ctxt(x) = Just(w),

∅ otherwise,

(By definition of
the derivative of
a variable x)

=


⋃

(w,ctxt)∈dctxt
a (aw)

Lctxt(w) if ctxt(x) = Just(aw),

∅ otherwise,

(Substituting w
by aw)

=

{
{({w}, ctxt)} if ctxt(x) = Just(aw),

∅ otherwise,

(By definition of
the language of

aword)

=

{
{(a−1({aw}), ctxt)} if ctxt(x) = Just(aw),

∅ otherwise,

(By definition
of a−1)

=

{
{(a−1({w}), ctxt)} if ctxt(x) = Just(w),

∅ otherwise,

(Substituting aw
by w)

=
⋃

(L′,ctxt′)∈Lctxt(x)

{(a−1(L′), ctxt′)}
(By definition of
the language of

a variable)

The derivation w.r.t. a word is, as usual, an iterated application of the derivation w.r.t. a symbol, recursively
defined as follows, for any Σ,Γ-expression E, for any context ctxt in Ctxt(Γ,Σ), for any symbol a in Σ and for
any word v in Σ∗:

dctxtε (E) = {(E, ctxt)}, dctxta·v (E) =
⋃

(E′,ctxt′)∈dctxt
a (E)

dctxt
′

v (E′).
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Example 9.8. Let us consider the three expressions of Example 9.6:

E1 = ((a∗)xbx)
∗
, E2 = cx, E = E1 · E2.

Then, for any context ctxt,

dctxtab (E) = dctxtb ((a∗)
a
xbx((a

∗)xbx)
∗
cx)

= {(x((a∗)xbx)
∗
cx, [ctxt]x←a)}

dctxtaba (E) = d[ctxt]x←a
a (x((a∗)xbx)

∗
cx)

= {(((a∗)xbx)
∗
cx, [ctxt]x←a)}

dctxtabac(E) = d[ctxt]x←a
c (((a∗)xbx)

∗
cx)

= {(x, [ctxt]x←a)}
dctxtabaca(E) = d[ctxt]x←a

a (x)

= {(ε, [ctxt]x←a)}

Indeed, like it was the case in the previous example, these derivatives computations preserve the context, except
for the case of the derivative w.r.t. ab. In this case, the nullability of the subexpression (a∗)

a
x implies the

contextual association of x with a, updating the initial context.

Such an operation allows us to syntactically compute the quotient.

Proposition 9.9. Let E be a Σ,Γ-expression, ctxt be a context in Ctxt(Γ,Σ) and w be a word in Σ∗. Then:⋃
(E′,ctxt′)∈dctxt

w (E)

Lctxt
′
(E′) =

⋃
(L′,ctxt′)∈Lctxt(E)

{(w−1(L′), ctxt′)}

Proof. By a direct induction over the structure of words.

Finally, the membership test of a word w can be performed as usual by first computing the derivation w.r.t.
w, and then by determining the existence of a nullable derivative, as a direct corollary of Proposition 9.5 and
Proposition 9.9.

Theorem 9.10. Let E be a Σ,Γ-expression, ctxt be a context in Ctxt(Γ,Σ) and w be a word in Σ∗. Then the
two following conditions are equivalent:

� ∃(L, ) ∈ Lctxt(E) | w ∈ L,

� ∃(E′, ctxt′) ∈ dctxtw (E) | Nullctxt
′
(E′) ̸= ∅.

We have shown how to compute the derivatives and solve the membership test in a classical way. Let us show
how to embed the context computation in a convenient monad, in order to generalize the definitions to other
structure than sets.

9.5. The StateT Monad transformer

It is well known that the composition of two functors is a functor. However, the composition of two monads
is not necessarily a monad (e.g. the composition of the Set monad with itself [22]). However, ones can consider
particular combinations of these objects. Among those, well-known patterns are the monad transformers like
the StateT Monad Transformer [13]. This combination allows us to mimick the use of global variables in a
functional way. In our setting, it allows us to embed the context computation in an elegant way.



MONADIC EXPRESSIONS AND THEIR DERIVATIVES 29

Let S be a set and M be a monad. We denote by StateT(S,M) the following mapping:

StateT(S,M)(A) = S → M(A× S).

In other terms, StateT(S,M)(A) is the set of functions from S to the monadic structure M(A× S) based on
couples in the cartesian product (A× S).

The mapping StateT(S,M) can be used to define a functor: for any function f from a set A to a set B:

StateT(S,M)(f)(state)(s) = M(λ(a, s) → (f(a), s))(state(s)).

It can also be used to define a monad: for any function f from a set A to the set StateT(S,M)(B):

pure(a) = λs → pure(a, s)

bind(f)(state)(s) = state(s)>>= λ(a, s′) → f(a)(s′)

9.6. Monadic definitions

The previous definitions associated with capture-group expressions can be equivalently restated using the
StateT monad transformer specialised with the Set monad.

Let us first consider the following claims where M = StateT(Ctxt(Γ,Σ), Set), allowing us to bring closer M
and the previous notion of monadic support:

� R = (M(1),+,×, 1, 0) is a semiring by setting:

f1 + f2 = λs → f1(s) ∪ f2(s), f1 × f2 = f1 >>= λ → f2,

1 = λs → {(⊤, s)} = pure(⊤), 0 = λs → ∅,

� M = (M(Exp(Σ)),±, 0) is a monoid by setting:

± = +, 0 = 0,

� (M,⋉) is a Exp(Σ)-right-semimodule by setting:

f ⋉ F = λs →
⋃

(E,ctxt)∈f(s)

{(E · F, ctxt)},

� (M, ▷) is a R-left-semimodule by setting:

f1 ▷ f2 = f1 >>= λ → f2.

Then, the nullable predicate formulae can be equivalently restated as an element in StateT(Ctxt(Γ,Σ), Set)(1),
which is equal by definition to Ctxt(Γ,Σ) → Set(1×Ctxt(Γ,Σ)), isomorphic to Ctxt(Γ,Σ) → Set(Ctxt(Γ,Σ)).
It can inductively be computed as follows:

Null(ε) = 1 Null(∅) = 0

Null(a) = 0 Null(E + F ) = Null(E) + Null(F )

Null(E · F ) = Null(E)×Null(F ) Null(E∗) = 1
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Null(x)(ctxt) =

{
pure((⊤, ctxt)) if ctxt(x) = Just(ε),

∅ otherwise,

Null((E)
u
x)(ctxt) = Set(λ(⊤, ctxt′) → (⊤, [ctxt′]x←u))(Null(F )(ctxt)),

where E and F are two Σ,Γ-expressions, a is a symbol in Σ, x is a variable in Γ and u is in Σ∗. Notice that
these formulae are the same as the ones in Definition 3.3 as far as classical operators are concerned, and that
these formulae can be easily generalized to other convenient monads than Set. Moreover, the derivative of an
expression is an element in StateT(Ctxt(Γ,Σ),Set)(Exp(Σ,Γ)):

da(ε) = 0 da(∅) = 0

da(b) =

{
0 if a ̸= b,

pure(ε) otherwise,
da(E + F ) = da(E)± da(F )

da(E · F ) = da(E)⋉ F +Null(E) ▷ da(F ) da(E
∗) = da(E)⋉ E∗

da((E)
u
x) = StateT(Ctxt(Γ,Σ),Set)(λF → (F )

ua
x )(da(E))

da(x)(ctxt) =

{
pure((w, ctxt)) if ctxt(x) = Just(aw),

∅ otherwise,

where E and F are two Σ,Γ-expressions, a is a symbol in Σ, x is a variable in Γ and u is in Σ∗. Once again,
notice that these formulae are the same that the ones in Definition 5.1 as far as classical operators are concerned,
and that these formulae can be easily generalized to other convenient monads than Set.

Finally, the derivation w.r.t. a word is monadically defined as in previous sections:

dε(E) = pure(E), dav(E) = da(E)>>= dv,

and the membership test of a word w can be equivalently rewritten as follows:

(dw(E)>>=Null)(λ → Nothing) ̸= ∅.

10. Conclusion and perspectives

In this paper, we achieved the first step of our plan to unify the derivative computation over word expressions.
Monads are indeed useful tools to abstract the underlying computation structures and thus may allow us to
consider some other functionalities, such as capture groups via the well-known StateT monad transformer [13].
We aim to study the conditions satisfying by monads that lead to finite set of derivated terms, and to extend
this method to tree expressions using enriched categories. Finally, we plan to extend monadic derivation to
other underlying monads for capture groups, linear combinations for example.
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